大飯発電所3号炉審查資料	
資料番号	KON3-PLM30-共通 改10
提出年月日	令和3年9月28日

大飯発電所3号炉 高経年化技術評価 (共通事項)

補足説明資料

令和3年9月28日 関西電力株式会社 本資料のうち、枠囲みの内容は機密に係る事項ですので公開することはできません。

目 次

1	. はじめに
2	. 今回実施した高経年化技術評価について・・・・・・・・・・・・・・・・・・2
	2.1 高経年化技術評価の実施体制および実施手順・・・・・・・・・・・ 3
	2.2 高経年化技術評価の前提とする運転状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.3 評価対象となる機器および構造物の抽出・・・・・・・・・ 16
	2.4 高経年化対策上着目すべき経年劣化事象の抽出・・・・・・・・ 19
	2.5 高経年化対策上着目すべき経年劣化事象に対する健全性評価・・・・・・ 21
	2.6 耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.7 耐津波安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.8 冷温停止を前提とした評価・・・・・・・・・・・・ 25
	2.9 高経年化技術評価に係る全体プロセス・・・・・・ 26
3	. 大飯発電所における保全活動・・・・・・・・・・・・・ 28
	別紙1. 日常劣化管理事象等について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙2. 日常劣化管理事象以外の事象について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙3. 施設管理目標の設定に係る権限について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙4. 協力事業者の力量管理方法について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙 5. 消耗品・定期取替品の定義および抽出方法について・・・・・・ 5-1
	別紙6. 原子力施設情報公開ライブラリー情報で最終報告ではない情報について… 6-1
	別紙7. ステンレス鋼配管のグループ化の考え方について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙8. 蒸気発生器への異物混入防止対策ついて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙9. 蒸気発生器および原子炉容器の冷却材出入口管台のピーニングについて・・9-1
	別紙10. スペアパーツの取り組みについて・・・・・・・・・・・・・・・・・・10-1
	別紙11. 文書体系における現状保全に係るプログラムについて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. はじめに

(1) 本資料について

本資料は、大飯発電所3号炉の高経年化技術評価書の補足として、共通的な事項である実施体制および実施手順等について取りまとめたものである。

(2) 保安規定変更認可申請について

大飯発電所3号炉は、平成3年(1991年)12月18日に営業運転を開始し、令和3年(2021年)年12月に運転開始後30年を経過することから、原子炉等規制法¹第43条の3の22第1項および実用炉規則²第82条第1項の規定に基づき、原子力規制委員会内規「実用発電用原子炉施設における高経年化対策実施ガイド」(以下、「実施ガイド」という。)に従い、大飯発電所3号炉について、安全上重要な機器等の経年劣化に関する技術的な評価(高経年化技術評価)を行い、この評価の結果に基づき、10年間に実施すべき施設管理に関する方針(長期施設管理方針)を策定した。

また、原子炉等規制法第43条の3の24および実用炉規則第92条の規定に基づき、「大飯 発電所原子炉施設保安規定」(以下、「保安規定」という。)に長期施設管理方針を反 映するため、保安規定変更認可申請を行った。

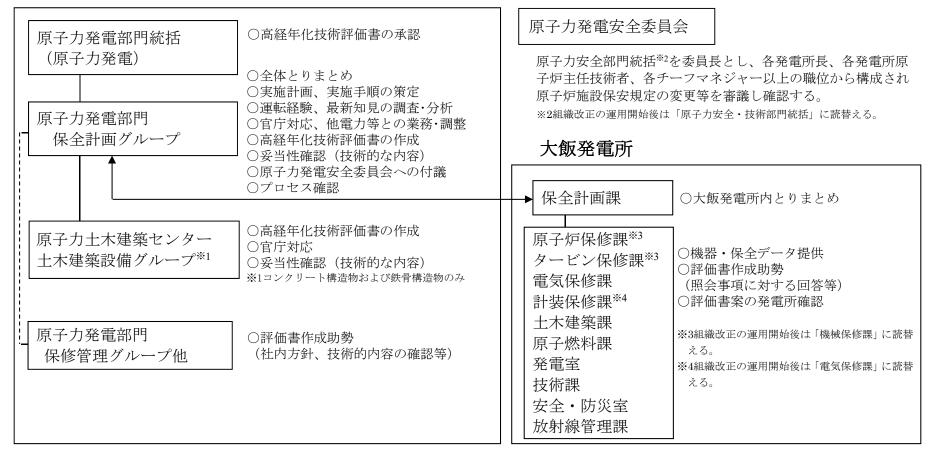
¹ 核原料物質、核燃料物質及び原子炉の規制に関する法律(昭和32年法律第166号)

² 実用発電用原子炉の設置、運転等に関する規則(昭和53年通商産業省令第77号)

2. 今回実施した高経年化技術評価について

大飯発電所についての高経年化技術評価および長期施設管理方針に関しては、保安規 定第125条の6において規定しており、これに基づき実施手順および実施体制を定め、大飯 発電所3号炉について高経年化技術評価を行い、この評価の結果に基づき、長期施設管理 方針を策定した。

2.1 高経年化技術評価の実施体制および実施手順

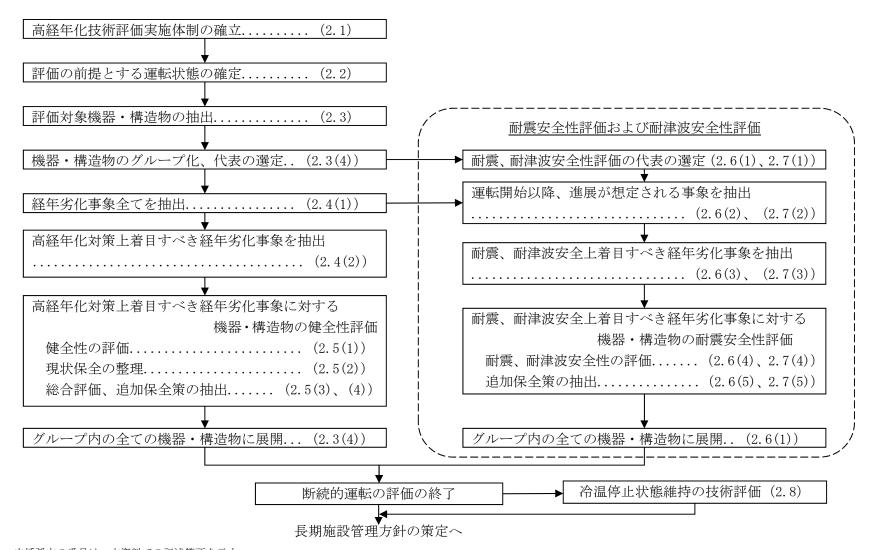

保安規定に基づく品質マネジメントシステム計画に従い、日本電気協会「原子力発電所における安全のための品質保証規程」(JEAC4111-2009)および「原子力発電所の保守管理規程」(JEAC4209-2007)に則った高経年化技術評価の実施体制を構築している。

高経年化技術評価の実施体制は、「安全管理業務要綱」に従い策定した「高経年化技術 評価の実施計画」(以下、「実施計画」という。)により評価の実施体制を構築してい る。

具体的な実施体制は図-1のとおり。それぞれの責任と権限は以下のとおり。

- 原子力発電部門統括高経年化技術評価書の承認を行う。
- 原子力発電部門 保全計画グループ チーフマネジャー 高経年化技術評価書のとりまとめ等の高経年化対策検討に係る全体調整を行うと ともに、評価書作成プロセスのプロセス確認を実施する。 また、機械・電気設備に係る高経年化対策検討を行うとともに、高経年化技術評価 書の作成と妥当性確認を行う。
- 原子力土木建築センター 土木建築設備グループ部長 コンクリート構造物および鉄骨構造物に係る高経年化対策検討を行うとともに、 高経年化技術評価書の作成と妥当性確認を行う。

原子力事業本部



注)必要により評価書作成助勢等の外部委託を実施するものとする。 「長期施設管理方針に基づく施設管理の実施」および「長期施設管理方針の維持」の管理は、発電所にて実施する。

図-1 高経年化技術評価の実施体制

高経年化技術評価の実施手順は、実施ガイド、「原子力発電所の高経年化対策実施基準:2008」(以下、「学会標準2008版」という。)などに準拠して策定した「高経年化対策実施手順書」(以下、「実施手順書」という。)により確立している。

高経年化技術評価の流れを図-2に示す。具体的な実施手順は2.2~2.8に示す。また、評価書等の内容のレビュー、実施手順の確認および評価書等の承認プロセスについて2.9に示す。

注 フロー中括弧内の番号は、本資料での記述箇所を示す。

図-2 高経年化技術評価の流れ

(1) 高経年化技術評価に係る品質マネジメントシステムの文書体系 高経年化技術評価に係る品質マネジメントシステム (QMS) の文書体系を図-3に 示す。

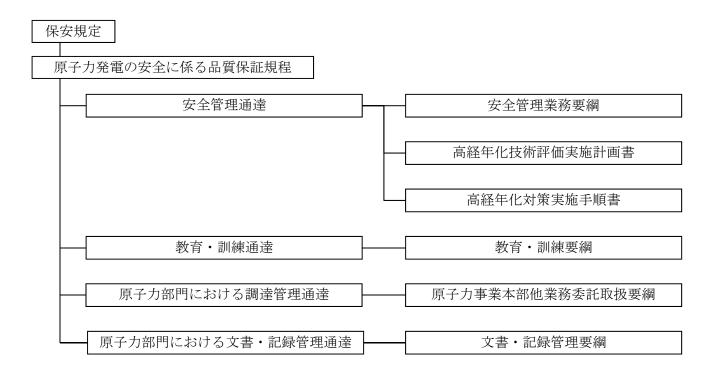


図-3 高経年化技術評価に係る品質マネジメントシステム文書体系

各文書の規定範囲は以下のとおり。

a. 1次文書

(a) 原子力発電の安全に係る品質保証規程

「原子力施設の保安のための業務に係る品質管理に必要な体制の基準に関する 規則」および「同規則の解釈」に基づく発電所における保安活動に係る品質マネジ メントシステムを確立し、実施し、評価確認し、継続的に改善することを目的とし た規程。

b. 2次文書

(a) 安全管理通達

「原子力発電の安全に係る品質保証規程」および「原子力損害の賠償に関する法律」に基づき、原子力部門の安全管理に関する基本的事項を定め、適切に管理することを目的とした通達。

(b) 教育·訓練通達

「原子力発電の安全に係る品質保証規程」に基づき、原子力部門の教育・訓練に 関する管理の基本的事項を定め、適切に管理することを目的とした通達。

(c) 原子力部門における調達管理通達

「原子力発電の安全に係る品質保証規程」に基づき、原子力部門における物品購入、請負工事、業務委託等の調達手続きおよび調達した製品の保存に関する基本的事項を定め、業務の厳正かつ円滑な運営を図ることを目的とした通達。

(d) 原子力部門における文書・記録管理通達

「原子力発電の安全に係る品質保証規程」に基づき、原子力部門の文書および記録に関する管理の基本的事項を定め、保安活動の重要度に応じて適切に管理することを目的とした通達。

c. 3 次文書

(a) 安全管理業務要綱

「安全管理通達」等に基づき、原子力部門の安全管理業務に関する具体的事項を 定め、適切に管理することを目的とした要綱。

(b) 高経年化技術評価実施計画書

高経年化技術評価の実施にあたり、実施体制、実施手順ならびに申請までのスケジュールを定めているもの。

(c) 高経年化対策実施手順書

高経年化技術評価の実施にあたり、具体的な実施手順(機器・構造物の抽出方法、 技術評価方法等)等を定めているもの。

(d) 教育·訓練要綱

「教育・訓練通達」に基づき、教育・訓練に関する具体的事項を定め、適切に管理することを目的とした要綱。

(e) 原子力事業本部他業務委託取扱要綱

「原子力部門における調達管理通達」に基づき、原子力事業本部他が行う業務委託に関する具体的事項を定め、計画的かつ円滑・厳正な実施を図ることを目的とした要綱。

(f) 文書·記録管理要綱

「原子力部門における文書・記録管理通達」等に基づき、原子力部門の文書および記録に関する管理の具体的事項を定め、保安活動の重要度に応じて適切に管理することを目的とした要綱。

(2) 高経年化技術評価の実施に係る協力事業者の管理

高経年化技術評価に係る業務を委託した協力事業者(関電プラント株式会社、三菱 重工業株式会社、三菱電機株式会社および株式会社原子力エンジニアリング)につい て、原子力部門における調達管理通達、原子力事業本部他業務委託取扱要綱に基づき 以下の管理を行っている。

a. 調達先の評価

調達要求事項に適合する調達製品等を供給できるかどうかの能力について評価している。

b. 調達要求事項の明確化

当社の要求事項は、調達文書(仕様書等)により明確にしている。

c. 品質保証体制等の確認

品質保証計画書により、品質保証体制等に問題の無いことを確認している。

d. 調達製品等の検証

調達製品等が、調達文書に規定した調達要求事項を満たしていることを、報告書の 審査により検証している。また、必要に応じ、契約内容に基づいて、業務委託の履行 状況を把握するものとしている。

(3) 高経年化技術評価の実施に関与する者の力量管理

a. 目的

「教育・訓練通達」、「教育・訓練要綱」および実施手順書に基づき、原子力安全の達成に影響がある業務に従事する要員に必要な力量を明確にし、適切な教育・訓練、技能および経験を判断の根拠として力量があることを明確化するとともに、必要な力量が不足している場合には、その必要な力量に到達することができるように教育・訓練を行い、その実施結果の有効性を評価することを目的とする。

b. 力量の明確化

保全計画グループチーフマネジャーおよび土木建築設備グループチーフマネジャー(以下、「評価担当グループチーフマネジャー」という。)は、各グループの業務を遂行するために必要な力量を定める。

⇒高経年化技術評価の実施に係る力量の例

品質マネジメントシステムに関する知識、関係法令の適合性確認に関するスキル、 高経年対策に係る規格に関する知識、電気計装設備/機械設備に特化した専門知識

c. 力量評価

評価担当グループチーフマネジャーは、グループ員の個人別業務経験等を参考に、「知識・技能・経験」を総合的に判断し、力量の評価を行う。

d. 力量評価記録の管理

評価担当グループチーフマネジャーが実施した力量評価記録については、その写しを原子力企画グループチーフマネジャーに提出した上で、原本は評価担当グループチーフマネジャーが管理する。

e. 必要な力量に到達させるための教育訓練または他の処置

評価担当グループチーフマネジャーは、力量の評価の結果、グループ員の必要な力量が不足している場合には、その必要な力量に到達することができるように0JTを主体とする教育訓練(社内外研修・検討会への参加など含む)を行う。

f. 力量評価の実施時期

原則として毎年4月に1回実施する。また、新規配属者があった場合などには、都 度、評価を行う。

(4) 最新知見および運転経験の反映

高経年化技術評価においては、これまでに実施された先行プラントの高経年化技術評価書を参考にするとともに、最新知見および国内外の運転経験について高経年化技術評価への影響を整理し、反映要否を検討し、反映要と判断したものについて、高経年化技術評価に反映している。

a. 最新知見

(a) 調査対象期間

実施済みの美浜3号炉40年目高経年化技術評価において2015年4月までの 最新知見を取りまとめており、これを活用することとし、その後の調査対象期間は 2020年5月までとした。

なお、調査対象期間以降の最新知見についても適宜反映する。

(b) 調査範囲

調査対象期間中に発行された以下の情報等を検討し、高経年化技術評価を実施する 上で新たに反映が必要な知見を抽出している。

- 原子力規制委員会からの指示文書
- 日本機械学会、日本電気協会、日本原子力学会の標準類
- ・ 原子力規制委員会により公開されている材料劣化に係る安全研究の情報

なお、上記以外にも、IAEAから発行された安全報告書(International Generic Ageing Lessons Learned (IGALL); Safety Report Series No. 82, (2015))ならびに IGALLの改訂状況の確認や米国のEPRI (Electric Power Research Institute) との情報交換等を通じて海外知見のフォローにも努めている。

このうち、高経年化技術評価に反映した主なものは以下であった。

- 日本原子力学会 原子力発電所の高経年化対策実施基準:2016追補1、20 17追補2、2018追補3および2019追補4
- NRA技術報告 中性子照射脆化がコンクリートの強度に及ぼす影響 (NTEC-2019-1001)

b. 運転経験

(a) 調査対象期間

関西電力美浜3号炉40年目高経年化技術評価までの知見が「原子力発電所の高経年化対策実施基準:2019追補4」(以下、「学会標準2019追補版」という。) 附属書A(規定)の経年劣化メカニズムまとめ表に取りまとめられておりこれを活用す る。また、その後の調査対象期間は2020年5月までとした。 なお、調査対象期間以降の運転経験についても適宜反映する。

(b) 調査範囲

調査対象期間中に発行された以下の情報等を含めて、高経年化技術評価への反映要 否をスクリーニングしている。

- 国内の運転経験として、原子力施設情報公開ライブラリー⁴において公開されている"トラブル情報"および"保全品質情報"
- ・ 海外の運転経験として、米国原子力規制委員会 (NRC) のBulletin、Generic Letter およびInformation Notice

なお、上記以外にも、PWR海外情報検討会⁵で重要情報としてスクリーニングされた情報や、社内外の組織(当社パリ事務所、原子力安全システム研究所(INSS)、国内外のプラントメーカー等)から入手した情報についても、高経年化技術評価への反映要否の検討対象にしている。

調査対象期間における運転経験の高経年化技術評価への反映の考え方を図-4に 示す。

- ① 2015年4月末までの運転経験(関西電力美浜3号炉40年目高経年化技術評価までの知見)は、 学会標準2019追補版の経年劣化メカニズムまとめ表に取りまとめられており、これを活用した。
- ② 2015年5月から2020年5月までの運転経験について新たにスクリーニングを実施。
- ③ 2020年6月以降の運転経験については、適宜反映する。

図-4 高経年化技術評価に反映した運転経験の範囲

調査対象期間(②)中の国内の運転経験は408件あり、経年劣化に起因するものは28件抽出されたが、高経年化技術評価に新たに反映が必要なものとして抽出されたものは無かった。また、海外の運転経験は61件⁶あり、経年劣化に起因するものは2件抽出され、高経年化技術評価に新たに反映が必要なものとして以下の運転経験が抽出された。

⁴ 原子力安全推進協会が運営する国内の原子力発電所のトラブル情報などをまとめて保管 し、公開しているデータベース。

⁵ 国内PWR電力会社が構成委員となり、プラントメーカーの技術支援も受けてNRC 情報以外 (WANO情報、INPO情報等) も含めた海外運転経験を収集、分析している。

⁶ 海外の運転経験の件数は、NRCのBulletin、Generic LetterおよびInformation Noticeのみをカウントしており、その他の情報は含んでいない。

・仏国ベルビル2号炉 制御棒駆動機構のサーマルスリーブ摩耗 (2017年12月)

