第102回 廃炉・汚染水・処理水対策チーム会合/事務局会議資料

1号機 PCV内部調査の状況について

2022年5月31日

技術研究組合 国際廃炉研究開発機構 東京電力ホールディングス株式会社

1. PCV内部調査の概要

- 1号機原子炉格納容器(以下, PCV)内部調査は, X-2ペネトレーション(以下, X-2ペネ)から実施する計画
- PCV内部調査に用いる調査装置(以下,水中ROV)はPCV 内の水中を遊泳する際の事前対策用と調査用の全6種類の装 置を開発
- 各水中ROVの用途
 - ① ROV-A 事前対策となるガイドリング取付
 - ② ROV-A2 ペデスタル内外の詳細目視
 - ③ ROV-C 堆積物厚さ測定
 - ④ ROV-D 堆積物デブリ検知
 - ⑤ ROV-E 堆積物サンプリング
 - ⑥ ROV-B 堆積物3Dマッピング

1

2. PCV内部調査の状況

- 3月14日からROV-A2によるペデスタル外周の詳細目視調査を開始し、3月16日に発生した地 震影響と考えられるPCV水位の低下が確認されたことから、調査を一時中断
- 3月23日以降,原子炉注水流量の変更操作を継続して実施し,調査に必要な水位確保を目指したが、3月29日時点において水中ROVのカメラに映像不良(浸水によるものと推定)を確認したことから調査を中断
- 4月15日にかけて浸水したROV-A2の原因調査と並行し,予備機への交換作業を実施
- 5月9日,調査再開に必要なPCV水位の確保を目的とし原子炉注水量の変更を実施,5月16日時点においてPCV水位の確保が確認できたことから、5月17日から調査を再開
- 5月22日にかけて計画した調査を完了したことから,翌23日にアンインストールを実施
- 現在,後続号機であるROV-Cの投入に向けた段取り替えを実施中であり、準備が整い次第, ROV-Cによる堆積厚さ測定を開始する計画

3. ROV-A2調査概要と調査実績

- 調査範囲はPCV地下階の0°から215°(ペデスタル開口部含む)とし、カメラによる目視調査を計画 <主な調査箇所>
- > 既設構造物の状態確認及び堆積物の広がり状況·高さ·傾斜確認
- ▶ ペデスタル開口部付近の状況及び開口部近傍のコンクリート壁状況(★箇所)
- ▶ ジェットデフレクター付近の堆積物状況(箇所)
- ▶ 堆積物上の中性子束測定(▼箇所)

2022年5月19日お知らせ済み

機器ドレンサンプポンプ付近およびPCV底部の状況(5月17日調査分①)

資料提供:国際廃炉研究開発機構 (IRID)

IRID TEPCO

2022年5月19日お知らせ済み

IRID

ジェットデフレクターF付近における3月16日地震前との比較(5月17日調査分③)

6

2022年5月19日お知らせ済み

PLR(A)配管およびペデスタル付近の状況(5月18日調査分②)

8

IRID TEPCO

ペデスタル開口部(基礎部)の状況(5月19日調査分①)

- ✓ これまで確認されていた鉄筋らしきものについて、近接し確認した映像を、建設当時の写真と比較した結果、ペデスタルの鉄筋であることが確認されました。また、インナースカート[※]も確認されました。
- ✓ 1号機の原子炉圧力容器及び原子炉格納容器の耐震性については、事故後(2016年度)の評価において、 ペデスタルが一部欠損していたとしても、支持機能を大きく損なわないことの確認を行っております。
- ✓ 今回確認された調査結果も踏まえ、今後さらに詳細なデータを取得し、改めて評価を行います。

資料提供:国際廃炉研究開発機構(IRID)

2022年5月23日お知らせ済み

IRID TEPCO

堆積物

ペデスタル開口部(基礎部)付近の状況(5月19日調査分②)

- ✓ 堆積物より下部においては、ペデスタルの鉄筋が確認されました。
- ✓ 堆積物より上部では、ペデスタル基礎部が残った状態であることが確認されました。

写真2.ペデスタル開口部(左側基礎部)の 堆積物を堺にした上下部の状況

写真1.ペデスタル開口部(右側基礎部)の堆積物より上部の状況

写真3.ペデスタル開口部(右側基礎部)の堆積物より下部の状況 資料提供:国際廃炉研究開発機構(IRID) 10

ペデスタル開口部(内部手前)の状況(5月19日調査分③)

✓ 塊状の堆積物が複数確認されました。

2022年5月23日お知らせ済み

ジェットデフレクター(C,D)付近の状況(5月19日調査分④)

✓ ジェットデフレクター(D)付近および裏側(圧力抑制室側)において堆積物が確認されました。
 ✓ ジェットデフレクター(C)付近において堆積物が確認されました。

