柏崎刈羽原子力発電所3号炉 審查資					
資料番号	KK3PLM-補-08	改1			
提出年月日	2022 年 11月	9日			

柏崎刈羽原子力発電所3号炉

高経年化技術評価

(コンクリート及び鉄骨構造物)

補足説明資料

2022年11月9日

東京電力ホールディングス株式会社

本資料のうち,枠囲みの内容は,営業秘密 又は防護上の観点から公開できません。

1. 概要	1
2. 基本方針	2
3. 評価対象と評価手法	4
3.1 対象構造物の選定	4
3.2 経年劣化事象の抽出	11
3.3 評価対象部位の選定	18
3.4 評価手法	18
4. 対象構造物の技術評価	20
4.1 コンクリートの強度低下	20
4.2 コンクリートの遮へい能力低下	30
4.3 現状保全	31
4.4 総合評価	31
4.5 高経年化への対応	31
5. 評価対象部位以外の技術評価	31
6. まとめ	32
6.1 審査ガイド適合性	32
6.2 保守管理に関する方針として策定する事項	33

別紙

別紙 1. 点検マニュアルにおける定期点検の項目,方法及び判定基準について 1-1
別紙 2. 柏崎刈羽 3 号炉周辺地域の凍害危険度について
別紙 3. 鉄骨構造物の疲労評価の計算過程及び判定基準について 3-1
別紙 4. 原子炉ペデスタルの温度分布解析について 4-1
別紙 5. 放射線照射量の算定方法,条件及び結果について
別紙 6. 中性化の評価点を選定した過程について 6-1
別紙 7. 中性化深さの推定値の算定過程について 7-1
別紙 8. 塩分浸透における評価点の妥当性について8-1
別紙 9. 塩分浸透における鉄筋の腐食減量の算定過程について
別紙 10. 機械振動の評価対象部位及び評価点の抽出過程について 10-1
別紙 11. 熱による遮へい能力低下の評価に用いた温度分布解析について 11-1
別紙 12. 柏崎刈羽 3 号炉周辺の地下水による劣化影響について 12-1

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規定 に基づき実施した冷温停止状態が維持されることを前提とした高経年化技術評価のう ち、コンクリート構造物及び鉄骨構造物の経年劣化事象に対する評価結果について補 足説明するものである。

2. 基本方針

コンクリート構造物及び鉄骨構造物の経年劣化事象及び劣化要因に対する評価の基本方針は,対象構造物について,経年劣化事象の発生の可能性について評価し,その可能性が将来にわたって発生することが否定できない場合は,その発生及び進展に係る健全性評価を行い,運転開始後40年時点までの期間において「実用発電用原子炉施設における高経年化対策審査ガイド」及び「実用発電用原子炉施設における高経年化対策事項に適合することを確認することである。

コンクリート構造物及び鉄骨構造物評価についての要求事項を表1に整理する。

表1 コンクリート構造物及び鉄骨構造物評価についての要求事項

ガイド	要求事項
実用発電用原子炉施	3. 高経年化技術評価等の審査の視点・着眼点 (1) 高経年化技術評価の審査
設における高経年化	迎健全性の評価
対策審査ガイド	実施ガイド 3.1⑤に規定する期間の満了日までの期間について,高経年化対策上着目すべき経年劣化事象の発生または進展に係る健全性を評価していることを審査する。
	①現状保全の評価 健全性評価結果から現状の保全策の妥当性が評価されている ことを審査する。
	現状保全の評価結果から、現状保全に追加する必要のある新 たな保全策が抽出されていることを審査する。 (2)長期保守管理方針の審査
	 ①長期保守管理方針の策定 すべての追加保全策について長期保守管理方針として策定されているかを審査する。
実用発電用原子炉施	3.1 高経年化技術評価の実施及び見直し 高級年化技術評価の実施及び見直しに当たっては、以下の要
設における高経年化	求事項を満たすこと。
対策実施ガイド	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に規定する期間の満了日までの期間について機器・ 構造物の健全性評価を行うとともに、必要に応じ現状の保守
	管理に追加すべき保全策(以下、「追加保全策」という。)を
	抽出すること。 イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価 プラントの運転を開始した日から60年間(ただし,⑧ただ し書の規定に該当する場合にはプラントの運転を開始した
	日から 40 年間とする。) 3.2 長期保守管理方針の策定及び変更 長期保守管理方針の策定及び変更に当たっては,以下の要求
	事項を満たすこと。 ①高経年化技術評価の結果抽出された全ての追加保全策(発電 用原子炉の運転を断続的に行うことを前提として抽出された
	もの及び冷温停止状態が維持されることを前提として抽出さ れたものの全て。)について,発電用原子炉ごとに,保守管 理の項目及び当該項目ごとの実施時期を規定した長期保守管
	理方針を策定すること。 なお,高経年化技術評価の結果抽出された追加保全策について,発電用原子炉の運転を断続的に行うことを前提とした
	評価から抽出されたものと冷温停止状態が維持されることを 前提とした評価から抽出されたものの間で,その対象の経年 劣化事象及び機器・構造物の部位が重複するものについて
	は、双方の追加保全策を踏まえた保守的な長期保守管理方針を策定すること。
	ただし、冷温停止が維持されることを前提とした高経年化 技術評価のみを行う場合はその限りでない。

3. 評価対象と評価手法

3.1 対象構造物の選定

柏崎刈羽原子力発電所3号炉における安全上重要な構造物(重要度分類指針における PS-1,2及びMS-1,2に該当する構造物または該当する機器・構造物を支持する構造物) 並びに高温・高圧の環境下にあるクラス3の機器及びそれを支持する構造物を抽出した結 果を表2に示す。

安全重要度分類審査指針等に定める要求機能	クラス	主要設備	対象構造物
原子炉冷却材圧力バウンダリ機能	PS-1	原子炉圧力容器 原子炉冷却材圧力バウンダリ配管	原子炉建屋原子炉建屋
過剰反応度の印加防止機能	PS-1	制御棒及び制御棒駆動系	原子炉建屋
炉心形状の維持機能	PS-1	炉心支持構造物	原子炉建屋
原子炉の緊急停止機能	MS-1	制御棒及び制御棒駆動系(スクラム機能)	原子炉建屋
未臨界維持機能	MS-1	原子炉停止系(制御棒,ほう酸水注入系)	原子炉建屋
原子炉停止後の除熱機能	MS-1	残留熱除去系	原子炉建屋,海水熱交換器建屋 原子炉補機冷却水系配管ダクト
		自動減圧系	原子炉建屋
		低圧炉心スプレイ系	原子炉建屋,海水熱交換器建屋 原子炉補機冷却水系配管ダクト
炉心冷却機能	MS-1	高圧炉心スプレイ系	原子炉建屋,海水熱交換器建屋 原子炉補機冷却水系配管ダクト
		自動減圧系	原子炉建屋
放射性物質の閉じ込め機能 放射線の遮へい及び放出低減機能	MS-1	原子炉格納容器 原子炉建屋 原子炉格納容器隔離弁 残留熱除去系	原子炉建屋 原子炉建屋 原子炉建屋 原子炉建屋,海水熱交換器建屋 原子炉補機冷却水系配管ダクト
		非常用ガス処理系 可燃性ガス濃度制御系 遮へい設備	原子炉建屋,排気筒,非常用ガス処理系配管ダクト 原子炉建屋 原子炉建屋
工学的安全施設及び原子炉停止系への作動信号 の発生機能	MS-1	安全保護系	原子炉建屋
安全上特に重要な関連機能	MS-1	非常用ディーゼル発電機系 中央制御室及び中央制御室遮蔽 中央制御室非常用換気空調系 原子炉補機冷却水系 原子炉補機冷却海水系 直流電源系	原子炉建屋,海水熱交換器建屋 原子炉補機冷却水系配管ダクト 原子炉建屋 原子炉建屋 原子炉建屋,海水熱交換器建屋,取水構造物 原子炉補機冷却水系配管ダクト 海水熱交換器建屋,取水構造物 原子炉建屋

表2(1/2)対象構造物の抽出

С

安全重要度分類審査指針等に定める要求機能	クラス	主要設備	対象構造物	
原子炉冷却材を内蔵する機能	PS-2	原子炉冷却材浄化系	原子炉建屋	
原子炉冷却材圧力バウンダリに直接接続されてい ないものであって,放射性物質を貯蔵する機能	PS-2	使用済燃料プール	原子炉建屋	
燃料を安全に取り扱う機能	PS-2	燃料取替機 原子炉建屋クレーン	原子炉建屋 原子炉建屋	
燃料プール水の補給機能	MS-2	残留熱除去系	原子炉建屋	
放射性物質放出の防止機能	MS-2	排気筒	排気筒	
事故時のプラント状態の把握機能	MS-2	事故時監視計器	原子炉建屋	
異常状態の緩和機能	MS-2	制御棒及び制御棒駆動系	原子炉建屋	
制御室外からの安全停止機能	MS-2	制御室外原子炉停止装置	原子炉建屋	
原子炉冷却材の循環機能	高*	制御棒駆動水圧系駆動水ポンプ	原子炉建屋	
放射性物質の貯蔵機能	高*	廃棄物処理設備	原子炉建屋	
プラント計測・制御機能(安全保護機能を除く)	高*	計装用圧縮空気系	タービン建屋	
原子炉冷却材の補給機能	高*	制御棒駆動水圧系スクラム排出容器	原子炉建屋	

表2(2/2)対象構造物の抽出

*: 最高使用温度が 95 ℃を超え、または最高使用圧力が 1,900 kPa を超える環境下にある原子炉格納容器外の重要度クラス 3 の機器

6

抽出した対象構造物から,図1の高経年化技術評価フロー及び図2の冷温停止維持評価 対象設備の選定フローにより,冷温停止維持に必要な構造物を選定した。その結果を表3 に示す。

図1 高経年化技術評価フロー

※1:保安規定において「原子炉モードスイッチが燃料取替又は停止及び照射済燃料の移動に対して要 求される設備」並びに「運転モードによらず要求される設備」

図2 冷温停止維持評価対象設備の選定フロー

構造		対象構造物	重要度
		原子炉建屋	MS-1
	建物	タービン建屋 (タービン発電機架台含む)	PS-3 (高温)
		海水熱交換器建屋	MS-1
コンクリート構造物	構築物	取水構造物	MS-1
		非常用ガス処理系配管ダクト	MS-1
		原子炉補機冷却水系配管ダクト	MS-1
		排気筒(基礎部)	MS-1
鉄骨構造物		原子炉建屋 (鉄骨部)	MS-1
		タービン建屋(鉄骨部)	PS-3 (高温)
		海水熱交換器建屋 (鉄骨部)	MS-1
		排気筒	MS-1

表 3 対象構造物

- 3.2 経年劣化事象の抽出
 - 3.2.1 機能達成に必要な項目

対象構造物のうちコンクリート構造物に要求される機能は、支持機能と遮へい機能で あり、鉄骨構造物に要求される機能は支持機能である。これらの機能を維持するために は、次の3つの項目が必要である。

- ① コンクリート強度の維持
- ② コンクリート遮へい能力の維持
- ③ 鉄骨強度の維持

- 3.2.2 高経年化対策上着目すべき経年劣化事象
 - (1) 想定される経年劣化事象及び劣化要因の抽出

「3.2.1 機能達成に必要な項目」であげた機能に影響を及ぼすことが否定でき ない経年劣化事象として、コンクリートの強度低下及び遮へい能力低下並びに鉄 骨の強度低下が考えられ、これらを高経年化対策上着目すべき経年劣化事象とし て選定した。

また,高経年化対策上着目すべき経年劣化事象を引き起こす可能性がある要因 は,(社)日本建築学会,(社)土木学会及び(社)日本コンクリート工学会から発刊 されている国内の基規準類,研究論文,過去のPLM調査報告書等より抽出し,コン クリート構造物及び鉄骨構造物について整理した。

柏崎刈羽原子力発電所3号炉において想定される劣化要因を抽出するため、下 記に示す2段階のプロセスでスクリーニングを行った。その結果を表4(コンクリ ート構造物)及び表5(鉄骨構造物)に示す。

第1段階:工業材料で想定される経年劣化事象

文献調査において抽出された劣化事象は,初期欠陥なども含んでいるこ とから,ここでは一般的な事例として経年劣化事象として想定する必要 性有無の絞り込みを行う。

第2段階:原子力発電所で想定される経年劣化事象

柏崎刈羽原子力発電所で使用される材料が置かれている環境条件を考慮 し,経年劣化事象として想定する必要性の有無について絞り込みを行う。

構	構 双压化化		劣化要因のスクリーニング結果			
造 物	栓牛务化 事象	劣化要因	第1段階 (一般)	第2段階 (KK3)	KK3 の環境条件・根拠等 (対象部位)	
		1. 熱	0	0	熱を受ける部位を有する。 (例:原子炉ペデスタル)	
		2. 放射線照射	0	0	放射線照射を受ける部位を有 する。(例:一次遮遮へい壁)	
		3. 中性化	0	0	二酸化炭素,温度,湿度及び仕 上げ条件によっては中性化が 進行する。(全般)	
		4. 塩分浸透	0	0	海塩粒子を受ける部位を有す る。(例:建屋外壁)	
		5. 機械振動	0	0	機 械 振 動 を 受 け る 部 位 が あ る。(例:非常用ディーゼル発 電設備基礎)	
		6.アルカリ骨材反応	0	0	コンクリート構造物全般で ASR の可能性がある。(全般)	
		7. 凍結融解	0	0	柏崎刈羽サイトの凍害危険度 は「ゼロ」だが,定期点検に よる劣化管理を行っている。	
		8. 乾燥収縮	0	×	打込後早期に,壁などの薄い 部材に発生する事象である。	
Л	74	9. 化学的侵食	0	×	周辺地盤の土壌中の汚染はな く侵食性物質による劣化は生 じない。	
ンクリ	通 度 近	10. 風化	0	×	流水等の環境に晒される部位 は無い。	
	—————————————————————————————————————	11.酸性雨	0	×	基本的に外部は防水または塗 装済である。	
下構 造物		12. 日射	0	×	熱帯地域ではない。また,基 本的に外部は防水または塗装 済である。	
122		13. 電食作用	0	×	鉄筋コンクリート内部に電流 が流れる環境は想定し難い。	
		14. アル骨反応以外の骨材	×	—	経年劣化要因ではない。	
		15. 構造劣化(過荷重,大 たわみ,不同沈下)	0	×	機械等変更の際は構造計算を 行い確認しているため,過荷 重は想定し難い。	
		16. 表面劣化(すりへり, 摩耗)	0	×	劣化の可能性のある部位があ るが,点検記録等により劣化 がないことを確認している。 (例:大物搬入口床面)	
		17. 初期不良(施工不良)	×	—	経年劣化要因ではない。施工 記録により初期不良が無いこ とを確認できる。	
		18. 瞬間的(災害)	×	—	経年劣化要因ではない。	
		19. その他(強度低下,鉄 筋腐食,ひび割れ,漏 水)	×	_	経年劣化要因ではなく,経年 劣化の結果として起こる構造 欠陥である。	
	遮へい 能力低下	20. 熱	0	0	放射線照射を受ける部位を有 する。(例:ガンマ線遮へい 壁)	

表4 想定される経年劣化事象及び劣化要因(コンクリート構造物)

構	構 双年少少			劣化要	因のスクリーニング結果
造物	一 程中 为 化 事 象	劣化要因	第1段階	第2段階	KK3 の環境条件・根拠等
彻			(一般)	(KK3)	(对家部位)
鉄骨構造物		1. 腐食(塗膜劣化含む)	0	0	劣化の可能性がある環境下にあ る。(全般)
		2. 風等による疲労	0	0	風等により共振現象を起こす可能 性のある部位を有する。(排気筒)
	強度低下	3. 化学的腐食	0	×	塗装されている。
		4.酸性雨	0	×	塗装されている。
		5. 摩耗・緩み	0	×	道路橋など交通往来のあるローラ 一支承や回転支承部は無い。
		6. 遅れ破壊	×	_	経年劣化要因ではない。
		7. 瞬間的(災害)	×	×	経年劣化要因ではない。また,被 災履歴も無い。

表5 想定される経年劣化事象及び劣化要因(鉄骨構造物)

以上より、コンクリート構造物で8要因、鉄骨構造物で2要因の計10要因が、 想定される経年劣化要因として抽出された。

(a) コンクリート構造物において想定される劣化要因

- 1) 熱(強度低下)
- 2) 放射線照射
- 3) 中性化
- 4) 塩分浸透
- 5) 機械振動
- 6) アルカリ骨材反応
- 7) 凍結融解
- 8) 熱(遮へい能力低下)
- (b) 鉄骨構造物において想定される劣化要因
 - 腐食(塗膜劣化を含む)
- 10) 風等による疲労

(2) 高経年化対策上着目すべき経年劣化事象及び劣化要因の抽出

想定される経年劣化事象のうち主要6事象に該当する事象及び下記①,②に該当 しない事象を高経年化対策上着目すべき経年劣化事象と判断した。

- 想定した劣化傾向と実際の劣化傾向の乖離が考え難い経年劣化事象であって、想定した劣化傾向等に基づき適切な保全活動を行っているもの(日常劣化管理事象表7)
- ② 現在までの運転経験や使用条件から得られた材料試験データとの比較等に より、今後も経年劣化の進展が考えられない、または進展傾向が極めて小 さいと考えられる経年劣化事象(日常劣化管理事象以外)

①に該当する事象については、想定した劣化傾向等に基づき、適切な保全活動 を行っていることから、高経年化対策上着目すべき経年劣化事象ではない事象と 判断し、②については該当する劣化事象がないことから、抽出された高経年化対 策上着目すべき経年劣化事象及び劣化要因は、表6に示すとおりとなった。