また、調査対象期間(②)において原子力施設情報公開ライブラリー情報が最終報告となっていない情報についても、適宜更新情報を確認し、必要に応じて高経年化技術評価書の見直しを行う。

なお、保安規定変更認可申請後に高経年化技術評価書に新たに反映が必要なものとして以下の運転経験を抽出した。

- ・大飯発電所3号炉 加圧器スプレイ配管溶接部における有意な指示 (2020年8月)
- ・高浜発電所4号炉 蒸気発生器伝熱管の損傷 (2020年11月)

これらのうち、「大飯発電所3号炉 加圧器スプレイ配管溶接部における有意な指示」については、高経年化対策上着目すべき経年劣化事象ではないと判断しているが、今後の知見拡充結果を踏まえて対応することを明確にしておく観点から、ステンレス鋼配管の溶接部の施工条件に起因する内面からの粒界割れについて、長期施設管理方針に追加して管理する。

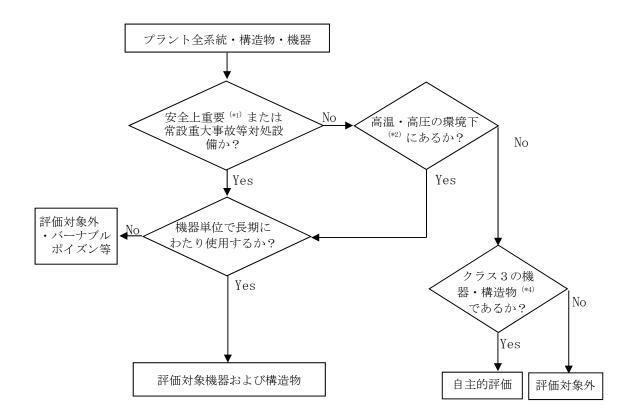
2.2 高経年化技術評価の前提とする運転状態

大飯発電所3号炉については、2013年7月8日に新規制基準への適合性に係る申請を行い、審査を経て認可を受けており、技術基準7に適合していることから、高経年化技術評価は、原子炉の運転を断続的に行うことを前提としたものおよび冷温停止状態が維持されることを前提としたもの(燃料が炉心に装荷された状態のものを含む。以下同じ。)の各々について行う。

⁷ 実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年原子力規制委員 会規則第6号)に定められる基準

2.3 評価対象となる機器および構造物の抽出

高経年化技術評価の対象は、安全重要度分類審査指針⁸上の重要度分類クラス1、2 および3に該当する機器および構造物(実用炉規則別表第二において規定される浸水 防護施設に属する機器および構造物を含む。)ならびに「実用発電用原子炉及びその附 属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第 5号)第43条第2項に規定される常設重大事故等対処設備」(以下、「常設重大事故 等対処設備」という。)に属するものとする。


ただし、機器単位で定期的に取り替える機器(具体的には、燃料集合体、バーナブルポイズン等)は除外した。

(1) 評価対象となる機器および構造物全てを抽出する手順

安全重要度分類審査指針およびこれを踏まえ具体的な分類を示した日本電気協会「安全機能を有する電気・機械装置の重要度分類指針」(JEAG4612-2010)に基づき識別した色塗系統図および原子力保全総合システム(M35)等を基に、評価対象となる機器および構造物全てのリスト(以下、「機器リスト」という。)を作成した。評価対象となる機器および構造物の抽出フローを図-5に示す。

- 16 -

⁸ 発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針(平成2年8月30日原 子力安全委員会決定)

- *1 重要度分類クラス1および2 (*3) (耐津波安全性評価が必要な浸水防護施設に属する機器および構造物を含む。)
- *2 重要度分類クラス3のうち、最高使用温度が95℃を超え、または最高使用圧力が1900kPaを超える環境下にある機器(原子炉格納容器外にあるものに限る)
- *3 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」(平成2年8月30日原子力安全委員会決定の重要度分類
- *4 浸水防護施設に属する機器および構造物を含む。

図-5 評価対象となる機器および構造物の抽出フロー

(2) 高温・高圧の環境下にある機器を抽出する手順

クラス3に該当する機器および構造物のうち、原子炉格納容器外にある機器については、最高使用温度および最高使用圧力を系統図等で確認し、高温・高圧の環境下にある機器⁹を機器リスト上で明確にした。

(3) 抽出した機器および構造物の分類

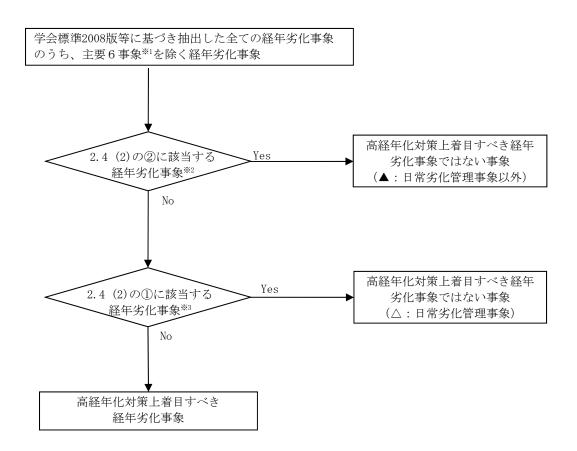
抽出した機器および構造物のうち、クラス1および2に該当する機器および構造 物ならびにクラス3に該当する機器および構造物のうち高温・高圧の環境下にある 機器について、機種¹⁰別に区分した。

(4) 対象機器および構造物全てを評価する手法

対象機器および構造物全てについて合理的に評価するため、(3)で区分した機種内でさらに分類し、グループ化を行い、グループの代表機器または構造物について評価し、その評価結果をグループ内の全ての機器または構造物に水平展開するという手法をとった。ただし、代表機器または構造物の評価結果をそのまま水平展開できない経年劣化事象については個別に評価した。

機種内の分類は、学会標準2008版附属書A(規定)に基づき、「経年劣化メカニズムまとめ表」を参考に、構造(型式等)、使用環境(内部流体等)、材料等により分類し、グループ化を行った。グループ内の代表機器または構造物は、重要度、使用条件、運転状態等を考慮して選定した。

なお、最新知見として、学会標準2019追補版附属書A(規定)の「経年劣化メカニズムまとめ表」も反映している。


⁹ 最高使用温度が95℃を超えまたは最高使用圧力が1900kPaを超える環境下にある機器(原 子炉格納容器外にあるものに限る)

¹⁰ ポンプ、熱交換器、ポンプモータ、容器、配管、弁、炉内構造物、ケーブル、電気設備、タービン設備、コンクリート構造物および鉄骨構造物、計測制御設備、空調設備、機械設備および電源設備の15機種

2.4 高経年化対策上着目すべき経年劣化事象の抽出

- (1) 選定された評価対象機器の使用条件(型式、材料、環境条件等)を考慮し、学会標準2008版附属書A(規定)の「経年劣化メカニズムまとめ表」に基づき、経年劣化事象と部位の組み合わせを抽出した。なお、最新知見として「原子力発電所の高経年化対策実施基準:2015」および学会標準2019追補版附属書A(規定)の「経年劣化メカニズムまとめ表」も反映している。
- (2) 主要6事象^{※1}については、原則、高経年化対策上着目すべき経年劣化事象(○事象)とし、それ以外の経年劣化事象のうち、下記①、②のいずれかに該当する場合は、高経年化対策上着目すべき経年劣化事象ではない事象として整理した。具体的な整理のフローは図−6のとおり。
 - ① 想定した劣化傾向と実際の劣化傾向の乖離が考えがたい経年劣化事象であって、想定した劣化傾向等に基づき適切な保全活動を行っているもの
 - ② 現在までの運転経験や使用条件から得られた材料試験データとの比較等により、今後も経年劣化の進展が考えられない、または進展傾向が極めて小さいと考えられる経年劣化事象

※1:実施ガイドに示された、低サイクル疲労、中性子照射脆化、照射誘起型応力腐食割れ、2相ステンレス 鋼の熱時効、電気・計装品の絶縁低下、コンクリートの強度低下及び遮蔽能力低下をいう。

※1: 高経年化対策上着目すべき経年劣化事象に限る。

※2:保全活動によりその傾向が維持できていることを確認している経年劣化事象は

「No」に進む。

※3:②に該当するが保全活動によりその傾向が維持できていることを確認している

図-6 高経年化対策上着目すべき経年劣化事象の抽出フロー

2.5 高経年化対策上着目すべき経年劣化事象に対する健全性評価

2.4で抽出した高経年化対策上着目すべき経年劣化事象について、プラントの運転を 開始した日から60年間について機器または構造物の健全性評価を行うとともに、必 要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 健全性の評価

傾向管理データによる評価、最新の技術的知見に基づいた評価および解析等の定量評価、過去の保全実績、一般産業で得られている知見等を用いて健全性を評価した。

(2) 現状保全の整理

評価対象部位に対する現状保全(点検内容、関連する機能試験内容、補修・取替等) を整理した。

(3) 総合評価

上記(1)と(2)をあわせて現状保全の妥当性を総合的に評価した。具体的には、健全性評価結果と整合の取れた点検等が、現状の保全活動で実施されているか、また、点検手法は当該の経年劣化の検知が可能か等を評価した。

(4) 高経年化への対応

高経年化対策の観点から充実すべき点検・検査項目、技術開発課題等を抽出した。

2.6 耐震安全性評価

耐震安全上考慮する必要のある経年劣化事象を抽出し、プラントの運転を開始した 日から60年間について、経年劣化事象の発生または進展に伴う機器または構造物の 耐震安全性を評価するとともに、必要に応じ現状の施設管理に追加すべき保全策を抽 出した。

(1) 評価対象機器および構造物全てを評価する手法

耐震安全性評価についても、2.3(4)のグループ化および代表機器または構造物の 選定結果を用い、グループの代表機器または構造物について評価し、その評価結果を グループ内の全ての機器または構造物に水平展開するという手法をとった。ただし、 代表機器または構造物と同様とみなせないものについては個別に評価した。

なお、グループ内に代表機器より耐震重要度が上位のものがある場合は、そのうち 1つを代表機器に加えた。

(2) 耐震安全性評価の対象となる経年劣化事象の抽出

2.4(2)で行った経年劣化事象の分類結果を用い、▲に該当する経年劣化事象を除外し、また、抽出された経年劣化事象を以下の観点で整理し、「ii」に該当する経年 劣化事象を耐震安全性評価の対象とした。

- i 現在発生しておらず、今後も発生の可能性がないものまたは小さいもの
- ii 現在発生しているか、または将来にわたって起こることが否定できないもの

2.4(2)で日常劣化管理事象等(\triangle)に分類した事象であって、上記「i」に該当するとして耐震安全性評価の対象外とした事象(-)について、今後も発生の可能性がない、または小さいとした理由を別紙1に示す。

(3) 耐震安全上考慮する必要のある経年劣化事象の抽出

(2)で抽出した経年劣化事象が顕在化した場合、機器または構造物の振動応答特性 上または構造・強度上、影響が「有意」であるか「軽微もしくは無視できる」かを検 討し、耐震安全上考慮する必要のある経年劣化事象を抽出した。

(4) 耐震安全性の評価

プラントの運転を開始した日から60年間について、経年劣化事象の発生または進展に伴う機器または構造物の耐震安全性を評価した。

耐震安全性評価は日本電気協会「原子力発電所耐震設計技術指針」(JEAG4601-1987) 等に基づき行った。

また、評価用地震力は耐震クラスに応じて選定し、基準地震動については「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第5号)」に基づき定めたものを用いた。

また、地震時に動的機能の維持が要求される機器については、経年劣化事象を考慮しても地震時の応答加速度が各機器の機能確認済加速度以下であるかを検討した。

(5) 保全対策に反映すべき項目の抽出

耐震安全性評価結果に対応する現状の保全策の妥当性を評価し、耐震安全性の観点から保全対策に追加すべき項目を抽出した。

2.7 耐津波安全性評価

津波の影響を受ける浸水防護施設に対して耐津波安全上考慮する必要のある経年 劣化事象を抽出し、プラントの運転を開始した日から60年間について、経年劣化事 象の発生または進展に伴う機器または構造物の耐津波安全性を評価するとともに、 必要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 評価対象機器の選定

2.3(1)で抽出した評価対象機器・構造物のうち津波の影響を受ける浸水防護施設を耐津波安全性評価の対象として選定した。ただし、津波の影響を受けない位置に設置されている機器・構造物は評価対象外とした。

(2) 耐津波安全性評価の対象となる経年劣化事象の抽出

2.4(2)で行った経年劣化事象の分類結果を用い、▲に該当する経年劣化事象を除外し、また、抽出された経年劣化事象を以下の観点で整理し、「ii」に該当する経年 劣化事象を耐津波安全性評価の対象とした。

- i 現在発生しておらず、今後も発生の可能性がないものまたは小さいもの
- ii 現在発生しているか、または将来にわたって起こることが否定できないもの

(3) 耐津波安全上考慮する必要のある経年劣化事象の抽出

(2)で抽出した経年劣化事象が顕在化した場合、機器または構造物の構造・強度上および止水性上、影響が「有意」であるか「軽微もしくは無視できる」かを検討し、耐津波安全上考慮する必要のある経年劣化事象を抽出した。

(4) 耐津波安全性の評価

プラントの運転を開始した日から60年間について、経年劣化事象の発生または 進展に伴う機器または構造物の耐津波安全性を評価した。

基準津波による最大水位変動量については「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第5号)」に基づき定めたものを用いた。

(5) 保全対策に反映すべき項目の抽出

耐津波安全性評価結果に対応する現状の保全策の妥当性を評価し、耐津波安全性の観点から保全対策に追加すべき項目を抽出した。

2.8 冷温停止を前提とした評価

冷温停止状態が維持されることを前提として、冷温停止状態維持に必要な設備の選定を行うとともに、プラントの運転を開始した日から60年間について経年劣化事象の発生または進展に関する整理を実施し、必要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 評価対象機器および構造物全てを評価する手法

冷温停止状態が維持されることを前提とした評価についても、2.3(4)のグループ 化および代表機器または構造物の選定結果を用い、グループの代表機器または構造 物について評価し、その評価結果をグループ内の全ての機器または構造物に水平展 開するという手法をとった。

(2) 冷温停止を踏まえた再評価を行う経年劣化事象の抽出

2.4(2)で行った経年劣化事象の分類結果に基づき、それぞれの経年劣化事象について、冷温停止状態が維持されることを前提とした場合において発生・進展が断続的運転を前提とした場合より厳しくなることが想定される経年劣化事象を抽出した。

(3) 冷温停止を踏まえた再評価

(2)で抽出した経年劣化事象について、冷温停止状態の維持を踏まえて経年劣化事象の発生または進展に伴う機器または構造物の再評価を実施した。

(4) 保全対策に反映すべき項目の抽出

冷温停止状態の維持を踏まえた再評価結果に対応する現状の保全策の妥当性を評価し、必要に応じ保全対策に追加すべき項目を抽出した。

2.9 高経年化技術評価に係る全体プロセス

(1) 実施計画および実施手順書の策定

安全管理業務要綱に従い、2018年10月11日に実施計画を策定し、2015 年6月22日に策定済みの実施手順書に基づき高経年化技術評価を開始した。

その後、2020年4月の炉規則改正および2020年6月の組織改正等を反映するため、2020年7月14日に実施計画および実施手順書の改正を行った。主要な改正内容を以下に示す。

- ・技術評価書の承認者(旧:原子力技術部門統括、新:原子力発電部門統括)
- ・評価実施者(旧:原子力技術部門 高経年対策グループ、

新:原子力発電部門 保全計画グループ)

・評価書作成プロセスの確認者(旧:原子力発電部門 品質保証グループ、

新:原子力発電部門 保全計画グループ (評価書 作成の各実施プロセスに関わっていない者))

・用語の改正(旧:保守管理、新:施設管理)

更に、2021年7月の組織改正等を反映するため、2021年5月19日に実施 計画および実施手順書の改正を行った。主要な改正内容を以下に示す。

体制表(旧:原子力安全部門統括、新:原子力安全・技術部門統括

旧:原子炉保修課およびタービン保修課、新:機械保修課

旧:電気保修課および計装保修課、新:電気保修課)

(2) 評価の実施および評価書の作成

実施計画および実施手順書に基づき、評価実施グループは高経年化技術評価を実施し、評価書を作成した。具体的な手順は2.2~2.8のとおり。

機械・電気設備の評価は保全計画グループが、コンクリート構造物および鉄骨構造物は土木建築設備グループが実施した。

(3) 評価書の内容のレビュー

実施手順書に従い、評価実施グループが作成した評価書について、同一グループ内 の作成者以外の者が内容の妥当性について確認した。

(4) 評価書の作成プロセスの確認

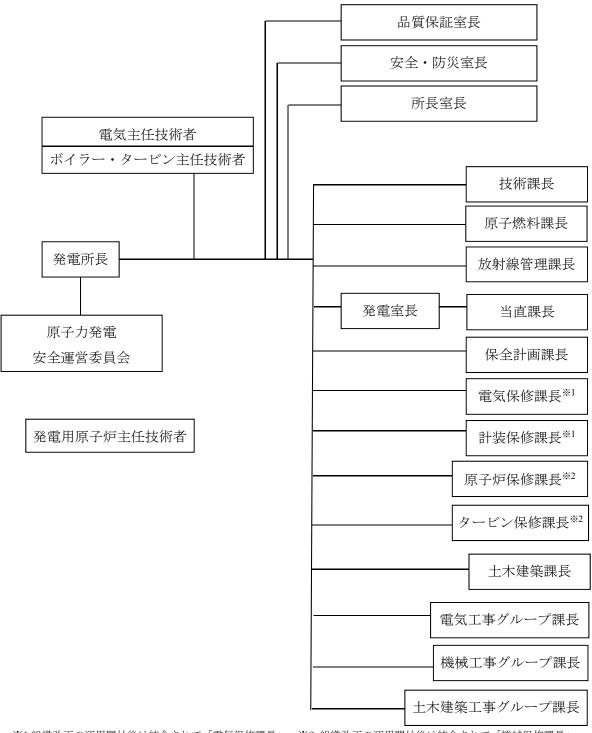
実施手順書に従い、評価書の作成にかかる調査・評価および妥当性確認の実施プロセスが実施手順に基づき実施されていることを、各実施プロセスに関わっていない者が確認した。

(5) 評価書の承認プロセス

実施手順書に従い、(1)~(4)を経て作成された評価書について、原子力発電安全委員会で審議し、確認を受けた。

原子力発電安全委員会で確認された評価書について、原子力発電部長の確認を受け、2020年11月17日に原子力発電部門統括(原子力発電)が承認した。

3. 大飯発電所における保全活動


原子力発電所の保全では、構築物、系統および機器の経年劣化が徐々に進行して最終的 に故障に至ることのないよう、定期的な検査や点検等により経年劣化の兆候を早期に検 知し、必要な処置を行い、事故・故障を未然に防止している。