4. 調査実績 中性子束測定結果(5月20日,21日調査分)

- 今回測定したポイント全てにおいて熱中性子束を確認
- ペデスタル開口部付近で熱中性子束が多く確認されていることから,燃料デブリ由来と推定
- 引き続き、後続号機であるROV-C(堆積物厚さ測定)において堆積物の高さと厚さを確認した上で、ROV-D(燃料デブリ検知)において、堆積物への燃料デブリ含有状況を調査する予定

5. 今後の予定

(注)各作業の実施時期については計画であり,現場作業の進捗状況によって時期は変更の可能性あり。

(参考)調査装置詳細 シールボックス他装置

ROVをPCV内部にインストール/アンインストールする。 ROVケーブルドラムと組み合わせてPCVバウンダリを構築する。

構成機器名称		役割
1	ROVケーブルドラム	ROVと一体型でROVケーブルの送り/巻き動作を行う
2	インストール装置	ROVをガイドパイプを経由してPCV内部まで運び、屈曲機構によりROV姿勢を鉛直方向に転換させる
3	ケーブル送り台車	ケーブルドラムと連動して、ケーブル介助を行う
4	移動トレイ	ガイドパイプまでインストール装置を送り込む装置
(5)	シールボックス	ROVケーブルドラムが設置されバウンダリを構成する
6	グローブボックス	ケーブル送り装置のセッティングや非常時のケーブル切断
		$_{}$ 资料提供:国際廃炉研究開発機構(IRID) 15

(参考)調査装置詳細 ROV-A2__詳細目視調査用

調査装置	計測器	実施内容
<mark>ROV-A2</mark> 詳細曰泪	ROV保護用(光ファイバー型γ線量計※,改良 型小型B10検出器) ※:ペデスタル外調査用と同じ	地下階の広範囲とペデスタル内(※)のCRDハウジ ングの脱落状況などカメラによる目視調査を行う (※アクセスできた場合)
UT 1144 LA 176	員数:2台 航続可能時間:約80時間/台 調査の のケーブル(φ23mm)を採用	のために細かく動くため、柔らかいポリ塩化ビニル製

(参考)調査装置詳細 ROV-B~E_各調査用

調査装置	計測器	実施内容		
ROV-B 堆積物3Dマッピング	・走査型超音波距離計 ・水温計	走査型超音波距離計を用いて堆積物の高さ分布を確認する		
<mark>ROV-C</mark> 堆積物厚さ測定	・高出力超音波センサ ・水温計	高出力超音波センサを用いて堆積物の厚さとその下の物体 の状況を計測し、デブリの高さ、分布状況を推定する		
<mark>ROV-D</mark> 堆積物デブリ検知	・CdTe半導体検出器 ・改良型小型B10検出器	デブリ検知センサを堆積物表面に投下し、核種分析と中性 子束測定により, デブリ含有状況を確認する		
<mark>ROV-E</mark> 堆積物サンプリング	・吸引式サンプリング装置	堆積物サンプリング装置を堆積物表面に投下し,堆積物表 面のサンプリングを行う		

真奴、谷2百9 フ 励続可能時间、約60時间/百 詞直のために袖がく動くため、柔らかいがり塩化ヒール (ROV-B: ϕ 33mm、ROV-C: ϕ 30mm、ROV-D: ϕ 30mm、ROV-E: ϕ 30mm)を採用

(参考) IRIDにおけるペデスタル部の耐震性・影響評価について

- 国の補助事業「廃炉・汚染水対策事業」にて、2016年度に国際廃炉研究開発機構(IRID)が圧 力容器及び格納容器の耐震性・影響評価を実施。
- ペデスタルの一部が高温により劣化・損傷した状態において、コンクリートや鉄筋のひずみ等の 耐震性評価を実施したところ、日本機械学会「発電用原子力設備規格 コンクリート製原子炉格 納容器規格」の基準値以下であることを確認。

ケース	温度	デブリ 侵食	評価項目	発生応力・ ひずみ(A)	評価 基準値(B)	A/B
	中 個 looo c		コンクリートひずみ	305µ	3000µ	0.10
No.1	内側800℃ 外側800℃	なし	鉄筋ひずみ	155µ	5000μ	0.03
			面外せん断応力	0.23 N/mm ²	1.28 N/mm ²	0.18
	内側1200℃ 外側600℃	Bild 200°C	コンクリートひずみ	671µ	3000µ	0.22
No.2		内側12000 //	鉄筋ひずみ	286µ	5000μ	0.06
			面外せん断応力	0.39 N/mm ²	1.20 N/mm ²	0.33
			コンクリートひずみ	1246µ	3000µ	0.42
No.3	"	あり	鉄筋ひずみ	652μ	5000μ	0.13
		1	面外せん断応力	0.69 N/mm ²	1.44 N/mm ²	0.48

