| 本資料のうち,枠囲みの内容 |  |
|---------------|--|
| は、機密事項に属しますので |  |
| 公開できません。      |  |

| 柏崎刈羽原子力発電所第7号機 工事計画審査資料 |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| 資料番号                    | KK7補足-07 r <mark>2</mark> |  |  |  |
| 提出年月日                   | 2022年 4月 25日              |  |  |  |

## タービンミサイルの評価内容について

## 2022年 4月

東京電力ホールディングス株式会社

1. 概要

本資料は,蒸気タービンの損壊に伴い想定されるタービンミサイルの評価内容についてまとめたものである。

- 2. ミサイル到達確率評価方法と条件
- 2.1 ミサイルによる防護対象の損傷頻度評価方法

ミサイルによる防護対象の損傷頻度は、「タービンミサイル評価について」(原子炉安全専門 審査会 昭和52年7月20日)(以下、「タービンミサイル評価について」という。)に基づき、 下記の式にて評価する。

(損傷頻度) =  $\Sigma_i$  ( $P_{1i} \times P_{2i} \times P_{3i}$ )

- P<sub>1</sub>: ミサイル発生頻度(回/炉・年)
- P<sub>2</sub>:ミサイルの防護対象への到達確率(-)
- P3: ミサイル到達時の防護対象の損傷確率(-)
- i : ミサイル種(低圧タービン羽根, T-G カップリング, 低圧タービンディスク, その他 (タービンロータ, 発電機ロータ等))
- 2.2 発生頻度 (P1)

タービンミサイル発生頻度は、5×10<sup>-5</sup>(回/炉・年)とする。

2.3 ミサイル防護対象への到達確率 (P<sub>2</sub>)

到達確率評価方法は、米国 SRP3.5.1.3 Appendix A 又は立面の効果を考慮できる同等の方法を準用するものとする。また、遮へい物貫通後のミサイル速度の評価は、鋼板は BRL 式、 コンクリートは修正 NDRC 式を用いる。以下では、「タービンミサイル評価について」に従う 個別の評価方法を示す。

タービン回転速度上昇事象の対策として,主調速機構にて蒸気加減弁にてタービン回転速 度を制御しており,蒸気加減弁による回転速度制御が不能となり,回転速度がさらに過速し た場合でも,非常用調速機が作動し,主蒸気止め弁を閉鎖することで,最悪の場合でも回転 過速度は定格回転速度の120%を超えることはないため,回転過速度の設計上限値は定格回転 速度の120%とする。

2.3.1 低圧タービン羽根ミサイル評価方法

低圧タービン羽根ミサイル評価方法(1)~(4)は、「タービンミサイル評価について」に 基づく。

- (1) 低圧タービン最終段動翼(羽根植込部を含む)1枚がミサイル化する。
- (2) 低圧タービン最終段動翼は、回転過速度の設計上限値で破損し、ミサイル化する。
- (3) この破損した最終段動翼が外部ケーシングから飛び出したときに残存するエネルギー

率を2%として、ケーシング貫通後速度を決める。

- (4) ミサイルの回転面からの振れ角の確率分布は 0°~25°(外側)の偏角内で一様とする。
- 2.3.2 T-G カップリングミサイル評価方法

T-G カップリングミサイル評価方法(1)~(4)は,「タービンミサイル評価について」に 基づく。

- (1) T-G カップリングはシャフトから脱落し、ミサイル化する。
- (2) T-Gカップリングは、回転過速度の設計上限値でシャフトから脱落する。
- (3) この脱落した T-G カップリングが飛び出したときに残存するエネルギー率を 4.5%として,飛び出し並進速度を決める。
- (4) ミサイルの回転面からの振れ角の確率分布は±25°の偏角内で一様とする。
- 2.3.3 低圧タービンディスクミサイル評価方法
  低圧タービンディスクミサイル評価方法(1)~(4)は、「タービンミサイル評価について」に基づく。
  - (1) 低圧タービンディスクのうち1段がミサイル化したと考え,各段の到達確率を平均する。さらに,低圧タービン3台それぞれの到達確率を平均する。
  - (2) ミサイルの回転面からの振れ角の確率分布は、最終段ディスクが0°~25°(外側)、 中間段ディスクが±5°の偏角内で一様とする。
  - (3) 低圧タービンディスクは、回転過速度の設計上限値で破損しミサイル化する。
  - (4) 低圧タービンディスクは4等分割し、上方2片がミサイル化する。
- 2.4 破損確率 (P<sub>3</sub>)