当社は、運転監視、巡視点検、定期的な検査および点検により設備の健全性を確認し、 経年劣化等の兆候が認められた場合には詳細な調査および評価を行い、補修、取替等の保 全を実施している。特に長期の使用によって発生する経年劣化事象については、点検によ り経年的な変化の傾向を把握し、故障に至る前に計画的な保全を実施している。

具体的には、実用炉規則第81条に掲げる施設管理に係る要求事項を満たすよう、「日本電気協会 原子力発電所の保守管理規程 (JEAC4209-2007)」に基づき、社内標準類を策定して施設管理を実施している。

(1) 大飯発電所における保安活動の実施体制

大飯発電所における保全活動は、図-7に示す大飯発電所における保安に関する組織により行っている。

※1 組織改正の運用開始後は統合されて「電気保修課長」。※2 組織改正の運用開始後は統合されて「機械保修課長」

図-7 大飯発電所における保安に関する組織

各職位の保安に関する職務は以下のとおり。

- ・ 発電所長は、発電所の課(室)長等を指導監督し、発電所における保安活動を統括 する。
- 品質保証室長は、原子力発電に関する品質保証活動の統括に関する業務を行う。
- ・ 安全・防災室長は、原子炉施設の管理運用に関する安全評価、その他技術安全の総括、原子力防災対策および原子炉施設の出入管理に関する業務ならびに火災発生時、内部溢水発生時、火山影響等発生時、その他自然災害発生所等、有毒ガス発生時、重大事故等発生時および大規模損壊発生時の体制の整備に関する業務の統括に関する業務を行う。
- ・ 所長室長は、発電所の運営に関する総括、文書管理と記録管理の総括および教育・ 訓練の総括に関する業務を行う。
- 技術課長は、発電所の技術関係事項の総括に関する業務を行う。
- 原子燃料課長は、原子燃料管理および炉心管理に関する業務を行う。
- ・ 放射線管理課長は、放射性廃棄物管理、放射線管理(環境モニタリングセンター所 長所管業務を除く。)、被ばく管理および化学管理に関する業務を行う。
- 発電室長は、原子炉施設の運転に関する業務を行う。
- ・ 当直課長は、原子炉施設の運転に関する当直業務を行う。
- 保全計画課長は、原子炉施設の保守、修理の総括に関する業務を行う。
- ・ 電気保修課長は、原子炉施設の電気設備に係る保守、修理(電気工事グループ課長 所管業務を除く。)に関する業務を行う。
- ・ 計装保修課長(組織改正の運用後は電気保修課長)は、原子炉施設の計装設備に係 る保守、修理(電気工事グループ課長所管業務を除く。)に関する業務を行う。
- ・ 原子炉保修課長(組織改正の運用後は機械保修課長)は、原子炉施設の機械設備 (タービン設備を除く。)に係る保守、修理(機械工事グループ課長所管業務を除 く。)に関する業務を行う。
- ・ タービン保修課長(組織改正の運用後は機械保修課長)は、原子炉施設の機械設備 (タービン設備)に係る保守、修理(機械工事グループ課長所管業務を除く。)に 関する業務を行う。
- ・ 土木建築課長は、原子炉施設の土木設備および建築物に係る保守、修理(機械工事 グループ課長および土木建築工事グループ課長の所管業務を除く。)に関する業務 を行う。
- ・ 電気工事グループ課長は、原子炉施設の電気設備および計装設備に係る保守、修理 および高経年対策の推進のうち、所長が指定したものに関する業務を行う。
- ・ 機械工事グループ課長は、原子炉施設の機械設備、土木設備および建築物に係る保 守、修理および高経年対策の推進のうち、所長が指定したものに関する業務を行う。

・ 土木建築工事グループ課長は、原子炉施設の土木設備および建築物に係る保守、修 理および高経年対策の推進のうち、所長が指定したものに関する業務を行う。

(2) 大飯発電所における施設管理に関する文書体系

保安規定に従い、施設管理にかかる必要な手順を、所定の手続きに従って作成される QMS文書として定めている。大飯発電所の施設管理に関する文書体系を図-8に示す。

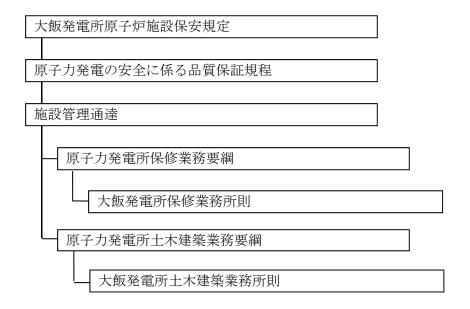


図-8 保全活動に関する社内文書体系

各文書の規定範囲は以下のとおり。

a. 1次文書

(a) 原子力発電の安全に係る品質保証規程

原子力発電所の安全を達成・維持・向上させるため、発電所における保安活動に係る品質マネジメントシステムを確立し、実施し、評価確認し、継続的に改善することを目的とした文書。

b. 2次文書

(a) 施設管理通達

「原子力発電の安全に係る品質保証規程」に基づき、原子力部門の施設管理に関する基本的事項を定め、業務の的確かつ円滑なる運転を図ることを目的とした文書。

c. 3 次文書

(a) 原子力発電所保修業務要綱

「施設管理通達」等に基づき、原子力発電所の施設管理に関する具体的な事項を定め、業務の的確かつ円滑なる運営を図ることを目的とした文書。

(b) 大飯発電所保修業務所則

「原子力発電所保修業務要綱」に基づき、大飯発電所の施設管理に関する具体的な 事項を定め、業務の的確かつ円滑なる運営を図ることを目的とした文書。

(c) 原子力発電所土木建築業務要綱

「施設管理通達」等に基づき、原子力発電所の土木建築設備の施設管理に関する具体的な事項を定め、業務の的確かつ円滑なる運営を図ることを目的とした文書。

(d) 原子力発電所土木建築業務所則

「原子力発電所土木建築業務要綱」に基づき、大飯発電所の土木建築設備の施設管理に関する具体的な事項を定め、業務の的確かつ円滑なる運営を図ることを目的とした文書。

別紙

別紙1. 日常劣化管理事象等について

別紙1-1 高サイクル疲労割れ

別紙1-2 フレッティング疲労割れ

別紙1-3 腐食(流れ加速型腐食)

別紙1-4 劣化(中性子照射による靭性低下)

別紙1-5 応力腐食割れ

別紙1-6 摩耗

別紙1-7 スケール付着

別紙1-8 マルテンサイト系ステンレス鋼の熱時効

別紙2. 日常劣化管理事象以外の事象について

別紙3. 施設管理目標の設定に係る権限について

別紙4. 協力事業者の力量管理方法について

別紙5. 消耗品・定期取替品の定義および抽出方法について

別紙 5-1. 消耗品・定期取替品のうちディーゼル機関排気管の伸縮継手の取り扱い について

別紙6. 原子力施設情報公開ライブラリー情報で最終報告ではない情報について

別紙7. ステンレス鋼配管のグループ化の考え方について

別紙8. 蒸気発生器への異物混入防止対策ついて

別紙9. 蒸気発生器および原子炉容器の冷却材出入口管台のピーニングについて

別紙10. スペアパーツの取り組みについて

別紙11. 文書体系における現状保全に係るプログラムについて

タイトル	日常劣化管理事象等(△)について
概要	高経年化対策上着目すべき経年劣化事象ではない事象のうち、日常劣化管理事象(△)の一覧を示す。 また、耐震安全性評価の対象外とした事象(一)を事象毎に分類し、今後も発生の可能性がない、または小さいとした理由を示す。
説 明	日常劣化管理事象 (△) の一覧を表1-1に示す。 なお、日常劣化管理事象 (△) のうち、現在発生しておらず、今後も発生の可能性がないものまたは小さいものを (△①)、現在発生しているか、または将来にわたって起こることが否定できないものを (△②) として整理した。 また、耐震安全性評価の対象外とした事象 (一) を事象毎に分類し、今後も発生の可能性がない、または小さいとした理由を表1-2に示す。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
1	ポンプ	ターボポ ンプ	Δ①	摩耗	主軸の摩耗		ころがり軸受を使用しているポンプについては、軸受と主軸の接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩 様が発生し、主軸と軸受スリーブ間で微小すき間が生じ、運転中にフレッティングによる 摩耗が発生する可能性がある。 しかしながら、これを防止するため主軸表面の仕上げは行わない連用としており、これま でに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え がたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
2			Δ①	摩耗			すべり軸受を使用しているポンプについては、軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、設計段階において主軸と軸受間に潤滑剤を供給し、膜を形成させて流体潤滑状態となるように考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
3	ポンプ	ターボポ ンプ	Δ2	孔食	主軸等接液部の 腐食 (孔食他)	海水ポンプ	主軸、吸込口および振れ止め台等はステンレス鋼またはステンレス鋼鋳鋼であり、海水接 液部において孔食他の腐食が想定される。 しかしながら、分解点検時などの目視確認により各部の腐食の有無もしくは塗装の劣化の 有無を確認し、腐食の状況により寸法計測を実施し、腐食進行程度の把握を行うことによ り、機構図と性を維持にている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
4	ポンプ	ターボポ ンプ	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	共通	ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 国内内閣プラントで発生したターポポンプ主軸折損に係るトラブルについては、当該ポンプ鉱が流入したこと等が関与しており、大飯3号炉については内部流体に空気が流入したこと等が関与しており、大飯3号炉については内部流体に空気が流入しない系統構成であること等を確認している。 としたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変仗、速度、加速度の測定等)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
5	ポンプ	ターボポ ンプ	Δ①	フレッティン グ疲労割れ	主軸のフレッ ティング疲労割 れ	余熟除去ポンプ、原子炉補機冷却 水ポンプ、電動補助給水ポンプ	ボンブ運転時の主軸に外部荷重に起因する繰返し曲げ応力が作用したとき、その応力の働いている方向や大きさによっては、主軸等に疲労割れが生じる可能性があり、焼きばめにより羽根車が固定されている主軸においてフレッティング疲労割れが想定される。1986年10月、玄海1号炉の余熱除去ポンプ主軸において、フレッティング疲労による疲労割れが発生している。 しかしながら、大飯3号炉については「金属村料疲れ造さの設計資料(日本機械学会)しから最も厳しい下限線を10 ¹¹ 回まで外挿し設定した疲労限と曲げ応力振幅との比較により評価した結果、曲げ応力振幅は疲労限を下回っており、フレッティング疲労割れが問題となる可能性はないと判断している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)により、機器の健全性を確認している。
6	ポンプ	ターボポ ンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	共通	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
7	ポンプ	ターボポ ンプ	Δ2	腐食(全面腐食)	軸 受箱の腐食 (全面腐食)		軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
8			Δ①	腐食(全面腐食)	(王囬脳長)		一方、内面については内部流体が油で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
9	ポンプ	ターボポ ンプ	Δ2)	腐食(全面腐食)	ケーシング等の 腐食(全面腐食)	原子炉補機冷却水ポンプ、タービ ン動主給水ポンプブースタポンプ	ケーシングは炭素鋼鋳鋼または炭素鋼、外部ケーシングおよびケーシングドレン管は炭素 鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
10			Δ①	腐食(全面腐食)	 	ン動土給水ホンノノースダホンノ	一方、内面については内部流体がヒドラジン水(防錆剤注入水)または叶等を管理した脱気水(給水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
11	ポンプ	ターボポ ンプ	Δ①	応力腐食割れ	ステンレス鋼使 用部位の応力腐 食割れ	余熱除去ポンプ	ケーシング(ケーシングカバーを含む)はステンレス鋼鋳鋼、ケーシングドレン管はステンレス鋼であり、ステンレス鋼の使用部位については応力腐食割れが想定される。しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体温度が低い(最高でも80℃程度)ため、応力腐食割れが発生する可能性は小さい。また、定規検査後のブラント起助時には 1 次冷却材中の溶存酸素濃度低減のための運転操作を実施するため、高温(100℃以上)で使用する場合は溶存酸素濃度が0.1ppm以下に低減された流体となっていることから、応力腐食割れが発生する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
12	ポンプ	ターボポ ンプ	Δ①	腐食(全面腐食)	ケーシングボル トの腐食(全面 腐食)	海水ポンプを除く	ケーシングボルトは低合金鋼であり、ガスケットまたはOリングからの漏えいにより、内 部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
13	ポンプ	ターボポ ンプ	Δ2	腐食(全面腐食)	台板および取付 ボルト等の腐食 (全面腐食)	海水ポンプを除く	台板、ソールプレートおよび取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
14	ポンプ	往復ポンプ	Δ①	高サイクル疲 労割れ	クランク軸の高 サイクル疲労割 れ	尭てんポンプ	充てんポンプは往復ポンプであり、モータの回転運動をクランク軸により往復運動に変換し、プランジャによる系統水の吐出を行う。 このため、クランク軸はターボポンプの主軸と異なり、偏心した構造となっており、曲げ 応力が作用し材料に疲労が蓄積するため、高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)なら びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確 認している。
15	ポンプ	往復ポンプ	Δ①	摩耗	プランジャの摩 耗	充てんポンプ	プランジャの往復運動により、プランジャとグランドパッキン の接触面で摺動摩耗が想定される。 しかしながら、耐摩耗性をよくするためプランジャ表面を酸化クロムで皮膜しており、 摩耗が発生しがたく、これまでに有意な摩耗は認められておらず、今後もこれらの傾向 が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
16	ポンプ	往復ポンプ	Δ2	腐食(全面腐 食)	潤滑油ユニット の腐食 (全面腐食)	充てんポンプ	潤滑油ユニット (減速機用潤滑油ユニットを含む) は鋳鉄および炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
17			Δ①	腐食(全面腐食)			一方、内面については内部流体が油またはヒドラジン水(防鯖剤注入水) で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
18	ポンプ	往復ポンプ	Δ2	摩耗	減速機歯車の摩 耗	充てんポンプ	減速機の歯車は潤滑油により摩耗を防止しているが、直径の異なる歯車を組み合せ使用しており、歯車の歯面は接触により動力が伝達されるため、面圧条件により摩耗が想定される。 したしながら、分解点検時の目視確認や寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
19	ポンプ	往復ポンプ	Δ2	腐食(全面腐食)	減速機ケーシン グの腐食(全面	充てんポンプ	減速機ケーシングは鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
20				腐食(全面腐 食)	腐食)		一方、内面については歯車および軸受を潤滑するための潤滑油により油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
21	ポンプ	往復ポンプ	Δ①	高サイクル疲 労割れ	シリンダおよび シリンダカバー のリンダカバー 労割れ	充てんポンプ	充てんポンプは往復ポンプのため、シリンダおよびシリンダカバーには吸込圧力と吐出圧力の差圧(約19.0MPa) が変動圧力として作用する。この圧力変動の繰返しにより材料に疲労が蓄積するため、高サイクル疲労割れが想定されるしかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、 試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
22	ポンプ	往復ポン プ	Δ①	腐食(全面腐食)	シリンダカバー取付ボルトの腐食(全面腐食)	充てんポンプ	シリンダカバー取付ポルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
23	ポンプ	往復ポン プ	Δ2	腐食(全面腐 食)	台板および取付 ポルトの腐食 (全面腐食)	充てんポンプ	台板および取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
24	ポンプ	1 次冷却 材ポンプ	Δ2	摩耗	主軸の摩耗	1 次冷却材ポンプ	主軸は回転中に熱遮蔽装置と接触する可能性があり、摩耗が想定される。 しかしながら、分解点検時の主軸の振れ計測や主軸当該部の直径計測 により、機器の健 全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
25	ポンプ	1 次冷却 材ポンプ	Δ①	高サイクル疲労割れ	主軸の高サイクル疲労割れ	1 次冷却材ポンプ	ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)*ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。 ※高経年化技術評価書には「巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)」が記載されているが、誤記であり削除した状態が正しい記載。
26	ポンプ	1 次冷却 材ポンプ	Δ①	疲労割れ	主軸の疲労割れ	1 次冷却材ポンプ	主軸上部は低温の軸封水、主軸下部は高温の1次冷却材に接液しており、両者の混合部に温度変動が発生して主軸表面の疲労割れ想定される。 別限プラントの原子炉再循環ポンプ主軸で損傷事例がある。 しかしながら、1次冷却材ポンプは、この熱的に厳しい混合部の主軸表面に温度変動を吸収するためのサーマルスリープを設置し、1次冷却材ポンプの機能を損なうことのないよう主軸を保護する構造となっている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)*ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。 ※高経年化技術評価書には「巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)」が記載されているが、誤記であり削除した状態が正しい記載。
27	ポンプ	1 次冷却 材ポンプ	Δ2	摩耗	羽根車の摩耗	1 次冷却材ポンプ	羽根車は回転中に静止部と接触する可能性があり、摩耗が想定される。 しかしながら、分解点検時の羽根車当該部の直径計測 により、機器の健全性を維持して いる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
28	ポンプ	1 次冷却 材ポンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	1 次冷却材ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
29	ポンプ	1次冷却 材ポンプ	Δ①	熱時効	羽根車の熱時効	1次冷却材ポンプ	羽根車はステンレス鋼鋳鋼であり、使用温度が約289℃ と高いため、熱時効による材料の 特性変化が想定される。 しかしながら、羽根車は耐圧部ではなく運転中に発生する応力は小さく、亀裂の原因とな る経年劣化事、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
30	ポンプ	1 次冷却 材ポンプ	Δ①	疲労割れ	熱遮蔽装置のハ ウジング、シェ ルおよびフラン シの疲労割れ	1 次冷却材ポンプ	熱遮蔽装置のハウジング、シェルおよびフランジの高温水接液部において疲労割れが想定される。 1990年、フランスのフェッセンハイム(Fessenheim)発電所2号炉において、ポンプの供用期間中検査を行った際、1次冷却材ポンプ(930型)の熱遮蔽装置ハウジング内側側面およびフランジ下面(ハウジング付け根部内側)に欠陥があることが目視にで確認された。その多の場所において、フランス国内の類似プラントにおいて目標の損傷が認められている。 20世末の1次冷却材ポンプは、通常運転時、熱遮蔽装置ハウジング内部は軸封水で満たされているので低温となり、熱遮蔽装置ハウジング外部は1次冷却材に接しているので高温となる。 このため、熱疲労により損傷に至ったものと報告されているが、定量的な見解はフランス国内でもまだ出されていない。 カ大飯3号炉の1次冷却材ポンプ(93A-1型)の熱遮蔽装置は、熱遮蔽装置ハウジングが直接高温水に接液とい精造となっている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
31	ポンプ	1次冷却 材ポンプ	Δ①	腐食(全面腐食)	主フランジボル トの腐食(全面 腐食)	1 次冷却材ポンプ	主フランジボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
32	熱交換器	多管円筒 形熱交換 器	Δ2		伝熱管の摩耗お よび高サイクル 疲労割れ	共通	