評価結果まとめ

出典: 平成26年度補正予算 廃炉・汚染水対策事業費補助金 圧力容器/格納容器の耐震性・影響評価手法の開発

圧力容器/格納容器の耐震性・影響評価手法の開発 平成28年度成果報告 技術研究組合 国際廃炉研究開発機構(IRID)

https://irid.or.jp/wp-content/uploads/2017/06/20160000_11.pdf

特定原子力施設監視・評価検討会 (第100回) 資料3

1号機 原子炉格納容器内部調査の状況について

2022年6月20日

技術研究組合 国際廃炉研究開発機構 東京電力ホールディングス株式会社

1. PCV内部調査の概要

資料提供:国際廃炉研究開発機構 (IRID)

2. ROV-A2によるペデスタル基礎部調査の概要と実績

- 調査範囲はPCV地下階の約90°から約180°(ペデスタル開口部含む)とし、カメラによる目視調査を実施 <主な調査箇所>
 - > 既設構造物の状態確認及び堆積物の広がり状況·高さ·傾斜確認。
 - ▶ ペデスタル開口部付近のコンクリート壁状況確認。(下図 💶 調査箇所 : 💶 鉄筋露出、 🛄 露出無)
 - ▶ ペデスタル内部の目視調査は調査実績等を踏まえ、最終でROV A 2を投入予定。

3. ROV-A2調査実績① ペデスタル開口エリア(鉄筋露出有り)

- ペデスタル開口部壁面の状態(5月18、19日調査)
 - テーブル状の堆積物があり、当該堆積物下部の壁面を確認したところ、コンクリートがなく、鉄筋、 インナースカートが露出していることを確認。 PCV底部にも堆積物があり、当該堆積物下部の状況は 確認できず。ペデスタル開口部左右共に同様の状態。

3. ROV-A2調査実績② 南側エリア(鉄筋露出確認されず)

- 電線管中継箱及びサンプポンプ付近の壁面の状況(3月16日調査)
 - PCV底部に堆積物があり、当該堆積物下部の壁面を確認することができなかったが、目視可能な範囲のペデスタル壁面に鉄筋等が露出していないことを確認。

堆積物が崩れていないため、堆積物下部の壁面は確認できず

<u>写真6.遮へい板裏ペデスタル壁面(堆積物周辺)</u> ^{資料提供:国際廃炉研究開発機構(IRID)} 4. ペデスタル外面の確認状況を踏まえた考察について 原子炉圧力容器の支持機能への影響

- 原子炉圧力容器(以下、RPV)を支持する構造物と事故による支持機能への影響を下図に示す。
- 1号機は事故により燃料が溶け落ちており、当該影響を踏まえ、補助事業「廃炉・汚染水対策事業」にて、2016年度に国際廃炉研究開発機構(IRID)が圧力容器及び格納容器の耐震性・影響評価を実施し、ペデスタルの一部が劣化、損傷した状態において、所定の機能を維持することを確認(参考1~7)。

R P V 支持構造物及び周辺構造物

事故によるRPV支持機能への影響

4. ペデスタル外面の確認状況を踏まえた考察について 原子炉圧力容器の支持機能への影響

- 今後内部調査により知見の拡充、評価を実施していくが、現時点の情報等を基に、ペデス タルの損傷に伴うプラントへの影響を考察。
- ペデスタルの損傷により想定される支持すべき構造物の水平方向への移動、衝突や鉛直方向への落下については、以下の理由から、大規模な損壊等に至る可能性は低いと想定。
 - 水平方向: RPVを水平方向に支持する構造物(スタビライザ等)があり、RPVの移動が拘束されていることから、PCV 等を損傷させる様な衝突に至る可能性は低いと考えられる。
 - 鉛直方向: RPVを鉛直方向に支持するペデスタルに損傷が確認された一方、事故に伴う燃料等の流出によりRPV重量は 減少していること、ペデスタルの支持機能喪失を示す形跡(露出する鉄筋の座屈等)はみられないことから 、大規模な損壊に至るようなRPVの鉛直方向への落下の可能性は低いと考えられる。

前項に記載の通り、地震等により大規模な損壊等に至る可能性は低いと想定しているが、仮にペデスタルの支持機能が低下し、支持対象であるRPV等が傾斜、沈下した場合の安全上の影響として、燃料デブリの冷却、ダスト飛散、臨界の影響について考察を行った。