構造物	構造物 経年劣化事象 劣	
コンクリート		熱
		放射線照射
	強度低下	中性化
		塩分浸透
		機械振動
	遮へい能力低下	熱

表6 高経年化対策上着目すべき経年劣化事象及び劣化要因

また、日常劣化管理事象に関するコンクリート構造物及び鉄骨構造物の保全活動は、「原子力発電所建築設備点検マニュアル(NE-55-7改12)」、「原子力発電所土 木設備点検マニュアル(NE-55-8改11)」及び「原子力発電施設土木設備点検ガイ ド(改3)」(以下,総称して「点検マニュアル」という。)に基づき実施している。 点検マニュアルにおける定期点検の項目、方法及び判定基準を別紙1に示す。

なお、日常劣化管理事象及び劣化要因に関する具体的な点検及び補修実績を表 8 に示す。

構造物	経年劣化 事象	劣化要因	理由
	 強度低下	アルカリ 骨材反応	使用している骨材については,試験によりコ ンクリート構造物の健全性に影響を与えるよ うな反応性がないことを確認している。試験 結果を表9に示す。 なお,定期的に点検マニュアルに基づく目視 点検を行っており,アルカリ骨材反応に起因 すると判断されるひび割れ等は認められてい ない。
コンクリート		凍結融解	日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事」(2018)に示さ れる凍害危険度の分布図によると柏崎刈羽3 号炉の周辺地域の凍害の予想程度は「ゼロ」 である。柏崎刈羽3号炉周辺地域の凍害危険 度について別紙2に示す。 なお、定期的に点検マニュアルに基づく目視 点検を行っており、凍結融解に起因すると判 断されるひび割れ等は認められていない。
		腐食	定期的に点検マニュアルに基づく目視確認を 実施しており,強度に支障をきたす可能性の あるような鋼材の腐食は認められていない。 また,鉄骨の強度に支障をきたす可能性があ るような鋼材の腐食に影響する塗装の劣化等 が認められた場合には,その部分の塗装の塗 替え等を行うこととしている。
鉄一骨	強度低下	風等による疲労	鉄骨構造物のうち,風等による繰返し荷重を 受ける排気筒が対象構造物と考えられる。 柏崎刈羽3号炉の排気筒は,その耐震裕度を 向上させるために鉄塔支持型に変更し,2010 年6月に完了している。 鉄骨構造物の風等による繰返し荷重に対する 評価は,(社)日本建築学会「鋼構造許容応力 度設計規準(2019)」に示されている評価式を 用いて,発電所近傍で計測された風等に基づ き算でした応力範囲が運転別も小さいことを 確認し,疲労を考慮する必要はないととを 確認し,疲労を考慮価について別紙3に示 す。 柏崎刈3号炉の排気筒は鉄塔起きにくけとさ れまでの目視点検でも共振による疲労割れは 確認されておらず,今後もこれらの共振現象 による疲労が大きく変化する要因があるとは 言い難い。 以上から、鉄骨の風篭によろ疲労について
			以上から,鉄骨の風等による疲労について は,高経年化対策上着目すべき経年劣化事象 ではないと判断する。

表7 日常劣化管理事象と劣化要因

経年劣化 事象	劣化 要因	対象構造物	点検 方法	点検 頻度	点検結果	補修 実績
コンクリ ートの強 度低下	アルカリ 骨材反応	原子炉建屋 タービン建屋 海水熱交換器建屋 取水構造物* 非常用ガス処理系配管ダクト 原子炉補機冷却水系配管ダクト 排気筒(基礎部)	目視 点検	1回/ 2年	ア骨にるさび認てル材起とれ割めいカ反因判るれらない	補 実 無 し
	凍結 融解	原子炉建屋 タービン建屋 海水熱交換器建屋 取水構造物* 非常用ガス処理系配管ダクト 原子炉補機冷却水系配管ダクト 排気筒(基礎部)	目視 点検	1回/ 2年	凍にるさび認て結起とれ割めい解す断ひはれい	補修 実無し
鉄骨の 強度低下	腐食	原子炉建屋 タービン建屋 海水熱交換器建屋 排気筒*	目視 点検	1回/ 2年	有害な腐 食は認め られてい ない	排つ定塗実い気い期替施るにはなをて
	風等に よる 疲労	排気筒	目視 点検	1回/年	応力腐食 割れは認 められて いない	補修 実績 無し

表8 日常劣化管理事象及び劣化要因に関する点検及び補修実績

*: 取水構造物の点検品頻度は地上部:1回/年,水路部:1回/5年である。

排気筒(鉄骨部)の点検頻度は1回/年である。

対象構造物	試験方法 (試験実施年)	骨材	測定値 (6か月)	判定基準	結果
原子炉建屋	エルタルバー汁	長岡産 粗骨材	0.024%	「材齢6ヶ月で	無害
ほか主要 構造物*	モルタルハー法(昭和 62 年)	長岡産 細骨材及び 現地砂	0.048%	膨張率が 0.100 %以下」が無害	無害

表9 アルカリ骨材反応に関する試験結果

*:原子炉建屋,タービン建屋,海水熱交換器建屋,取水構造物,非常用ガス処理系配管 ダクト,原子炉補機冷却水系配管ダクト及び排気筒(基礎部) 3.3 評価対象部位の選定

評価対象部位は,評価すべき経年劣化要因毎に材料及び事象の進展に影響を与える 環境を考慮して抽出する。評価対象部位を表10に示す。

3.4 評価手法

高経年化対策上着目すべき経年劣化事象について,経年劣化要因毎に材料及び事象 の進展に影響を与える環境を考慮し,その進展の程度が大きいと考えられる評価点に ついて健全性を確認する。

健全性を確認する方法としては,学会基準等による既往の健全性評価方法または国 内外の研究成果による健全性評価方法を用いた。

構 造 種 別 経年劣化事象		コンクリート構造物					鉄	骨構造物	/# #.				
		岁化事象	強度低下					遮へい能力 低 下	弓	鱼度低下	佩考		
	要	因	熱	放射 線照 射	中性 化	塩分 浸透	アルカリ 骨材反応	凍結 融解	機械 振動	熱	腐食	風等による 疲労	*1:原子炉ペデスタル *2:一次遮へい壁
	原子炉	词建屋	\bigcirc^{*1}	\bigcirc^{*2}	0	0	\bigtriangleup	\bigtriangleup	○*6	○*7	\triangle^{*8}		*3:内壁 *4:外壁 *5:基礎 *6:非常用ディーゼル 発電設備基礎 *7:ガンマ線遮へい壁 *8:鉄骨部
対	タービ	ン建屋	0	0	\bigcirc^{*3}	\bigcirc^{*4}	\bigtriangleup	\bigtriangleup	0		\triangle^{*8}		
象	海水熱	交換器建屋	0		\bigcirc^{*4}	0	\bigtriangleup	\bigtriangleup	0		\triangle^{*8}		
構	取水構	适物			0	\bigcirc *3	\bigtriangleup	\bigtriangleup					
造	非常用 配管ダ	ガス処理系 `クト			\bigcirc^{*3}	0	\bigtriangleup	\bigtriangleup					
物 系 西	原子炉 系配管	5補機冷却水			○*3	0		\triangle					
	排気筒	Ĵ			\bigcirc^{*5}	0		\bigtriangleup			\triangle^{*8}		

表 10 コンクリート構造物及び鉄骨構造物に想定される経年劣化事象と評価対象部位

○:高経年化対策上着目すべき経年劣化事象
 △:高経年化対策上着目すべき経年劣化事象でない事象(日常劣化管理事象)

*:評価対象部位

4. 対象構造物の技術評価

4.1 コンクリートの強度低下

4.1.1 熱による強度低下

(1) 評価の概要

評価対象部位の選定にあたっては、高エネルギー対象機器(最高使用温度 95℃ 超または最高使用1900kPa超)のうち、この高エネルギー対象機器よりも最高使用 温度が上位となる機器(302℃以上)を整理した。

最高温度となる機器は、可燃性ガス濃度制御系設備の 777℃であるが、これらは 架台上に設置されていることから、コンクリート躯体等への直接の影響は小さい と考えられる。

また,原子炉格納容器内ドライウェル冷却系の空調設計温度は 57℃であり,一般区域よりも高温であることや,原子炉格納容器は最重要機器であることを踏ま え,熱に対する評価対象部位を選定する上での高エネルギー対象機器は原子炉圧 力容器と考え,評価対象部位はこれを支持する原子炉ペデスタルとした。

原子炉ペデスタルは、鋼板構造の円筒部と鉄筋コンクリート構造の中間スラブ により構成されていることから、評価点は、原子炉ペデスタルのコンクリート構 造部のうち、最も高温になると考えられる中間スラブ上面とした。原子炉建屋の 概要を図3に示す。

評価については、コンクリートの温度制限値と温度分布解析の結果を比較した。 原子炉ペデスタルの温度分布解析結果を別紙4に示す。

なお,冷温停止維持の状態においては,熱による強度に対する影響はないと判 断する。

(2) 評価結果

コンクリートの温度制限値は設計基準強度確保の観点から、局部では 90 $^{\circ}$ 、一般部では 65 $^{\circ}$ と定められている¹⁾。

これに対して,温度分布解析の結果,鉄筋コンクリート構造である中間スラブ 上面で最大約57 ℃となり,コンクリートの温度制限値以下であることを確認した。

以上から,熱によるコンクリートの強度低下は,長期健全性評価上問題となら ない。

1) 日本建築学会「原子炉建屋構造設計指針·同解説」(1988)

4.1.2 放射線照射による強度低下

(1) 評価の概要

評価対象部位は,原子炉圧力容器近傍に位置し,運転時に中性子照射量及びガ ンマ線照射量が最も大きいと考えられる一次遮へい壁とし,評価点を一次遮へい 壁内面とした。

評価については,評価点における運転開始後40年時点で予想される中性子照射 量及びガンマ線照射量を解析により算定した。放射線照射量の算定方法,条件及 び結果を別紙5に示す。

なお,冷温停止維持の状態においては,中性子やガンマ線の発生はほとんど無 く,放射線照射による強度に対する影響はないと判断する。

(2) 評価結果

中性子照射と強度の関係に関しては、従来 Hilsdorf 他の文献²⁾における「中性 子照射したコンクリートの圧縮強度(fcu)と照射しないコンクリートの圧縮強度 (fcuo)の比」を参照していたが、小嶋他の文献における試験結果³⁾を踏まえた最 新の知見によると、コンクリートの圧縮強度は、およそ1×10¹⁹ n/cm²の中性子照射 量(E>0.1MeV)から低下する可能性が確認されている。

運転開始後 40 年時点で予想される中性子照射量(E>0.1MeV)は、放射線照射量解析の結果、一次遮へい壁内面において 1.06×10^{15} n/cm²であり、 1×10^{19} n/cm²の中性子照射量(E>0.1MeV)を越えることはないと推定され、中性子照射によるコンクリート強度への影響はないものと判断した。

一方,ガンマ線照射量と強度との関係については Hilsdorf 他の文献²⁾によると
 ,ガンマ線照射量が 2.0×10¹⁰ rad 以下では有意な強度低下は見られない(図 4 参照)。

運転開始後 40 年時点で予想されるガンマ線照射量は,放射線照射量解析の結果,一次遮へい壁内面において 8.36×10⁵ rad であり,2.0×10¹⁰ rad を越えることはないと推定され,ガンマ線照射によるコンクリート強度への影響はないものと判断した。

以上から, 放射線照射によるコンクリートの強度低下は, 長期健全性評価上問 題とならない。

- Hilsdorf, Kropp, and Koch, [[]The Effects of Nuclear Radiation on the Mechanical Properties of Concrete] American Concrete Institute Publication, SP 55-10. (1978)
- 小嶋 正義、中野 眞木郎、田口 清貴、NTEC-2019-1001「中性子照射がコン クリートの強度に及ぼす影響」(2019)

(出典) Hilsdorf, Kropp, and Koch, "The Effects of Nuclear Radiation on The Mechanical Properties of Concrete." American Concrete institute Publication SP - 55, Paper 10. (1978)

図4 ガンマ線照射したコンクリートの圧縮強度(fcu)と 照射しないコンクリートの圧縮強度(fcuo)の比

4.1.3 中性化による強度低下

(1) 評価の概要

中性化の進展に影響を及ぼす要因として,環境要素(二酸化炭素濃度,温度及び相対湿度)等が考えられることから,環境測定を実施した。環境測定に基づく 中性化の評価点の選定過程について別紙6に示す。

鉄筋が腐食し始めるときの中性化深さは、一般に屋外の雨掛かりの部分では鉄筋のかぶり厚さまで達したとき、屋内の部分では鉄筋のかぶり厚さから2cm奥まで 達したときとされている(日本建築学会「鉄筋コンクリート造建築物の耐久設計 施工指針・同解説」(2016))ことから、評価対象部位は、屋外、屋内について各 々選定することとし、塗装等の仕上げ材の有無、環境要素(二酸化炭素濃度、温 度、相対湿度)を考慮して選定した。

屋内の評価対象部位抽出にあたっては,環境測定の結果をもとに,仕上げ材の 有無も考慮して,中性化が進展しやすい環境下にあると想定される複数箇所を選 定し,2022年に中性化深さを測定した。

各建物の屋内において中性化深さの平均値が最も大きい箇所は,タービン建屋 南側廊下(仕上げ材無し)で2.7 cm(2022年測定,運転開始後28年時点)であっ た。

以上の結果と各建物のかぶり厚さは同一であることを踏まえ,タービン建屋内 壁を評価対象部位とし,評価点は,中性化深さの平均値が最大となったタービン 建屋南側廊下壁とした。

また,屋外と屋内では,雨掛かりの部分の有無によって鉄筋位置に対する中性 化深さと鉄筋腐食の開始の関係が異なるため,屋外についても評価対象部位を選 定する。各対象構造物における屋外環境は,ほぼ同一であるが,屋外の評価対象 部位抽出にあたり,2022年に各構造物の中性化深さを測定した結果,建物の屋外 の中性化深さの平均値が最も大きい箇所は,海水熱交換器建屋外壁(仕上げ材有 り)の0.5 cm (2022年測定,運転開始後28年時点)であった。

以上の結果と各建物のかぶり厚さは同一であることを踏まえ,建物の屋外においては海水熱交換器建屋外壁を評価対象部位とし,評価点は,中性化深さの平均 値が最大となった海水熱交換器建屋1階北側外壁とした。

構築物の中性化深さの平均値が最も大きい箇所は,原子炉補機冷却水系配管ダクトA系内壁(仕上げ材無し)の2.1cm(2022年測定,運転開始後28年時点)であった。

以上の結果とかぶり厚さの相違を考慮して,構築物においては非常用ガス処理 系配管ダクト,原子炉補機冷却水系配管ダクトA系及び排気筒(基礎部)を評価 対象部位とし,評価点は,非常用ガス処理系配管ダクト内壁,原子炉補機冷却水 系配管ダクトA系内壁及び排気筒北西基礎とした。

(2) 評価手順

評価については,以下の手順にて実施した。中性化深さの推定値の算定過程を 別紙7に示す。

① 運転開始後40年時点における中性化深さの推定

中性化深さの推定式(岸谷式⁴⁾,森永式⁵⁾及び中性化深さの実測値に基づく√t 式⁶⁾)により,運転開始後40年時点の中性化深さの推定値を算定する。

② 最大中性化深さの推定値の抽出

中性化深さの推定式により得られる中性化深さのうち,最大値となる中性化深 さを抽出する。

③鉄筋が腐食し始める時点の中性化深さの算定

鉄筋が腐食し始める時点の中性化深さとして,屋外はかぶり厚さの値,屋内はかぶり厚さに 2cm を加えた値をそれぞれ算定する。

④ 運転開始後 40 年時点の中性化深さの評価

②が③よりも小さいことを確認する。

- 4) 日本建築学会「鉄筋コンクリート造建築物の耐久設計施工指針・同解説」
 (2016)
- 5) 森永「鉄筋の腐食速度に基づいた鉄筋コンクリート建築物の寿命予測に関 する研究」東京大学学位論文(1986)
- 6) 土木学会「コンクリート標準示方書 維持管理編」(2018)

(3) 評価結果

運転開始後40年時点における中性化深さの推定値は表11に示すとおり、いずれ の評価点においても鉄筋が腐食し始める時点の中性化深さを下回っていることを 確認した。

さらに、定期的に目視点検を実施しているが、中性化による鉄筋腐食に起因す るひび割れは確認されていない。

以上から、中性化によるコンクリートの強度低下は、長期健全性評価上問題と ならない。

圕		調査時点の中性化深さ			柏崎刈羽3号炉 運転開始後40	鉄筋が腐食し
^坂 境	対象構造物	経過年数	実測値 (調査時期)	推定値*1 (推定式)	年時点の中性化 深さ ^{*2} (推定 式)	始める時点の 中性化深さ* ³
屋内	タービン建屋	28 年	2.7 (2022 年 4 月)	2.2 (岸谷式)	3.2 (√ t 式)	6.0
	海水熱交換器建屋	28 年	0.5 (2022 年 4 月)	1.3 (岸谷式)	1.5 (岸谷式)	4.0
屋外	非常用ガス処理系 配管ダクト	28 年	1.9 (2022 年 5 月)	1.6 (岸谷式)	2.2 (√ t 式)	8.9
	原子炉補機冷却水 系配管ダクトA系	28 年	2.1 (2022 年 5 月)	1.6 (岸谷式)	2.4 (√ t 式)	8.4
	排気筒基礎	28 年	0.1 (2022 年 4 月)	1.7 (岸谷式)	2.1 (岸谷式)	7.0