タービンミサイルが評価対象施設に到達した際に、同施設を損傷させる確率は、保守的に 100%とする。

2.5 評価条件

タービンミサイル評価の評価条件を表 2.5-1 に示す。各ミサイルについての諸元を表 2.5-2 の a~c に示す。

他号機のタービンをミサイル源とするタービンミサイル評価(以下,相互間評価)におけ る確率計算については対象プラントに対する他プラントからのタービンミサイルの影響を考 慮するため,表 2.5-3に示す通り,自号機及び他号機をミサイル源とするタービンミサイル の衝突確率の総和とする。

| 想定                              | 評価条件                                |  |
|---------------------------------|-------------------------------------|--|
|                                 | 低圧タービン最終段動翼                         |  |
| 想定ミサイル                          | T-G カップリング                          |  |
|                                 | 低圧タービンディスク                          |  |
| 低圧タービンディスクミサイル諸元 <mark>*</mark> | 表 2.5-2a                            |  |
|                                 | 表 2. 5-2b                           |  |
| 低圧タービン羽根ミサイル諸元 <mark>*</mark>   | ミサイルは破損時重心速度相当のエネルギー                |  |
|                                 | の 2%で飛び出すものとする                      |  |
|                                 | 表 2.5-2c                            |  |
| T-G カップリングミサイル諸元 <mark>*</mark> | ミサイルは脱落時角速度相当のエネルギーの                |  |
|                                 | 4.5%で飛び出すものとする                      |  |
| 低圧タービン羽根ミサイル発生頻度                | 5.0×10 <sup>-5</sup> (回/炉・年)        |  |
| T-G カップリングミサイル発生頻度              | 5.0×10 <sup>-5</sup> (回/炉・年)        |  |
| 低圧タービンディスクミサイル発生頻度              | 5.0×10 <sup>-5</sup> (回/炉・年)        |  |
| 低圧タービン座標 (A, B, C), T-G カップリン   |                                     |  |
| グ及びターゲット座標                      | 衣 2.5-4, 凶 2.5-1 麥庶                 |  |
|                                 | 低圧タービン最終段動翼 0~25 度 一様               |  |
| タービン回転面に対するミサイル飛出し最             | T-Gカップリング ±25度 一様                   |  |
| 大角度 Δ と確率分布                     | 低圧タービン最終段ディスク 0~25 度 一様             |  |
|                                 | 低圧タービン中間段ディスク ±5度 一様                |  |
|                                 | 低圧タービンディスク 2個                       |  |
| ミサイル発生数                         | 低圧タービン最終段動翼 1枚                      |  |
|                                 | T-G カップリング 1 個                      |  |
| コンクリート圧縮強さ                      | 330(Kg/cm <sup>2</sup> ) (普通コンクリート) |  |
|                                 | 135(Kg/cm <sup>2</sup> ) (軽量コンクリート) |  |
| 鋼板 Grade 係数                     | 1.0 ()                              |  |
| ターゲット                           | KK-5/6/7 使用済燃料プール                   |  |
| ターゲット面積                         | 表 2.5-4                             |  |
| ミサイル到達時のターゲット損傷確率               | 1.0 ()                              |  |

表 2.5-1 タービンミサイル評価条件一覧

注記\*:蒸気タービン取替に伴う質量や形状の変更により評価条件が変更となる。

|     |        | ケーシング貫通後  | ケーシング貫通後 質量 |                     | 投影面積                |  |
|-----|--------|-----------|-------------|---------------------|---------------------|--|
|     |        | 最大速度(m/s) | (kg)        | 最小(m <sup>2</sup> ) | 最大(m <sup>2</sup> ) |  |
| 最終段 | ŧ(L-0) |           |             |                     |                     |  |
| 中   | L-1    |           |             |                     |                     |  |
| 間   | L-2    |           |             |                     |                     |  |
| 段   | L-3    |           |             |                     |                     |  |
|     | L-4    |           |             |                     |                     |  |
|     | L-5    |           |             |                     |                     |  |
|     | L-6    |           | -           |                     |                     |  |

表 2.5-2a 低圧タービンディスクミサイル諸元

表 2.5-2b 低圧タービン羽根ミサイル諸元

|          | 破損時の重心速度 | 質量   | 投影面積                 |                      |
|----------|----------|------|----------------------|----------------------|
|          | (m/s)    | (kg) | 最小(cm <sup>2</sup> ) | 最大(cm <sup>2</sup> ) |
| 最終段(L-0) |          |      |                      |                      |

表 2.5-2c T-G カップリングミサイル諸元

|            | 慣性<br>モーメント<br>(kg-m <sup>2</sup> ) | 脱落時の<br>角速度<br>(rad/s) | 質量<br>(kg) | 最小投影面積<br>(m <sup>2</sup> ) |
|------------|-------------------------------------|------------------------|------------|-----------------------------|
| T-G カップリング |                                     |                        |            |                             |

表 2.5-3 相互間評価における衝突確率の算出

| 対象プラント<br>ミサイル源 | K-5                        | K-6                        | K-7                        |
|-----------------|----------------------------|----------------------------|----------------------------|
| K-5             | P <sub>55</sub>            | P <sub>56</sub>            | P <sub>57</sub>            |
| К-6             | P <sub>65</sub>            | P <sub>66</sub>            | P <sub>67</sub>            |
| K-7             | P <sub>75</sub>            | P <sub>76</sub>            | $P_{77} = P_{66}$          |
| 衝突確率            | $P_{55} + P_{65} + P_{75}$ | $P_{56} + P_{66} + P_{76}$ | $P_{57} + P_{67} + P_{66}$ |

| 対象プラント<br>ミサイル源           | 方向 | KK-5 | KK-6 | KK-7 |
|---------------------------|----|------|------|------|
|                           | Х  |      |      |      |
| KK-7 (m)                  | Y  |      |      |      |
|                           | Z  |      |      |      |
| ターゲット面積 (m <sup>2</sup> ) | —  |      |      | -    |