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
33	熱交換器	多管円筒 形熱交換 器	Δ①	腐食(流れ加 速型腐食)	伝熱管の外面腐 食(流れ加速型 腐食)	共通	再生熱交換器、余熱除去冷却器、湿分分離加熱器、第7高圧給水加熱器、スチームコンバータドレン冷却器、スチームコンバータおよびグランド蒸気復水器の伝熱管については、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しているため、外面からの流れ加速型腐食が発生する可能性は小さい。 原子炉補機冷却水冷却器については管外流体の流速が十分に遅いことから外面からの流れ加速型腐食発生の可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の渦流探傷検査等により、機器の健全性を確認している。
34	熱交換器	多管 門	Δ2	腐食(流れ加 速型腐食)	伝熱管の内面腐 食(流れ加速型 腐食)		原子炉補機冷却水冷却器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 銅合金は腐食電位の高い貴な金属であり、耐食性が良いが、高速の流水中で使用すると、流れ加速型腐食が発生することがある。 原子炉補機冷却水冷却器は管側流体が海水であるため、貝等の異物の付着により局所的に流速が増大し、流れ加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態、付着状態は不確定であることから、流速と腐食量について、一律で定量的な評価は困難である。 しかしながら、分解点検時の渦流探傷検査により、機器の健全性を維持している。 しかしながら、分解点検時の渦流探傷検査により、機器の健全性を維持している。 しかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
35			Δ①	腐食(流れ加 速型腐食)		再生熱交換器、余熱除去冷却器、 湿分分離加熱器、第7高圧給水加 熱器、スチームコンバータドレン	再生熱交換器、余熱除去冷却器、湿分分離加熱器、第7高圧給水加熱器、スチームコンパータドレン冷却器、スチームコンパータおよびグランド蒸気復水器は、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しているため、流れ加速型腐食が発生する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の渦流探傷検査等により、機器の健全性を確認している。
36	熱交換器	多管円筒 形 熱 器	Δ①	応力腐食割れ	伝熱管等ステン レス鋼使用部位 の応力腐食割れ	再生熱交換器、余熱除去冷却器、湿分分離加熱器、第7高圧給水加 熱器、スチームコンパータドレン 冷却器、スチームコンパータ、グ ランド蒸気復水器	
37	熱交換器	多管円筒 形熱交換 器	Δ2	スケール付着	伝熱管のスケー ル付着		管側・胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、渦流探傷検査実施前の洗浄や運転中の流体温度および流量等のパラメータの監視により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
38	熱交換器	多管円筒 形熱交換 器	Δ①	疲労割れ	連絡管の疲労割れ	再生熱交換器	1999年7月に敦賀2号炉の再生熱交換器連絡管、2003年9月に泊2号炉の再生熱交換器胴側出口配管において、温度の異なる冷却材の合流による温度ゆらぎ(サーマルストライピング)が生じ、高サイクル熱疲労による疲労割れが発生しているが、この事象は内筒付再生熱交換器特有のものである。大飯3号炉の再生熱交換器には内筒がなく、高温水と低温水の合流部が想定されないことから、疲労割れ発生の可能性は小さい。したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、超音波探傷検査および漏えい確認により、機器の健全性を確認している。
39	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	再生熱交換器、余熱除去冷却器、湿分分離加熱器、スチームコン バータドレン冷却器、スチームコン バータ、原子炉補機冷却水冷却 器、グランド蒸気復水器	いずれの熱交換器も横置きであり、支持脚(スライド脚)が設置されているが、スライド 部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健 全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
40	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	共通	支持脚および架台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
41	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	湿分分離加熱器、第7高圧給水加	取付ポルトは低合金鋼または炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទ「目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
42	熱交換器	多管円簡 形熱器 器	Δ2	腐食(全面腐食)	胴板等の外面からの腐食(全面腐食)	余熱除去冷却器、湿分分離加熱器、第7高圧給水加熱器、スチームコンパータドレン冷却器、スチームコンパータドンパカ部に、ステームコンパータ、原子炉補機が、カボウンド本、数である。	開板、端板、鏡板、フランジ、管板、平板および水室は炭素鋼であり、外面からの腐食が 想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
43	熱交換器	多管円筒 形熱交換 器	Δ2	腐食 (流れ加 速型腐食)	胴側耐圧構成品 等の腐食(流れ 加速型腐食)	第7高圧給水加熱器、スチームコンパータドレン冷却器、スチーム コンバータ、グランド蒸気復水器	しかしなから、分解点検時の日倪惟認または寸法計測により、有息な腐食かないことを惟

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
44	熱交換器	多管円簡換 器 器	Δ2	腐食 (流れ加 速型腐食)	胴側耐圧構成品 等の腐食 (流れ 加速型腐食)	湿分分離加熱器	高温水または2相流体を内包する胴板他の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。 湿分分離加熱器については、セパレータにおいて蒸気の湿分を1%以下とする湿分除去機能を有しており、湿分除去以降では流れ加速型腐食による減肉進行の可能性は十分小さいと考える。セパレータより上流の部位で蒸気の流路を構成する胴板、胴側鏡板およびてホールドについては、湿り度も高く、また温度的にも減肉を生ずる域にある。しかしながら、減肉想定箇所にはステンレス鋼の内張りを実施していることから、減肉進行の可能性はないと考えるが、ステンレス鋼の内張りのない部位については、減肉傾向の監視が必要と考える。その他胴側の主要な構成品として支持板があり、流れ加速型腐食による穴部の拡大が想定されるが、湿分分離加熱器においては、支持板(管群入口)部での蒸気の湿り度を約1%以下としており、支持板の穴部の減肉拡大の可能性は十分小さいと考える。以下としており、支持板の穴部の減肉拡大の可能性は十分小さいと考える。後継の数状保全として、胴側については、分解点検防の目視確認または寸法計測により、機器の健全性を維持している。また、有意な腐食が生じている場合には、寸法計測により腐食進行程度を把握し、補修を行っている。表と2-1に湿分分離加熱器の主な補修経歴を示す。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
45	熱交換器	多管円筒 形熱交換 器	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	余熱除去冷却器、スチームコン パータドレン冷却器、スチームコン パータ・原子炉補機冷却水冷却 器、グランド蒸気復水器	フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
46	熱交換器	多管円筒 形熱交換 器	Δ2	異種金属接触腐食	管側耐圧構成品 の海水による腐 食(異種金属接 触腐食を含む)	原子炉補機冷却水冷却器	管側流体が海水であり、接液部に銅合金を使用しているため、長期使用により腐食が想定される。また、管側耐圧構成品の炭素鋼等使用部位には、海水が接するためライニングを施工しているが、ライニングのはく離等により炭素鋼等に海水が接した場合、管板が炭素鋼+自合金クラッドであるため、炭素鋼に異種金属接触産性を維持している。しからないの、分解点体的の目視症間により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
47		多管円筒	Δ2	腐食 (流れ加 速型腐食)	管側耐圧構成品	スチームコンバータドレン冷却 器、スチームコンバータ	湿分分離加熱器、スチームコンパータドレン冷却器およびスチームコンパータの高温水または2相流体を内包する水室胴板他の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。しかしながら、分解点検時の目視確認により、機器の健全性を維持している。したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
48	熱交換器		Δ①	腐食(流れ加 速型腐食)	日間間では、 の腐食(流れ加 速型腐食)	熱器、グランド蒸気復水器	また、第7高圧給水加熱器およびグランド蒸気復水器の管側耐圧構成品は炭素鋼であり、腐食が想定される。 しかしながら、内部流体は内等を管理した脱気水で内面の腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
49	熱交換器	蒸気発生 器	Δ2	摩耗	伝熱管の損傷 振止め金具 (AVB: Anti Vibration Bar) 部摩耗	蒸気発生器	ANBによる伝熱管の支持が不十分な場合、伝熱管の外面を流れる流体によって伝熱管が振動し、ANBと接触を繰り返すことにより生じる2次側表面から摩耗減肉が発生する可能性がある。 しかしながら、従来の2本組AVBに対し、大飯3号炉の蒸気発生器では3本組AVBを採用しており、伝熱管の支持状態は向上している。 曲げ半径の大きい伝熱管において、3本組AVBの場合、2点以上の非接触部が存在すると、流力弾性振動が発生し、AVB部に摩耗減肉が発生する可能性は否定できないが、AVBの板厚を大きくし、挿入時隙間管理を行っていることから、摩耗減肉が発生する可能性は小さい。
50	熱交換器	蒸気発生器	Δ2	粒界腐食割れ	伝熱管の損傷 粒界腐食割れ (IGA: Inter Granular Attack)	蒸気発生器	管支持板クレビス部等で2次冷却水中の遊離アルカリの濃縮と酸化鋼等による酸化性雰囲気が重量し、2次側表面からの結晶粒界に沿った割れを伴う腐食が発生する可能性がある。 しかしながら、大飯3号炉の蒸気発生器では、伝熱管材料に耐粒界腐食割れ性に優れた690系ニッケル基合金(特殊熱処理材)を使用し、管支持板穴形状は管支持板クレビス部での不純物濃縮対策としてBEC穴(Broached Egg Crate)を採用していることから、粒界腐食割れ発生の可能性は小さい。
51	熱交換器	蒸気発生器	Δ②	孔食	伝熱管の損傷 ピッティング (孔食)	蒸気発生器	管板上のスラッジ堆積部において、酸化鋼等による酸化性雰囲気下で塩化物が濃縮し、2次側表面からの局部的な腐食が発生する可能性がある。 しかしながら、現状の水質環境下よりも塩化物イン/濃度を高くした厳しい条件下で、実機模擬スラッジによる腐食電位を測定したところ、腐食電位上昇はわずかであることから、ビッティング発生の可能性は小さい。
52	熱交換器	蒸気発生器	Δ2	デンティング	伝熱管の損傷 管板直上部腐食 損傷	蒸気発生器	拡管による残留応力と管側2次側上面のスラッジ堆積部での腐食環境の重畳により、2次側表面から損傷する可能性があり、海外のキスロール(注)、爆発拡管等の600系ニッケル基合金プラントにおいて、高温側管板直上部2次側表面に周方向損傷等が報告されている。 原因は、キスロールブラントについてはショットブラスト材の炭素鋼が管板上で堆積して腐食し、体積膨張を起こしたことに伴うデンティングにより高応力となり、応力腐食割れが発生したと推定されている。 また、爆発拡管等のブラントについては拡管による残留応力およびスラッジ堆積部での腐食環境が重量したことによるものと推定されている。なお、国内の600系ニッケル基合金プラントでは、これまでの渦流探傷検査で同損傷は認められていない。大飯3号炉は、690系ニッケル基合金(特殊熱処理材)を使用しており、材料の耐食性向上、流動物会(水流の抵抗を減少させ低流速領域を減少させるとともに、低流速領域を50プローダウン取出口に近づけてスラッジの排出を促す)によるスラッジ堆積防止を行っており、かつ液圧拡管により拡管境界部の応力を低減させていることから、腐食発生の可能性は小さい。 (注)キスロールはフラマトム製蒸気発生器で一時期使用されていた拡管手法であり、ローラで2段拡管を行い、1段目の拡管境界部を管板上面に、2段目の拡管境界部を管板内におくものである。
53	熱交換器	蒸気発生器	Δ2	フレッティン グ疲労割れ	伝熱管の損傷 フレッティング 疲労	蒸気発生器	ANBの挿入不足により、伝熱管の外面を流れる流体によって伝熱管が振動し、最上段管支持板部等で2次側表面からフレッティングによる疲労損傷が発生する可能性がある。 しかしながら、仮に流力弾性振動が発生し、AVB部の摩耗減肉が発生した場合、現状減肉の補修基準である20%の減肉による隙間増加を考慮しても、伝熱管支持板部での発生応力は小さく、フレッティング疲労による破断が発生する可能性は小さい。

