

東京電力福島第一原子力発電所における 事故の分析に係る検討会第28回会合 資料3-1

1

BWR格納容器内有機材料 熱分解生成気体の分析 一結果速報一

2022年2月28日

日本原子力研究開発機構 安全研究センター

背景と目的

- ▶東京電力福島第一原子力発電所における事故の 分析に係る検討会(以下、「事故分析検討会」)に て実施された3号機原子炉建屋の水素爆発時の映 像分析結果から、爆発時原子炉建屋内には水素 だけではなく、有機化合物を含む可燃性ガスが発 生していた可能性が示唆されている。
- ▶ 確認のために、可燃性有機ガス発生源、発生する 有機ガスの成分や量について知見を得る必要があ る。
- ➢ BWR格納容器(ドライウェル)内のケーブル、保温 材等に使用されている代表的な有機材料を加熱し 、熱分解により生成するガスの成分を推定する。

分析対象試料

試料 番号	材質	用途	写真	構造式
1	難燃性エチレン プロピレンゴム	原子炉容器下部制 御・計装PNケーブル の絶縁材		$ \left\{ CH_2 - CH_2 \right\} \left\{ CH_2 - CH_3 \right\} \left\{ CH_3 - CH_3 \right\} $
2	特殊クロロプレン ゴム	原子炉容器下部制 御・計装PNケーブル のシース		CI n
3	難燃性特殊耐熱 ビニル	高圧動力用CV ケーブルのシース	RA	$ \begin{bmatrix} CH_2 - CH \\ I \\ CI \end{bmatrix}_n $
4	ウレタン	保温材		R H H

分析の流れ

- ➤ ステップ1:熱重量測定(TG) 示差熱分析(DTA)
 質量分析(MS)
 - ◆ 試料を一定の昇温速度で加熱し、試料の重量変化、熱 分解時の吸(発)熱量及び熱分解生成ガスに由来する 物質の分子量を連続的に測定・分析
 - ◆ 顕著な熱分解(重量変化)が生じる温度範囲を把握す るとともに、熱分解生成ガスの成分を大まかに推定
- > ステップ2: 熱分解ガスクロマトグラフ(GC) − MS
 - ◆ 試料を所定の温度範囲内で加熱し、熱分解生成ガス の成分を分離した後に、各成分のマススペクトルを取 得・分析。ライブラリと比較することで成分を推定
 - ◆ 加熱温度はステップ1の結果に基づいて選定

TG-DTA装置、MS分析装置と測定の概要

TG-DTA装置

測定モニター (左:TG-DTA、右:TG-MS)

TG-DTA-MS分析一分析条件と試料一

分析条件

- ▶ 試料:全4試料
- ▶ 雰囲気:窒素
- ▶ 温度:昇温速度10°C/分および20°C/分、最高温度1200°C

分析の試料写真

難燃性エチレン 特殊クロロ プロピレンゴム プレンゴム

難燃性特殊 耐熱ビニル

ウレタン

TG分析結果の例(ウレタン)

・160~250°C、250~420°C、420~580°Cで重量減少が見られた。

MS分析結果の例(ウレタン)

昇温速度10°C/分の結果

・400°C付近での重量減少では、CO₂及びH₂Oの生成が推定される。

TG-MS分析のまとめ

- ▶ 各試料のTG分析結果は、いずれも東京電力HDによる分析結果と整合した。
- ▶ 顕著な重量減少が生じた温度範囲および1,200℃での重量減少割合は以下。

試料	重量減	少が生じた温 (℃)	上 度範囲	重量減少割合 (%)
難燃性エチレンプロピレンゴム	210~320	320~400	400~500	73
特殊クロロプレンゴム	230~310	310~410	410~530	50
難燃性特殊耐熱ビニル	280~380	380~560	560~800	72
ウレタン	160~250	250~420	420~580	80

- ▶ 各試料とも、昇温速度(10°C/分、20°C/分)の違いによる、重量減少の温度範囲の違いは見られなかった。
- > MS分析から、 $CO_2 \diamond H_2 O O 生成が推定された。$

熱分解GC-MS装置と測定の概要

測定の概要図

熱分解GC-MS装置

測定モニター

熱分解GC-MSによる定性分析 熱分解生成ガスを成分毎に分離して分析

分析条件

- ▶ 試料:ウレタン(他試料は分析結果整理中)
- > 熱分解炉雰囲気:窒素
- ▶ 熱分解ガス採取温度:
 246℃、421℃、580℃
 (TG分析結果から決定)
- ▶ キャリアガス:He