その結果、周辺の公衆に対し、著しい放射線被ばくのリスクを与えることはないと考えられる。

<燃料デブリの冷却への影響>

【RPV等の傾斜・沈下により想定される影響】

- 現状、原子炉注水設備により、既設配管(CS系、FDW系)からPCV内に注水し、燃料デブリの冷却を行うことで、 PCV温度等の安定を図っている。
- 事故後10年以上が経過し崩壊熱が低下しており、原子炉への注水が停止した場合でも、温度の上昇が緩やかである こと(1℃/5日程度)やPCV水位の低下によるダスト濃度への影響がないことを、注水停止試験により確認している。
- RPV等の傾斜、沈下により想定される既設配管(CS系、FDW系)の損傷については、損傷状況によっては、RPVに 直接注水できないことも考えられるが、燃料デブリは、大部分がPCV底部へ落下していると考えており、PCVへの注水によ る冷却水供給及び湿潤環境を維持することで、燃料デブリの冷却に大きな影響を与えないと考えられる。

【更なる措置について】

仮に既設設備を用いた注水が困難な場合でも、窒素封入に用いている配管(RPVヘッドスプレイライン)やPCV内部 調査に伴い新設した接続口等の活用による対応についても検討する。

<1号機 注水停止試験における温度上昇とPCV水位(2020年)>

5日間の注水停止試験を実施し、温度の上昇が緩やかであること(1℃/5日程度)およびPCV水位の低下 によるダスト濃度への影響がないことを確認

RPV底部温度

PCV温度

[h/sm

注水流量[

<ダスト飛散の影響>

【RPV等の傾斜、沈下により想定される影響】

- 現状、PCVについては、窒素封入設備を用いた給気やPCVガス管理設備におけるフィルタを介した排気により、 PCV圧力の安定化やPCVから放出されるダスト濃度等の低減を図っている。
- RPV等の傾斜、沈下により想定されるペデスタル内、PCV底部の一部の燃料デブリの粉砕によるダスト飛散や、衝撃、振動による構造材に付着しているダストの舞い上がり等については、PCV内は湿潤環境となっているため、PCV内のダスト濃度の増加は限定的※と考えられる。
- また、ダストが舞い上がったとしても、PCVガス管理設備のフィルタを介した排気流量の増加により、ダスト濃度上昇の影響の緩和を図る。

【更なる措置について】

- 現在実施中の1号機使用済燃料取り出しに向けた大型カバーの設置(2023年度頃設置完了)により、ダストの直接的な放出の更なる抑制が可能となる。
- PCV内部調査に伴い新設した接続口等の活用による対応についても検討する。
 - ※ 乾燥状態でのダスト飛散の実例として、2021年2月および2022年3月の地震(双葉町・大熊町:震度6弱)時の1・2号 機の原子炉建屋および1~3号機のタービン建屋内のダスト濃度が、 通常の変動幅より1桁程度の一時的な増加に留まったこ とを踏まえると、湿潤状態では同程度以下と想定。また、同地震時におけるPCVガス管理設備のダストモニタに有意な上昇がな いことを確認。

5. ペデスタル外面の確認状況を踏まえた考察について

支持機能が低下した場合に起こり得る原子安全上の影響について

<臨界の影響>

【RPV等の傾斜・沈下により想定される影響】

- RPV等の傾斜、沈下した場合、ペデスタル内、PCV底部の一部の燃料デブリの粉砕等が発生し、粒径やデブリの亀裂等の状態の変化が想定される。
- 事故の進展により損傷、溶融した炉心では、燃料の形状の変化や、溶融時に他の炉内構造物を巻き込むことで塊の状態になるため、臨界になりにくい状態になる。これまでの臨界評価において、事故時のデブリの組成、形状(粒径)、構造材の組成及び混合量などの不確定要素について、臨界になりやすいような条件で評価した結果、臨界の可能性は極めて小さいと評価している。
- RPV等の傾斜、沈下により想定される燃料デブリの粒径やデブリの亀裂等の状態の変化は、主に形状に関するものと想定され、上記の臨界評価の範囲内に留まると考えられることから、臨界の可能性は極めて小さいと考えられる。

【更なる措置について】

仮に、PCVガス管理設備の希ガスモニタや建屋周辺の線量表示器等により、臨界の兆候が確認された場合であっても、 核分裂反応を抑制するため、PCVへホウ酸水を注入する。

	項目	想定した条件	臨界になりやすいよう考慮した主な条件
デブリ組成	燃料	重核、FP、残存Gd がデブリに混合	燃料の炉心平均燃焼度を低く設定 (炉心平均燃焼度25.8GWd/tに対し20.8GWd/tを採用)
	構造材	被覆管、集合体壁、炉心支持板、支持金 具、下部タイプレートがデブリに混合	構造材の混合量を少なく設定 (炉心域に存在する構造材のみが混合)
	制御棒	炉心有効長部分の制御棒のデブリへの混合	制御棒の中性子吸収材が全く含まれていない条件も評価
形状	デブリ(粒子)形状	球形(中実及び中空) 粒半径 : ~10[cm]	中性子が漏れにくい体系(無限体系)を設定 デブリの粒径を小さく設定(数mm~10cm)
	堆積(体系)形状	体心立方、立方体中央に1 つの場合	
	(水領域の割合)	水 : デブリ体積比 = 33.67~58.42	