表 2.5-4 相互間評価における解析条件(位置関係\*)

注記\*: KK サイトにおける位置関係については図 2.5-3 を参照。



図 2.5-1 低圧タービン/T-G カップリングと使用済燃料プールの平面位置図

図 2.5-2 タービン周り遮へい物形状(コンクリート壁,鋼板)

図 2.5-3 KK サイト位置関係図

- 3. 使用済燃料プール損傷頻度
- 3.1 KK-7 低圧タービン羽根ミサイルによる使用済燃料プール損傷頻度 低圧タービン羽根ミサイルは、壁等の遮へい物に阻まれ、使用済燃料プールまで到達しな <mark>い。したがって,</mark>すべてのケースにて到達確率は0であり,すなわち損傷頻度も0である。
- 3.2 KK-7 T-G カップリングミサイルによる使用済燃料プール損傷頻度 T-G カップリングミサイルは、 壁等の遮へい物に阻まれ、 使用済燃料プールまで到達しな い。したがって、すべてのケースにて到達確率は0であり、すなわち損傷頻度も0である。
- 3.3 KK-7 低圧タービンディスクミサイルによる使用済燃料プール損傷頻度

ディスクミサイルによる使用済燃料プール損傷頻度について、表 3.3-1に評価結果を示 す。各使用済燃料プールへのミサイル到達確率の総和は、判断基準である10-7(回/炉・年) を下回った。



表 3.3-1 評価結果一覧(使用済燃料プール損傷頻度)

4. まとめ

KK-5/6/7 使用済燃料プール損傷頻度を評価した。KK-5/6/7 の使用済燃料プールを損傷する頻 度は、判断基準10<sup>-7</sup>(回/炉・年)を下回る結果となった。

なお、高圧ロータ及び発電機ロータについては今回取替対象ではないことから形状や質量に 変更はない。また,定格回転速度にも変更がなく,評価に用いる定格の 120%の回転速度も同様 である。そのため、建設時の高圧ロータ及び発電機ロータからの飛散物が車室内にとどまりミ サイルとならないという評価結果に変更はない。

## 遮蔽物貫通後速度評価方法

ミサイルによる遮へい物貫通厚さの評価には、内規に示される修正 NDRC の式<sup>[1]</sup> (コンクリート 壁) 及び BRL の式<sup>[2]</sup> (鋼板)を用いる。

- (1) 記号の定義
  - T : コンクリート (or 鋼板) 壁厚さ (in)
  - D : ミサイル直径 (in)
  - f : ミサイル入射角 (deg)
  - W: ミサイル質量(1b)
  - FC : コンクリート圧縮強さ (lb/in<sup>2</sup>)
  - FN : NOSE PERFORMANCE FACTOR (ミサイル先端の形状係数) (-)
  - FS : 鋼板 grade 係数(一)
  - V: 貫通前のミサイル速度 (ft/sec)
  - U : 貫通後のミサイル速度 (ft/sec)
  - Φ:ミサイルの飛び出し方向と水平面のなす角度(仰角)
- (2) コンクリート壁に対する評価(修正 NDRC 式)

$$R = \frac{T}{D \cdot \cos^2 \Phi}$$

$$S = \frac{3.19 - \sqrt{10.1761 - 2.872 \cdot R}}{1.436}$$
$$G = \left(\frac{S}{2.0}\right)^2$$

S=
$$\frac{1}{1.24}$$
(R-1.32)  
S<2.0のとき G= $\left(\frac{S}{2.0}\right)^2$   
S≧2.0のとき G=S-1.0

貫通エネルギーEは,以下のようになる。

$$E = 10^{6} \cdot \left( \frac{G \cdot D^{2.8} \cdot \sqrt{FC}}{180 \cdot FN \cdot W} \right)^{\frac{2}{1.8}}$$

$$E = \frac{1119655 \cdot FS^2}{W} \cdot \left(\frac{T \cdot D}{\cos^2 \Phi}\right)^{1.5}$$

(4) 遮へい物貫通後の速度評価

$$V^{2} \ge E \mathcal{O}  き \quad U = \sqrt{V^{2} - E}$$
$$V^{2} < E \mathcal{O} \succeq \vartheta \quad U = 0$$
$$従って$$
$$\frac{dU}{dV} = \frac{V}{\sqrt{V^{2} - E}} = \frac{V}{U}$$

参考文献

- R.P.Kennedy, "A Review of Procedures for the Analysis Design of Concrete Design Structures to Resist Missile Impact Effects, "Nucl. Eng. Des., 37, pp. 183~203 (1976)
- [2] Department of the Army, "Fundamentals of Protective Design," TM-5-855-1 (1965)