表1-1 日常劣化管理事象一覧(6/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
54	熱交換器	蒸気発生器	Δ②	応力腐食割れ	伝熱管の損傷 管板拡管部及び 拡管境界部応力	蒸気発生器	製作時の拡管による残留応力と、運転中の作用応力が重量することにより1次側表面からの応力腐食割れが発生する可能性がある。 しかしながら、応力腐食割れは、材料・応力・環境の3要因により発生し、運転時間の経過に伴い顕在化してくる時間依存型の損傷であるが、大飯3号炉では690系ニッケル基合金(特殊熱処理材)採用による耐た力腐食割れ性の向上を図り、また液圧拡管を採用し、ローラ拡管と比較して残留応力低減を行っていることから、応力腐食割れ発生の可能性は小さい。
55	熱交換器	蒸気発生器	Δ2	応力腐食割れ	伝熱管の損傷 小曲げUベンド 部応力腐食割れ (SCC)	蒸気発生器	小半径 U ベンド曲げ加工に伴う高残留応力と、運転中の作用応力が重畳することにより1次側表面から応力腐食割れが発生する可能性がある。 しかしながら、応力腐食割れは、材料・応力・環境の3要因により発生するが、大飯3号炉では809系ニッケル基合金(特殊熱処理材)採用による耐応力腐食割れ性向上とともに、応力除去焼鈍を実施して残留応力をほぼゼロに抑えている。また、内圧および熱伸び差による作用応力も大きくなく、応力腐食割れ発生の可能性は小さい。
56	熱交換器	蒸気発生器	Δ2)	デンティング	伝熱管の損傷 デンティング	蒸気発生器	炭素鋼製管支持板の管支持板クレビス部において腐食が発生すると、その腐食生成物は元の炭素鋼より体積が増大する。この腐食生成物の成長により伝熱管が徐々に圧迫され変形する可能性がある。 管支持板クレビス部の腐食生成物の成長については、管支持板材料、形状、水質環境によって発生条件が異なる。また、腐食は水質環境中の塩化物イオン濃度に依存するが、現状のNT (AII Volatile Treatment:全揮発性薬品処理)環境下では炭素鋼製管支持板のドリル穴の場合でも、運転開始後60年時点での予想される腐食量はわずかである。大飯3号炉ではそれよりも腐食量の少ないステンレス鋼製管支持板のBEC次を採用していること、国内の取替前蒸気発生器(炭素鋼製管支持板とドリル穴の組み合わせ)でも発生していないことも勘案して、デンティングが発生する可能性は小さい。
56-1	熱交換器	蒸気発生器	Δ2	摩耗	伝熱管の損傷 管支持板直下部 摩耗	蒸気発生器	2020年11月、高浜 4 号炉において、管支持板直下部の伝熱管外面にスケールによる摩耗減 肉が確認されている。本事象は、伝熱管下部の表面生成された稠密層が主体のスケールが、プラント起動・停止に伴いはく離したものが運転中の上昇流で管支持板下面に留まり、伝熱管に繰り返し接触したことで摩耗減肉が発生したものと推定している。しかしながら、大飯 3 号炉については、2 次側水質はAVT (AII V) Olatile Treatment;全揮発性素品処理)で管理しており、絡水の水質を104.6 (と) 適切な管理により鉄持込量を抑制するとともに、第17回定期検査時(2019年度)および第18回定期検査時(2020~2021年度)に希薄薬液洗浄(ASCA (Advanced Scale Conditioning Agent))を実施している。また、第18回定期検査時(2020~2021年度)に回収したスケールの棚密層厚さは小さく、伝熱管との摩耗試験を行ったところ、試験開始後にスケールが投損するか、スケールの方が早く摩耗した結果となり、伝熱管に有意な酵耗減肉を発生させるようなスケールは確認されなかった。今後は、スケールを回収し、稠密層厚を計測およびスケール摩耗試験を実施し、必要に応じて薬品洗浄をすることとしているため、スケールによる摩耗減肉が発生する可能性は小さい。また、蒸気発生無熱を開き、対しては、定期的に全数渦流探傷検査を実施し、健生を維持している。さらに、定期的にスラッジランシングを実施し、管板上のスラッジ除去を実施している。とも機能の維持は可能であることから、高経年化対策上着目すべき経年劣化セ事のではない。
57	熱交換器	蒸気発生器	Δ①	応力腐食割れ	伝熱管の管板ク レビス部応力腐 食割れ	蒸気発生器	伝熱管は液圧拡管としており、管板クレビス部で応力腐食割れが発生する可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の渦流探傷検査により、機器の健全性を確認している。
58	熱交換器	蒸気発生器	Δ2	スケール付着	伝熱管のスケー ル付着	蒸気発生器	2次側の流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、運転中の温度や圧力等のパラメータ監視により、機器の健全性を維持している。 また、スケール除去のため、第17回定期検査時(2019年度)に希薄薬液洗浄(ASCA)を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
59	熱交換器	蒸気発生器	Δ2	スケール付着	管支持板穴への スケール付着	蒸気発生器	海外では、BEC(Broached Egg Crate)型管支持板を採用しているプラントにおいて、上部管支持板BEC穴の流路部分でスケール付着による閉塞によって蒸気発生器の2次側水位の上下動が発生し、これを抑制するために出力を低下させたと報告されており、大飯3号炉においても同一構造の管支持板を採用していることから、スケール付着による閉塞が想定される。しかしながら、開放点検時に渦流探傷検査信号による閉塞率評価を実施し、スケール付着傾向を監視するとともに、必要に応じてカメラによる目視確認により、機器の健全性を維持している。また、スケール除去のため、第17回定期検査時(2019年度)に希薄薬液洗浄(ASCA)を実施している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
60	器數交線	蒸気発生器	ΔΦ	応力腐食割れ	冷却材出入口管 台セーフエンド の応力腐食割れ	蒸気発生器	2007年9月、美浜2号炉のA-蒸気発生器冷却材入口管台セーフエンド(ステンレス鋼製)内面において、非常に軽微な粒界割れが管台と溶接部境界近傍の機械加工部において確認されている。 割れの起点は確認できていないが、製作時入口管台とセーフエンド溶接近傍の内面の極表層部において高い残留応力が発生し、溶接部近傍において運転中に粒界割れが進展したものと推定されており、これまでの研究ではPIRT環境中の冷間加工層で応力値食割れ発生は確認されていないが、硬きの上昇とともに進展速度が増加することがわかっている。また、硬さの上昇とともに応力腐食制和発生の感受性も高まることから、応力腐食制れが想定されていながら、大飯3号炉の冷却材出入口管台については、第12回定期検査等したしたりに大阪3号炉の冷却材出入口管台については、第12回定期検査等に関すにあるに、大阪3号炉の冷却付出入口管台については、第12回定期検査等に関すにであることがある可能性はないと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、冷却材出入口管台の応力腐食割れに対しては、機器点検時に溶接部の超音波探傷検査 および急浸探傷検査 により有意な欠陥がないことを確認し、漏えい試験により耐圧部の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
61	熱交換器	蒸気発生 器	Δ2	応力腐食割れ	600系ニッケル基 合金使用部位の 応力腐食割れ	蒸気発生器	600系ニッケル基合金使用部位には、PWR 1 次系水質環境下では応力腐食割れが想定される。 600系ニッケル基合金のPWR 1 次系水質環境下における応力腐食割れの環境要因としては、 溶存酸素、塩化物イオン等の化学成分および温度が重要となる。しかし、PWRの 1 次冷却 材は、水素注入や脱塩処理により、溶存酸素濃度、塩化物イオン濃度等を極力低減している。このことから、環境要因としては温度が重要となり、温度が高いほど応力腐食割れ発生時間が低くなる。 600系ニッケル基合金の応力腐食割れについて、現状知見を踏まえて使用部位の応力・温度条件をもとに評価を行った結果を表2.2-1に示す。 7. ※却材 出入口管台については、第12回定期検査時(2006年度)に予防保全措置として渦流探傷検査を実施し、異常のないことを確認した上で、超音波ショットビーニング(応力緩和)を施工している。その他の部位については、美浜2号炉蒸気発生器を1994年に取緩和)を施工している。その他の部位については、美浜2号炉蒸気発生器を1994年に取緩和)を施工している。その他の部位については、美浜2号炉蒸気発生器を1994年に取食利が問題となる可能性は小さいと考える。 また、冷却が出入口管台については、定期的に溶接部の超音波探傷検査および浸透探傷検査を、管板1次側内張りおよび仕切板については定期的に目視確認を実施し、有意な割れのないことを確認している。また、漏えい確認を実施し、耐圧部の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化 化事象ではない。
62	熱交換器	蒸気発生器	Δ①		2 次側構成品の 腐食	蒸気発生器	2次側構成品のうち、炭素鋼または低合金鋼を使用している蒸気出口管台、給水入口管台、2次側側、検査用穴、2次側マンホール、気水分離器、湿分分離器、給水リング、サーマルスリーブは、腐食が想定される。また、蒸気あるいは水が衝突さる部位では、腐食が加速されることにより、減肉が想定される。しかしながら、2次側が質は材で (All Volatile Treatment と揮発性患品処理)で管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸素濃度を5ppb以下、pH8.6~10.6と腐食防止の観点から適切に管理しており、溶存酸金、原子力免電が水質性管理技術を類性を証試験に関する調査報告書「総括版」平成5年度」」となり、腐食量としては無視できるものである。また、運転時間10万時間を経過した美浜2号炉の旧蒸気発生器において、腐食の可能性のある炭素鋼製の湿分分離器の調査を行った結果、断面のマクロ観察によっても腐食などは認められておらず、健全な状態を確認している。一方、流れ加速型腐食については、気水分離器のメチューブからの給水が当たる部位、給水リング、給水リングのメーューブ等に閉いている低合金鋼は、実機使用温度200~程度では、耐流れ加速型腐食ではは一つででは、管内部には耐流れ加速型腐食性に慢れており、給水リングのメーューブ等に関いている低合金鋼は、実機使用温度200~程度では、和加速型腐食性に慢化では、管台内部には耐流れ加速型腐食性に優れた600系ニッケル基合の能力は10円が取り付けられており、流れ加速型腐食により機器の健全性に影響を与える可能性は小さい。素気出口管台については、管台内部には耐流れ加速型腐食性に優れた600系ニッケル基合のロフローリストリクタベンチュリーが取り付けられており、流れ加速型腐食により機器の健全性に影響を与える可能性は小さい。
63	熱交換器	蒸気発生器	Δ①	腐食(全面腐食)	マンホール用ボルトの腐食(全面腐食)	蒸気発生器	マンホール用ボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後も走れらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年対策上着目すべき経年劣化事象ではない。なお、開放点検時の目視確認等により、機器の健全性を確認している。
64	熱交換器	直接接触 式熱交換 器	Δ①	摩耗	スプレイ弁の摩 耗	脱気器	脱気器に流入した給水は、スプレイ弁により上部から脱気器内にスプレイされる。スプレイ弁は絵水が流入することにより、弁前後の差圧が生じ作動する。この作動により、弁棒の摺動部に摩耗が想定される。しかしながら、主にユニット起動・停止時のみの摺動であり、摩耗が生じる可能性は小さい。また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
65	熱交換器	直接接触 式熱交換 器	Δ①		スプレイ弁の腐食(流れ加速型腐食)	脱気器	スプレイ弁にて給水が連続的に脱気器内にスプレイされることにより、給水がスプレイされる弁部に流れ加速型腐食が想定される。 しかしながら、スプレイ弁は耐流れ加速型腐食性に優れたステンレス鋼を使用しているため、腐食が発生する可能性は小さい。 したがった、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
66	熱交換器	直接接触式熱交換器		腐食(全面腐食)	耐圧構成品の外 面からの腐食 (全面腐食)	脱気器	加熱器胴板・鏡板、タンク胴板・鏡板およびマンホール蓋は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は防水措置(保温)により腐食を防止しており、防水措置(保温)が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により防水措置(保温)の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
67	熱交換器	直接接触 式熱交換 器	Δ2	腐食 (流れ加 速型腐食)	耐圧構成品等の 腐食(流れ加速 型腐食)	脱気器	蒸気噴射管、グレーチング、加熱器胴板・鏡板、タンク胴板・鏡板およびマンホール蓋は 炭素鋼であり、蒸気流動による流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
68	熱交換器	直接接触 式熱交換 器	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	脱気器	脱気器は横置きであり、支持脚 (スライド脚) が設置されているが、スライド部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
69	熱交換器	直接接触 式熱交換 器	Δ2	腐食(全面腐食)	支持脚及び取付 ボルトの腐食 (全面腐食)	脱気器	支持脚および取付ポルトは炭素鋼または低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
70	熱交換器	サンプル クーラ		腐食(全面腐食)	ベース等の腐食 (全面腐食)	試料冷却器	ベースおよび支持金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等可目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
71	ポンプ モータ	高圧ポン プモータ		腐食(全面腐食)	固定子コアおよび回転子コアの 腐食(全面腐食)	共通	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
72	ポンプ モータ	高圧ポン プモータ		腐食(全面腐食)	側板、ファンカ バーおよびカ	フレーム、端子箱、ブラケット [共通]、空気冷却器側板、ファン カバー(海水ポンプモータ)、およ びカバー(電動補助熱水ポンプ モータ、高圧注入ポンプモータ]	フレーム、端子箱、ブラケット、空気冷却器側板、ファンカバーおよびカバーは炭素鋼または鋳鉄であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食性行の可能性はからい。 また、巡視点検等で目視により塗膜の状態を確認し、は、離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
73	ポンプ モータ	高圧ポン プモータ	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	共通	回転子棒・エンドリングについては、モータの起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、発生応力は疲労強度より小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
74			Δ①	摩耗			海水ポンプモータの主軸については、ランナとの間に摩耗が発生することが想定される。 しかしながら、分解点検時に主軸とランナの分解を実施しないため摩耗が生じる可能性は 小さい。 また、油潤滑のすべり軸受を使用しており、ランナと軸受間に潤滑油が供給され腹が形成 されるため、摺動摩耗が生じる可能性は小さい。 さらに、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因 があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
75	ポンプ モータ	高圧ポン ブモータ	Δ①	摩耗	主軸およびラン ナの摩耗	高圧注入ポンプモータ	高圧注入ポンプモータはすべり軸受を使用しており、軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、油潤滑のすべり軸受を使用しており、主軸と軸受間に潤滑油が供給され、腱が形成されるため、摺動摩耗が生じる可能性は小さい。また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
76			Δ①	摩耗		電動補助給水ポンプモータ、高圧注 入ポンプモータ	電動補助給水ポンプモータ、高圧注入ポンプモータはころがり軸受を使用しており、軸受と主軸の接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。 この場合、主軸表面にわずかな摩耗が発生し、主軸と軸受スリーブ間で微小すき間が生 じ、運転中にフレッティングによる摩耗が発生する可能性がある。 しかしながら、これを防止するため主軸表面の仕上げは行わない連用としており、これま でに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要のがあるとは考え がたい。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認および寸法計測により、機器の健全性を確認している。
77	ポンプ モータ	高圧ポン プモータ	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	共通	モータ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、モータ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認および分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
78	ポンプ モータ	高圧ポン プモータ		腐食(全面腐食)	空気冷却器伝熱 管の腐食 (全面 腐食)	海水ポンプモータ、高圧注入ポン ブモータ	空気冷却器伝熱管は銅合金であり、腐食が想定される。 しかしながら、海水ポンプモータにおいては、内外面ともに流体が空気であり、高圧注入 ポンプモータにおいては、内面については内部流体がヒドラジン水 (防錆剤注入水) であ り、外面については内部流体がヒドラジン水 (防錆剤注入水) であ り、外面については空気で腐食が発生しがたい環境であり、これまでに有意な腐食は認め られておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に内面は渦流探傷検査で、外面は目視確認により、機器の健全性を確認 している。
79	ポンプ モータ	高圧ポン プモータ	Δ①	腐食(全面腐食)	空気冷却器管板 の腐食(全面腐 食)	高圧注入ポンプモータ	空気冷却器管板は銅合金および炭素鋼であり、腐食が想定される。 しかしながら、接液流体はヒドラジン水(防錆剤注入水)および空気で腐食が発生しがた い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