燃料デブリの臨界評価において想定した条件

福島第一原子力発電所 特定原子力施設に係る実施計画 II 2.4 原子炉圧力容器・格納容器ホウ酸水注入設備 添付資料 – 4 抜粋

6. 今後の予定

(注)各作業の実施時期については計画であり、現場作業の進捗状況によって時期は変更の可能性あり。

(参考1)IRIDにおけるペデスタル部の耐震性・影響評価について

- 国の補助事業「廃炉・汚染水対策事業」にて、2016年度に国際廃炉研究開発機構(IRID)が圧 力容器及び格納容器の耐震性・影響評価を実施。
- ペデスタルの一部が高温により劣化・損傷した状態において、コンクリートや鉄筋のひずみ等の 耐震性評価を実施したところ、日本機械学会 「発電用原子力設備規格 コンクリート製原子炉格 納容器規格しの基準値以下であることを確認。
- 耐震性・影響評価におけるペデスタルの解析方法

ペデスタル解析フロー

IRID

TEPCO

(参考2)IRIDにおけるペデスタル部の耐震性・影響評価について

■ ペデスタル解析モデルの損傷範囲と温度条件

▶ モデル損傷範囲:MCCI解析結果を考慮し設定

▶ 温度条件:MAAP解析結果を考慮し設定

IRID

TEPCO

(参考3)IRIDにおけるペデスタル部の耐震性・影響評価について

■ ペデスタル解析モデルへの損傷範囲反映

(参考4)IRIDにおけるペデスタル部の耐震性・影響評価について

■ ペデスタル解析モデルの材料劣化の条件

▶ 事故時の高温状態を踏まえた材料強度の低下

> 高温腐食及び長期腐食を踏まえた鉄筋の減肉

(長期腐食の期間は地震後40年を想定)

劣化	モデル 化項目		モデル化方法	設定根拠
		コンクリート	圧縮・引張強度の低減 応力ひずみ関係の軟化	平成27年度円柱試験より設定 (1F1:普通コン加熱後4ヶ月水中)
 \(材料	鉄筋	降伏点の低減	AIJ耐火性ガイドを参考に設定
高温		付着	テンションスティフニング 効果は低減しない	平成27年度 縮小模型試験の シミュレーション解析を参考に設定
	形状	温度の 空間分布	温度分布解析を実施	熱物性の妥当性を、平成27年度 ブロック試験を参考に設定
	材料	コンクリート	—	_
		鉄筋 (高温腐食)	腐食量に応じた	中森-EPRIの回帰式により設定
鉄筋		 	平成27年度 鉄筋腐食試験より設定	
肉及		付着	テンションスティフニング 効果は低減しない	平成27年度 縮小模型試験の シミュレーション解析を参考に設定
	形状	腐食の 空間分布	全面腐食と仮定	安全側に設定

出典:平成26年度補正予算 廃炉・汚染水対策事業費補助金 圧力容器/格納容器の耐震性・影響評価手法の開発 平成28年度成果報告 技術研究組合 国際廃炉研究開発機構(IRID)<u>https://irid.or.jp/wp-content/uploads/2017/06/20160000_11.pdf</u>

IRID

TEPC

(参考5)IRIDにおけるペデスタル部の耐震性・影響評価について

IRID TEPCO

■ ペデスタル解析結果(鉄筋ひずみ)

タテ筋ひずみ分布

(参考6)IRIDにおけるペデスタル部の耐震性・影響評価について

IRID

■ ペデスタル解析結果(コンクリートひずみ, 面外せん断応力)

■ ペデスタル解析結果

温度	デブリ 侵食	評価項目	発生応力・ ひずみ(A)	評価 基準値(B)	基準値/評価値 (B/A)
	コ あり 配	コンクリートひずみ	1246 µ	3000 µ	2.40
内側:1200℃ 外側:600℃		鉄筋ひずみ	652 µ	5000 µ	7.66
		面外せん断応力	0.69 N/mm2	1.44 N/mm2	2.08

ペデスタルの損傷及び劣化を考慮したモデルでの解析結果より<u>発生応力・ひずみが評価基</u> <u>準値*1以下であることを確認</u>

※1:CCV規格等※2に基づく評価基準値との比較を実施し、健全性を評価

※2:日本機械学会 「発電用原子力設備規格 コンクリート製原子炉格納容器規格」

出展:技術研究組合 国際廃炉研究開発機構(IRID) 一般財団法人 エネルギー総合工学研究所(IAE 日本原子力学会 燃料デブリ研究専門委員会 平成28年10月4日 「解析・評価等による燃料デブリ分布の推定について」 URL:https://irid.or.jp/wp-content/uploads/2016/10/20161004.pdf