表 11 コンクリートの中性化深さ

*1:岸谷式⁴⁾,森永式⁵⁾による推定値のうち最大値を記載 *2:岸谷式⁴⁾,森永式⁵⁾及び実測値に基づく√t式⁶⁾による推定値のうち最大値を記載

*3:かぶり厚さから評価した値

*4:森永式⁵⁾における温度,相対湿度及び二酸化炭素濃度は実測値による

- 4.1.4 塩分浸透による強度低下
 - (1) 評価の概要

評価対象部位は、海側に面する壁を有する対象構造物のうち、鉄筋位置におけ る塩化物イオン濃度が最大であったタービン建屋外壁と、飛来塩分及び海水とそ の飛沫の影響により最も厳しい塩分浸透環境下にある取水構造物を選定した。取 水構造物の塩分浸透の測定結果を表 12 に示す。

評価点は、タービン建屋1階北側外壁と、評価対象構造物(取水構造物)のうち 、「高経年化技術評価審査マニュアル(JNES-RE-2013-9012)」に基づき、塩分浸透 環境を考慮し、図5に示すとおり、環境条件が異なる取水構造物の気中帯、干満帯 及び海中帯をそれぞれ評価点として選定した。評価点の妥当性を別紙8に示す。

図5 取水構造物の概要

対象の	表面から	塩化物イオン量(kg/m³)				
コンクリ ート構造物	の深さ (mm)	気中帯	干満帯	海中帯		
	$0 \sim 20$	11.09	2.50	0.66		
取水構造物	$20 \sim 40$	3.34	0.27	0.11		
	$40 \sim 60$	0.16	0.12	0.09		
	$60 \sim 80$	0.10	0.09	0.07		
	$80 \sim 100$	0.08	0.11	0.06		
コア採取月		2021年4月	2021年4月	2021年4月		

表 12 塩分浸透の測定結果

(2)評価手順

評価については,以下の手順にて実施した。鉄筋の腐食減量の算定過程を別紙 9 に示す。

① 運転開始後40年時点における鉄筋の腐食減量の算定

拡散方程式により塩化物イオン濃度の測定結果をもとに,運転開始後経過年数 毎のコンクリート表面からの塩化物イオンの浸透を予測し,鉄筋位置における塩 化物イオン量を算定する。鉄筋位置における塩化物イオン量を用いて,森永式⁵⁾ により運転開始後40年時点の鉄筋の腐食減量を算定する。

- ② かぶりコンクリートにひび割れが発生する時点における鉄筋の腐食減量の算定 鉄筋径及びかぶり厚さを用いて、森永式⁵⁾により、かぶりコンクリートにひび 割れが発生する時点における鉄筋の腐食減量を算定する。
- ③ 運転開始後 40 年時点における鉄筋の腐食減量の評価

①が②よりも小さいことを確認する。

(3)評価結果

運転開始後40年時点における鉄筋の腐食減量の推定値は表13に示すとおり、いずれの評価点においても、かぶりコンクリートにひび割れが発生する時点の鉄筋の腐食減量を下回っていることを確認した。

また,定期的に目視点検を実施しているが,塩分浸透による鉄筋腐食に起因す るひび割れは確認されていない。

以上から,塩分浸透によるコンクリートの強度低下は,長期健全性評価上問題 とならない。

					鉄筋の腐食減量 (×10 ⁻⁴ g/cm ²)		
対象構造物	評価対象 部位	調査時期	鉄筋位置での塩化物 イオン濃度(%)	調 時	運転開始後 40年時点	かぶりコンク リートにひび 割れが発生す る時点	
タービン 建屋	1 階 北側外壁	2022年	0.0050 [0.117]*	3.0	4.2	41.7	
取水構造物	気中帯 内壁	2021年	0.0035 [0.083]*	1.7	2.5	91.5	
	干満帯 内壁		0.0045 [0.107]*	7.2	10.2	91.5	
	海中帯 内壁		0.0025 [0.060]*	0.0	0.0	91.5	

表13 鉄筋の腐食減量

*:[]内は塩化物イオン量(kg/m³)

4.1.5 機械振動による強度低下

(1) 評価の概要

冷温停止状態の維持に必要な機器のうち,主要な機器の原動機出力及び重量を 機械振動の大きさとして抽出した結果,出力及び重量が最も大きい機器は,非常 用ディーゼル発電設備となった。

したがって,機械振動による強度低下の評価対象部位は,支持する機器の機械 振動が大きく,且つ,建屋のコンクリート躯体から独立している非常用ディーゼ ル発電設備基礎とした。

また,評価点は,局部的に影響を受ける可能性がある基礎ボルト周辺のコンク リートとした。機械振動の評価対象部位及び評価点の抽出過程を別紙10に示す。

(2) 評価結果

機械振動により,機器のコンクリート基礎への定着部の支持力が失われるよう な場合,機械の異常振動が発生するものと考えられるが,定例試験の際に異常振 動が無いことを確認している。

また、定期的に実施している「建築設備点検業務(2021 年度)」による目視点検 の結果、補修を要するひび割れは確認されていない。過去の目視点検においても 補修を要するひび割れは確認されていないことから、補修計画及び補修実績はな い。

なお、現状のコンクリート強度の確認として、非常用ディーゼル発電設備基礎の基礎ボルト周辺のコンクリートにおいて反発度法による非破壊試験を行った結果、表 14 に示すとおり、平均推定圧縮強度は 49.0 N/mm²であり、コンクリート躯体の設計基準強度 32.3 N/mm²を十分上回っていることを確認した。

以上から,定期的な目視点検及び日常的に監視することにより機械振動による コンクリートの強度低下は,長期健全性評価上問題とならない。

部位	調査時期	平均推定圧縮強度	設計基準強度				
非常用ディーゼル 発電機基礎	2022 年 (運開後 28 年)	49.0 N/mm^2	32.3 N/mm^2				

表 14 コンクリートの非破壊試験結果

4.2 コンクリートの遮へい能力低下

4.2.1 熱による遮へい能力低下

(1) 評価の概要

評価対象部位は,前述のとおり,放射線の遮へい能力が要求されるガンマ線遮 へい壁及び一次遮へい壁のうち,原子炉圧力容器近傍にあり,運転時に照射量の 最も大きいガンマ線遮へい壁とし,評価点は,ガンマ線遮へい壁の炉心領域部と した。評価に用いた温度分布解析の詳細を別紙11に示す。

なお,冷温停止維持の状態においては,中性子やガンマ線の発生はほとんど無 く,遮へい能力に対する影響はないと判断する。

(2) 評価結果

放射線防護の観点から、コンクリート遮へい体の設計に適用されている「コン クリート遮へい体設計規準」(R.G.Jaeger et al.「Engineering Compendium on Radiation Shielding(ECRS) VOL.2」)には、周辺及び内部最高温度の制限値が示さ れており、コンクリートに対しては中性子遮へいで 88℃以下、ガンマ線遮へいで 177℃以下となっている。

これに対し、ガンマ線遮へい壁コンクリートの炉心領域部の最高温度は、工事 計画認可申請図書添付書類「生体しゃへい装置の放射線のしゃへい及び熱除去に ついての計算書」によると、全ガンマ線束による発熱を考慮した温度分布解析結 果は 60.5 ℃であり、コンクリートの温度制限値を下回っていることから、運転開 始後 40 年時点においても遮へい能力への影響はないと判断する。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射 線量が上昇するものと考えられるが,放射線量は日常的に監視されており,異常 の兆候は検知可能である。

以上から,熱によるコンクリートの遮へい能力低下は,長期健全性評価上問題 とならない。

4.3 現状保全

コンクリート構造物の強度低下については、点検マニュアルに基づき、定期的(1 回/2 年または 1 回/年)にコンクリート表面の目視点検を実施している。目視点検 の結果、ひびわれ等の補修が必要となる損傷が確認された場合、即時補修が必要なも のを除き、その経過を継続的に監視しつつ、点検実施後数年以内を目途に補修を計画、 実施することとしている。

コンクリート構造物の遮へい能力低下については,ガンマ線遮へいコンクリートが 鋼板で覆われているため,目視点検等は実施できないが,放射線量を日常的に監視し ている。

4.4 総合評価

コンクリート構造物の強度低下については,健全性評価結果から判断し,今後,強 度低下が急激に発生する可能性は小さい。

また,定期的な目視点検により補修対象となったひび割れ等の補修を計画,実施し ており,現状の保全方法は,コンクリート構造物の健全性を維持する上で適切である。

コンクリート構造物の遮へい能力低下については,健全性評価結果から判断して, 現状において問題はなく,今後,遮へい能力低下が急激に発生する可能性は極めて小 さい。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射線量 が上昇するものと考えられるが,放射線量は日常的に監視されており,異常の兆候は 検知可能である。

4.5 高経年化への対応

コンクリート構造物の強度低下及び遮へい能力低下に対しては,高経年化対策の観 点から現状の保全内容に対して追加すべき項目はなく,今後も現状保全を継続してい く。

5. 評価対象部位以外の技術評価

コンクリート及び鉄骨構造物の技術評価は,評価対象部位について,各経年劣化事 象に影響を及ぼす要因毎に,使用条件を考慮して実施している。評価対象部位以外の 使用条件等は,評価対象部位に包含されているため,技術評価結果も評価対象部位の 結果に包含される。 6. まとめ

6.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果,全ての要求事項を満足していることを確認した。コンクリート構造物及び鉄骨構造物についての要求事項との対比を表 15 に示す。

表 15 コンクリート構造物及び鉄骨構造物についての要求事項との対比

ガイド	要求事項	技術評価結果
	3. 高経年化技術評価等の審査の視点・着眼点	「4. 対象構造物の技術評価」に
	(1) 高経年化技術評価の審査	示すとおり、対象構造物について運
		転開始後 40 年時点を想定した健全
	美施刀イト3.1⑤に規定する期間の満丁日までの期間について、直線ケル対策上美日大いを線ケルル東色の発生すたは	(住評価を美施した。
	いし、 尚裕平化対東上有日 り へき 裕平 ろ 化 争家の 先生 よ に は 進展に 反 る 健 今 妣 を 誕 毎 し て い ろ こ ト を 率 本 ナ ろ	
中田 秋 王 田	に成に示る使主任で計画していることで借 <u>且</u> りる。	「40円小刀人」マニナしたり
実用発電用	週現状保全の評価 焼合性証価は思わら現状の保合等の必要性が証価され	4.3 現状保全」に示すとおり、 健会歴証価は思わた。現世の保会等
原子炉施設	陸主性計価和木がら先状の体主束の女当性が計価され ていろことを案査する	陸主住計価相木から、現仏の体主東 が妥当であることを確認した
における高	<u> <u> </u> <u></u></u>	「4.5 高経年化への対応」に示す
経年化対策	現状保全の評価結果から、現状保全に追加する必要の	とおり、現状保全項目に、高経年化
審査ガイド	ある新たな保全策が抽出されていることを審査する。	対策の観点から追加すべき新た
		な保全策はなかった。
	(2)長期保守管理方針の審査	「4.5 高経年化への対応」に示す
	①長期保守管理方針の策定	とおり、現状保全項目に、高経年化
	すべての追加保全策について長期保守管理方針として	対策の観点から追加すべきもの
	策定されているかを審査する。	はなく、保守管理に関する万針として第ウキス専項はなかった
	3.1 高経年化技術評価の実施及び見直し	して東定りる事項はながった。 $\begin{bmatrix} 4 5 ext{ 高経生化への対応 } に示す \end{bmatrix}$
	高経年化技術評価の実施及び見直しに当たっては、以	とおり、現状保全項目に、高経年化
	下の要求事項を満たすこと。	対策の観点から追加する新たな
	⑤抽出された高経年化対策上着目すべき経年劣化事	保全策はなかった。
	象について、以下に規定する期間の満了日までの期間に	
	ついて機器・構造物の健全性評価を行うとともに、必要	
	に応し現状の保守官理に追加すべざ保全東(以下,「迫加限会等」という。) た姉田ナスこと	
	加休生泉」という。)を加山りること。 イ 実用恒規則第 82 条第1 項の規定に基づく高経年化技術評	
	イ デバッ 流気 おっと 木井 うつ 流足に至うて 間腔 干に及れる 価プラントの運転を開始した日から 60 年間(ただし、	
	⑧ ただし書の規定に該当する場合にはプラントの運	
	転を開始した日から 40 年間とする。)	
	3.2 長期保守管理方針の策定及び変更	「4.5 高経年化への対応」に示す
宝田戏雪田	長期保守管理方針の策定及び変更に当たっては、以下	とおり、現状保全項目に、高経年化
天用光電用	の要求事項を満たすこと。	対策の観点から追加すべきもの
原子炉施設	① 局経年化技術評価の結果抽出された主しの追加保 会等(発電田原工匠の運転を断結的に行うことを)	はなく、休可官理に関する力封として筆定する事項けなかった
にわける尚	主衆(元電川床)がの運転を時紀時に行うことを 前提として抽出されたもの及び冷温停止状態が維	して永足する事項はながって、
経年化対策	持されることを前提として抽出されたものの全	
実施ガイド	て。)について、発電用原子炉ごとに、保守管理の項	
	目及び当該項目ごとの実施時期を規定した長期保守管	
	理方針を策定すること。	
	なお、高経年化技術評価の結果抽出された追加	
	保全策について、発電用原子炉の運転を断続的に	
	11 リーとを削従としに評価から抽出されたものと 必須値止せ能が維持されることを前掲し」を評価	
	市価停止が認か維持されることを前近とした評価から抽出されたものの間で、その対象の経年劣化	
	事象及び機器・構造物の部位が重複するものにつ	
	いては、双方の追加保全策を踏まえた保守的な長	
	期保守管理方針を策定すること。	
	ただし、冷温停止が維持されることを前提とし	
	た高経年化技術評価のみを行う場合はその限りで	
	7よい。	

6.2 保守管理に関する方針として策定する事項

コンクリート及び鉄骨構造物に関する評価について,高経年化対策の観点から追加 すべき保全項目はなく,今後も現状の保全方法により健全性を確認していくことから, 保守管理に関する方針として策定する事項はない。
- 別紙1 点検マニュアルにおける定期点検の項目,方法及び判定基準について
- 別紙2 柏崎刈羽3号炉周辺地域の凍害危険度について
- 別紙3 鉄骨構造物の疲労評価の計算過程及び判定基準について
- 別紙4 原子炉ペデスタルの温度分布解析について
- 別紙5 放射線照射量の算定方法,条件及び結果について
- 別紙6 中性化の評価点を選定した過程について
- 別紙7 中性化深さの推定値の算定過程について
- 別紙8 塩分浸透における評価点の妥当性について
- 別紙9 塩分浸透における鉄筋の腐食減量の算定過程について
- 別紙 10 機械振動の評価対象部位及び評価点の抽出過程について
- 別紙 11 熱による遮へい能力低下の評価に用いた温度分布解析について
- 別紙 12 柏崎刈羽 3 号炉周辺の地下水による劣化影響について

<点検マニュアルにおける定期点検の項目,方法及び判定基準について>

保全計画に基づき実施する定期点検について,原子力発電所建築設備点検マニュアル,原 子力発電所土木設備点検マニュアル及び原子力発電施設土木設備点検ガイドに定める,点検 の項目・方法及び判定基準を以下に示す。

- 1. 原子力発電所建築設備点検マニュアル
- 1.1 建築設備点検基準
- 構造物

				定期点検		
I,	頁目	保全重要度	保全方式	内容	頻度 (年)	
				圧縮強度	10(5) 32	
				中性化深さ	10	
		A (T1)	状態基準保全	塩化物イオン量	10	
		(11)		ひび割れ	2	
				表面劣化	2	
				圧縮強度	10(5) ^{※2}	
	Tat Alm	P		中性化深さ	10	
	XE-10	(T2)	状態基準保全	塩化物イオン量	10	
コンクリート 構造物 ^{※51}		(12)		ひび割れ	2	
				表面劣化	2	
		C (T3)	状態基準保全	ひび割れ	2	
				表面劣化	2	
		D	业能其淮涅令	ひび割れ	2	
		D	八虚巫中休王	表面劣化	2	
			状態基準保全	圧縮強度	10(5) ^{3%2}	
				中性化深さ	10	
	構築物	(T1)		塩化物イオン量	10	
		(11)		ひび割れ	2	
				表面劣化	2	
		A(T1)				
鉄骨構造物	研	B(T2)	业能其准保令	御林北北	2	
	AE 10	定173)		17171 771L	2	
	1	D				
	無線鉄塔	C(T3)	中能其淮厚合	「別紙4 実施編IV 無	線鉄塔及び	
	7.5.67.80.40	0(10)	NEXASTINE	その付帯設備点検実施要	領」による	
	避雷鉄塔	D	状態基準保全	鋼材劣化	2	

※1:対象建物内に耐火壁,防火壁,安全避難通路がある場合及および管理区域・非管理区域境界として 鋼製壁がある場合は当該点検内容に準じて点検を行うものとする。

※2:コンクリートの圧縮強度は、コア圧縮強度試験をおおむね10年毎、非破壊試験(シュミットハンマ 一及および超音波伝搬速度法)をおおむね5年毎とする。

② 原子炉冷却系統施設

		保全方式	定期点検		
項目	保全重要度			+1/2	
			四谷		(年)
防火水槽	A	状態基準保全	「BS-06 建物管理保全基本マニュア ル」による。		ズマニュア
トップベント設備	A	状態基準保全	本体	外蓋 ワイヤーロープ 内蓋 等	2
			機能	動作確認	2

③ 放射性廃棄物の廃棄施設

		保全方式	定期点検※		
項目	保全重要度		肉家	頻度	
			P14	(年)	
		状態基準保全	鋼材劣化	1	
主排気筒	A(T1)		板厚測定 (筒身のみ)	5	
十排复签 制把准 器	A (T2)	状態基準保全	外観目視	1	
土伊风间 向饭装匣			油圧測定	1	
気体, 液体又は	A (T2)	状態基準保全	ひび割れ	2	
固体廃棄物貯蔵設備			塗膜劣化	2	
幅この他の記機	D (T2)	状態基準保全	ひび割れ	2	
極ての他の設備			塗膜劣化	2	