表1-1 日常劣化管理事象一覧(9/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
80	ポンプ モータ	高圧ポンプモータ	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	共通	取付ボルトは炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜またはメッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
81	ポンプ モータ	低圧ポン プモータ	Δ①	腐食(全面腐食)	固定子コアおよ び回転子コアの 腐食(全面腐 食)	充てんポンプモータ	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは 考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
82	ポンプ モータ	低圧ポンプモータ	Δ2)	腐食(全面腐食)	フレーム、端子 箱、ブラケッ ド、空気冷よび カバッドの がって がって がって の食 (全面腐食)	充てんポンプモータ	フレーム、端子箱、ブラケット、空気冷却器カバーおよびベッドは炭素鋼または鋳鉄であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
83	ポンプ モータ	低圧ポン プモータ	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	充てんポンプモータ	回転子棒・エンドリングについては、モータの起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、発生応力は疲労強度より小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
84	ポンプ モータ	低圧ポンプモータ	Δ①	摩耗	主軸および出力軸の摩耗	充てんポンプモータ	主軸および出力軸については、軸受(ころがり)との接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩 耗が発生し、主軸と軸受スリーブ間で微小すき間が生じ、運転中にフレッティングによる 摩耗が発生する可能性がある。 しかしながら、これを防止するため主軸表面の仕上げは行わない運用としており、これま でに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え がたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認および寸法計測により、機器の健全性を確認している。
85	ポンプ モータ	低圧ポンプモータ	Δ①	高サイクル疲 労割れ	主軸および出力 軸の高サイクル 疲労割れ	充てんポンプモータ	モータ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、モータ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認および分解点検時の応力集中部に対する目視確認によ り、機器の健全性を確認している。
86	ポンプ モータ	低圧ポン プモータ	Δ①	腐食(全面腐 食)	空気冷却器伝熱管の腐食(全面腐食)	充てんポンプモータ	空気冷却器伝熱管は飼合金であり、腐食が想定される。 しかしながら、内面については内部流体がヒドラジン水 (防錆剤注入水)であり、外面に ついては空気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に内面は渦流探傷検査で、外面は目視確認により、機器の健全性を確認 している。
87	ポンプ モータ	低圧ポン プモータ	Δ①	腐食(全面腐 食)	空気冷却器管板 の腐食(全面腐 食)	充てんポンプモータ	空気冷却器管板は飼合金および炭素鋼であり、腐食が想定される。 しかしながら、接液流体はヒドラジン水(防錆剤注入水)および空気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
88	ポンプ モータ	低圧ポンプモータ	Δ①	腐食(全面腐食)	固定磁極、ドラ ムおよび誘導子 の腐食(全面腐 食)	充てんポンプモータ	固定磁極、ドラムおよび誘導子は炭素鋼であり、腐食が想定される。 しかしながら、固定磁極はワニス処理、ドラムおよび誘導子は塗装により腐食を防止して おり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因が あるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
89	ポンプ モータ	低圧ポン プモータ	Δ2)	腐食(全面腐 食)	取付ポルトの腐食(全面腐食)	充てんポンプモータ	取付ポルトは炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜またはメッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
90	容器	原子炉容器	Δ ①	応力腐食割れ	600系ニッケル基 合金使用部位の 応力腐食割れ	原子炉容器	1991年9月、仏国ブジェー(Bugey)発電所3号炉において発生した蓋管台損傷事象は、管台母材材料である600系ニッケル基合金の1次冷却材中での応力腐食割れと報告されており、その後の点検において、フランス、スウェーデン、スイス等の他の海外ブラントにおいて管台母材部およびJー溶接師に1次冷却材中での応力腐食割れによる損傷が認められている。また、2004年5月には、国内においても大販発電所3号炉の蓋管台」溶接部において発酵の表面仕上げがパウトれていなかったことに起因して、溶接部表面に比較的高い残留応力が発生していたことにより、1次冷却材中での応力腐食割れによる損傷が認められている。2002年5月には米国デービスペッセ(Davis Besse)発電所において、ほう酸腐食による原子炉容器上部蓋の減損が認められており、これは600系ニッケル基合金の応力腐食割れにより上部整重通部から1次冷却材が漏えいし、それを放置したことによるものとされている。さらに、2008年3月には、大飯発電所3号炉の原子炉冷却材出口管台と1次冷却材管のニッケル基合金溶接部において、数製作時の機械加工に伴う内表面の高い引張残留応力により、1次冷却材中での応力腐食割れが想定されている。これらのことから、600系ニッケル基合金検用部位の応力腐食割れが想定される。な2000年10月、米国V. C. サマー(V. C. Summer)発電所において、原子炉冷却材出口管台と1次冷却材管のニッケル基合金検用部位の応力腐食割れが想定されている。とから、600条ニッケル基合金を使用部位の応力腐食割れが想定されている。とから次の様り返しにより、引張機留応力が高くなったために発生した内面側からの応力腐食割れと報告されている。しかしながら、応力・温度条件の厳しい冷却材出入口管台、炉内計装筒の子が発力を加入と明さが多くが、11のでは大いたが多くが、11のでは大いたが多くが、11のでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多くが表しまでは11のであることが多いでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のでは11のであることが表しまでは11のであることが表しまでは11のであることが表しまでは11のでは11のであることが表しまでは11のでは11のであることが表しまでは11のでは11のでは11のでは11のでは11のでは11のでは11のでは11
91	容器	原子炉容器	Δ①	ピッティング	上部蓋及び上部 胴フランジシー ト面のピッティ ング	原子炉容器	上部蓋および上部嗣フランジのシート面は、狭あい部でありピッティングの発生が想定される。 しかしながら、一度運転に入ると高温状態となりシート面のステンレス鋼内張り表面に強 固な酸化皮膜が形成されるため、有意なピッティングの進展は考えられない ことから、 高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
92	容器	原子炉容器		腐食(全面腐食)	スタッドボルト の腐食(全面腐 食)	原子炉容器	スタッドボルトは低合金鋼であり、Oリングからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止 を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の超音波探傷検査により、機器の健全性を確認している。
93	容器	原子炉容器	Δ①	応力腐食割れ	蓋管台、空気抜 管台等の応力腐 食割れ	原子炉容器	蓋管台、空気抜管台およびA冷却材出口管台溶接部接液部には690系ニッケル基合金を使用しており、応力腐食割れが想定される。しかしながら、図2.2-2に示す電力共同研究による690系ニッケル基合金の温度加速定荷重応力腐食割れ試験の結果から、応力腐食割れが発生する可能性は小さいと考えられる。したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、漏えい検査により、機器の健全性を確認している。また、A冷却材出口管台については、超音波探傷検査および浸透探傷検査により、機器の健全性を確認している。
94	容器	加圧器本体	Δ①	ピッティング	マンホールシー ト面のピッティ ング	加圧器	加圧器のマンホールシート面は狭あい部でありピッティングの発生が想定される。 しかしながら、一度運転に入ると高温状態となりシート面のステンレス鋼内張り表面に強 固な酸化皮膜が形成される ため、有意なピッティングの進展は考えられないことから、 高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
95	容器	加圧器本体		腐食(全面腐食)	マンホールボルトの腐食(全面腐食)	加圧器	マンホールボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も 機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
96	容器	加圧器本体	Δ①	応力腐食割れ	温度計用管台及 びレベル計用管 台の内面からの 応力腐食割れ	加圧器	1995年9月、米国サリー (Surry) 発電所 1 号炉の加圧器計測用管台で応力腐食割れによる 損傷が発生していることから、応力腐食割れが想定される。 しかしながら、温度計用管台およびレベル計用管台には耐応力腐食割れ性に優れた316系 ステンレス線を採用しており、水素注入や脱塩処理を実施することで 1 次系水質を維持 し、ブラント起動時のサンプリング等により管理している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、漏えい検査により、機器の健全性を確認している。
97	容器	加圧器本体	Δ①	応力腐食割れ	ヒータスリーブ (溶接部含む) の応力腐食割れ	加圧器	1989年5月、米国カルバートクリフ (Calvert Cliffs) 発電所 2号炉で損傷事例のあった ヒータスリーブは、600系ニッケル基合金 であり、316系ステンレス鋼である大飯3号炉 のヒータスリーブについては、PWR 1 次系水質環境下において応力腐食割れ発生の可能性 は小さいと考えられる。 また、2006年4月、米国ブレイドウッド (Braidwood) 発電所 1号炉で損傷事例のあった ヒータスリーブは、316系ステンレス鋼であるが、溶接部が熱影響等により鋭敏化してい たとともに、ヒータスリーブとヒータの隙間部で溶存酸素が高くなっていた可能性がある ことから、発生原因として「酸素型応力腐食割力」が推定されている。 しかしながら、大飯3号炉のヒータスリーブ (316系ステンレス鋼) については、民間研 究において、酸素型応力腐食割れに対して非常に厳しい条件 (鋭敏化に対しては当該部に 想定される以上)での定荷重試験により破断が認められた時間よりも、実機が酸素型応力 腐食割れ発生環境下に置かれる時間が極めて短い ことから、応力腐食割れ発生の可能性 は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年 劣化事象ではない。 なお、漏えい検査により、機器の健全性を確認している。
98	容器	加圧器本体	Δ①	応力腐食割れ	スプレイライン 用管台等の690系 ニッケル基合金 使用部位の応力 腐食割れ	加圧器	2003年9月、敦賀 2 号炉の加圧器逃がし弁用管台および安全弁用管台において、600系ニッケル基合金接液部の応力腐食割れが発生している。大飯 3 号炉のスプレイライン用管台等には690系ニッケル基合金を使用しており、図2.2-2に示す電力共同研究による690系ニッケル基合金の温度加速定荷重応力腐食割れ試験の結果から、応力腐食割れが発生する可能性は小さいと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、溶接部を対象とした超音波探傷検査および浸透探傷検査により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
99	容器	加圧器ヒータ	Δ①	導通不良	発熱体、リード、伸縮リード、端子および 銅棒の導通不良	加圧器後備ヒータ	発熱体等は、ヒータ0M-0FF時に発生する熱伸縮により繰り返し応力を受けるため、材料に 疲労が蓄積され、疲労割れによる導通不良が想定される。 しかしながら、実機同等品を用いた0M-0FF寿命試験 の結果、実機の使用状態での発熱体 温度では、60年間の運動を想定したヒータ0M-0FF回数程度では、導通不良に至らないこと を確認しており、疲労割れにより導通不良に至る可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の抵抗測定により、機器の健全性を確認している。
100	容器	加圧器ヒータ	Δ①	絶縁低下	セラミック端子 および充てん材 の絶縁低下		セラミック端子および充てん材は無機物のセラミックスおよび酸化アルミニウムであり、経年劣化の可能性はない。なお、長期の使用においては表面の汚損による絶縁低下が想定される。しかしながら、セラミック端子および充てん材はアダプタおよびレセプタクルで保護されており、塵埃の付着により表面が汚損する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
101	容器	加圧器 ヒータ	Δ①	絶縁低下	絶縁物の絶縁低下	加圧器後備ヒータ	絶縁物は、発熱体の発熱により、発熱体の成分 (Ni、Cr) が拡散し、酸化マグネシウムの 純度が低下することによる絶縁低下が想定される。 しかしながら、加圧器後備ヒータの発熱体の温度は最大550℃ であり、拡散が急激に進行 することはない (出典: キンガリー・ウールマン セラミックス材料科学入門 基礎 編)。 また、加圧器後備ヒータは絶縁物の吸湿防止のため、セラミック端子とレセプタクルの接 続部をシールしており、外部の湿気がシース内部に侵入しない構造としている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 な事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
102	容器	加圧器 ヒータ	Δ①	応力腐食割れ	シースおよびプ ラグの応力腐食 割れ	加圧器後備ヒータ	海外プラントにおいて、ステンレス鋼製のシース外面のサポートプレート接触部等が応力 腐食割れによって損傷する事例が発生している。応力腐食割れの発生原因として、接液部 表面の硬化層や残留応力の影響と報告されている。 大飯3号炉のシースは国内産であり、表層は硬くなく、応力腐食割れが発生、進展する ことは考えがたい。 また、プラグの表面は機械加工を行っているが、内部まで硬いとは考えられない ことか ら、応力腐食割れが進展することは考えがたい。 以上のことから、シースおよびプラグの応力腐食割れは、高経年化対策上着目すべき経年 劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、1次冷却材の混入等による絶縁低下のないこと を確認している。
103	容器	原子炉格 納容器本 体	Δ2	腐食(全面腐 食)	ライナーブレー ト等の腐食(全 面腐食)	原子炉格納容器	ライナーブレート等は炭素鋼であり、腐食が想定される。 しかしながら、塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能 性は小さい。コンクリート埋設部は塗膜の状態を確認することが困難であるが、コンク リート内の水酸化カルシウムにより適アルカリ環を形成しており、塗膜がない状態でも 鉄表面は不動態化しているため、腐食速度としては極めて小さい。 また、定期的に目視確認により塗膜等の健全性を確認するとともに、原子炉格納容器漏え い率試験によりパウンダリ機能の健性性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
104	容	原子炉格 納容器本 体	Δ①	疲労割れ	ライナープレー トの疲労割れ	原子炉格納容器	ライナーブレートは、ブラントの起動・停止時等の過渡により、疲労割れが想定される。 しかしながら、運転中の温度変化およびそれに伴う圧力変化等しか過渡を受けず、有意な 過渡を受けない ことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、原子炉格納容器漏えい率試験により、機器の健全性を確認している。
105	容器	機械ペネ トレコン ション	Δ2	腐食(全面腐 食)	スリーブ等耐圧 構成品の腐食 (全面腐食)	共通	スリーブ、蓋、胴および扉は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は 塗装等により腐食を防止しており、塗膜等が健全であれば 腐食進行の可能性は小さい。 また、原子炉格納容器漏えい率試験時等の目視確認 で塗膜等の状態を確認し、はく離等 が認められた場合は必要に応じて補修することにより、機器の 健全性を維持している 。 したがって、今後も 機能の維持は可能であることから、高経年化対策上着目すべき経年 劣化事象ではない。
106	容器	機械ペネ トレョン	Δ①	疲労割れ	胴等耐圧構成品 の疲労割れ	機器搬入口、通常用エアロック、	機器搬入口、通常用エアロックおよび燃料移送管貫通部の胴等耐圧構成品は、プラントの 起動・停止時等の過渡により、疲労割れが想定される。 しかしながら、原子炉格納容器と同様に運転中の温度変化およびそれに伴う圧力変化等し か過渡を受けず、有意な過渡を受けないことから、高経年化対策上着目すべき経年劣化事 象ではない。 なお、原子炉格納容器漏えい率試験により、機器の健全性を確認している。
107	容器	電気ペネ トレー ション	Δ①	導通不良	外部リードの導 通不良	LV型モジュール	外部リードは、大きな荷重が作用すると断線するため、導通不良が想定される。 しかしながら、断線に至るような荷重は作用しない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器の動作確認等により、機器の健全性を確認している。
108	容器	電気ペネ トレー ション	Δ2	腐食(全面腐食)	本体の腐食(全 面腐食)	LV型モジュール	本体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
109	容器	電気ペネ トレー ション	Δ①	応力腐食割れ	端板およびへッ ダーの応力腐食 割れ		端板およびヘッダーはステンレス鋼であり、応力腐食割れが想定される。 しかしながら、端板およびヘッダーは水環境にないこと、さらに温度も低く、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、原子炉格納容器漏えい率試験および電気ベネトレーションに封入しているN2ガス の圧力確認 により、機器の健全性を確認している。
110	容器	補機タンク	Δ2	腐食(全面腐食)	胴板等耐圧構成 品の外面からの 腐食(全面腐 食)	蓄圧タンク、ガスサージタンク、 原子炉補機冷却水サージタンク、 第2段湿分分離加熱器ドレンタン ク	胴板等耐圧構成品は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
111	容器	補機タンク	Δ2	腐食(全面腐食)	マカートおとび	共通	スカートおよび支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
112	容器	補機タン ク	Δ2	腐食(全面腐 食)	支持脚(スライ ド脚)の腐食 (全面腐食)	よう素除去薬品タンク、原子炉補機冷却水サージタンク、第2段湿分分離加熱器ドレンタンク	
113	容器	補機タン ク	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	第2段湿分分離加熱器ドレンタン ク	取付ボルトは低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
114			Δ2	腐食(全面腐食)	胴板等耐圧構成 品の内面からの 腐食(全面腐 食)	ガスサージタンク	ガスサージタンクの胴板等耐圧構成品は炭素鋼であり、ドレン水がタンク下部に滞留していることから、長期使用により、内面からの腐食が想定される。しかしながら、開放点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
115	容器	補機タン ク	Δ①	腐食(全面腐食)	胴板等耐圧構成 品の内面からの 腐食(全面腐 食)	原子炉補機冷却水サージタンク. 第2段湿分分離加熱器ドレンタン ク	原子炉補機冷却水サージタンクおよび第2段湿分分離加熱器ドレンタンクの胴板等耐圧構成品は炭素鋼であり、胴板等の内面からの腐食が想定される。 しかしながら、原子炉補機冷却水サージタンクは内部流体がヒドラジン水(防錆剤注入 水)、第2段湿分分離加熱器ドレンタンクは内部流体が旧等を管理した脱気水(給水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
116	容器	補機タンク	Δ①	応力腐食割れ	管台の内面から の応力腐食割れ	蓄圧タンク	1977年10月、米国H.B.ロビンソン (H.B. Robinson) 発電所のほう酸注入タンクでカップ リングから管合 (ともにステンレス鋼) にかけて内面からの応力腐食割れによる損傷が発生している。この事象は、飽和溶存酸素濃度 (最大約8ppm) のほう酸水環境下で、高炭素量のステンレス鋼を使用していた管台が著しく鋭敏化していたことが原因となり発生したものである。しかしながら、大飯3号炉の蓄圧タンクでは、タンク本体の熱処理を行った後に管台を溶接してあり、材料の鋭敏化はないと判断される。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
117	容器	補機タン ク	Δ①	腐食(全面腐食)	マンホール用ボルトの腐食(全面腐食)	共通	マンホール用ボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を 図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、開放点検時の目視確認等により、機器の健全性を確認している。
118	容器	フィルタ	Δ①	腐食(全面腐食)	ボルトの腐食(全面腐食)	ほう酸フィルタ	ボルトは低合金鋼であり、Oリングからの漏えいにより、内部流体による腐食が想定される。 しかしながら、締付管理により漏えい防止を 図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、開放点検時の目視確認等により、機器の健全性を確認している。
119	容器	フィルタ	Δ2	腐食(全面腐食)	ベアリングプ レートの腐食 (全面腐食)	ほう酸フィルタ	ベアリングプレートは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 成じて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
120	容器	フィルタ	Δ2	流路の減少	スクリーン流路の減少	格納容器再循環サンプスクリーン	ディスク部は原子炉格納容器内空気環境へ開放されており、異物混入によるスクリーン流路の減少が想定される。 しかしながら、目視確認と清掃により、スクリーン流路の減少につながる異物は適切に取り除かれており、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
121	容器	脱塩塔	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	冷却材混床式脱塩塔	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
122	容器	プール型 容器	Δ2	腐食(全面腐食)	ライニングの腐 食(全面腐食)	復水ピット	復水ピットのライニングは炭素鋼であり、内部流体が飽和溶存酸素濃度(最大約8pm) 水であるため、長期使用により腐食が想定される。 しかしながら、定期的に目視確認 により、塗膜の健全性を確認している。したがって、 今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
123	配管	ステンレな	Δ2	高サイクル熱 疲労割れ	母管の高サイクル熱疲労割れ	余熱除去系統配管	余熱除去冷却器出口配管とパイパスラインの合流部(高低温水合流部)においては、局所的にパイパスラインからの高温水が流入し、複雑な流況による熱過渡を受け、疲労が蓄積されることから、高サイクル熱疲労割れが想定される。高低温水合流部の高サイクル熱疲労割れが起定される。高低温水合流部の高サイクル熱疲労割れに対しては、「日本機械学会 配管の高サイクル熱疲労に関する評価指針(JSME 8 017-2003)」に基づき評価を実施した。 第化が進展すると仮定した場合における運転開始後60年時点の疲労評価に用いた過渡回数を表え。2-1に示す。 評価結果を表え、2-2に示すが、許容値を満足する結果を得た。 さらに、余熱除去冷却器出口配管とパイパスラインの合流部については、第13回定期検査時(2007-2008年度)に取替済である。また、漏えい検査により機器の健全性を維持している。 また、漏えい検査により機器の健全性を維持している。 にないって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 また、通常運転時使用されず開塞滞留部となる余熱除去系統配管の一部において、第1隔離弁にグランドリークが生じると、水平管部において熱成層が発生、消滅を繰り返すことにより高サイクル熱疲労割れ(弁グランドリーク型)が想定される。しかしながら、隔離弁の分解点検を実施し、弁ディスク位置の調整により弁シート部の隙間を適正に管理していく、ことにより、機器の健生性を維持している。したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
124	配管	ステンレス鋼配管	Δ2)	応力腐食割れ	母管の外面からの応力腐食割れ	共通	配管外面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンにより応力腐食割れが想定される。 しかしながら、塩分の付着の可能性がある配管については付着塩分濃度を測定し、健全性 を確認している。 また、巡視点検等で目視により保温材の状態を確認し必要に応じて補修することにより、 機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 また、塩化ビニールテープの熱分解により生じた塩化物イオンにより応力腐食割れが想定 される。 しかしながら、配管外表面の残存テープ有無について目視確認およびテープ痕部の浸透探 傷検査を実施し、健全性を確認している。 これらの点検は既に完了しており、今後、塩 化ビニールテープの熱分解による外面からの応力腐食割れ発生の可能性はないと考える。
125	配管	ステンレス鋼配管	Δ①	応力腐食割れ	母管の内面からの応力腐食割れ	余熱除去系統配管	1996年5月、米国セコイヤ(Sequoyah)発電所2号炉で、一次系水質環境下においても局所的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食割れによる漏えいが発生していることから、応力腐食割れが想定される。しかしながら、高温かつ溶存酸素濃度が高くなる可能性のある範囲の溶接部については、耐応力腐食割れ性に優れたSUS316系材料を使用している。**! したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、溶接部を対象とした超音波探傷検査または漏えい検査により機器の健全性を確認している。 ※1: 評価実施時点(2020年11月時点)では、高温かつ溶存酸素濃度が高くなる可能性のある範囲の中で、化学体積制御系統のペント・ドレン管の一部にSUS304系材料が存在しているが、第19回定期検査時にSUS316系材料に取替え予定である。 [※1は化学体積制御系統のみの評価内容]
125-1	配管	ステンレス銅配管	Δ①	粒界割れ	溶接部の施工条 件に起因する内 面からの粒界割 れ	余熟除去系統配管、1次冷却系統配管、安全注入系統配管	2020年8月、大飯3号炉において、加圧器スプレイ配管の1次冷却材管管台との溶接部近傍内面に亀裂が確認されている。調査の結果、「過大な溶接入熱」と「形状による影響」が重畳したことで表層近傍において特異な硬化が生じ、この特異な硬化が亀裂の発生に高負したことで表層近傍において特異な硬化が生じ、この特異な硬化が亀裂の発生に高負割れて進展したものと判断している。一方、国内外のPWアプラントにおいて類似の事例は確認されておらず、大飯3、4号炉等において同様の事象発生の可能性があると推定された部位全てに対し追加検査が行われたが、亀裂は認められていない。これらの状況から、亀裂の発生は「過大な溶接入熱」と「形状による影響」が重量した特異な事象であったと考えられる。 亀製発生部位については、第18回定期検査時(2020~2021年度)に取替えを実施し、取替えに際しては、初層入熱量が過大とならないを関下」容接を採用していることから、今後同様の事象が発生する可能性は小さい。当該部の亀製は特異な事象と判断され、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年余化事象ではない。なお、大板3号炉で発生した事象は特異であるが、メカニズムが全て明らかになっていないことから、類似性の高い箇所に対しては第21回定期検査までの間、毎回検査を実施することから、類似性の高い箇所に対しては第21回定期検査までの間、毎回検査を実施することから、類似性の高い箇所に対しては第21回定期検査までの間、毎回検査を実施することから、類似性の高い箇所に対しては第21回定期検査を表での間、毎回検査を実施することとしている。また、第22回定期検査以降については、今後の知見拡充結果を踏まえて、対象・頻度を検討し供用期間中検査計画に反映を行う。
126	配管	ステンレス鋼配管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	余熟除去系統配管、補助給水系統配管	フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
127	配管	低合金鋼配管	Δ2	腐食(全面腐食)	母管の外面から の腐食 (全面腐 食)	共通	低合金鋼配管は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等を施しており、塗膜等が健全であれば腐食進行の可能 性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
128	配管	炭 素鋼配	Δ2	腐食 (流れ加 速型腐食)	母管の腐食(流 れ加速型腐食)	主蒸気系統配管、主給水系統配管	高温水または2相流体を内包する炭素鋼配管では、エルボ部、分岐部、レジューサ部等の流れの乱れが起きる箇所で流れ加速型腐食により減肉発生する可能性がある。流れ加速型腐食により減肉発生する可能性がある。流れ加速型腐食により減肉の発生する可能性がある。方可能性は推定できるものの、個々の肉厚測定結果による進展評価以外に正確に定量的な胃ので流れの正確でする。日本のの内理別では、減肉の有無、減肉率を判断し、寿命評価を実施することとしている。配管減肉に対しては、減肉発生例知り、手命評価を実施することとしている。不管質肉に対しては、減肉発生例知り、1年成した「原子力設備。2次系配管肉厚の管理指針(PNR)」(平成2年5月)により、減肉の点検対象として主要点検部位(「日本機械学会 加圧水型原子力発電所配管減肉管理に関する技術規格(JSMES NG1-2006)」に定められた偏流発生部位および下流範囲を含む部位)およびその他部位(主要点検部位以外の部位)について管理対象とし、超音波による肉厚測定を行いデータの蓄積を図ってきた。また、美減3号炉2次系配管破損事故(2004年8月)以降は、保安院指示文書「原子力発電工作物の保安のための点検、検査等に関する電気事業法施行規則の規定の解釈(内規)の制定について」(平成2012・22原院第4号 NISA-1635-08-5) や日本機械学会の規制)の制定について」(平成2012・22原院第4号 NISA-1635-08-5) や日本機械学会の規制)の制定について」(平成2012・22原院第4号 NISA-1635-08-5) や日本機械学会の規制、NG1-2016))に定められた内容に従い、対象系統および部位や実施時期等の考え方を「2次系配管肉厚の管理指針・」に基づき配管減肉の管理を実施している。現状保全として、「2次系配管肉厚の管理指針・1」に基づき配管液を用いた肉厚測定を実施している。現状保全として、「2次系配管肉厚の管理指針・2)に基づきを開発であることから、高経年化対策上着目すべき経年劣化事象ではない。 ************************************
129	配管	炭素鋼配管	Δ2	魔食 (エロー ジョン)	母管の腐食 (エ ロージョン)	土柘小未就癿官	蒸気、凝縮水が流れる配管では、高減圧部で流速が大きくなるため、エロージョンにより減肉が想定される。 エロージョンによる減肉は、個々の肉厚測定結果による進展評価以外に正確に定量的な評価を行うことは困難であるため、配管の減肉管理については減肉の可能性のある箇所の肉厚測定を行い、減肉の有無、減肉率を判断し、寿命評価を実施することとしている。配管滅肉はりしては、減肉発生の知見、調査結果に基づき作成した「原子力設備2次系配管肉厚の管理指針(PRR)」(平成2年5月)により、減肉の点検対象として主要点検部位(「日本機械学会 加圧水型原子力発電所配管減肉管理に関する技術規格(ISIME S NGI-2006)」(定成られた偏流発生新位および下流範囲を含む部位)およびその他部位(主要点検部位以外の部位)について管理対象とし、超音波による肉厚測定を行いデータの蓄積を図ってきた。また、美浜3号炉2次系配管破損事故(2004年8月)以降は、保安院指示文書「原子力発電工作物の保安のための点検、検査等に関する電気事業法施行規則の規定の解釈 内別 の制度について」(平成20-12-22原際第4号、NISA-1636-08-5)や日本機械学会の類似 の制度について」(平成20-12-22原際第4号、NISA-1636-08-5)や日本機械学会の類似 の制度について」(平成20-12-22原際第4号、NISA-1636-08-5)、や日本機械学会の類似 の制度について)「平成20-12-22原際第4号、NISA-1636-08-5)、や日本機械学会の関係 (JSIME S NGI-2006およびJSIME S NGI-2016))に予止後が学を電内原の管理に関する技術規格(JSIME S NGI-2006およびJSIME S NGI-2016)に下の管理についる。即状保全として、「2次系配管肉厚の管理指針・メ」に基づき、超音波を用いた肉厚測定を実施して、減肉の管理を行っており、第12回定期検査で表の管理を作っており、第12 回定期接受を表して、減日を開発するといて、12 次系配管肉厚の管理指針(PWR)」(平成2年5月)に従い、社内管理方法を定めたもの。
130	配管	炭素鋼配 管	Δ2	腐食(全面腐食)	母管の内面からの腐食(全面腐食)	海水系統配管	海水系統配管には海水が接するため、内部にライニングを施工しているが、ライニングのはく、離等により海水が接した場合は、内面からの腐食が想定される。 しかしながら、ライニング点検(目視確認またはピンホール検査)を実施し、機器の健 全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
131	配管	炭素鋼配 管	Δ2)	腐食(全面腐 食)	母管の外面から の腐食 (全面腐 食)	共通	炭素鋼配管 [※] は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等を施しており、塗膜等が健全であれば腐食進行の可能 性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 ※高経年化技術評価書には、炭素鋼配管として換気空調系統配管の評価が記載されている が、誤配であり炭素鋼配管としての評価を削除した状態が正しい記載。(換気空調系統配 管はステンレス鋼配管であり、ステンレス鋼配管の評価書の中で評価している。)
132	配管	炭素鋼配 管	Δ①	腐食(全面腐食)	母管の内面から の腐食(全面腐 食)	原子炉補機冷却水系統配管	原子炉補機冷却水系統配管は炭素鋼配管であり、内面からの腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆材注入水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、系統機器の内面を目視により状況を確認し、機器の健全性を確認している。
133	配管	炭素鋼配 管	Δ2	腐食(全面腐 食)	母管の内面から の腐食(全面腐 食)	気体廃棄物処理系統配管	気体廃棄物処理系統配管は、内部流体に水分等も含まれていることから、内面からの腐食が想定される。 しかしながら、系統の弁の分解点検時にあわせて配管の内面を目視確認することで、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
134	配管	炭素鋼配 管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	主蒸気系統配管、主給水系統配 管、原子炉補機冷却水系統配管、 海水系統配管	フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
135	配管	1 次冷却 材管	Δ①	応力腐食割れ	母管及び管台の 応力腐食割れ	1 次冷却材管	母管(原子炉容器および蒸気発生器と接続するセーフエンドの溶接部を含む)および管台 はステンレス鋼鋳鋼またはステンレス鋼を使用しており応力腐食割れが想定される。 しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体 温度が低い(最高でも80°C程度)ため、応力腐食割れが発生する可能性は小さい。 また、定期検査後のブラント起動時には1次冷却材中の溶存酸素濃度化減のための運転操 作を実施するため、高温(100°C以上)で使用する場合は溶存酸素濃度が5ppb以下に低減 された流体となっていることから応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、溶接部を対象とした超音波探傷検査、浸透探傷検査または漏えい検査により機器の 健全性を確認している。
136	配管	配管サ ポート	Δ2	腐食(全面腐食)	ベースプレー ト、クランプ等 の腐食(全面腐 食)	共通	ベースプレート、クランブ等は炭素鋼または低合金鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
137	配管	配管サ ポート	Δ2	腐食(全面腐 食)	埋込金物の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修する ことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
138	配管	配管サ ポート	Δ2	摩耗	ピン等摺動部材 の摩耗	Uボルト、スライドサポート、レストレイント、スプリングハンガ、オイルスナバ、メカニカルスナバ	配管移動を許容するサポートの摺動部材は、配管熱移動や振動により摩耗が発生し、支持機能への影響が想定される。 しかしながら、巡視点検等で目視によりサポートの動作状況に異常のないことを確認し、必要に応じて部品の交換を実施 することで、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
139	配管	配管サ ポート	Δ2	はく離	スライドプレー トのテフロンの はく離	スライドサポート	主蒸気配管等の大口径配管のスライドサポートのスライド部には摩擦力を低減するために 炭素鋼表面にテフロン加工したスライドブレートを使用しているが、高温条件下で長期に わたり使用した場合、テフロンのはく離が生じ、スライド部の固着等により支持機能への 影響が想定される。 しかしながら、巡視点検等で目視によりスライドサポートの動作状況に異常がないことを 確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
140	配管	配管サ ポート	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	スプリングハンガ	スプリングハンガのばねは応力が発生した状態にて長期間保持されることにより、変形 (応力緩和)が発生し、支持機能への影響が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ていることから、高経年化対策上着目すべき経年学化事象ではない。 なお、巡視点検等で目視によりスプリングハンガの動作状況に異常のないことを確認 し、機器の健全性を確認している。
141	配管	配管サポート	Δ①	劣化	グリスの劣化	メカニカルスナバ	メカニカルスナバのボールネジ部には、円滑な作動を確保するために潤滑剤としてグリスが塗布されている。このグリスが劣化し潤滑剤として機能しなくなった場合、ボールネジ部固着等により支持機能への影響が想定される。 しかしながら、熱によるグリスの固化は、グリスの油分減少に伴い発生するものであるが、蒸発試験を実施した結果を用いて、60年間の油分減少量を外挿により推定した値は、安全側に設定した許容値に対して十分低いことを確認した。さらに、放射線によるグリスの固化については、耐放射線試験を実施し、長期の運転を考慮しても特に問題ないことを確認している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、巡視点検等で目視によりメカニカルスナバの動作状況に異常のないことを確認し、機器の健全性を確認している。
142	弁	仕切弁	Δ2	摩耗	弁体、弁座シー ト面の摩耗	共通	弁体、弁座シート面は弁の開閉により、摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合 わゼ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
143	弁	仕切弁	Δ2	摩耗	弁棒(パッキン 受け部)の摩耗	共通	弁棒は開閉に伴うパッキン受け部との摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
144	弁	仕切弁	Δ2	腐食(隙間腐食)	弁棒の腐食(隙 間腐食)	共通	弁棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
145	弁	仕切弁	Δ2	腐食(全面腐食)	ヨークの腐食 (全面腐食)	余熱除去ポンプループ高温側入口 止め弁、1次冷却材ポンプ冷却水 供給ライン格納容器隔離弁	炭素鋼鋳鋼のヨークは、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
146	弁	仕切弁	Δ2	腐食 (流れ加 速型腐食)	弁箱等の腐食 (流れ加速型腐 食)	主蒸気逃がし弁元弁	炭素鋼鋳鋼の弁箱、弁蓋、弁体および炭素鋼の弁座は、内部流体 (蒸気) による流れ加速 型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
147	弁	仕切弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 外面からの腐食 (全面腐食)	隔離弁	炭素鋼鋳鋼または炭素鋼の弁箱、弁蓋等は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
148	弁	仕切弁	Δ①	熱時効		余熱除去ポンプループ高温側入口 止め弁	弁箱、弁蓋はステンレス鋼鋳鋼であり、使用温度が250°C以上と高いため、熱時効による 材料特性変化を起こす可能性があるが、熱時効は材質変化に加え、欠陥が存在し、かつ高 い応力が存在する場合について検討が必要となる。 しかしながら、弁は接続される配管と比較して厚板に製造されていることから発生応力は 小さく、製造時の非破壊査で有意な欠陥がないことを確認し、さらに運転開始後00年を 想定した疲労評価でも許容値を満足することから、評価期間において欠陥の発生する要因 があるとは考えにくい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
149	弁	仕切弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	余熱除去ポンプループ高温側入口 止め弁、補助給水フルフロー・ミ ニフローライン復水ピット入口 弁、主蒸気逃がし弁元弁	弁蓋ボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの 腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
150	弁	仕切弁	Δ①	摩耗	弁体、弁棒の摩 耗 (連結部)	共通	弁体と弁棒の連結部ははめ込み式であるため、弁内部の流れにより弁体が振動する可能性があり、連結部で摩耗が想定される。 しかしながら、弁体にはその振動等を拘束するための弁体ガイドを設けるとともに流れの影響を受けないよう開弁時には弁体を弁蓋内に収める構造としている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
151	弁	仕切弁	Δ①	応力腐食割れ	弁棒の応力腐食 割れ	共通	1989年3月、川内2号炉の仕切弁で水素脆化型の応力腐食割れ(遅れ割れ)による弁棒のき裂損傷が発生しているが、弁開時にバックシートを効かせ過ぎたことにより過大な応力が発生したことが原因である。しかしながら、大飯3号炉においては、手動弁は開弁時バックシートを効かせず、電動弁はバックシート部の発生応力を制限して弁開時のバックシート部に過大な応力が発生しないようにしている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
152	弁	仕切弁	Δ①	腐食(全面腐食)	弁箱等の腐食 (全面腐食)		升箱、弁蓋、弁体、弁座は炭素鋼鋳鋼または炭素鋼であり、内部流体による腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆剤注入水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
153	弁	玉形弁	Δ2	摩耗	弁体、弁座また は弁箱弁座部 シート面の摩耗	海水ポンプモータ冷却水流量調整 弁以外	弁体、弁座または弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合 わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
154	弁	玉形弁	Δ2	摩耗	弁棒(パッキン 受け部)の摩耗		井棒は開閉に伴うパッキン受け部との摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
155	弁	玉形弁	Δ2	腐食(隙間腐 食)	弁棒の腐食(隙 間腐食)	海水ポンプモータ冷却水流量調整 弁以外	弁棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
156	弁	玉形弁	Δ2	腐食(全面腐食)	ヨークの腐食(全面腐食)	廃液蒸発装置濃縮液循環 弁	炭素鋼鋳鋼のヨークは、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
157	弁	玉形弁	Δ2	応力腐食割れ	弁箱等の応力腐 食割れ	廃液蒸発装置濃縮液循環弁	ステンレス鋼の弁箱、弁蓋、弁体、弁座および弁棒は、内部流体の塩化物イオン濃度が高 い廃液により、応力腐食割れが想定される。 しかしながら、分解点検時の目視確認および漏えい確認により、機器の健全性を維持して いる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
158	弁	玉形弁	Δ2	腐食(全面腐食)	弁箱、弁蓋の外 面からの腐食 (全面腐食)	主蒸気逃がし弁、蓄圧タンク窒素 供給ライン核納容器隔離弁	(低合金鋼鋳鋼または炭素鋼の弁箱、弁蓋は、外面からの腐食が想定される。 しかしながら、外面の大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて持修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
159	弁	玉形弁	Δ①	応力腐食割れ	弁棒の応力腐食 割れ	海水ポンプモータ冷却水流量調整 弁以外	1989年3月、川内2号炉の仕切弁で水素脆化型の応力腐食割れ(遅れ割れ)による弁棒のき裂損傷が発生しているが、弁開時にバックシートを効かせ過ぎたことにより過大な応力が発生したことが原因である。 しかしながら、大飯3号炉においては、手動弁は開弁時パックシートを効かせず、電動弁、空気作動弁はパックシート部の発生応力を制限して弁開時のバックシート部に過大な応力が発生しないようにしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
160	弁	玉形弁	Δ①	腐食(全面腐食)	弁箱等の腐食 (全面腐食)		審圧タンク窒素供給ライン格納容器隔離弁の弁箱、弁蓋は炭素鋼であることから内部流体による腐食が想定される。 しかしながら、内部流体は窒素で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