日本原子力学会 燃料デブリ研究専門委員会

解析・評価等による 燃料デブリ分布の推定について

2022年6月28日

東京電力ホールディングス株式会社 技術研究組合 国際廃炉研究開発機構(IRID) 一般財団法人 エネルギー総合工学研究所(IAE)

「解析・評価等による燃料デブリ分布の推定について」 説明内容

- 1. はじめに(背景・目的等)
- 2. 事故進展解析コードについて
- 3. MAAP解析結果の概要
- 4.1号機の解析・評価結果
- 5.3号機の解析・評価結果
- 6.2号機の解析・評価結果

7. 評価結果のまとめ

本資料は、資源エネルギー庁 平成26年度補正予算「廃炉・汚染水対策事業費補助金 (事故進展解析及び実機データ等による炉内状況把握の高度化)」において、 国際廃炉研究開発機構(IRID)及びエネルギー総合工学研究所(IAE)が、共同補助 事業者となり、平成27年度に実施した研究成果を中心に取りまとめたものである。

解析・評価等による燃料デブリ分布の推定について

IRID

AE

1. はじめに(2/3) (評価の流れ)

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

1. はじめに (3/3) (全体工程)

BSAF : OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station

解析・評価等による燃料デブリ分布の推定について

2. 事故進展解析コードについて(1/4) (解析コードの比較)

コード名	MAAP	MELCOR (参考)	SAMPSON
開発主体	米国 EPRI	米国 NRC	日本 IAE
ー般的な 使用用途	安全性評価(事業者) (国内全電力が使用)	安全性評価(<mark>規制側</mark>)	事象の <mark>詳細評価</mark>
特徵	ー点集中定数 (解析結果は, 入力部	機構論的モデル 多次元解析が可能	
計算速度	速い (実時間の1/10程度)	中	遅い (実時間の数倍) (物理現象に依存)
本事業 での役割	解析評価の ベース (パラメータ分析)	本事業では対象外	解析評価の <mark>比較</mark> (事象の <mark>詳細評価</mark>)

- MAAP: Modular Accident Analysis Program
- MELCOR : Methods for Estimation of Leakages and Consequences of Releases
- SAMPSON : Severe Accident analysis code with Mechanistic, Parallelized Simulations Oriented towards Nuclear fields
- EPRI: Electric Power Research Institute(米国電力研究所)
- NRC:Nuclear Regulatory Commission(米国 原子力規制委員会)
- IAE:Institute of Applied Energy(一般財団法人 エネルギー総合工学研究所)

事故進展解析コードについて(2/4) (MAAPコードの概要)

- ・簡略化した形状や相関式等を使用する解析モデルに基づく「一<u>点集中定数型近似モデル」</u>
- ・解析対象領域を「ボリューム」(体積要素)に分割し、「ジャンクション」(接合部)で結合
- ・ 質量及びエネルギ保存則に基づき、領域内の1次元熱流動を評価

IRID

- ・ 炉心部では,崩壊熱及び化学反応による発熱と冷却材及び構造材への熱伝達とのバランス から燃料温度を評価し,燃料挙動(燃料損傷・溶融・移動)を評価
- 下部プレナムへのデブリ移行後は、RPV破損モードを判定し、PCVへの溶融燃料移行を評価
- ・PCVでは、デブリによるコンクリート構造材の侵食及び化学反応等の物理化学現象を評価

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

2. 事故進展解析コードについて(3/4) (MAAPコードの改良・高度化)

平成26年度までに検討した PIRTを参考に、高度化するモデルを抽出

PIRT: Phenomena Identification and Ranking Table (現象の同定及びランク表)

IRID A

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

IRID A

解析・評価等による燃料デブリ分布の推定について

3. MAAP解析結果の概要(1/2) 事故進展の経過(解析条件及び解析結果)

IRID A

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

3. MAAP解析結果の概要(2/2)

核分裂生成物(FP)の環境放出と正門モニタポスト計測値との関係

IRID A

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

解析・評価等による燃料デブリ分布の推定について

解析・評価等による燃料デブリ分布の推定について

IRID

IRID AE

解析・評価等による燃料デブリ分布の推定について

4.1号機の解析·評価結果(4/4) (燃料デブリ分布の推定結果)

解析結果及び実機調査データ(ミュオン測定、PCV内部調査等)を分析・評価

項目	内容	
事故進展解析*1	燃料デブリの大部分が PCV側に移行	
熱バランス法評価	RPV内に熱源が少ない	Г
ミュオン測定	炉心部には高密度物質 (燃料)は殆んど無い	
PCV内部調査	確認範囲ではPCV壁等 の大規模な損傷なし	
総合評価	燃料デブリの大部分が PCV側に移行	