※:「NM-13-1 定期事業者検査マニュアル 添付-1 検査一覧表 (標準)」のうち「排気筒検査」の適用に あたっては「定期点検」を「本格点検」に読み替える。

④ 放射線管理施設

			定期点検					
項目	保全重要度	保全方式	内容		頻度			
					(年)			
生体演奏法器	A (T2)	中能其淮促今	ひび割れ		2			
工件遮蔽衣匣	A(12)	从愿塞平床主	表面劣化 2		2			
	A (T2)			扉本体	2			
			太休	ヒンジ				
遮蔽扉		状態基準保全	THE	パッキン	-			
							施錠装置 等	
			機能	動作確認	2			

⑤ 原子炉格納施設

		保全方式	定期点検		
項目	保全重要度		内容		頻度
				r 141	
燃料取替床ブローアウトパネル	A(T2)	状態基準保全	本体	パネル クリップ シーリング 等	2
主蒸気系トンネル室 ブローアウトパネル	А	状態基準保全	本体	パネル	2
エアロック扉 (気密扉)	A(T2)	状態基準保全	本体	扉本体 ヒンジ パッキン 施錠装置 等	1
			機能	動作確認	1

1.2 建築設備点検標準

項目	コンクリートの圧縮強度	1
調査部位	壁等	
調査数	1 建物あたり 2 箇所以上とする。	
調査方法	 圧縮強度試験は、おおむね10年毎にコア圧縮強度試験を、5年毎に反発度法及および、 伝搬速度法の非破壊試験を実施する。 (1) コア圧縮強度試験 JIS A 1107、JIS A 1108、JIS A 1132 による。 併せて、JIS A 1149 に準拠して静弾性係数試験を実施する。 1箇所あたり3試料を採取する。 (2) 反発度法 「鉄筋コンクリート造建築物の品質管理および維持管理のための試験方法」(日本建築学による。 (3) 超音波伝搬速度法 「鉄筋コンクリート造建築物の品質管理および維持管理のための試験方法」(日本建築学による。 	超音波 祥会) 祥会)
評価方法	 (1) コア圧縮強度試験の結果は、3試料の平均値により評価する。 (2) 反発度法の評価は、材料学会式の評価値を構造物の一部から採取したコンクリート: 反発度と圧縮強度の実測値に基づいて補正することを原則とする。ただし、補正の データが無い場合は、材料学会式の評価値を材令補正係数により補正する。 (3) 超音波伝搬速度法の評価は、あらかじめ求めておいた音速と圧縮強度との関係式を 圧縮強度を推定する。 	コアの ための 用いて
管理基準	圧縮強度が設計基準強度以上であること。	
まとめ方	 (1) データ整理:以下の事項を記録する。 ・供試体の切取位置及および切取日 ・平均直径及および高さ ・補正係数 ・最大荷重 ・圧縮強度 ・欠陥の有無とその内容 ・見かけ密度 第三者試験機関による試験成績書がある場合は,原本を保管する。 管理基準を満たさない場合には、コンクリートコアの状況,調査部位の表面状況等を許調査し,記録に残す。 (2) まとめ :過去の実績を含め,経年変化を評価できるようにまとめる。 	羊細に
準拠・参考文献	 ・JIS A 1107 コンクリートからのコアの採取方法及び圧縮強度試験方法 ・JIS A 1108 コンクリートの圧縮強度試験方法 ・JIS A 1108 コンクリートの圧縮強度試験方法 ・JIS A 1132 コンクリートの強度試験用供試体の作り方 ・JIS A 1149 コンクリートの静弾性係数試験方法 ・JIS A 1155 コンクリートの反発度の測定方法 ・鉄筋コンクリート造建築物の品質管理および維持管理のための試験方法(日本建築学会) ・酸筋コンクリート造建築物の維持管理指針・同解説(日本建築学会) ・設計基準強度との関係において安全上必要なコンクリート強度の基準等を定める件(昭和 56 年建設省告示第 1102 号) ・コンクリート標準示方書【維持管理編】制定資料(2001 年制定 土木学会) ・コンクリート強度推定のための非破壊試験方法マニュアル(日本建築学会) 	2c)
備考欄		

項目	コンクリートの中性化深さ	2
調査部位	壁等	
調查数	1 建物あたり2 箇所以上とする。(3 試料/1 箇所)	
調査方法	 (1) 圧縮強度試験に使用したコアを用い, JIS A 1152 に準拠して測定を行う。 (2) 調査位置周辺の温度,湿度,二酸化炭素濃度の測定を行う。 	
評価方法		
管理基準		
まとめ方	 (1) データ整理:以下の事項を記録する。 ・供試体の切取位置及および切取日 ・試薬の噴霧から中性化深さの測定までの時間 ・中性化深さの測定箇所と各測定値,平均値,最大値 ・供試体の切取位置の状況(雨がかりの有無,塗装の有無等) ・温度,湿度,二酸化炭素濃度 ・第三者試験機関による試験成績書がある場合は,原本を保管する。 (2) まとめ :過去の実績を含め,経年変化を評価できるようにまとめる。 	
準拠・参考文献	 ・JIS A 1152 コンクリートの中性化深さの測定方法 ・建築物の耐久性向上技術シリーズ 建築構造編 I 鉄筋コンクリート造建物の耐久性向 (技報堂出版) ・鉄筋コンクリート造建築物の耐久設計施工指針(案)・同解説(日本建築学会) ・鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説(日本建築 ・原子力施設における建築物の維持管理指針・同解説(日本建築学会) 	上技術 廃学会)
備考欄		

項目	コンクリートの塩化物イオン量	3
調査部位	外気に面した壁 等	
調查数	1建物あたり1箇所以上とする。(3試料/1箇所)	
調査方法	 (1) 圧縮強度試験に使用したコアを用い、JIS A 1154 に準拠して測定を行う。 (2) 鉄筋位置+20mmまで表面側から4サンプルを 10mm幅で、それ以降を20mm幅で分割し、 それぞれ塩化物イオン量を測定する。 	
評価方法		
管理基準		
まとめ方	 (1) データ整理:以下の事項を記録する。 ・供試体の切取位置及および切取日 ・分析年月日 ・分析方法 ・塩化物イオン量 ・供試体の切取位置の状況(雨がかりの有無,塗装の有無等) ・第三者試験機関による試験成績書がある場合は,原本を保管する。 (2) まとめ:過去の実績を含め,経年変化を評価できるようにまとめる。 	
準拠・参考文献	 ・JIS A 1154 硬化コンクリート中に含まれる塩化物イオンの試験方法 ・鉄筋コンクリート造建築物の耐久設計施工指針(案)・同解説(日本建築学会) ・鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説(日本建築 ・原子力施設における建築物の維持管理指針・同解説(日本建築学会) 	寢学会)
備考欄		

項目	コンクリートのひび割れ	4
調査部位	壁,床スラブ,柱,はり,堰等	
調査方法	以下の項目を目視により調査する。 調査項目 調査内容 パターン 規則性,形態,発生部位(分布),進行性,漏水の有無 最大幅の測定(クラックスケールによる) 長さ 可視範囲の記録	
評価方法 ・ 管理基準		
まとめ方	 (1) データ整理 : ひび割れ毎に,最大幅,長さ,漏水の有無,確認日,進行性等を記載 必要に応じて写真を添付する。 (2) 管理図書作成:ひび割れの進行状況が評価できるように管理図書を作成する。 	
準拠・参考文献	 ・建築物の耐久性向上技術シリーズ 建築構造編 I 鉄筋コンクリート造建物の耐久性向 (技報堂出版) ・鉄筋コンクリート造のひび割れ対策(設計・施工)指針案・同解説(日本建築学会) ・鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説(日本建築 ・コンクリートのひび割れ調査・補修指針(日本コンクリート工学協会) ・原子力施設における建築物の維持管理指針・同解説(日本建築学会) 	上技術 築学会)

		_
項目	コンクリートの表面劣化	5
調査部位	壁, 床スラブ, 柱, はり, 堰 等	
	コンクリート打ち放し面,仕上げ材の表面について,目視あるいはハンマリング等によ 下記損傷の有無を確認し,確認された場合()内の事項を調査する。	ŋ
調査方法	 (1) エフロレッセンス,漏水の痕跡(水の浸入経路,進行性の有無等) (2) 錆汁(箇所数,形態,進行性の有無等) (2) 赤さ、剥鉄(気気)、正葉、形能、まてのためは、進行はの方無(な) 	
	(3) 浮き, 刺離(箇所数, 面積, 形態, 落下の危険性, 進行性の有無等)	
評価方法		
管理基準		
まとめ方	 (1) データ整理 :発生部分,発生面積,劣化の程度,深さ,発生日等を記録する。 また,「浮き,剥離,剥落」については落下の危険性の有無を記録する 必要に応じて写真を添付する。 (2) 管理図書作成:表面劣化の進行状況が評価できるように管理図書を作成する。 	20
準拠・参考文献	 ・建築物の耐久性向上技術シリーズ 建築構造編 I 鉄筋コンクリート造建物の耐久性向 (技報堂出版) ・鉄筋コンクリート造のひび割れ対策(設計・施工)指針案・同解説(日本建築学会) ・鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説(日本建築 ・コンクリートのひび割れ調査・補修指針(日本コンクリート工学協会) ・原子力施設における建築物の維持管理指針・同解説(日本建築学会) 	上技術 襄学会)

項目	コンクリートの塗膜劣化	6
適用部位	壁,床,堰 等	
調査方法	以下の項目を目視により調査する。 (1) 浮き・剥がれ (2) われ (ヘアークラック) (3) チョーキング (白亜化) 必要に応じてクロスカット法等による付着力の測定を行う 	
評価方法 管理基準		
まとめ方	 (1) データ整理:点検の結果を記録用紙に記入する。 (2) 写真記録 :特徴の説明が必要なものについて作成する。 	
準拠・参考文献	・建築物の耐久性向上技術シリーズ 建築構造編 I 外装仕上げの耐久性向上技術(技報金・原子力施設における建築物の維持管理指針・同解説(日本建築学会)	图出版)

項目	鉄骨の鋼材劣化	7
調査部位	柱,はり,上屋鉄骨 等 (主排気筒については次項)	
調査方法	 鉄骨部材は目視により以下について行う。ただし、必要に応じて機器を用いた測定を実施 (1) 塗膜の表面劣化(変退色,光沢度,白亜化) (2) 塗膜層の劣化(ふくれ、割れ、剥がれ、付着性能低下) (3) さびの発生状況(表面さび、断面欠損) 	値する。
評価方法		
管理基準		
まとめ方	 (1) データ整理:軸組図または床伏図などに結果を記入する。 (2) 写真記録 :特徴の説明が必要なものについて作成する。 劣化等状況が正確に把握できるよう,高解像度で撮影,記録する。 	
準拠・参考文献	・建築物の耐久性向上技術シリーズ 建築構造編Ⅱ 鉄骨造建物の耐久性向上技術(技報会・原子力施設における建築物の維持管理指針・同解説(日本建築学会)	と出版)
備考欄		

項目	主排気筒	8
調査部位	筒身 (配管取合部・ダクト接合部含む),鉄塔本体	
調査方法		
評価方法		

管理基準	
まとめ方	 (1) データ整理:軸組図または床伏図などに結果を記入する。 なお、板厚測定は「様式I-1 超音波厚さ測定検査成績表」にまとめる。 (2) 写真記録 :特徴の説明が必要なものについて作成する。 劣化等状況が正確に把握できるよう、高解像度で撮影、記録する。
準拠・参考文献	 ・建築物の耐久性向上技術シリーズ 建築構造編Ⅱ 鉄骨造建物の耐久性向上技術(技報堂出版) ・原子力施設における建築物の維持管理指針・同解説(日本建築学会) ・JIS-Z-2355(1994)超音波パルス反射法による厚さ測定方法
備考欄	 (3) データ整理:軸組図または床伏図などに結果を記入する。 (4) 写真記録 :特徴の説明が必要なものについて作成する。

2. 原子力発電所土木設備点検マニュアル及び原子力発電施設土木設備点検ガイド

2.1 点検とこれに係わる業務の手順

- ② 定期点検
 - a. 普通点検
 - (a) 点検項目

外観目視(簡単な測定含む)による点検。必要により打音検査や測定器具等による計測を実施。

(b) 点検頻度

設 備 ^{※7}	点検頻度 ^{※1, 2, 3, 4}
海水取水・放水設備	1回/2年※5
重油及び軽油関連設備	1回/年※6
電気関係設備	1回/2年※5
補給水用設備	1回/2年
諸装置基礎及びダクト	1回/2年
地震・津波対策設備	1回/年
竜巻対策	1回/年
その他外部事象対策	1回/年

※1 内部目視にあたり、仮設足場の設置や掘削などの措置が別途必要な箇所の点検頻度については、以下の とおり。なお安全上外観目視が困難な場合はこの限りではない。

取水路:1回/5年(点検年度の定期検査期間内に実施できない場合は直近の定期検査時) 放水路:1回/10年(定期検査時。点検年度の定期検査期間内に実施できない場合は直近の定期検査時) 高所部の近接目視点検(R/B~C/B間連絡ダクト,SGTSダクト,T/B~Hx/BA・B系ダクト) :1回/5年

- ※2 点検頻度の「年」については、点検対象の年度(4/1~3/31)の期間中に1回実施(実施とは点検の着手を いい、点検箇所の事前確認・仮設備設置等含む)することを指す。
- ※3 定期検査時にドライアップして内部目視を行う設備は、年→サイクルと読み替える。
- ※4 点検頻度は、以下の設備を除き、発電所の運転状況や既往の点検結果等に基づき見直すことができる。 点検頻度見直し対象外設備:フラップゲート、保管場所、アクセスルート、保管場所周辺斜面、 アクセスルート周辺斜面、吸着剤設置ピット、構内排水路
- ※5 スクリーン室、取水路、補機取水路、常設代替交流電源設備基礎、常設代替交流電源管路(ハンドホール 含む)については、1回/年とする。
- ※6 重油配管トレンチについては、1回/2年とする。
- ※7 休止または使用を終了し除却を行うまでの土木設備は、定期点検の対象外とするが、変状の発生により人 身災害が生じないよう巡視等を行い、健全性を確認する。

(c)測定器具および装備品

	測定器具	コンベックステープ,エスロンテープ,内径スケール,クラックスケ ール,ノギス,隙間ゲージ,測深ゲージ,水糸(下げ振り付),勾配 計など
装	点検補助装備品	カメラ, 点検ハンマー, 双眼鏡, 点検鏡, 懐中電灯, ペンキ, ドライ バー, ペンチ, チョークなど
品	安全装備品	安全帯,救命胴衣,酸素濃度測定器,可燃性ガス検知器,硫化水素濃 度測定器など

⑨ 詳細調査

詳細調査は、定期点検の結果、措置が必要な変状・欠陥に対し、より詳細な状況把握並びに原因の究明等が必要な 場合に実施する。詳細調査はその実施内容により、現地詳細損傷状況調査、資料精査、解析検討に分類される。

(1) 現地詳細損傷状況調査

変状・欠陥をより詳細に把握するため、精度の高い外観目視、測量、測定、試験などを実施する。

調查名称	変状・欠陥	調查項目	備考
コンクリート劣化度調査	浮き 剥離 ひびわれ 錆汁 鉄筋露出	外観目視 (展開図作成) 塩分含有量試験 (可溶性塩分,全塩分) 中性化試験 コンクリート強度試験 (コア採取による) 鋼材腐食量調査 かぶり深さ測定	損傷数量が把握できる 精度とする コンクリートコアの採 取が困難な場合は反発 硬度法による
タイロッド腐食調査	護岸の変位 背面地盤の変位	外観調査 腐食量測定 局部電位調査 土壌の腐食性調査 (比抵抗)	試掘を伴う控え工の調 査を含む場合がある
アスファルト 舗装道路調査	ひびわれ わだち掘れ深さ 段差 ポットホール 局部沈下	外観目視 ひびわれ率 路面たわみ量測定 CBR試験 アスファルト抽出試験 水準測量	

(例:現地詳細損傷状況調査)

2.2 定期点検方法および健全度判定基準一覧表

点格	の着眼点	=)	ノクリート表面は	犬態								読取り単位の())	は肉眼または双眼鏡に	よる単位
点検	点検	項目お	よび	読取り	点検ナ	万法		健	全	度		備	考	
種類	管	理項	E	単位			П		Ш		IV			
	・ひびわれ		有·無	-										
			位置·範囲	10cm										
				(50cm)										
쑙			幅	0.1mm										
诵														
~														
Jr.			長さ	1cm										
泉														
検			パターン	—										
			状况	_										

点検方法および健全度判定基準一覧表

点検の	着眼点	コンクリ	一一志	而状態											読取り単位の	の()は	対眼または	図眼鏡による	,単位
点検	点	検項目お	5 L	U.S.	読取り		14	the Ne		健	1	全	度			100		*	
種類	管	理項	ī	目	単位	泉	梗	万 法		Π	1	Π		IV		偏		考	
	·漏水		7	有·無															
			岱	立置	10cm														
			ļ		(50cm)														
			ļ																
			*	犬況	_	_													
	・浮き		1	有•無															
普																			
				4- BR	10														
活			10		10cm														
μm					lom														
			<u> </u>	vee															
点																			
	・はく離	(欠損含む)	1	有·無	_														
			1																
検			1	位置	10cm														
					(50cm)														
			L																
			形	大きさ	lcm														
					(10cm)	_													
			状	厚さ	lcm														
			44																
			次	DC	_														