表1-1 日常劣化管理事象一覧(17/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
161	弁	玉形弁	Δ2	腐食(全面腐食)	弁箱等の腐食 (全面腐食)	主蒸気逃がし弁	低合金鋼鋳鋼の弁箱、弁蓋は、内部流体が蒸気であり、内部流体による腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
162	弁	玉形弁	Δ①	腐食(全面腐食)		廃液蒸発装置濃縮液循環弁、主蒸 気逃がし弁	弁蓋ボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
163	弁	玉形弁	Δ①		ばねの変形(応 カ緩和)	加圧器圧力計・水位計上部元弁	ばねには、弁体位置を安定させるための荷重が加わっており、長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、通常、全開状態で使用されている弁であり、ばねにはほとんど荷重は加わっていない環境で使用している。 しかしたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
164	弁	バタフラ イ弁	Δ2	摩耗	弁体、弁座また は弁箱弁座部 シート面の摩耗	共通	弁体、弁座または弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
165	Ĥ	バタフラ イ弁	Δ2	腐食(エロー ジョン)	弁体、弁箱弁座 部の腐食(エ ロージョン)	余熱除去冷却器出口流量調節弁	中間開度で使用している弁体、弁箱弁座部には、エロージョンによる減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
166	弁	バタフラ イ弁	Δ2	摩耗	弁棒(パッキ ン、Oリングお よび軸保持部) の摩耗	共通	弁棒は開閉に伴うパッキン、Oリングおよび軸保持部との摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
167	弁	バタフラ イ弁	Δ2	腐食(隙間腐 食)	弁棒の腐食(隙 間腐食)	共通	弁棒はパッキンおよび〇リングとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
168	弁	バタフラ イ弁	Δ2	応力腐食割れ	弁箱等の応力腐 食割れ	廃液蒸発装置濃縮液ポンプ入口弁	ステンレス鋼またはステンレス鋼鋳鋼の弁箱、弁蓋、弁体、弁座および弁棒は、内部流体 の塩化物イオン濃度が高い廃液により、応力腐食割れが想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
169	弁	バタフラ イ弁	Δ2	腐食 (流れ加 速型腐食)	弁箱等の腐食 (流れ加速型腐 食)	主給水ポンプ駆動タービン排気弁	炭素鋼の弁箱、弁蓋および弁体は、内部流体が蒸気であり、内部流体による流れ加速型腐 食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
170	弁	バタフラ イ弁	Δ2)	腐食(全面腐食)	弁箱、弁蓋等の 外面からの腐食 (全面腐食)	主給水ポンブ駆動タービン排気 弁、海水ポンブ出口弁、安福機 開閉器空頭ユニット冷水出口校 り弁、格納容器給気第1隔離弁、 格納容器スプレイ冷却器冷却水紋 り弁隔離弁	展達100円能にはいてい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要
171	弁	バタフラ イ弁	Δ2	腐食(異種金 属接触腐食)	弁箱、弁蓋の腐 食(異種金属接 触腐食を含む)	海水ポンプ出口弁	内部流体が海水であり、炭素鋼鋳鋼製の弁箱、弁蓋および弁座の接液部においては腐食が 想定される。 しかしながら、定期的な分解点検時にライニング等の状況を目視確認し、機器の健全性を 維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
172	弁	バタフラ イ弁	Δ2	孔食	弁棒等の腐食 (孔食・隙間腐 食)	海水ポンプ出口弁	内部流体が海水であり、銅合金または銅合金鋳物の弁棒および弁体の接液部においては、 孔食・隙間腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
173	弁	バタフラ イ弁	Δ2	腐食(全面腐食)	弁箱等の腐食 (全面腐食)	安全補機開閉器室空調ユニット冷 水出口絞り弁、格納容器給気第1 隔離弁、格納容器スプレイ冷却器	炭素鋼鋳鋼または炭素鋼の弁箱、弁蓋、弁体、弁座は、内部流体による腐食が想定される。 炭素鋼鋳鋼または炭素鋼の弁箱、弁蓋、弁体、弁座を持つ弁のうち、内部流体が飽和溶存 酸素濃度(最大約8ppm)水である弁については、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
174			Δ①	腐食(全面腐食)		冷却水絞り弁	また、その他の弁については、内部流体が空気またはヒドラジン水(防錆剤注入水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
175	弁	バタフラ イ弁	Δ①	腐食(全面腐食)	: 弁蓋ボルトの腐 食(全面腐食)	主給水ポンプ駆動タービン排気弁 および格納容器給気第1隔離弁な らびに格納容器スプレイ冷却器冷 却水絞り弁を除く	しかしなから、柿竹官理により漏えい防止を凶つしおり、これまじに有息な勝良は脳のられているが、今後もこれこの傾向が赤いまる亜風がもるしは老さがもい。
176	弁	ダイヤフ ラム弁	Δ2	摩耗	弁棒の摩耗	共通	井棒は開閉に伴う弁蓋との摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
177	弁	ダイヤフ ラム弁	Δ2	腐食(異種金 属接触腐食)	弁箱の腐食(異 種金属接触腐食 を含む)	海水ポンプ軸受潤滑水供給ライン 止め弁	ける は
178	弁	ダイヤフ ラム弁	Δ2	腐食(全面腐食)	: 弁箱等の外面からの腐食(全面腐食)	海水ポンプ軸受潤滑水供給ライン 止め弁、格納容器冷却材ドレンタ ンクペントライン格納容器第1隔 離弁	艮進打の甲能性は小さい。 また 巡視占於筆で日担に上口涂腊筆の比能を確認 はく離筆が認めこれた場合は必要
179	弁	ダイヤフ ラム弁	Δ①	腐食(全面腐食)	f 弁箱の腐食(全 面腐食)	格納容器冷却材ドレンタンクベン トライン格納容器第 1 隔離弁	炭素鋼鋳鋼の弁箱は、内部流体による腐食が想定される。 しかしながら、格納容器冷却材ドレンタンクペントライン格納容器第1隔離弁の内部流体 は希ガス等で、腐食が発生し難い環境であり、これまでに有意な腐食は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
180	弁	ダイヤフ ラム弁	Δ①	腐食(全面腐食)	: 弁蓋ボルトの腐 食(全面腐食)	格納容器第1隔離弁、海水ポンプ	弁蓋ボルトは低合金鋼であり、ダイヤフラムからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
181	弁	ダイヤフ ラム弁	Δ2	腐食(全面腐食)	; ヨークの腐食 (全面腐食)	格納容器冷却材ドレンポンプ出口 格納容器第1隔離弁、格納容器分 却材ドレンタンクガス分析ライ 格納容器第1隔離弁、格納容器 冷却材ドレンタンクペントライン 格納容器第1隔離弁	
182	弁	スイング逆止弁	Δ2	摩耗	弁体、弁座シー ト面の摩耗	海水ポンプ軸受潤滑水供給ライン 逆止弁以外	弁体、弁座部シート面は、弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
183	弁	スイング逆止弁	Δ2	摩耗	弁棒、アームの 弁棒嵌合部の摩 耗	海水ポンプ軸受潤滑水供給ライン 逆止弁以外	弁棒、アームの弁棒嵌合部は開閉に伴う摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
184	弁	スイング 逆止弁	Δ2	腐食(流れ加 速型腐食)	弁箱等の腐食 (流れ加速型腐 食)		
185	弁	スイング 逆止弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 外面からの腐食 (全面腐食)		炭素鋼鋳鋼または炭素鋼の弁箱、弁蓋等は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐 食進行の可能性はかさい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
弁	スイング 逆止弁	Δ①	腐食(全面腐 食)	弁箱等の腐食 (全面腐食)	1次冷却材ポンプ冷却水供給ライン格納容器隔離逆止弁	炭素鋼または炭素鋼鋳鋼の弁箱、弁蓋、弁体、弁座およびアームは、内部流体による腐食が想定される。 しかしながら、内部流体はヒドラジン水 (防錆剤注入水) で腐食が発生しがたい環境であ り、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
弁	スイング 逆止弁	Δ2	腐食(異種金 属接触腐食)	弁箱等の腐食 (異種金属接触 腐食を含む)	海水ポンプ出口逆止弁	
弁	スイング 逆止弁	Δ2	孔食	弁体等の腐食 (孔食・隙間腐 食)		網合金または網合金鋳物の受け軸、弁体、弁座、弁軸、アームは、海水接液部において孔 食・隙間腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
弁	スイング 逆止弁	Δ2	腐食(隙間腐食)	弁棒の腐食(隙 間腐食)	主蒸気隔離弁	井棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
Ħ	スイング 逆止弁	Δ2	摩耗	ブッシュの摩耗	蓄圧タンク注入ライン第1逆止 弁、格納容器内補給水供給ライン 格納容器隔離逆止弁、主蒸気隔離 弁、海水ポンプ出口逆止弁	ブッシュは弁棒との摺動により、摩耗が想定される。 しかしながら、分解点検時の寸法計測または目視確認により状態を確認し、必要に応じて 取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
弁	スイング 逆止弁	Δ①	腐食(全面腐 食)	弁蓋ボルトの腐 食(全面腐食)	蓄圧タンク注入ライン第1逆止 弁、格納容器内補給水供給ライン 格納容器隔離逆止弁、主蒸気隔離 弁	低合金鋼の弁蓋ボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
弁	スイング 逆止弁	Δ①	熱時効	弁箱の熱時効	蓄圧タンク注入ライン第1逆止弁	弁箱はステンレス鋼鋳鋼であり、使用温度が250°C以上と高いため、熱時効による材料特性変化を起こす可能性があるが、熱時効は材質変化に加え、欠陥が存在し、かつ高い応力が存在する場合について検討が必要となる。しかしながら、弁は接続される配管と比較して厚板に製造されていることから発生応力はかさく、製造時の非破壊検査で有意な欠陥がないことを確認し、さらに運転開始後後のはを想定した疲労評価でも許容値を満足することから、評価期間において欠陥の発生する要因があるとは考えにくい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
弁	リフト逆 止弁	Δ2	摩耗	弁体、弁箱弁座 部シート面の摩 耗	共通	弁体、弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合 わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
弁	リフト逆止弁	Δ①	摩耗	弁体と弁体ガイ ドまたははめ輪 の摩耗	共通	弁体と弁体ガイド、弁体とはめ輪の摺動部は、弁の開閉による摩耗が想定される。 しかしながら、摺動荷重は加わらず、有意な摩耗が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
弁	リフト逆止弁	Δ2	腐食 (流れ加 速型腐食)	弁箱等の腐食 (流れ加速型腐 食)	脱気器シール蒸気逆止弁	炭素鋼の弁箱、弁蓋は、内部流体 (蒸気) による流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
弁	リフト逆 止弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 外面からの腐食 (全面腐食)		炭素鋼の弁箱、弁蓋等は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補係することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
弁	リフト逆 止弁	Δ①	腐食(全面腐食)	弁箱等の腐食 (全面腐食)	蓄圧タンク窒素供給ライン格納容 器隔離逆止弁	炭素鋼の弁箱、弁蓋は、内部流体による腐食が想定される。 しかしながら、内部流体は窒素で腐食が発生しがたい環境であり、これまでに有意な腐食 は認められておらず、今後もこれらの傾向が変けする要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
弁	リフト逆止弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食 (全面腐食)	納容器隔離逆止弁、脱気器シール 蒸気逆止弁	弁蓋ボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの 腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
弁	リフト逆止弁	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)	加圧器補助スプレイライン逆止 弁、格納容器内脱塩水補給水ライ	ばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、リフト逆止弁のばねは、高粘性流体を取扱うラインにおける使用を考慮して、着座性をよくするために設けられているもので、大飯3号炉で使用している水や空気等を取扱うラインでは流体の粘性が低く、弁体の自重のみで閉止可能であるため、仮にばねの変形(応力緩和)が発生したとしても、弁の機能に影響しない。したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
	弁 弁 弁 弁 弁 弁 弁 弁 弁 弁 弁	弁 井 井 十 力<	# お	# スイング 公	介別 小万規 事象名 の事象名 弁 スイング 逆止弁 △② 腐食(全面腐 度) 弁箱等のの高食 (業) 弁 スイング 逆止弁 △② 孔食 弁箱等のの高食 (業) 弁 スイング 逆止弁 △② 現食 度) (験間腐 所) 弁 スイング 逆止弁 △② 原程 ブッシュの厚料 弁 が選止弁 △③ 原食 (験間腐 度) (験間腐 所) 弁 スイング 逆止弁 △③ 原業 ブッシュの厚料 弁 が高度 本 スイング 逆止弁 △③ 原業 オートの食 弁 スイング 逆止弁 △③ 原業 オートの食 オートの食 中 スイング 逆止弁 △③ 原業 弁筋の のの食 オートの食 オートの食 中 フリント逆 の方 △② 原業 弁を、キートの食 オートの食 会の 会の オートののをのの まで 本のののでののである はよれののである はよれのである はれるのである はなのである はなのである はなのである はなのである はなのである はなのである はなるのである はなる はなる はなる はなる はなる のである までのである はなる <t< td=""><td>## カー・</td></t<>	## カー・