*1:MAAP解析結果及びSAMPSON解析結果を含む
•RPV底部及びペデスタル内側の燃料デブリは,主に 固体(連続相)の見込み(SAMPSONによる評価)
•ペデスタル内側の燃料デブリの内, RPV下部CRD ハウジングに,約 6ton(そのうち,燃料約 2.2ton)の 燃料デブリが付着している可能性がある

		燃料デブリ重量(ton)			
	場所	評価値	代表値	信頼性	
	炉心部	0~3	0	Ø	
	RPV底部	7 ~ 20	15	0	
	ペデスタル内側	120 ~ 209	157	Δ	
	ペデスタル外側	70 ~ 153	107	Δ	
	合計値	232 ~ 357	279	Δ	

 ・燃料デブリ:燃料+溶融・凝固した構造材(コンクリート成分を含む)
 ・評価値:分析・評価の不確かさを考慮した評価結果の範囲
 ・代表値:分析・評価の結果から,現時点における確からしい値
 ・現状では、ペデスタル外側への拡がり及びコンクリート侵食に 関する評価結果の不確かさは大きい

1号機では、燃料デブリの大部分が、RPVから落ち、PCVに移行したと推定

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

解析・評価等による燃料デブリ分布の推定について

IRID

AE

5.3号機の解析·評価結果(2/2) (燃料デブリ分布の推定結果)

解析結果及び実機調査データ(温度データ、PCV内部調査等)を分析・評価

項目	内容	
事故進展解析*1	燃料デブリの大部分が PCV側に移行	
熱バランス法評価	ー定割合がRPVとPCVの 両方に存在	
ミュオン測定	—	
PCV内部調査	確認範囲ではPCV内 構造物の損傷なし	
総合評価	燃料デブリの大部分が PCV側に移行	

 *1:MAAP解析結果及びSAMPSON解析結果を含む
 •RPV底部の燃料デブリは主に粒子状、ペデスタル内側は、 主に固体(連続相)の見込み(SAMPSONによる評価)
 ・ペデスタル内側の燃料デブリの内、RPV下部CRD ハウジングに、約 5.5ton(そのうち、燃料約 1.6ton)の 燃料デブリが付着している可能性がある

		燃料ラ	「 ブリ重量	(ton)
	場所	評価値	代表値	信頼性
	炉心部	0~31	0	0
	RPV底部	21~79	21	0
	ペデスタル内側	92~227	213	Δ
	ペデスタル外側	0~146	130	Δ
	合計値	188~394	364	Δ

 ・燃料デブリ:燃料+溶融・凝固した構造材(コンクリート成分を含む)
 ・評価値:分析・評価の不確かさを考慮した評価結果の範囲
 ・代表値:分析・評価の結果から,現時点における確からしい値
 ・3号機のペデスタル外側への拡がり及びコンクリート侵食評価は, 1号機のMCCI詳細解析からの推定結果であり,不確かさは大きい

3号機では、燃料デブリの大部分が、RPVから落ち、PCVに移行したと推定

IRID LAE

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

IRID A

解析・評価等による燃料デブリ分布の推定について

解析・評価等による燃料デブリ分布の推定について

解析・評価等による燃料デブリ分布の推定について

IRID

解析・評価等による燃料デブリ分布の推定について

IRID

6.2号機の解析·評価結果(5/6) (ミュオン測定による評価結果)

原子核乾板によるミュオン測定*1

(炉心部構造体(燃料,制御棒)の残存率評価) (*1:東芝/名古屋大学の共同研究(H27年3月))

ミュオン透過法に測定*2

No.21

(炉心や圧力容器底部の燃料デブリを透視) (*2: IRID事業の一環として,東京電力が実施)

IRID A

解析・評価等による燃料デブリ分布の推定について

6.2号機の解析·評価結果(6/6) (燃料デブリ分布の推定結果)

解析結果及び実機調査データ(熱バランス法評価、ミュオン測定等)を分析・評価

項目	内容		
事故進展解析*1	燃料デブリの分布は 消防車注水量の設定 に大きく依存		
熱バランス法評価	ー定割合がRPVとPCVの 両方に存在		
ミュオン測定	炉心部に大きな燃料 デブリは殆ど無い*2		
PCV内部調査	RPV下部外周部の 大規模な損傷なし		
総合評価	ー定割合がRPVとPCVの 両方に存在		

*1:MAAP解析結果及びSAMPSON解析結果を含む ・RPV底部の燃料デブリは主に粒子状、ペデスタル内側は、 主に固体(連続相)の見込み、炉心部外周部は切り株燃料 の可能性がある(SAMPSONによる評価)