点検	の着眼点	コンク	リート表面状態	ł						読取り単位の()は肉眼	または双眼鏡による単位
点検	点相	魚項目お	よび	読取り	A4 71.	+ >+	健	全	度	125	atz.
種類	管	理項	E	単位	息 使	力法	П	ш	IV	টায	5
					-						
	·骨材露出	4	有·無	_	-						
					-						
			位置	10cm	-						
				(50cm)	-						
蔷			大きさ	1cm	-						
				(10cm)	-						
					-						
通	·鉄筋露出	8	有·無	-	-						
					-						
			位置·範囲	10cm	-						
点				(50cm)	-						
			長さ	lem	-						
			~~~	(10cm)	-						
検					-						
			かぶり厚さ	1mm							
					_						
			パターン	-	-						
					-						
			COT AN UNAS		-						
			周夏状態	_							

点検	の着眼点	コンク	リート表面状態								読取り単位の()は肉眼。	または双眼鏡による単位
点検	点相	<b>魚項目お</b>	よび	読取り	A4 34	+ 34	健	술	λũ	度	125	-tz.
種類	管	理項	i 🖪	単位	息 使	力法	П	П	I	IV	Ditte	4
					-							
	·錆汁		有·無		-							
			位置	10cm	-							
				(50cm)	-							
					-							
			範囲·	—	-							
普			パターン		-							
12	・セパ穴の	)劣化	有·無	箇所	-							
进					-							
			位置	_	-							
es.					-							
214					-							
椧		-										
		-										
		-										
		-										
		-										
		-										

### <柏崎刈羽3号炉周辺地域の凍害危険度について>

1. はじめに

コンクリート中の水分が凍結し、それが気温の上昇や日射を受けること等により融解する凍 結融解を繰り返すことでコンクリートにひび割れが生じ、コンクリート構造物としての健全性 が損なわれる可能性がある。

日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事(2018)」(以下, 「JASS5」という)に示されている解説図 26.1 (凍害危険度の分布図)によると、柏崎刈羽3 |号炉(以下,「KK3」という)の周辺地域は凍結融解の危険性がない地域に該当している。なお, 凍害危険度の分布図にある凍害危険度は, 気象資料を用いて外気温上の凍結融解作用の強さに 日射等の影響と含水程度を考慮し算出したものである。

あらためて、気象資料からKK3周辺地域の凍害危険度を確認した結果を以下に示す。

2. 凍結融解作用を受けるコンクリート

「JASS5 26 節 凍結融解作用を受けるコンクリート」に,寒冷地に建設する建築物の激し い凍結融解作用を受ける部分に使用するコンクリートの仕様が示されている。

そこに、26節適用の目安の解説表があり、解説表に日最低気温の平滑平年値の年間極値(気 象庁資料による)(以下,「最低気温」という)と凍害危険度の関係が示されている。26節適用 の目安の解説表は、表 2-1 参照。



ASS5 26 適用の目

3. KK3 周辺地域の凍害危険度

最新の平滑平年値(1991~2020年の観測値)により,KK3の周辺地域である,柏崎地域気象 観測所の最低気温を確認すると-1.0℃であった。

表 2-1 JASS5 26 節適用の目安において,仙台の最低気温-2.9℃において,凍害危険度は 0 とある。これに対し,KK3 の周辺地域である,柏崎の最低気温は-1.3℃であり,仙台よりも 最低気温が高いことから,凍害危険度は 0 となり,凍結融解作用を受ける危険性はない地域と 判断した。

また, JASS5 に「わが国の多くの地域で最低気温と凍結融解回数が対応している」とあり, 最低気温から凍害危険度を確認することは妥当と考える。

なお、「原子力発電所建築設備点検マニュアル」、「原子力発電所土木設備点検マニュアル」及 び「原子力発電施設土木設備点検ガイド」に基づき、定期的に実施している「建築設備点検業 務(2021年度)」並びに「土木設備点検業務(2021年度)」による目視点検の結果、凍結融解に 起因するひび割れは確認されていない。

<鉄骨構造物の疲労評価の計算過程及び判定基準について>

1. はじめに

風などの繰返し荷重が継続的に鉄骨に作用することにより,疲労による損傷が蓄積され,鉄 骨部材あるいは接合部の健全性が損なわれる可能性がある。

柏崎刈羽3号炉の機器・構造物のうち,風による繰返し荷重を受ける排気筒の鉄骨構造物を 評価対象とし,排気筒を直接支持している鉄塔の主柱材及び排気筒の筒身について疲労の検討 を行う。

評価対象である排気筒の筒身及び鉄塔について,建設時において,筒身は工場溶接で製作し たブロックを現地で溶接して組立てており,鉄塔については工場溶接で製作した主柱材を現地 でフランジ継手によって接合している。工場製作での品質管理として,鋼材検査証明書(ミル シート)による材料検査,工場出荷時に寸法検査を実施するとともに,放射線透過試験にて異 常な欠陥がないことを確認している。排気筒建設以降は,筒身,鉄塔ともに保全計画に基づく 外観点検を実施しており,表面に,機能・性能に影響を及ぼすおそれのある割れ・変形等の有 意な異常がないことを確認している。

排気筒の疲労評価は、(社)日本建築学会「鋼構造許容応力度設計規準(2019)」(以下、「S規 準」という)に示される疲労損傷評価法を参照し、疲労評価を実施している。

S規準の「7.1 適用範囲」には、「1×10⁴回を超える繰返し応力を受ける部材,及び接合部に 対して疲労の検討を行う」と記載されている。

また,同規準の「7.2 許容疲労強さ」において応力の繰返し数に応じた許容疲労強さが,「7.3 規準疲労強さ」において応力範囲の打切り限界が設定されており,打切り限界以下の応力範囲 では疲労を考慮する必要はないとされている。

したがって、本評価においては、応力の繰返し数及び繰返し応力範囲を算定し、許容疲労強 さ並びに打切り限界と比較することにより、疲労を考慮する必要性の有無を評価する。

なお,排気筒においては耐震補強工事を実施していることから,検討条件は耐震補強工事後 の工事計画認可申請図書(以下,「工認図書」という)の条件を適用して評価を実施した。

3 - 1

- 2. 排気筒の疲労評価
- 2.1 評価条件
- (1) 評価対象

風による繰返し荷重を受ける排気筒の鉄骨構造部を対象とした。

- (2) 評価内容
- 使用材料 鉄塔(主柱材):炭素鋼(STK50)^{*1} 筒身:炭素鋼(SMA41A)^{*2} *1:一般構造用炭素鋼鋼管,*2:溶接構造用耐候性熱間圧延鋼材
- ② 検討用風速及び発生日数

風に関する記録として,国立天文台編「理科年表 2022 年版」(以下,「理科年表」という) には、日最大風速(「10 分間の風速の平均値」を表す)10 m/s 以上及び15 m/s 以上の日数 の月別平均値(1991~2020 年までの平均値)が掲載されており、これらのうち、柏崎刈羽 3 号炉近傍の気象官署地点として、新潟、高田を選定する。

各気象官署における風に関する記録を表 3-1 に示す。

表 3-1 発電所近傍の気象官署における風に関する記録

項目	新潟	高田
日最大風速 10 m/s 以上の日数の年間平均値(日)	40.9	15.4
日最大風速 15 m/s 以上の日数の年間平均値(日)	2.1	0.5

これらを踏まえ、新潟気象官署の記録を用いて、以下の2ケースで検討を行う。

・ ケース1:検討用風速 V₁ = 10.0 m/s, 年間平均日数 40.9(日)

- ・ ケース2:検討用風速 V₂ = 15.0 m/s, 年間平均日数2.1(日)
- (3) 応力の繰返し数

理科年表より求められた年間平均日数を評価年数 40 年分の累積時間(秒)に換算し,各 ケースに対する累積時間を以下のように算定する。なお、補強工事は平成 22 年に実施され ているが、建設時からの累積とした。

- ・ ケース1:発生日数(40.9日)×1日中(24時間×3,600秒)×評価年数(40年間)
- ケース2:発生日数(2.1日)×1日中(24時間×3,600秒)×評価年数(40年間)

この累積時間を,工認図書における排気筒の一次固有周期で除した値を,応力の繰返し数 として求める。応力の繰返し数の算定結果を表 3-2 に示す。

ケース	松封田国法		累積	時間の算	ī定	排気筒の	応力の
	検討用風速 (m∕s)	発生	評価	累積	田培扒粉	1 次固有周期	繰返し数
		日数	年数	日数	糸傾伊剱	(秒)	(回)
1	10.0	40.9	40 年	1,636	141, 350, 400	1 067	$1.32 \times 10^{8}$
2	15.0	2.1	40 +	84	7, 257, 600	1.007	6.80 $\times 10^{6}$

表 3-2 各ケースの応力の繰返し数

(4) 基準疲労強さ及び応力の打切り限界(変動振幅)

鉄塔(主柱材)及び筒身の母材は、S 規準の表 7.1 における「圧延材、引抜き材」に該 当するが、主柱材接合部は高力ボルトとしていること、及び筒身は縦横方向に完全溶込み 溶接されていることを考慮し、基準疲労強さ $\Delta \sigma_F$ 及び変動振幅の応力範囲の打切り限界  $\Delta \sigma_{VL}$ を以下に示す通りとする。

・基準疲労強さ :  $\Delta \sigma_F = 100 \text{ N/mm}^2$ 

・応力範囲の打切り限界: Δ σ_{VL}=39 N/mm²

(5) 許容疲労強さ

許容疲労強さは、荷重の繰返し数(N)に応じて応力範囲で示され、S規準の7.1式により 以下のように示される。

・ 垂直応力範囲の許容疲労強さ: Δ σ a=(126 / ³√N)×Δ σ F

N:総繰返し数

- Δ σ_F: 垂直応力範囲の基準疲労強さ
- (6) 検討用応力

工認図書の風荷重に対する応力解析結果は,基準風速 V₀=30.0 (m/s)*を用いて算定された 数値であるため,風荷重が風速の2乗に比例することから,本検討においては(2)の検討用 風速 V₁, V₂と基準風速 V₀との比α(観測記録の最大風速の2乗/基準風速の2乗)を算定 し,係数倍した応力を風荷重に対する検討用応力とする。

- $f \pi 1$ :  $\alpha_1 = V_1^2 / V_0^2 = 10.0^2 / 30.0^2 = 0.1111 \dots = 0.12$
- ・ ケース2:  $\alpha_2 = V_2^2 / V_0^2 = 15.0^2 / 30.0^2 = 0.25$
- *: 基準風速 V₀は,各地域における風の性状に応じて 30~46 (m/s)の範囲で国土交通大 臣が定める風速を示す。

2.2 評価内容

(1) 検討用応力の算定

検討用応力は,工認図書に記載される設計用風荷重による曲げモーメント M₁を用いて算定 する。検討用応力の算定結果について表 3-3 に示す。

検討用風荷重による曲げモーメント: M₂= α M₁

	<b></b>		風荷重						
ケース	标向 T. M. S. L (m)	寸法	寸法 設計用応力		討用応力				
		(mm)	曲げモーメント	权粉	曲げモーメント				
			$M_1$ (kN·m)	际致 α	$M_2$ (kN·m)				
1	3, 422 φ		2020.2	0.12	387.7				
2	99.8~79.0	$\times 11$	3230. 3	0.25	807.6				

表 3-3 (1/2) 検討用応力の算定例(筒身)

ケース	標高 T. M. S. L (m)		風荷重			
		寸法 (mm)	設計用応力	検討用応力		
			曲げモーメント	反米	曲げモーメント	
			$M_1$ (kN·m)	休奴 α	$M_2$ (kN·m)	
1	$\frac{1}{2}$ 89. 4~67. 5	711.2 $\phi$	00.0	0.12	11.1	
2		$\times 12$	92.2	0.25	23.1	

表 3-3(2/2) 検討用応力の算定例(鉄塔(主柱材))

### (2) 検討用応力範囲の算定

検討用応力範囲Δσは、工認図書に記載される断面算定結果を用いて、最大風速が正負交 番荷重(完全両振り)として作用した場合を想定し、以下のように算定する。検討用応力範 囲の算定結果について表 3-4 に示す。

### ・ 検討用応力範囲: Δ σ = (M₂/Z)×2

標高 検討用応力曲 曲げ応力度 検討用応力 寸法 断面係数 Z ケース げモーメント T. M. S. L  $M_2/Z$ 範囲 $\Delta \sigma$  $(\times 10^3 \text{ mm}^3)$ (mm) (m)  $(N/mm^2)$  $(N/mm^2)$  $M_2$  (kN·m) 387.7 9.6 1 *99.* 8∼ 3, 422  $\phi$ 4.8 82,000 2 79.0  $\times 11$ 807.6 9.9 19.8

表 3-4(1/2) 検討用応力範囲の算定結果(筒身)

表 3-4(2/2) 検討用応力範囲の算定結果(鉄塔(主柱材))

ケース	標高 T. M. S. L (m)	寸法 (mm)	断面係数 Z (×10 ³ mm ³ )	検討用応力曲 げモーメント M ₂ (kN・m)	曲げ応力度 M ₂ /Z (N/mm ² )	検討用応力 範囲Δσ (N/mm ² )
1	89.4~	711.2 <i>\phi</i>	4 520	11.1	2.5	5.0
2	67.5	$\times 12$	4, 530	23. 1	5.1	10.2

2.3 評価結果

算定した検討用応力範囲 $\Delta \sigma$ と許容疲労強さ $\Delta \sigma_a$ の比較を行い,許容疲労強さ及び打切り限界(疲労限)以下であることを確認する。2.2 で算定した検討用応力範囲 $\Delta \sigma$ と許容疲労強さ $\Delta \sigma_a$ の比較結果を表 3-5 に示す。

また, S規準の図 7.1.1 を参考に,検討結果をプロットしたものを図 3-1 に示す。 したがって,いずれの部材も許容疲労強さ及び打切り限界(疲労限界)以下となっている。

表 3-5(1/2) 検討用応力範囲の算定結果(筒身)

ケース	基準疲労強さ Δσ _F (N/mm ² )	総繰返し数 (回)	許容疲労強さ $\Delta \sigma_{ m a}$ $({ m N/mm}^2)$	検討用応力範囲 $\Delta \sigma (N/mm^2)$	Δ σ と Δ σ ª との比較
1	100	$1.32 \times 10^{8}$	39.0*	9.6	0.25
2	100	6.80 × 10 ⁶	66.5	19.8	0.30

*: 打切り限界値を示す(図 3-1 参照)

表 3-5(2/2) 検討用応力範囲の算定結果(鉄塔(主柱材))

ケース	基準疲労強さ Δ σ _F (N/mm ² )	総繰返し数 (回)	許容疲労強さ Δσa(N/mm²)	検討用応力範囲 $\Delta$ $\sigma$ $(N/mm^2)$	Δ σ と Δ σ a との比較
1	100	$1.32 \times 10^{8}$	39.0*	5.0	0.13
2	100	6.80 $\times 10^{6}$	66.5	10.2	0.16

*: 打切り限界値を示す(図 3-1 参照)



図 3-1 垂直応力範囲の繰返しによる疲労設計曲線

<原子炉ペデスタルの温度分布解析について>

柏崎刈羽3号炉(以下,「KK3」という)の原子炉ペデスタルにおける温度分布解析について以下に示す。

1. 温度分布解析の方法

評価モデルは,原子炉圧力容器下部(以下,「支持スカート」という)から原子炉本体基礎 (以下,「RPVペデスタル」という),ダイヤフラムフロア(以下,「D/F」という)とした。

なお,RPVペデスタルは鋼板とコンクリートから形成されているが,円筒部は鋼構造であり, 内部充填コンクリートは強度部材ではないことから,コンクリート温度の評価対象は,鉄筋コ ンクリート部材であるRPVペデスタルの中間スラブ上面とD/Fの床スラブ上面とする。

解析は、熱伝導計算コードFINAS (Version 19.0)を使用し、通常運転時の雰囲気温度を入 力値として評価対象部位の躯体温度を求めた。

FINASコードは、高速増殖炉の開発において遭遇した様々な構造設計、ならびに構造強度評価上の課題を解決する手段として、動力炉・核燃料開発事業団(現:独立行政法人日本原子力研究開発機構)により開発されたコードであり、入力パラメーターは以下の通りである。



### 2. 解析条件

2.1 解析モデル

解析モデルは、KK3の工事計画認可申請図書(以下、「工認図書」という)と同範囲とし、 支持スカート・RPVペデスタル・D/Fからなる2次元軸対象モデルとする。解析モデルを図4-1 に示す。

- 2.2 解析条件
- (1) 材料定数

KK3 工認図書においては、支持スカートについて温度分布解析に必要な物性値が示されていないことから、使用材料を確認した上で、表 4-1 に示す通り、先行機である

の物性値を採用した。また, RPV ペデスタル及び D/F の使用材料と物性値を表 4-2 に示す。

(2) 境界条件

温度分布解析における境界条件は,KK3 工認図書に基づき,図 4-2 及び表 4-3 に示す通りとした。

原子炉本体基礎 (RPVペデスタル)



図 4-1 温度分布解析モデル

## 表4-1 材料の物性値(支持スカート)



## 表4-2 材料の物性値 (RPVペデスタル・D/F部)

++ wi	材種	比重ρ	比熱Cp	熱伝導率λ
		$[kg/m^3]$	[kcal/kg°C]	[kcal/mh°C]
鋼板				
コンクリート				