分析概要

- ▶ 各温度範囲で生成したガスをカラムに導入
- ▶ カラム内の移動に要する時間の違いによりガス成分を分離し、 質量分析計(MS)に導入
- ▶ MS装置により、ガス成分の分子量(MSデータ)を測定
 - → 縦軸を強度、横軸を時間としたクロマトグラムを作図
 - →クロマトグラムの各ピークを構成するMSデータを解析し、
 - ライブラリとの照合により、成分の化合物を推定

> 熱分解GC-MS分析の結果(ウレタン)

クロマトグラム(室温~246°C)

生成ガス成分を時間的に分離

MSデータ解析結果の例(室温~246℃)

ピーク[3]として分離された成分の解析結果

・類似度の最も高い、1,2-ジクロロプロパンと推定。

(MADA) 熱分解GC-MS分析の結果(ウレタン)

解析結果まとめ(室温~246℃)

ピーク No.	推定化合物	備考	N
[3]	1,2-ジクロロプロパン	ウレタンフォームの 発泡剤	
[4]	N,N-ジメチルシクロ ヘキシルアミン	硬質ウレタンの触媒	CI
[7]	リン酸トリス[1-(クロ ロメチル)エチル]		
[8]	リン酸ビス[1-(クロロ メチル)エチル](3- クロロプロピル)	リン酸エステル: ウレタンの難燃剤	
[9]	リン酸ビス(3-クロロ プロピル)[1-(クロ ロメチル)エチル]		

cí

> 熱分解GC-MS分析の結果(ウレタン)

クロマトグラム(246~421℃)

生成ガス成分を時間的に分離

熱分解GC-MS分析の結果(ウレタン)

クロマトグラム(421~580℃)

生成ガス成分を時間的に分離

時間(分)

熱分解GC-MS分析の結果(ウレタン)

MSデータ解析結果の例(580°C)

ピーク[2]として分離された成分の解析結果

MS測定データ

ライブラリデータ(照合結果)

・類似度の最も高い、トルエンと推定。

》熱分解GC-MS分析の結果(ウレタン)

解析結果まとめ(580℃)

			[2]	[5]
ピーク No.	推定化合物	備考		
[2]	トルエン	ポリウレタンの原料 であるトルエンジイソ シアナートの原料	[7]	
[5]	3,4-ジメチルアニリン	ウレタンの硬化剤	L ′ J	
[7]	2,7-ジメチルキノリン	硬質ウレタンフォー ムの触媒		
[8]	4-ベンジルアニリン	ウレタンの硬化剤	[8]	~
[9]	4,4' -メチレンジアニリン	([9]と[10]は構造が 異なる可能性)		
[10]	4,4'-メチレンジアニリン		H ₂ N	

まとめ

- ▶ 以下の4試料について分析を実施
 - ◆難燃性エチレンプロピレンゴム:(PNケーブルの絶縁体)
 - ◆ 特殊クロロプレンゴム: (PNケーブルのシース)
 - ◆ 難燃性特殊耐熱ビニル: (CVケーブルのシース)
 - ◆ ウレタン: (断熱材)
- TG-DTA-MS分析により、熱分解による重量減少が生じる温度
 範囲を把握するとともに、比較的低分子量の無機熱分解生成 ガス成分(CO₂やH₂O)の発生を推定した。
- ➤ TGで把握した温度範囲を対象に、熱分解GC-MSによりウレタンの熱分解ガス成分を分離・分析した結果、リン酸エステル、アニリン化合物等の材料に由来する成分が推定された。
- ▶ 熱分解GC-MSについては全試料の分析を終了し、現在、ウレ タン以外の3試料の分析結果を整理中。

以下、参考資料

TG分析結果(難燃性エチレンプロピレンゴム)

(MAD) TG-DTA-MS分析の結果

MS分析結果(難燃性エチレンプロピレンゴム)

TG分析結果(特殊クロロプレンゴム)

(MAD) TG-DTA-MS分析の結果

MS分析結果(特殊クロロプレンゴム)

TG分析結果(難燃性特殊耐熱ビニル)

(MAD) TG-DTA-MS分析の結果

MS分析結果(難燃性特殊耐熱ビニル)

昇温速度10°C/分の結果

東京電力福島第一原子力発電所における 事故の分析に係る検討会(第28回) 資料4-1

ケーブル・塗料・保温材の可燃性ガス発生量評価試験結果

2022年2月28日

東京電力ホールディングス株式会社

可燃性有機ガス発生量評価

- 2021年10月19日の「東京電力福島第一原子力発電所における事故の分析に係る 検討会(第23回) | で報告した予備試験と本試験の実施状況について報告する。
- ケーブル、塗料及び保温材の予備試験を実施し、ガス発生温度域を確認した。 •
- ケーブル、塗料及び保温材の本試験を実施し、ガスの種類と発生量を確認中。