ペデスタル内側の燃料デブリの内, RPV下部CRD
 ハウジングに,約 5.5ton(そのうち,燃料約 2.4ton)の
 燃料デブリが付着している可能性がある

		燃料デブリ重量(ton)					
	場所	評価値	代表値	信頼性			
	炉心部	0 ~ 51	0 * 2	Δ			
	RPV底部	25 ~ 85	42 * 2	Δ			
	ペデスタル内側	102 ~ 223	146	Δ			
	ペデスタル外側	3 ~ 142	49	Δ			
	合計値	189 ~ 390	237	Δ			

・燃料デブリ:燃料+溶融・凝固した構造材(コンクリート成分を含む)

- ・評価値:分析・評価の不確かさを考慮した評価結果の範囲
- ・代表値:分析・評価の結果から,現時点における確からしい値
- ・現状では、2号機に関する評価結果の不確かさは大きい
- *2:東京電力によるミュオン測定結果(H28.7.22時点)が発表される前 の評価結果であり、 **炉心部及びRPV底部の燃料デブリ残存** 量は、もう少し多いと推定される

2号機では、一定割合の燃料デブリが、RPVとPCVの両方に存在すると推定

解析・評価等による燃料デブリ分布の推定について

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

7.評価結果のまとめ(1/3)

(燃料デブリ分布の推定結果)

○解析結果・実機調査データ(温度データ,ミュオン測定,PCV内部調査等)を分析・評価
○燃料デブリが存在する位置・量と組成等を推定(分析・評価の不確かさを考慮した評価)

燃料デブリ(燃料+溶融・凝固した構造材(コンクリート成分を含む))の推定重量(ton)

		1号機			2号機		3号機			
	場所	評価値	代表値	相対値	評価値	代表値	相対値	評価値	代表値	相対値
	炉心部	0~3	0	0%	0~51*1	0*1	0%*1	0~31	0	0%
_	RPV底部	7~20	15	5%	25~85* ¹	42* ¹	18%*1	21~79	21	6%
	ペデスタル内側	120~209	157	56%	102~223	146	61%	92~227	213	58%
	ペデスタル外側	70~153	107	39%	3~142	49	21%	0~146	130	36%
	合計値	232~357	279	-	189~390	237	-	188~394	364	-

RPV:原子炉圧力容器 PCV:格納容器 (注)評価値は、分析・評価の不確かさを考慮した評価結果の範囲を示す。

代表値は、分析・評価の結果から、現時点における確からしい値を示す。

*1:東京電力によるミュオン測定結果(H28.7.22時点)が発表される前の評価結果であり、 2号機の炉心部及びRPV底部の燃料デブリ残存量は、もう少し多いと推定される。

- ・1号機/3号機では、燃料デブリの大部分が、RPVから落ち、PCVに移行したと推定
- ・2号機では、一定割合の燃料デブリが、RPVとPCVの両方に存在すると推定
- ・現状では、2号機に関する評価結果の不確かさは大きい
- ペデスタル外側への拡がり、コンクリート侵食に関する評価結果の不確かさは大きい

解析・評価等による燃料デブリ分布の推定について

7. 評価結果のまとめ(2/3) (燃料デブリの成分毎重量推定結果(ton))

■燃料成分(UO2等) ■構造材成分(Zr,SUS等) ■コンクリート成分

解析・評価等による燃料デブリ分布の推定について

RD

©International Research Institute for Nuclear Decommissioning 無断複製·転載禁止

No.25

7.評価結果のまとめ(3/3)

(研究開発の成果と今後の課題)

研究開発の成果

- ① 事故進展解析コード(MAAP及びSAMPSON)を改良・高度化
 - ・ 炉心損傷進展/燃料デブリ挙動モデルや核分裂生成物(FP)移行モデル等を改良
- ② 改良したコードによる事故進展解析及び燃料デブリ・FP分布等を評価
 - ・改良コードによる事故進展解析及び感度解析を実施し、実測値との比較等により、 事故進展事象の解析精度向上を図り、燃料デブリ・FP分布等を評価
- ③詳細解析コード及び模擬試験により、個別事象を詳細に評価
 - ・溶融炉心・コンクリート相互作用(MCCI)の詳細評価を実施
 - ・韓国原子力研究所(KAERI)において、圧力容器貫通管溶融破損試験を実施
- ④ 炉内状況に関するデータ・情報(燃料デブリ分布等)を提供
 - 事故進展解析結果及び実機調査から得られるデータ・情報を活用した分析・評価
 - ・燃料デブリ取り出し方針決定や方法確定に必要な燃料デブリ分布等の情報を提供

- ① 新しい調査結果(PCV内部調査等)を踏まえ,評価結果を更新
- ② 事故シナリオ分析及び解析・実験評価、事故時プラントデータ及び現場調査結果に 基づく分析等により事故進展推定精度を向上させ、炉内状況の総合的な分析・評価
- ③ 核分裂生成物(FP)の分布及び化学特性の評価(実験・測定等を含む)

IRID A