図4-2(1) 境界条件1/2 (境界1~4:支持スカート)



図4-2(2) 境界条件2/2 (境界5~6: RPVペデスタル~D/F部)

表 4-3 境界条件一覧


#### 3. 解析結果

解析結果のうち,評価対象であるコンクリート躯体(RPV ペデスタル中間スラブ及び D/F スラブ)における最高温度を整理して表 4-4 に示す。また,解析結果の詳細として各部のコンター図を図 4-3 及び図 4-4 に示す。

温度分布解析の結果,原子炉ペデスタルコンクリートと圧力容器支持脚部との接触面にお けるコンクリート躯体の最高温度は,RPVペデスタル中間スラブ上面で57.0℃であり,(社) 日本建築学会「原子炉建屋構造設計指針・同解説(1988)」において設計基準強度確保の観 点から定められているコンクリートの温度制限値(一般部65℃,局部90℃)を下回った。

RPVペデスタル	D/F	
中間スラブ上面	スラブ上面	備考
最高温度(℃)	最高温度 (℃)	
57.0	54.2	

表4-4 コンクリート躯体における最高温度



図4-3 温度分布解析結果コンター図(上部)



図 4-4 温度分布解析結果コンター図(下部)

<放射線照射量の算定方法,条件及び結果について>

1. 算定方法

原子炉ペデスタルコンクリート上部の放射線照射量は,原子炉圧力容器周囲を評価モデルと して,輸送計算コードDORT (DOORS3.2aバージョン 2次元Sn法)により,各部における中性子 束 (E>0.1MeV)及びガンマ線量率を算定し,運転時間を掛けることで中性子,ガンマ線照射 量を求めている。

DORTコードは、米国のオークリッジ国立研究所で開発された中性子輸送方程式を数値的に解 くコードであり、入力パラメーターは以下のとおりである。



2. 算定条件

(1) 評価モデル

評価モデルは、2次元 R-Z体系モデルとする。評価モデル及び領域(材質)マップを図5-1 に示す。

(2) 線源設定

線源は、柏崎刈羽3号炉の定格運転時の炉心出力分布形状から設定する。

図 5-2 に線源領域を示す。軸(鉛直)方向の線源領域は等間隔 24 節点(ノード),径 方向の線源領域は中心部1領域,その周囲に燃料集合体1節点あたり6領域の計7領域と する。

また、軸方向の線源分布を図 5-3 に、径方向の線源分布を図 5-4 に示す。

図 5-3 は、図 5-2 に示した径方向の燃料集合体領域 1~7 に対する軸方向の相対線源分 布を表している。図より、相対線源の「最大」となるのは領域 2 であり、「炉心境界」と なるのは、線源領域の最外周である領域 7 である。

図 5-4 は,径方向の各燃料集合体領域に対する相対線源の軸方向平均値を表している。 図より,軸方向平均値の「最大」となるのは領域2であり,「炉心境界」となるのは,線 源領域の最外周である領域7である。

なお、炉心中心に最も近い領域1が「最大」とならないのは制御棒により出力が抑えら れているためである。



図 5-1 評価モデル及び領域(材質)マップ



図 5-2 線源領域分割イメージ



図 5-3 軸方向線源分布



図5-4 径方向の線源分布(相対線源の軸方向平均値)

### 3. 算定結果

原子炉格納容器内における定格運転時の中性子束分布を図5-5に、ガンマ線量率分布を図5-6 に示す。コンクリート躯体部分(原子炉ペデスタル又は一次遮へい壁内面)において、中性子 束、ガンマ線量率が最大となる部位は、一次遮へい壁内面であった。



図 5-5 中性子束分布図(n/cm²/s)



図 5-6 ガンマ線量率分布図(rad/s)

4. 運転開始後40年時点の実効運転期間

2021年3月時点及び運転開始後40年時点の定格負荷相当年数(EFPY)は,累積発電電力量から下記の通り算定した。

- <2021年3月時点のEFPY*1>
  - =2021年3月月時点の累積発電電力量÷定格出力÷24÷365
  - =104,706,690 (MWh) /1,100 (MW) /24 (h) /365 (D)
  - $=10.8661\cdots$  EFPY  $\Rightarrow$  10.87 EFPY
- <運転開始後40年時点のEFPY>
  - $=10.87 \text{ EFPY}^{*1}$
- *1: EFPYの検討は試運転から2021年3月31日までの期間について実施した。 検討期間以降,運転開始後40年時点までは冷温停止状態を維持するため,EFPYは2021年3 月時点と同じ値とする。
- 5. 40年時点における評価

解析結果により得られた一次遮へい壁内面における中性子束及びガンマ線量率に対し,運転 開始後40年時点における定格負荷相当年数(EFPY=10.87年)を乗じ,一次遮へい壁が受ける 照射量を算定した結果を表5-1に示す。

その結果,運転開始後40年時点で予想される中性子照射量(E>0.1MeV)は一次遮へい壁内 面において1.06×10¹⁵ n/cm²であり,小嶋他の文献における試験結果においてコンクリート強 度が低下し始める可能性が確認されている中性子照射量(1×10¹⁹ n/cm²)を下回った。

また,運転開始後40年時点で予想されるガンマ線照射量は一次遮へい壁内面において8.36×10⁵ radであり,Hilsdorf他の文献において,それ以下では有意なコンクリートの強度低下が見られないとされるガンマ線照射量(2.0×10¹⁰ rad)を下回った。

	解析結果	運転開始後40年時点の累積放射線照射量
中性子照射量(E>0.1MeV)	$3.09 \times 10^{6} \text{ n/cm}/s$	$1.06 \times 10^{15}$ n/cm ²
ガンマ線照射量	2. $44 \times 10^{-3}$ rad/s	$8.36  imes 10^5$ rad

表5-1 照射量算定結果

中性化の評価対象部位は,屋外と屋内では鉄筋位置に対する中性化深さと鉄筋腐食開始の 関係が異なることから,各々に対して評価対象部位を抽出した。

建物の屋内における中性化の評価対象部位の決定に際して実施した環境測定及び中性化の 評価点の選定過程について以下に示す。

1. 環境測定

中性化の進展度合いは,環境要素(温度,相対湿度,二酸化炭素濃度)の影響を受けること から,環境測定を実施した。

(1) 測定方法

環境測定に使用した機器を表6-1に示す。温度,相対湿度の測定は,2020年3月1日から 2021年2月28日の期間で実施し,1時間間隔で連続測定を行った。二酸化炭素濃度の測定は, 2020年3月から2021年2月の期間で各月毎に1回測定を行った。

測定場所	測定項目	使用機器	
	温度	油油 电計	
構内各所	相対湿度	(血仙/沒可)	
	二酸化炭素濃度	二酸化炭素濃度計	

表6-1 環境測定 使用機器

(2) 測定位置

測定箇所の選定にあたっては下記a, bを基本に, その他c~fを加味し, 計38箇所にて測 定を実施した。

- a. 仕上げに無塗装部がある箇所
- b. 空気系統区分毎に1箇所以上
- c. 各建屋の代表エリア(各系統・各階の主要部)
- d. 既往のPLMで代表部位とされたエリア
- e. 室内設計温度が異なる箇所
- f. 人・車の往来の多い箇所

測定位置図を図6-1~18に示す。



図6-1 原子炉建屋(T.M.S.L.-32.5m)



図 6-2 原子炉建屋(T.M.S.L.-25.1m)



図 6-3 原子炉建屋(T.M.S.L.-16.1m)



図 6-4 原子炉建屋 (T.M.S.L.-9.7m)



図 6-5 原子炉建屋 (T.M.S.L.-2.7m)



図 6-6 原子炉建屋(T.M.S.L.5.3m)



図 6-7 原子炉建屋 (T.M.S.L.12.8m)



図 6-8 原子炉建屋(T.M.S.L.18.0m)



図 6-9 原子炉建屋(T.M.S.L.21.2m)



図 6-10 タービン建屋 (T.M.S.L.-18.7m)



図 6-11 タービン建屋 (T.M.S.L.-11.9m)



図 6-12 タービン建屋 (T.M.S.L.-4.5m)



図 6-13 タービン建屋 (T.M.S.L.0.5m)



図 6-14 タービン建屋 (T.M.S.L.5.3m)



図 6-15 タービン建屋 (T.M.S.L. 17.0m)



図 6-16 海水熱交換器建屋(T.M.S.L.-12.2m)



図 6-17 海水熱交換器建屋(T.M.S.L.-3.8m)



図 6-18 海水熱交換器建屋(T.M.S.L.2.4m)



図 6-17 海水熱交換器建屋(T.M.S.L.5.3m)

2. 中性化の評価点の選定過程

コンクリートの中性化深さの実測値及び評価対象部位の選定結果を表6-2に示す。

2.1 屋内

上記の環境測定結果をもとに、仕上げ材の有無も考慮して、中性化が進展しやすい環境下 にあると想定される複数箇所を選定し、2022年に中性化深さを測定した。

表6-2の結果と各建物のかぶり厚さは同一であることを踏まえ、建物の屋内においてはター ビン建屋内壁を中性化深さの評価対象部位とし、評価点は、中性化深さの平均値が最大とな ったタービン建屋南側廊下壁とした。

2.2 屋外

各対象構造物における屋外環境は、ほぼ同一であるが、屋外の評価対象部位抽出にあたり、 2022年に各構造物の中性化深さを測定した。

表6-2の結果と各建物のかぶり厚さは同一であることを踏まえ,建物の屋外においては海水 熱交換器建屋外壁を評価対象部位とした。評価点は,中性化深さの平均値が最大となった海水 熱交換器建屋1階北側外壁とした。

さらに、表6-2の結果と各構築物のかぶり厚さの相違を考慮して、構築物においては非常用 ガス処理系配管ダクト、原子炉補機冷却水系配管ダクトA系及び排気筒(基礎部)を評価対象 部位とし、評価点は、非常用ガス処理系配管ダクト内壁、原子炉補機冷却水系配管ダクトA系 内壁及び排気筒北西基礎とした。

				仕上げ材	運転開始 または	調査時点の中性化深さ			かぶり	122 ct-
環境 種別	対象構造物	測定位置	の有無	使用開始 年月	調査時期	経過年数	実測値 (cm)	厚さ (cm)	選疋	
		原子炉建屋	南東 EV 脇 通路	無し				2.1	4.0	
屋	建	タービン建屋	南側廊下	無し	1993 年 8 月	2022 年 4 月	28 年	2.7	4.0	0
内物	海水熱交換器 建屋	排気 ルーバ室	無し				2.2	4.0		
		原子炉建屋	1 階 東側外壁	有り	1993 年 8月	2022 年 4 月	28 年	0.3	4.0	
建 物	建物	タービン建屋	1 階 北側外壁	有り				0.2	4.0	
	120	海水熱交換器 建屋	1 階 北側外壁	有り				0.5	4.0	0
屋		取水構造物※	干満帯 内壁	有り		2021 年 7 月	27 年	0.1	8.4	
外	外	非常用ガス処理 系配管ダクト	ダクト内壁	無し				1.9	8.9	0
築	原子炉補機冷却水 系配管ダクトA系	ダクト内壁	無し	1993 年 8 月	2022 年 5 月	28 年	2.1	8.4	0	
	物	原子炉補機冷却水 系配管ダクトB系	ダクト内壁	無し				1.5	8.4	
		排気筒 (基礎部)	北西基礎	有り		2022 年 4 月	28 年	0.1	7.0	0

表6-2 コンクリートの中性化深さ実測値及び評価対象部位の選定

※: 取水構造物の調査結果で、中性化深さが最も大きい部位とした.

## <中性化深さの推定値の算定過程について>

調査時点及び運転開始後40年経過時点の中性化深さの推定値の算定過程(推定式,条件、パ ラメータ)を以下に示す。

1. 岸谷式

:中性化深さの推定に必要なパラメータ : 推定結果

	屋内		厚	屋外	
	タービン建屋	海水熱交換器	非常用ガス処理系	原子炉補機冷却水系	排気筒
	/ 亡• 定注	建屋	配管ダクト	配管ダクトA系	(基礎部)
	南側廊下	1 階 北側外壁	ダクト内壁	ダクト内壁	北西基礎
x:水セメント比 (%)					
α:劣化外力係数の区分	1.7	1.0	1.0	1.0	1.0
による係数	屋内	屋外	屋外	屋外	屋外
0 /1. しょどナナンエトフレスメム	1.0	1.0	1.0	1.0	1.0
β:11上() 付による(示数)	仕上げ材なし	仕上げ材なし	仕上げ材なし	仕上げ材なし	仕上げ材なし
*・セイントにトス伝粉	1.4	1.4	1.4	1.4	1.4
γ・ビノン トによる休奴	フライアッシュB種	フライアッシュB種	フライアッシュB種	フライアッシュB種	フライアッシュB種
調査時点の推定値 (cm)	2.13	1.25	1.52	1.52	1.70
(運転開始後経過年数)	(28.7年)	(28.7年)	(28.7年)	(28.7年)	(28.7年)
運転開始後40年 経過時点の推定値(cm)	2.51	1.48	1.80	1.80	2.01
	7 0				

 $t = \frac{7.2}{R^2 (4.6x - 1.76)^2} C^2$ 岸谷式

 t:期間(年)
 R:中性化速度係数 ( $R=\alpha \times \beta \times \alpha$ :

 C:中性化深さ (cm)
  $\alpha:$ 劣化外力の区分による係数

 x:水セメント比 ( $x \le 0.6$ )
  $\beta:$ 仕上げ材による係数

R:中性化速度係数 ( $R=\alpha \times \beta \times \gamma$ )

· γ:セメントによる係数

2. 森永式

	屋内				
	タービン建屋	海水熱交換器 建屋	非常用ガス処理系 配管ダクト	原子炉補機冷却水系 配管ダクトA系	排気筒 (基礎部)
	南側廊下	1 階 北側外壁	ダクト内壁	ダクト内壁	北西基礎
w/c:水セメント比 (%)					
<b>D</b> . 由性化比率	1.0	1.0	1.0	1.0	1.0
R:中性化比举	打放し	打放し	打放し	打放し	打放し
C:炭酸ガス濃度(%)*1	0.0408	0.0420	0.0420	0.0420	0.0420
T:温度 (℃) *2	21.0	13.9	13.9	13.9	13.9
RH:湿度(%)*2	47.5	72.0	72.0	72.0	72.0
調査時点の推定値 (cm)	1.06	0.49	0.59	0.59	0.66
(運転開始後経過年数)	(28.7年)	(28.7年)	(28.7年)	(28.7年)	(28.7年)
運転開始後40年経過時点 の推定値(cm)	1.25	0. 57	0. 70	0. 70	0.78

*1:2020年3月から2021年2月の期間で各月毎に1回測定した結果の平均値

*2:タービン建屋南側廊下については2020年3月1日から2021年2月28日の期間で、1時間間隔で連続測定した結果の平均値 屋外については1991年~2020年までの新潟気象官署における年平均値(理科年表 2022年版)

### 森永式

$$x = \sqrt{\frac{C}{5}} \cdot 2.44 \cdot R \ (1.391 - 0.017RH + 0.022\ T) \times (4.6 \times w/c/100 - 1.76) \times \sqrt{t}$$

x:中性化深さ(mm)	T:温度 (℃)
C:炭酸ガス濃度(%)	RH:湿度(%)
R:中性化比率(一)	<i>w/c</i> :水セメント比 (%,w/c≦60)
	t: 材令(日)

# 3. 中性化深さの実測値に基づく√t式

	屋内	屋内				
	タービン建屋	海水熱交換器 建屋	非常用ガス処理系 配管ダクト	原子炉補機冷却水系 配管ダクトA系	排気筒 (基礎部)	
	南側廊下	1階 北側外壁	ダクト内壁	ダクト内壁	北西基礎	
中性化実測深さ (cm)	2.66	0. 44	1.82	2.03	0.02	
運転開始後40年経過時点 の推定値(cm)	3.14	0.52	2.15	2.40	0.02	

$$\sqrt{t}$$
式  $y = b\sqrt{t}$ 

y : 中性化深さ(mm) t : 中性化期間(年) b : 中性化速度係数(mm/√年)

<塩分浸透における評価点の妥当性について>

1. 塩化物イオン濃度の測定結果

柏崎刈羽3号炉においては、2022年に海側に面する壁を有する建物等(原子炉建屋,タービン建屋,海水熱交換器建屋及び排気筒基礎部)を対象に、表8-1に示す通り、塩化物イオン濃度の測定を行った。

その結果,鉄筋位置における塩化物イオン濃度は,原子炉建屋で0.0050 %,タービン建屋で 0.0050 %,海水熱交換器建屋で0.0043 %,排気筒基礎部で0.0037 %であった。

以上の結果を踏まえ,海側に面する壁を有する建物及び排気筒基礎部についてはタービン建 屋外壁を評価対象部位とし,評価点は,鉄筋位置における塩化物イオン濃度が最大となった1 階北側外壁とした。

構築物においては、2021年に海水や飛沫の影響により最も厳しい塩分浸透環境下にある取水 構造物を対象に、塩化物イオン濃度の測定を行った結果、鉄筋位置における塩化物イオン濃度 は、表8-2に示す通り、気中帯0.0035 %、干満帯0.0045 %、海中帯0.0025 %であった。

構築物については,取水構造物内壁を評価対象部位とし,評価点は,塩分浸透環境を考慮 し,気中帯,干満帯及び海中帯とした。

		試料	塩化物イオン	コンク	塩化物イン	オン濃度	
構造物		採取	量(CL⁻)の	リート	[%	]	
(箇所)	コア記号	位置	平均值	の密度	コア別	3本	
		[mm]	$A[kg/m^3]$	$B[kg/m^3]$	A/B	平均值	
医乙烷选足	3R-7-①	40~60	0.09	2340	0.0040		
原于炉建全 (2F南侧处 腔)	3R-7-2	40~60	0.12	2320	0.0050	0.0050	
(56 斛例外型)	3R-7-③	40~60	0.13	2340	0.0060		
西乙后冲已	3R-8-①	40~60	0.09	2370	0.0040		
原于炉建全 (1F車側如 腔)	3R-8-2	40~60	0.09	2350	0.0040	0.0043	
(11 宋闽27堂)	3R-8-③	40~60	0.12	2360	0.0050		
タービン建屋	3T-6-①	40~60	0.12	2390	0.0050		