No.	種類	評価対象	用途	予備試験進捗	本試験進捗 (1000℃昇温試験)
1	ケーブル	CVケーブル 絶縁体:架橋ポリエチレン シース:難燃性特殊耐熱ビニル	・高圧動力用ケーブルに使用	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中
2	ケーブル	PNケーブル 絶縁体 : 難燃性エチレンプロピレンゴム シース : 特殊クロロプレンゴム	・制御・計装ケーブルに使用 ・RPV下部に設置	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	3月実施予定
3	ケーブル	同軸ケーブル 絶縁体:ETFE/架橋ポリエチレン シース:難燃性架橋ポリエチレン	・SRNM/LPRMケーブルに 使用 ・RPV下部に設置	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中
4	塗料	エポキシ系塗料	・D/W、S/C壁面 上塗り	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中
5	塗料	無機ジンクリッチ塗料	・D/W、S/C壁面 下塗り	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	2022年度実施予定
6	保温材	ウレタン保温材	・配管保温	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中
7	保温材	ポリイミド保温材	・配管保温	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中
			FT-IR:フーリ SEM-EDX:	に変換赤外分光法 走査型電子顕微鏡-エネルギ-	

試験進捗状況

SEM-EDX:走杳型電子顕微鏡-エネルギー分散型X線分光分析

ケーブル等の可燃性有機ガス発生量評価計画

東京電力福島第一原子力発電所における 事故の分析に係る検討会(第23回) 資料5-2 資料引用、一部追記

■ 予備試験:昇温中の重量変化測定(TG)によるガス採取温度域の決定

出典 https://www.ibieng.co.jp/analysis-solution/x0029/

東京電力福島第一原子力発電所における 事故の分析に係る検討会(第26回) 資料4-2 資料引用・写真追加

EDX

■<u>同軸ケーブル第1絶縁体(ETFE)</u>のFT-IR、SEM-EDX

単位:wt%

	С	0	F	Na	Mg	Al	Si	Р	S	Cl	К	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Br	Sb	Pb	合計
昇温前	46.94	0.96	51.59	-	-	_	-	-	-	0.11	_	-	0.19	-	-	_	-	0.22	_	-	-	100

⇒ TG測定の結果から、同軸ケーブル第1絶縁体は約1000℃まで昇 温すると完全に揮発しており、1000℃以上における可燃性ガス の発生は無いものと考えられる。

EDX

■ <u>同軸ケーブル第2絶縁体(架橋ポリエチレン)</u>のFT-IR、SEM-EDX

FT-IRスペクトル SEM写真 0.32 昇温前 0.30 CH₂伸縮 0.28 0.26 0.24 0.22 0.20 ce 0.18 orba 0.16 0.14 0.12 CHっはさみ CH。横揺れ 0.10 0.08 0.06 昇温前 0.04 0.02 0.00. 昇温後試料はなし 3000 1500 1000 500 4000 3500 2500 2000 Wavenumbers (cm-1)

単位:wt%

	С	0	F	Na	Mg	Al	Si	Р	S	Cl	к	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Br	Sb	Pb	合計
昇温前	96.75	2.95	-	-	-	-	0.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100

⇒ TG測定の結果から、同軸ケーブル第2絶縁体は約1000℃まで昇 温すると完全に揮発しており、1000℃以上における可燃性ガス の発生は無いものと考えられる。

■同軸ケーブルシース(難燃性架橋ポリエチレン)のFT-IR、SEM-EDX

温前

畄位:\∧,+%

EDX

																					1	1
	С	0	F	Na	Mg	Al	Si	Р	S	Cl	к	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Br	Sb	Pb	合計
昇温前	81.51	3.58	-	-	-	0.27	0.11	-	-	3.44	-	-	-	-	-	-	-	-	4.01	7.09	-	100
昇温後	51.11	33.60	-	0.11	-	0.02	5.05	-	-	-	-	-	-	0.13	0.60	-	-	-	0.03	9.35	-	100