	3T-6-2	40~60	0. 07	2360	0.0030	0.0043	
(11)四個分陸)	3T-6-③	40~60	0. 11	2350	0.0050		
<b>万</b> 11、井巳	3T-7-①	40~60	0.09	2360	0.0040		
タービン建産	3T-7-2)	40~60	0. 12	2350	0.0050	0. 0050	
(北北间外壁)	3T-7-③	40~60	0.14	2350	0.0060		
海水劫去换职决导	3Hx-2-①	40~60	0.06	2340	0.0030		
(1日北側) 展)	3Hx-2-2	40~60	0.09	2320	0.0040	0. 0043	
(1646)(1646)	3Hx-2-③	40~60	0.14	2350	0.0060		
海水渤六協兕建民	3Hx-3-①	40~60	0. 09	2330	0.0040		
(1F 而 側 从 辟)	3Hx-3-2	40~60	0. 09	2320	0.0040	0.0040	
(16四间外型)	3Hx-3-③	$40 \sim 60$	0. 08	2330	0.0040		
# 与 笛	3ST-1-①	60~80	0. 07	2330	0.0030		
17F×1回 (北西其氹)	3ST-1-2	60~80	0. 09	2310	0.0040	0.0037	
	3ST-1-③	60~80	0.09	2300	0.0040		

表8-1 鉄筋位置における塩化物イオン濃度測定結果(建物及び排気筒基礎部)

注) **太字**:評価書記載値

構造物		試料	塩化物イオン	コンク	塩化物イン	オン濃度	
	ッマヨ旦	採取	量(CL⁻)の	リート	[%	]	
(箇所)	コノ記方	位置	平均值	の密度	コア別	3本	
		[mm]	$A[kg/m^3]$	$B[kg/m^3]$	A/B	平均值	
市北捷、生地	1	80~100	0.06	2370	0.0025		
取水構這物 (気中帯内壁)	2	80~100	0.12	2350	0.0050	0. 0035	
	3	80~100	0.07	2320	0.0030		
而水樓之物	1	80~100	0.08	2350	0.0035		
取小倆垣初 (工港世内院)	2	80~100	0.12	2330	0.0050	0.0045	
(十個帝內壁)	3	80~100	0.12	2340	0.0050		
取水構造物	1)	80~100	0.06	2320	0.0025		
	2	80~100	0.07	2350	0.0030	0.0025	
(#中市四堂)	3	80~100	0.05	2360	0.0020		

表8-2 鉄筋位置における塩化物イオン濃度測定結果(取水構造物)

注)太字:評価書記載値

2. 取水構造物における評価点の範囲

気中帯,干満帯及び海中帯は 1964 年 3 月から 1980 年 12 月までの柏崎港における潮位観測 記録に気象偏差を考慮して設定している。

上記期間における柏崎港の朔望平均満潮位、朔望平均干潮位は、以下の通りである。

•朔望平均満潮位:T.M.S.L.+0.50m

•朔望平均干潮位:T.M.S.L.+0.05m

これに気象偏差の最大値(0.48m 1972 年 12 月 2 日発生)を考慮して干満帯の範囲を以下の 通り設定している。

- ・設計満潮位=朔望平均満潮位+気象偏差の最大値=0.5m+0.48m=0.98m≒1.00m
   (T. M. S. L. +1.00m)
- ・設計干潮位=朔望平均干潮位=0.05m≒0.00m(T.M.S.L.±0.00m)

更に 1964 年から 2018 年までの潮位観測記録を確認した結果を以下に示す。

- ・最高潮位 : T. M. S. L. +1. 07m
- •朔望平均満潮位:T.M.S.L.+0.46m
- ・朔望平均干潮位:T.M.S.L.-0.01m

最高潮位は設計満潮位と同程度となり, 朔望平均干潮位は設計干潮位と同程度となることから, 現状の条件設定と 2018 年まで含めた条件設定の評価結果に有意な差はないことを確認している。

柏崎における 1964 年から 2018 年までの潮位変化を図 8-1 に示す。



図 8-1 1964 年から 2018 年までの潮位変化

気中帯,干満帯及び海中帯の範囲と評価点(以下,「コア採取位置」という。)を表 8-3 に 示す。

	教会の表示的な言語でも国家でも国家	
	評価点の範囲	コア採取位置
気中帯	T.M.S.L.+1.00m 以上	T. M. S. L. +1. 70m~+1. 90m
干満帯	T.M.S.L.+1.00m 未満, T.M.S.L.±0.00m 以上	T. M. S. L. +0. 13m∼0. 43m
海中帯	T.M.S.L. ±0.00m 未満	T. M. S. L. −4. 10m~−3. 90m

表8-3 取水構造物における評価点の範囲とコア採取位置*1

*1 コア径:55.0mm

気中帯,干満帯及び海中帯のコア採取位置は,気中帯では設計満潮位以上,干満帯では設計 満潮位未満かつ設計干潮位以上,海中帯では設計干潮位未満,の範囲内となっている。したが って,コアは適切な位置から採取しており,評価点は妥当であると判断した。

### <塩分浸透における鉄筋の腐食減量の算定過程について>

1. 鉄筋の腐食減量の算定過程

方法,条件及びパラメータを以下に示す。

	タービン建屋	取水構造物		
	①1F北外壁	②気中帯	③干満帯	④海中帯
t _n :供用開始からの経過年数(年)	28.7	27.9	27.9	27.9
$Cl_{tn}$ :鉄筋位置における塩化物イオン量 $(kg/m^3)^{*1}$	0.117	0.083	0.107	0.060
C ₀ :コンクリート表面の塩化物イオン量(kg/m ³ )*2	0.451	16.832	4.745	1.098
$D_c: = = = = = = = = = = = = = = = = = = =$	0.226	0.095	0.045	0.064
Cl _{tn} :鉄筋位置における塩化物イオン量(kg/m ³ ) (推定値) ^{*3}	$0.000 \sim 0.156$	$0.000 \\ \sim 0.039$	$0.000 \\ \sim 0.000$	$0.000 \\ \sim 0.000$
c:かぶり (mm)*4	40	84	84	84
d:鉄筋径(mm)*4	13	32	32	32
<i>W/C</i> :水セメント比(%/100)*5	0.480	0.501	0.501	0.501
T:温度(℃)*6	13.9	13.9	13.9	17.3
RH:相対湿度(%)*7	72	72	100	100
0:酸素濃度(%/100)*8	0.21	0.21	0.21	0.0071
V11tn:調査時点の鉄筋の腐食減量(×10 ⁻⁴ g/cm ² )	3.0	1.7	7.2	0.0
V ₁₁₍₄₀₎ :運転開始後40年経過時点の鉄筋の腐食 減量(×10 ⁻⁴ g/cm ² )	4.2	2. 5	10.2	0.0
<i>Q_{cr}</i> : かぶりコンクリートにひび割れが発生する時点 の鉄筋の腐食減量 推定値(×10 ⁻⁴ g/cm ² )	41.7	91.5	91.5	91.5

: 拡散方程式により、コンクリート表面からの塩化物イオンの浸透を予測するのに必要なパラメータ

:予測結果

:森永式により,鉄筋の腐食減量の評価を実施するのに必要なパラメータ

· 推定結果

*1:鉄筋位置における経過年数tn(年)の塩化物イオン量の平均値

- *2:コンクリート表面からの深さと塩化物イオン量の関係の実測値をFickの第二法則に与え、最小二乗法からCoとD。を算定した
- *3:運転開始から40年経過時点までの各年の推定値
- *4:①:竣工図より
  - ②~④:配筋図より、芯かぶり=100mm、100-32/2=84mmと設定
- *5:①~④:工事記録より
- *6:①~③:理科年表 2022年版より, 1991~2020年の新潟平均値

④:日本海洋データセンターHPより、柏崎刈羽を含む北緯37°~38°、東経138°~139°の水温の平均値(深度は10mとした)

- *7:①,②:理科年表 2022年版より, 1991~2020年の新潟平均値
- ③:干満作用により湿った状態が継続すると考え、海中と同じ条件とした
- ④:湿潤状態であることからRH100%とした
- *8:一般的な大気中及び海中の酸素濃度として設定

### 1.1 拡散方程式

コンクリート表面からの深さと塩化物イオン量の関係の実測値を下式(Fickの第二法則の 解の式)に与え,最小二乗法から表面塩化物イオン量(C₀)と見かけの拡散係数(D_c)を算定 する。 *Cl_{tn}*:鉄筋位置における経過年数t_n(年)の塩化物イオン量(kg/m³)

1.2 森永式

(1) 腐食量の算定

経過年数t_n年(1,2,3…)ごとに腐食速度V_{1tn}(mg/cm²/年)を算出した結果を累加し,その経 過年時点における腐食減量(mg/cm²)を求める。

$$V_{1m} = V_{11m} \times \frac{V_{12m}}{V_{12m}}$$
$$V_{11m} = \frac{d}{10 \cdot c^2} \left[ -0.51 - 6.81 \cdot Cl_m + 44.97 \cdot (W/C)^2 + 60.84 \cdot Cl_m \cdot (W/C)^2 \right]$$

$$V_{12m} = \frac{1}{10} (2.59 - 0.05 \cdot T - 6.89 \cdot H - 22.87 \cdot O - 0.89 \cdot Cl_{m} + 0.14 \cdot T \cdot H + 0.51 \cdot T \cdot O + 0.01 \cdot T \cdot Cl_{m} + 60.81 \cdot H \cdot O + 3.01 \cdot H \cdot Cl_{m} + 6.55 \cdot O \cdot Cl_{m})$$

- RH :相対湿度(%)
- 0 :酸素濃度(%/100)

### (2) ひび割れ発生の限界腐食量の算定方法

(1)の1年ごとの腐食速度の累積値が下式による限界腐食量を越える経過年数を,鉄筋腐食によるひび割れが発生する時点として評価を行う。

$$Qcr = 0.0602 \left(1 + \frac{2c}{d}\right)^{0.85} \times d$$
   
Qcr : ひび割れ発生時の腐食量 (mg/cm²)  
c : かぶり (mm)  
d : 鉄筋径 (mm)

2. 拡散方程式の回帰分析結果

(1) タービン建屋



(2) 取水構造物

(気中帯)









## 3. 調査時点及び運転開始後40年時点の前後5年の鉄筋の腐食減量

(1)タービン建屋		(2)取水構造物					
		①気中帯		②干満帯		③海中帯	
経過年数	$\Sigma  V_{1 \mathrm{tn}}$	経過年数	$\Sigma  V_{1 { m tn}}$	経過年数	$\Sigma  V_{1 \mathrm{tn}}$	経過年数	$\Sigma  V_{1 \mathrm{tn}}$
(年)	$(\times 10^{-4} \mathrm{g/cm^2})$	(年)	$( imes 10^{-4} \mathrm{g/cm}^2)$	(年)	$(\times 10^{-4} \mathrm{g/cm}^2)$	(年)	$(\times 10^{-4} \mathrm{g/cm^2})$
24	2.5	23	1.4	23	6.0	23	0.0
25	2.6	24	1.5	24	6.2	24	0.0
26	2.7	25	1.6	25	6.5	25	0.0
27	2.8	26	1.6	26	6.7	26	0.0
28	2.9	27	1.7	27	7.0	27	0.0
28.7	3.0	27.9	1.7	27.9	7.2	27.9	0.0
29	3.0	28	1.7	28	7.2	28	0.0
30	3.1	29	1.8	29	7.5	29	0.0
31	3.2	30	1.9	30	7.7	30	0.0
32	3.4	31	1.9	31	8.0	31	0.0
33	3.5	32	2.0	32	8.2	32	0.0
35	3.7	35	2.2	35	9.0	35	0.0
36	3.8	36	2.2	36	9.2	36	0.0
37	3.9	37	2.3	37	9.5	37	0.0
38	4.0	38	2.3	38	9.7	38	0.0
39	4.1	39	2.4	39	10.0	39	0.0
40	4.2	40	2.5	40	10.2	40	0.0
41	4.3	41	2.5	41	10.5	41	0.0
42	4.4	42	2.6	42	10.7	42	0.0
43	4.5	43	2.7	43	11.0	43	0.0
44	4.6	44	2.7	44	11.2	44	0.0
45	4.7	45	2.8	45	11.5	45	0.0
<参考 かぶりコンクリートにひび割れが発生する時点の前後5年の鉄筋の腐食減量>							
361	41.1	462	89.9	382	90.3	10468	91.4
362	41.3	463	90.3	383	90.6	10469	91.4
363	41.4	464	90.6	384	90.8	10470	91.4
364	41.5	465	90.9	385	91.0	10471	91.4
365	41.6	466	91.2	386	91.3	10472	91.5
366	41.7	467	91.6	387	91.5	10473	91.5
367	41.9	468	91.9	388	91.7	10474	91.5
368	42.0	469	92.2	389	92.0	10475	91.5
369	42.1	470	92.6	390	92.2	10476	91.5
370	42.2	471	92.9	391	92.4	10477	91.5
371	42.3	472	93.2	392	92.7	10478	91.5
# 別紙 10

<機械振動の評価対象部位及び評価点の抽出過程について>

1. 冷温停止状態の維持に必要な評価対象機器の抽出について

柏崎刈羽3号炉(以下,「KK3」という)の冷温停止状態の維持に必要な機器の原動機出力 及び重量を機械振動の大きさとして抽出した。主要な機器の原動機出力及び重量を表 10-1 に示す。

評価書	機器名称	出力 (kW)	重量 (kg)	備考
	原子炉補機冷却水ポンプ	380	7,700	
	残留熱除去系ポンプ	750	41,855	出力,重量の第3位
ポンプ	原子炉補機冷却海水ポンプ	280	20, 500	
	原子炉冷却材浄化系ポンプ	90	6,100	
	ほう酸水注入系ポンプ	37	3, 300	
ポンプモータ	原子炉補機冷却水ポンプモータ	380	2,200	
	原子炉補機冷却海水ポンプモータ	280	4,100	
空調設備	中央制御室送風機	90	3, 110	
	中央制御室排風機	2.2	280	
機械設備	高圧炉心スプレイ系ディーゼル機関	3,600	61,600	出力,重量の第2位
電源設備	非常用ディーゼル発電設備(A, B系)	6,600	105, 100	出力,重量の第1位

表 10-1 冷温停止が維持されることを前提とした場合の主要な機器の原動機出力と重量

その結果,冷温停止状態の維持に必要な主要機器のうち,出力及び重量が最も大きい機器 は,非常用ディーゼル発電設備となった。 2. 機械振動の評価対象部位及び評価点の抽出について

従来の機械振動の評価対象部位は,表 10-2 に示すとおり,常時振動を受ける対象構造物の うち,最も大きな機械振動を受けるタービン発電機架台コンクリートであった。

ただし、タービン発電機は冷温停止状態において劣化の進展に影響を及ぼす機器ではない ことから、機械振動による強度低下の評価対象部位は、冷温停止状態において支持する機器 の機械振動が大きく、且つ、建屋のコンクリート躯体から独立している非常用ディーゼル発 電設備基礎とした。

また,評価点は,局部的に影響を受ける可能性がある基礎ボルト周辺のコンクリートとした。

表 10-2 タービン発電機と非常用ディーゼル発電設備との比較

機器名称	出力(kW)	重量 (kg)	備考		
タービン発電機	1, 100, 000	1, 250, 200	高圧タービン,低圧タービン の総重量		
非常用ディーゼル発電設備	6, 600	105, 100	1系統の重量		

### (a) 原動機出力と重量

### (b) 運転時間

機器名称	運転時間(h)	備考
カービン文字地	約 0.0 449	運転開始以降の発電時間を運転時間とし
クーレン光电機	示り 92, 44Z	て算出
北帝田ゴノニゼル惑重売借	A 系:約 489	海転開始。2022年7日主時点の海転時間
か 吊用 ノ イービル 光电 設備	B系:約504	運転開始。2022 中7月木時息の運転時间

### (c) 振動測定結果

機器名称	変位最大値 (μm P-P)*	加速度最大値 (G)	備考
タービン発電機	29.17	0. 285	福島第二1号炉(運転時)で の測定結果
非常用ディーゼル発電設備	A 系:15.61	A 系:0.082	KK3 (定例試験時) での測定結
	B系: 9.74	B 系:0.082	果

*: P-Pは, peak to peak (正負最大振幅の差)を表す。

3. 回転機器における振動監視方法と頻度

機械振動により,機器定着部の支持力が失われるような場合,機器に異常振動が発生する ものと考えられるが,連続運転中の回転機器については,運転員による1回/日のパトロー ルの他に,表10-3に示す方法で振動の監視を行っている。非常用ディーゼル発電設備につい ては,定例試験の際に異常振動が無いことを確認している。

また,定期的に実施している「建築設備点検業務(2021 年度)」による目視点検の結果, 補修を要するひび割れは確認されていない。過去の目視点検においても補修を要するひび割 れは確認されていないことから,補修計画及び補修実績はない。

なお,非常用ディーゼル発電設備基礎の基礎ボルト周辺のコンクリートにおいて反発度法 による非破壊試験を行った結果,平均推定圧縮強度は,コンクリート躯体の設計基準強度を 十分上回っていることを確認している。

機器	振動監視方法	頻度	
冷温停止状態で連続運転	ポータブル振動計により, 軸受	1回/1~3ヶ月	
している回転機器	近傍部を定期的に測定	(必要に応じ周期短縮)	

表 10-3 回転機器における振動監視方法と頻度

## 別紙 11

<熱による遮へい能力低下の評価に用いた温度分布解析について>

熱による遮へい能力低下の評価点における温度分布解析については、柏崎刈羽3号炉工事 計画認可申請書 添付書類 IV-4-1「生体しゃへい装置の放射線のしゃへい及び熱除去につい ての計算書」による。

ガンマ線遮へいコンクリートの炉心領域部におけるガンマ線による熱発生は, SPAN コード を用いて,遮へいコンクリートに吸収されたガンマ線エネルギが全て熱に変換されるとして 計算を行っている。

原子炉しゃへい壁及び一次しゃへい壁中におけるガンマ線束と発熱量分布を図 11-1, 原子 炉しゃへい壁及び一次しゃへい壁中の温度分布を図 11-2 に示す。

全ガンマ線束による発熱を考慮して温度分析解析を行った結果,ガンマ線遮へいコンクリートの炉心領域部の最高温度は 60.5℃となり,「コンクリート遮へい体設計基準」 (R.G. Jaeger et. al「Engineering Compendium on Radiation Shielding (ECRS) VOL. 2」)に よるコンクリートの温度制限値 (中性子遮へい 88 ℃,ガンマ線遮へい 177 ℃)を下回った。

放射線量の日常監視については,建屋内に設置された放射線監視装置(エリア放射線モニ タ)から伝送される計測値を中央操作室において連続監視すると共に,毎日の計測値を記録 に取り纏め,傾向監視を実施している。

その結果、日常的に監視している放射線量について、異常な兆候は確認されていない。

なお,通常時におけるエリアモニタの警報設定値と傾向監視によるアクションレベルについて,表 11-1 及び表 11-2 に示す。



図 11-1 原子炉しゃへい壁及び一次しゃへい壁中におけるガンマ線束と発熱量分布

2034

53



図 11-2 原子炉しゃへい壁及び一次しゃへい壁中の温度分布

表 11-1 エリア放射線モニタ警報設定値

### 単位: mSv/h

測定場所	警報設定値
非管理区域	0.001
通路	0.02
制御盤エリア	0. 02
作業エリア	0.05 又は過去最大値の3倍
タービンオペフロ	0. 05
事故時監視用	5
TIP 装置室	1

表 11-2 アクションレベル

測定項目	アクションレベル
	前回又は今回測定値が線量当量率 0.01mSv/h
管理区域内の	以上かつ前回測定値比較若しくは過去 3 日間
外部放射線量当量率	比較で 0.7 倍以下の下降及び 1.5 倍以上の上
	昇

# 別紙 12

<柏崎刈羽3号炉周辺の地下水による劣化影響について>

1. はじめに

柏崎刈羽3号炉(以下,「KK3」という)のコンクリート構造物のうち,原子炉建屋,タービン建屋,海水熱交換器建屋,取水構造物,非常用ガス処理系配管ダクト及び原子炉補機冷却 水系配管ダクトの一部は,地下に埋設されているため,これらの構造物に対する地下水によ る劣化影響について検討する。

コンクリートの強度低下に影響を及ぼすと想定される地下水に起因する劣化要因を抽出す るとともに、それらが KK3 の地下埋設部コンクリートにおいて発生し、進展する可能性につ いて評価を行う。

なお,原子炉建屋,タービン建屋及び海水熱交換器建屋の地下外壁の表面に防水層を設け るとともに,建屋周囲にはサブドレン設備を設置して地下水位を低下させているが,当該評 価では,保守的に防水層及びサブドレン設備による効果には期待しないこととする。 2. 劣化影響評価

2.1 地下水に起因するコンクリート劣化要因の抽出

地下水に起因するコンクリートの劣化要因とその概要を表 12-1 に示す。

地下水に起因するコンクリート劣化の種類には、化学的物質の作用による材料劣化と、地下 水圧の作用による構造劣化が考えられる。このうち、後者の構造劣化については設計時の強度 計算書において、地下水を考慮した土圧荷重に対して地下外壁が健全であることを確認してい ることから、常時の水圧に対して問題になることはないと考えられる。

そこで、コンクリートの材料劣化に該当する塩分浸透、アルカリ骨材反応及び化学的侵食の 3 要因が、KK3 の地下埋設部コンクリートにおいて発生し、進展する可能性について評価を行った。

劣化の種類	劣化要因	概  要
		地下水に含まれる塩化物イオンの浸透により、鉄
	塩分浸透	筋腐食が発生し、コンクリートに膨張性のひび割
		れが発生する。
		骨材中の反応性鉱物とセメントペースト中のアル
	マルカリ母母日内	カリイオンが反応し、これに水が加わることによ
材料劣化	ノルカリ育材反応	り、コンクリートに膨張性のひび割れが発生す
		る。
	化学的侵食	水分中の酸や硫酸塩等の塩類とセメント水和物の
		化学反応により、セメントペーストの溶解(酸)
		やコンクリート表層の剥離・剥落(塩類)が発生
		する。
		地下水圧によって側壁に発生する曲げモーメント
構造劣化	地下水圧	により、コンクリート部材の引張側にひび割れが
		発生する。

表 12-1 地下水の存在下で引き起こされるコンクリートの劣化要因

2.2 地下水に起因するコンクリートの材料劣化評価

コンクリートの材料劣化に該当する劣化要因のうち,塩分浸透,アルカリ骨材反応,化学 的侵食が KK3 の地下埋設部コンクリートにおいて発生し,進展する可能性について KK3 の環 境条件に基づき評価を行った。

2.2.1 塩分浸透

コンクリート中に塩化物イオンが浸透し,鉄筋位置まで達すると,鉄筋の腐食が徐々に進行し,鉄筋の体積膨張によりコンクリートにひび割れやはく離が生じ,コンクリート構造物 としての健全性が損なわれる可能性がある。

KK3 の対象構造物においては、塩分浸透が生じる可能性があるため、経年劣化に対する評価を実施している。

その結果,各評価部位における鉄筋の腐食減量は,運転開始後40年時点の想定においても, かぶりコンクリートにひび割れが発生する時点での鉄筋の腐食減量を十分に下回っている。

また,定期的な建屋内部からの目視点検の結果,塩分浸透に起因する鉄筋腐食が生じた場 合に発生する膨張性のひび割れは確認されていない。さらに塩化物イオンが最も多く含まれ る海水熱交換器建屋周辺の地下水における塩化物イオン量は海水の半分程度であり,コンク リート躯体が直接海水に接触し,塩分浸透に対し最も厳しい環境条件下にある取水構造物に おいても,塩分浸透による鉄筋腐食に起因する膨張性のひび割れは確認されていない。

したがって、塩分浸透の評価結果、目視点検の結果及び最も厳しい環境下にある取水構造物の現状を鑑み、同じ産地の材料を使用しているその他の地下埋設部コンクリートにおいても塩分浸透によるコンクリートの劣化が進展し、KK3の供用期間中にコンクリート構造物としての健全性が損なわれる可能性は小さいと考えられる。

2.2.2 アルカリ骨材反応

アルカリ骨材反応は、コンクリート中に含まれるアルカリ性の水溶液と、骨材中に含まれ る反応性鉱物の化学反応である。このとき生成されたアルカリ・シリカゲルが周囲の水を吸 収し膨張すると、コンクリート表面にひび割れが生じ、コンクリート構造物としての健全性 が損なわれる可能性がある。

ただし,KK3 においては,建設時の1987年にコンクリートの使用骨材についてモルタルバー法 (JASS 5N T-201)による反応性試験を実施しており,その結果得られた膨張率は「材齢6カ月で0.100%以下」の判定基準に対し,無害と判定されている。

また、定期的な建屋内部からの目視点検の結果、アルカリ骨材反応が発生した場合に発生 する膨張性のひび割れは確認されていない。さらに絶えず海水が供給される環境下にある取 水構造物においても、アルカリ骨材反応に起因する膨張性のひび割れは確認されていない。

したがって、使用骨材の反応性試験結果、目視点検の結果及び外部からの水分供給に対し て最も厳しい環境下にある取水構造物の現状を鑑み、同じ産地の材料を使用しているその他 の地下埋設部コンクリートにおいてもアルカリ骨材反応によるコンクリートの劣化が生じる 可能性は小さいと考えられる。 2.2.3 化学的侵食

コンクリートの化学的侵食は、コンクリートが外部からの化学作用によって、セメント硬 化体を構成する水和生成物が変質や分解することにより、結合能力を失っていく事象である。 化学的侵食は、その劣化機構によって、①セメント水和物との化学反応による溶解、②セメ ント水和物との化学反応による膨張に大別される。

① セメント水和物との化学反応による溶解

コンクリート中のセメント水和物との化学反応により、本来、水に溶解しにくいセメント水和物を可溶性物質に変質させ、コンクリートが多孔質化する、あるいは分解することで、骨材の露出や脱落などが生じる。

② セメント水和物との化学反応による膨張

コンクリート中のセメント水和物との化学反応により,新たな化合物が生成され,膨張 する際の膨張圧がコンクリートにひび割れや剥離を生じさせる。

一般的な環境においては,化学的侵食が発生することはほとんどなく,温泉地帯,酸性河 川流域及び酸性・硫酸塩土壌等に建造された構造物等が化学的侵食の影響を受けるとされて いる。

そこで,KK3 における地下水質の調査結果に基づき化学的侵食が発生し,進展する可能性 について評価を行った。

(1) KK3 周辺における地下水質の調査位置及び調査結果

KK3 周辺のサブドレンピット(図 12-1)においては,2022 年 5 月~6 月に計 8 箇所で地下 水質調査を実施している。結果を表 12-2 に示す。

なお,調査結果は海水の影響を考慮し,図12-1に示す通り,陸側と海側の2つのエリア に大別して分析を行った。



図 12-1 KK3 周辺のサブドレン配置図

### 表 12-2 KK3 周辺における地下水質の調査結果

(a)	рH
(a)	pn

エリア	採取箇所	
陸側	原子炉建屋 No. 1, 2, 3, 4 ピット	
海側	タービン建屋 No. 8, 11 ピット 海水熱交換器建屋 No. 1, 2 ピット	

(b)硫酸塩(単位;mg/1)

エリア	採取箇所	平均值
陸側	原子炉建屋 No. 1, 2, 3, 4 ピット	
海側	タービン建屋 No. 8, 11 ピット 海水熱交換器建屋 No. 1, 2 ピット	

(c)マグネシウム (単位;mg/1)

エリア	採取箇所	平均值
陸側	原子炉建屋 No. 1, 2, 3, 4 ピット	
海側	タービン建屋 No. 8, 11 ピット 海水熱交換器建屋 No. 1, 2 ピット	

(d)アンモニウム (単位;mg/1)

エリア	採取箇所	平均值
陸側	原子炉建屋 No. 1, 2, 3, 4 ピット	
海側	タービン建屋 No. 8, 11 ピット 海水熱交換器建屋 No. 1, 2 ピット	

(e)侵食性遊離炭酸(単位;mg/1)

エリア	採取箇所	平均值
陸側	原子炉建屋 No. 1, 2, 3, 4 ピット	
海側	タービン建屋 No. 8, 11 ピット 海水熱交換器建屋 No. 1, 2 ピット	

(2) 地下水質調査結果の分析

KK3 周辺の地下水において得られている pH, 硫酸塩, マグネシウム及びアンモニウムを EN206 の地下水の環境区分と対比した結果を表 12-3 に示す。

谭梓豆八	XA1	XA2	XA3	備考	
· 泉境区刀	弱い化学的侵食	標準的な化学的侵食	強い化学的侵食		
На	6.5≧X≧5.5		$4.5 > X \ge 4.0$	陸側・海側共に	
		$3.3 > \Lambda \leq 4.3$		該当区分なし	
S04 ²⁻	900 < V < 600	$600 < X \le 3000$	2000 < V < 6000	陸側は該当区分	
[mg/1]	200≦⊼≦000	(海側	2000 <x≧0000< td=""><td>なし</td></x≧0000<>	なし	
$\mathrm{Mg}^{2^+}$	$300 \leq X \leq 1000$	1000 < V < 2000	2000 < V	陸側は該当区分	
[mg/1]	(海側:	1000 < X ≥ 3000	2000 < X	なし	
NH4 ⁺ [mg/1]	$15 \leq X \leq 30$	20 < V < 60	$60 < V \le 100$	陸側・海側共に	
		30<∆≧00	00 <x≧100< td=""><td>検出限界値以下</td></x≧100<>	検出限界値以下	
CO ₂ [mg/1]	15 < V < 40	$40 < V \leq 100$	100 < V	土宝坛	
(侵食性)	$10 \ge \Lambda \ge 40$	40 < ∧ ≥ 100	100 < X	~ 夭 爬	

表 12-3 KK3 における調査結果と EN206 の環境区分(地下水)の対比

注) 網掛け箇所は KK3 の調査結果が該当する区分を,() ) 内には該当するエリアとその平均 値を示す。

(a) pH

陸側及び海側共に6.5を上回っており、酸劣化の可能性はないと考えられる。

(b) SO4²⁻(硫酸塩)

陸側において, EN206 のいずれの環境区分にも該当しないことが確認された。海側については, 硫酸塩が EN206 の「標準的な化学的侵食」に区分される結果となった。これは, 海側の地下水に海水が流入しているためと考えられ, 海水に含まれる各種イオン量との比較からも確認できる。

硫酸塩による劣化では、膨張性のエトリンガイトが生成されるが、海水のように過剰な 塩化物イオンが共存する環境下においては、塩化物があるとエトリンガイトが溶解し、海 水によって浸出することがあるため、有害な膨張を伴わないとされている。また、I-GALL Report¹⁾において侵食性があるとされる硫酸塩濃度の 1500ppm 以下であることから硫酸塩 劣化の可能性はないと考えられる。

(c) Mg²⁺ (マグネシウム)

マグネシウムは、陸側において、EN206 のいずれの環境区分にも該当しないことが確認 された。海側については、EN206 の「弱い化学的侵食」に区分される結果となった。これ は、海側の地下水に海水が流入しているためと考えられ、海水に含まれる各種イオン量と の比較からも確認できる。 また,山路の報告²⁾によれば,海洋環境に曝露された供用年数が40年のコンクリート 構造物から採取したコアにおけるマグネシウムの浸透深さが10mm以下であったことを踏 まえれば,KK3においても海水の影響によるコンクリート劣化の可能性はないと考えられ る。

(d) NH4⁺ (アンモニウム)

アンモニウムは,陸側及び海側共に検出限界値以下であり,EN206のいずれの環境区分 にも該当しないことが確認された。

(3) 化学的侵食に関する劣化評価

KK3 の地下水質調査結果に基づき,地下水成分の分析を行った結果,酸や硫酸塩に起因するコンクリート劣化の可能性はないと考えられる。

また,対象構造物のうち,海洋環境の影響を直接受ける取水構造物においては,化学的侵 食に特有の劣化兆候は見られない。

したがって、地下水質の分析結果や、海水由来の侵食性物質に対して最も厳しい環境下に ある取水構造物の現状を鑑み、同じ産地の材料を使用しているその他の地下埋設部コンクリ ートにおいても化学的侵食によるコンクリートの劣化が生じる可能性はないと考えられる。

- 1) IAEA: I-GALL Report AMP306 : STRUCTURES MONITORING, pp. 1-12, 2018
- 2) 山路:海洋に位置するコンクリート構造物の耐久性能照査手法に関する研究,港湾空港 技術研究所資料, pp. 29-48, 2011

2.3 地下水に起因するコンクリート劣化評価についてのまとめ

地下水に起因するコンクリートの劣化要因が,KK3の地下埋設部コンクリートにおいて発生し,進展する可能性について,KK3の環境条件に基づき評価を行った。結果を表 12-4 に示す。

これより,塩分浸透及びアルカリ骨材反応については発生の可能性が否定できないものの, 取水構造物等の定期的な目視点検により,塩分浸透による鉄筋腐食及びアルカリ骨材反応に起 因するひび割れがないことを確認していく。

一方,地下水に起因する化学的侵食及び構造劣化については,KK3の環境条件及び設計条件 から判断して,発生の可能性はないことを確認した。

構	経年		劣化要因のスクリーニング結果		
造 物	劣化 事象	劣化要因	発生の 可能性	進展の 可能性	KK3 の環境条件・根拠等
コンクリート構造物	強度低下	塩分浸透	0	$\bigtriangleup$	地下水から塩化物イオンが供給されるため発 生の可能性はあるが,各経年劣化評価部位にお ける鉄筋の腐食減量は,運転開始後40年時点 の想定においても,健全性を有していることを 確認している。 また,塩分浸透に起因する鉄筋腐食が生じた場 合に発生する膨張性のひび割れは,建屋内部か らの目視点検において確認されていない。 さらに塩化物イオンが最も多く含まれる海水 熱交換器建屋周辺の地下水における塩化物イ オン量は海水の半分程度であり,コンクリート 躯体が直接海水に接触し,塩分浸透に対し最も 厳しい環境条件下にある取水構造物において も,塩分浸透による鉄筋腐食に起因する膨張性 のひび割れは確認されていない。
		アルカリ骨材反応	Δ		KK3 建設時にコンクリート使用骨材について モルタルバー法による反応性試験を実施した 結果,無害と判定された。 また,仮にアルカリ骨材反応が発生した場合に 発生する膨張性のひび割れは,建屋内部からの 目視点検において確認されていない。 さらに絶えず海水が供給される環境下にある 取水構造物においても,アルカリ骨材反応に起 因する膨張性のひび割れは確認されていない。
		化学的侵食	×	×	KK3は、土壌や地下水に侵食性物質が多く含ま れる温泉地帯や酸性河川流域等の付近には建 設されていない。 また、KK3の地下水成分の分析の結果、酸や硫 酸塩に起因するコンクリート劣化の可能性は ないことを確認している。
		地下水圧による構造 劣化	×	×	設計時の強度計算書において,地下水の存在を 考慮した土圧荷重に対して地下外壁が健全で あることを確認しており,常時の水圧に対して 問題になることはないことを確認している。

表 12-4 地下水に起因するコンクリートの劣化要因に係る発生及び進展の可能性

凡例) ○: 可能性あり, △: 可能性は小さいが日常劣化管理事象, ×: 可能性なし