⇒ FT-IRの結果から、同軸ケーブルシースは約1000℃まで昇温する と炭化しており、1000℃以上における可燃性ガスの発生は無いも のと考えられる。

■塗料のTG曲線

SEM写真

■<u>エポキシ系塗料</u>のFT-IR、SEM-EDX

FT-IRスペクトル

単位:wt%

EDX

	С	0	F	Na	Mg	Al	Si	Ρ	S	Cl	К	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Br	Mo	Sb	Ba	W	Pb	合計
昇温前	65.33	15.11	-	-	-	1.90	2.23	-	1.15	0.09	-	-	8.34	-	0.22	-	-	-	-	-	-	5.61	-	-	100
昇温後	5.59	38.53	-	0.05	-	6.01	6.45	-	2.24	-	-	-	22.19	-	0.19	-	-	-	-	-	-	18.63	0.01	-	100

⇒ FT-IRの結果から、エポキシ系塗料は約1000℃環境下で完全に 炭化しており、1000℃以上における可燃性ガスの発生は無いも のと考えられる。

EDX

単位:wt%

	С	0	F	Na	Mg	Al	Si	Ρ	S	Cl	К	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Br	Мо	Sb	Ba	W	Pb	合計
昇温前	18.30	21.33	-	1.85	-	0.66	6.62	-	-	-	0.19	2.55	-	-	-	-	-	48.48	-	-	-	-	-	-	100
昇温後	8.23	12.20	-	7.43	-	-	0.13	-	0.07	-	-	0.20	-	-	0.18	-	-	71.55	-	-	-	-	-	-	100

⇒ FT-IRの結果から、無機ジンクリッチ塗料は主成分は有機物では なく、可燃性ガスの発生はほとんど無いものと考えられる。

TEPCO

■本試験条件設定

- 水蒸気、水素ガス環境下における1000℃までの連続昇温試験(昇温速度10℃/min)
 予備試験(TG測定)で得られた結果から、ガス発生のタイミングにて
 3つのガスサンプリング領域を設定
- ・ 水蒸気か水素ガス環境下のいずれかにおいて、200℃24時間保持試験
- ケーブルはシース、絶縁体、導体含む一体もので試験実施

■本試験分析方法

- 200℃、ガス発生温度域、1000℃で採取したガスをガスクロマトグラフィーより分析
- 昇温前後でのケーブル等の高分子成分の変化を FT-IR より測定
- 昇温前後でのケーブル等中に含まれる各元素の相対変化を SEM-EDX より測定

■ガスサンプリング領域(CVケーブルの例)

可燃性有機ガス発生本試験の概要

■水素ガス環境下

管状炉

マスフローコントローラ

石英管

■CVケーブル1000℃昇温後のガス分析結果(フォーマット)

試業	4		CV 2	ァーブルガ	ス発生量(r	n3/t)	
環境			水素			水蒸気	
温度	£(°C)	RT~350	350~500	500 ~ 1000	RT~350	350~500	500 ~ 1000
H2		-	-	-			
CO							
	CH4						
	C2H4						
	C2H6						
炭	C3H6						
化	C3H8						
水	i-C4H10						
素	n-C4H10						
	i-C5H12						
	n-C5H12						
	上記以外のC1~C5(CH4換算値)						
	CH4換算合計値						
NH3	}						
H2S	<u> </u>						

今後の予定

- ケーブル、エポキシ系塗料、保温材については、水素ガス、水蒸気環境下での1000℃昇温試験を実施し、データ整理を実施予定。
- 水素ガスまたは水蒸気環境下での200℃24時間でのガス発生試験を実施予定 (1000℃昇温試験でより多くガスが発生する雰囲気条件にて実施予定)。
- 無機ジンクリッチ塗料については、予備試験において他試料と挙動が異なる ため、材料の特徴とデータの妥当性を検討し、2022年度本試験実施予定。

No.	種類	評価対象	予備試験進捗	本試験進捗 (1000℃昇温試験)	本試験進捗 (200℃24h試験)
1	ケーブル	CVケーブル 絶縁体:架橋ポリエチレン シース:難燃性特殊耐熱ビニル	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中	3月実施予定
2	ケーブル	PNケーブル 絶縁体 : 難燃性エチレンプロピレンゴム シース : 特殊クロロプレンゴム	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	3月実施予定	3月実施予定
3	ケーブル	同軸ケーブル 絶縁体:ETFE/架橋ポリエチレン シース:難燃性架橋ポリエチレン	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中	3月実施予定
4	塗料	エポキシ系塗料	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中	3月実施予定
5	塗料	無機ジンクリッチ塗料	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	2022年度実施予定	2022年度実施予定
6	保温材	ウレタン保温材	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中	3月実施予定
7	保温材	ポリイミド保温材	熱重量測定(TG)実施 FT-IR、SEM-EDX実施	データまとめ中	3月実施予定