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
200	弁	安全逃し 弁		腐食(全面腐食)	弁箱、弁蓋等の 外面からの腐食 (全面腐食)	加圧器安全弁、主蒸気安全弁、起 動空気だめ安全弁	炭素鋼鋳鋼の弁箱、弁蓋等には、外面からの腐食が想定される。 しかしながら、外面の大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により、塗膜等の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
201	弁	安全逃し 弁		腐食(全面腐食)	弁箱等の腐食 (全面腐食)	加圧器安全弁、主蒸気安全弁	 炭素鋼または炭素鋼鋳鋼の弁箱、弁蓋の内面および弁座には腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
202	弁	安全逃し 弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	加圧器安全弁、主蒸気安全弁	弁蓋ボルトは低合金鋼であり、ガスケット部等からの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
203	弁	安全逃し 弁	Δ①	疲労割れ	ベローズの疲労 割れ	加圧器安全弁	ペローズは弁の開閉による疲労割れが想定される。 しかしながら、安全弁は系統の異常昇圧時の保護目的で設置されており作動回数は少な く、これまでに有意な割れは認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の漏えい確認より、機器の健全性を確認している。
204	弁	安全逃し 弁	Δ①	摩耗	弁体、弁座シー ト面の摩耗	共通	弁体、弁座シート面は弁の開閉により、摩耗が想定される。 しかしながら、安全弁は系統の異常昇圧時の保護目的で設置されており作動回数は少な く、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
205	弁	安全逃し 弁	Δ①	摩耗	弁棒の摩耗	共通	弁棒は開閉に伴う弁蓋との摺動により、摩耗が想定される。 しかしながら、安全弁は系統の異常昇圧時の保護目的で設置されており作動回数は少な く、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を維持している。
206	弁	安全逃し 弁	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	共通	ばねは応力状態にて長期間保持されることにより、変形 (応力緩和) が発生する可能性がある。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ており、これまでに有意なばねの変形は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を維持している。
207	弁	安全逃し 弁		腐食(全面腐食)	弁箱等の腐食 (全面腐食)	起動空気圧縮機第1段安全弁、起 動空気だめ安全弁	鋼合金鋳物製または炭素鋼鋳鋼製の弁箱、弁蓋の内面には腐食が想定される。 しかしながら、内部流体は空気であり、腐食が発生しがたい環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
208	弁	電動装置		腐食(全面腐食)	フレームおよび 駆動装置ハウジ ングの腐食 (全 面腐食)	共通	フレームおよび駆動装置ハウジングは鋳鉄またはアルミニウム合金鋳物であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、分解点検時の目視確認で塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
209	弁	電動装置	Δ2	摩耗	ステムナットお よびドライブス リーブの摩耗	共通	ステムナットおよびドライブスリーブは弁棒との嵌合による摺動部があり、弁の開閉により、摩耗が想定される。 しかしながら、ステムナットについては、動作確認および自動診断装置による機能試験により摩耗の進展傾向を確認することで、機器の健全性を維持している。 また、ドライブスリーブについては、潤滑油により摩耗を防止するとともに、動作確認により機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
210	弁	電動装置	Δ①	摩耗	歯車および駆動 装置組立部品の 軸受 (ころが り) の摩耗	共通	歯車および駆動装置組立部品の軸受 (ころがり) は、弁の開閉に伴う摺動により摩耗が想定される。 しかしながら、潤滑油により摩耗を防止しており、摩耗が発生しがたい環境にある。また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の動作確認により、機器の健全性を確認している。
211	弁	電動装置			取付ボルトの腐 食(全面腐食)	共通	取付ボルトは低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
212	弁	空気作動 装置	Δ2	腐食(全面腐食)	ケーム、リバルーシーシーシーシールーの食() よューの食() はいいのない はいいのない はいいのない はいいい はいいい およっ はいいい はいいい はいいい はいいい はいいい はいいい はいいい はい	ケース、フレーム、ヨーク [主蒸 気逃がし弁空気作動装置]、シリ ンダ、レバー、鋼管および継手、 アキュムレータ [主蒸気隔離弁空 気作動装置]	ケース、フレーム、ヨーク、シリンダ、レバー、鋼管、継手およびアキュムレータは炭素 鋼または炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点接等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
213	弁	空気作動 装置	Δ2	腐食(全面腐食)	ケースボルト、 シリンダボル ト、ナットおよ び取付(全面腐 食)	ケースポルト [主蒸気逃がし弁空 気作動装置]、シリンダボルト、 ナット [主蒸気隔離弁空気作動装 置] および取付ポルト [共通]	しかしながら、分解点検時にボルト・ナットの手入れを行い、機器の健全性を維持してい
214	弁	空気作動 装置	Δ①	摩耗	ポジショナーの 摩耗		ポジショナーは弁の開閉に伴う作動により、パイロットバルブ等の摩耗が想定される。 しかしながら、空気作動弁はON-OFF制御の場合は作動頻度が少なく、連続制御の場合も弁 開度はほぼ一定であり、弁の動きはゆるやかで開弁の程度も小さい。 また、ポジショナーは数十万回の作動試験を行い、耐久性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の特性試験により、機器の健全性を確認している。
215	弁	空気作動 装置	Δ①	疲労割れ	銅管および継手 の疲労割れ	主蒸気逃がし弁空気作動装置	鋼管および継手は弁開閉時の振動および配管振動により、疲労割れが想定される。 しかしながら、鋼管および継手は設計時に振動による影響を考慮している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
216	弁	空気作動 装置	Δ①	摩耗	ピストンとピストンとピストンとパストンスリン・リンガンロッド レスブッシュ、レの摩 ・	主蒸気隔離弁空気作動装置	ビストンとピストンガイド、ピストンロッドとブッシュ、レバーとピンは開閉作動による 摺動により、摩耗が想定される。 しかしながら、ビストンとピストンガイドの間にはクリアランスがあり実際には接触して おらず、ビストンとパッキン押え板により固定されたゴム製のパッキンがビストンガイド に接触するようにしているため、ビストンやピストンガイドに摩耗が発生することはな い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 同様に、ビストンロッドとブッシュについては硬度差を設けてピストンロッドの摩耗を防止している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 さらに、レバーとピンの摺動部には銅合金製のブッシュを設け、硬度差を設けてレバーと ピンの摩耗を防止しており、主蒸気隔離弁の動作頻度は年に数回と少ない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 さらに、レバーとピンの摺動部には銅合金製のブッシュを設け、硬度差を設けてレバーと ピンの摩耗を防止しており、主蒸気隔離弁の動作頻度は年に数回と少ない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
217	Ĥ	空気作動装置	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)		ばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
218	弁	蒸気止め 弁	Δ2	速型腐食およ	弁箱等の腐食 (流れ加速型腐 食および弁棒の エロージョン)	主蒸気止め弁	弁箱および弁蓋は炭素鋼鋳鋼、炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 また、弁棒の高減圧部では、エロージョンにより減肉が想定される。 しかしながら、分解点検時の目視確認や寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣 化事象ではない。
219	弁	蒸気止め 弁	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)		支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
220	弁	蒸気止め 弁	Δ①	摩耗	弁体および弁座 シート面の摩耗	主蒸気止め弁	井体および弁座シート面は弁の開閉による摩耗が想定される。 しかしながら、アクチュエータのダッシュポット部で減速し衝撃力を和らげており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認している。
221	弁	蒸気止め 弁	Δ①	腐食(全面腐食)	弁箱、弁蓋およよびアクチュトの がアクチュトの な食(全面腐食)	主蒸気止め弁	并箱、弁蓋およびアクチュエータは炭素鋼鋳鋼、炭素鋼、耐熱鋼または鋳鉄であり、外面 からの腐食が想定される。 しかしながら、これまでに有意な腐食はみとめられておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
222	弁	蒸気止め 弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	主蒸気止め弁	弁蓋ボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの 臓食が想定される。 しかしながち、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因あるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認等により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
223	弁	蒸気止め 弁	Δ①	疲労割れ	弁体の疲労割れ	主蒸気止め弁	弁体の応力集中部においては、急閉時に発生する弁体と弁座との衝突により、材料に疲労が蓄積することから、疲労割れが想定される。 しかしながら、主蒸気止め弁は、アクチュエータで減速し衝撃力を和らげ、発生応力が小さくなる様に設計上の考慮をしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認している。
224	弁	蒸気止め 弁	Δ①	摩耗	弁棒の摩耗	主蒸気止め弁	井棒の摺動部は弁の開閉動作による摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
225	弁	蒸気止め 弁	Δ①	摩耗	アクチュエータ の摩耗	主蒸気止め弁	アクチュエータの摺動部は摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
226	弁	蒸気止め 弁	Δ①	ばねの変形(応力緩和)	閉鎖ばねの変形 (応力緩和)	主蒸気止め弁	閉鎖ばねは弁開位置での荷重が加わった状態で長期間保持されることにより、変形(応力 緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
227	弁	蒸気加減弁	Δ2	速型腐食およ	弁箱等の腐食 (流れ加速型腐 食および弁棒の エロージョン)	蒸気加減弁	弁箱(弁座と一体)および弁蓋は炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。また、弁棒の高減圧部では、エロージョンにより減肉が想定される。しかしながら、分解点検時の目現確認や寸法計測により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣化事象ではない。
228	弁	蒸気加減弁	Δ2		弁体の腐食(流 れ加速型腐食)	蒸気加減弁	マフラ穴からの噴流による流れ加速型腐食対策として弁体外周はステライト肉盛を施しているが、ステライト肉盛のない弁体下面については、流れ加速型腐食により減肉が想定される。しかしながら、分解点検時に目視確認および浸透探傷検査を実施し、腐食進行程度の把握を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
229	弁	蒸気加減弁	Δ①	摩耗	弁体および弁箱 弁座部の摩耗	蒸気加減弁	弁体および弁箱弁座部は弁の開閉による摩耗が想定される。 しかしながら、弁体および弁箱弁座部にはそれぞれ耐摩耗性に優れたステライトおよび 12%クロム鋼を肉盛しており、これまでに有意な摩耗は認められておらず、今後もこれら の傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認している。
230	弁	蒸気加減弁	Δ①	腐食(全面腐食)	弁箱 (弁座と一体)、弁差エーケックチュンらの外面か腐食 (全面腐食)	蒸気加減弁	弁箱、弁蓋およびアクチュエータは炭素鋼であり、外面からの腐食が想定される。 しかしながら、分解点検持の目視確認有意な腐食は認められておらず、今後もこれらの傾 向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
231	弁	蒸気加減弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	蒸気加減弁	弁蓋ボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
232	弁	蒸気加減弁	Δ①	応力腐食割れ	弁体ボルトの応 力腐食割れ	蒸気加減弁	弁体ボルトの座面コーナ部およびねじ部の応力集中部は、内部流体によるボルトの応力腐食割れが想定される。 しかしながら、耐熱鋼 (ステンレス鋼) は応力腐食割れ感受性が小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
233	弁	蒸気加減弁	Δ①	摩耗	弁棒の摩耗	蒸気加減弁	弁棒の摺動部は弁の開閉動作による摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
234	弁	蒸気加減弁	Δ①	摩耗	アクチュエータ の摩耗	蒸気加減弁	アクチュエータの摺動部は摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
235	弁	蒸気加減弁	Δ①	ばねの変形 (応力緩和)	閉鎖ばねの変形 (応力緩和)	蒸気加減弁	閉鎖ばねは弁開位置での荷重が加わった状態で長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
236	弁	インター セプト 弁・再熱 蒸気止め 弁			弁箱の腐食(流 れ加速型腐食)	インターセプト弁	弁箱は炭素鋼鋳鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、蒸気は乾き蒸気であり、これまでに有意な減肉は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
237	弁	インター セプト 弁・再熱 蒸気止め 弁	Δ①	腐食(全面腐食)	弁箱等の外面からの腐食(全面腐食)	インターセプト弁	弁箱、軸受サポートおよびアクチュエータは炭素鋼鋳鋼、炭素鋼または耐熱鋼および鋳鉄であり、外面からの腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
238	弁	インター セプト 弁・再熱 蒸気止め 弁	Δ①	摩耗	弁棒 (軸保持部)の摩耗	インターセプト弁	弁棒は開閉に伴う軸保持部との摺動により、摩耗が想定される。 しかしながら、軸保持部は潤滑性の良いブッシュを使用しており、これまでに有意な摩耗 は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
239	弁	インター セプト 弁・再熱 蒸 弁	Δ①	腐食(全面腐食)	弁棒の腐食 (全 面腐食)	インターセプト弁	弁棒は低合金鋼であり、弁棒貫通部からの漏えいにより、内部流体による腐食が想定される。 しかしながら、ベローズシールにより内部流体はシールされており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
240	弁	インター セプト 弁・再熱 茶 弁	Δ①	摩耗	アクチュエータ の摩耗	インターセプト弁	アクチュエータの摺動部は摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
241	弁	インター セプト 弁・東 気 弁 弁	Δ①	ばねの変形(応力緩和)	閉鎖ばねの変形 (応力緩和)	インターセプト弁	閉鎖ばねは弁開位置での荷重が加わった状態で長期間保持されることにより、変形 (応力 線和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
242	炉内構造 物	1	Δ2	摩耗	制御棒クラスタ 実内管(案内 板)の摩耗	炉内構造物	通常運転時の1次冷却材の流和により、制御棒クラスタ案内管内で制御棒が流体振動を起こす。その結果、制御棒と制御棒クラスタ案内管(案内板)との間で摩耗が想定される。制御棒を音については摩耗減肉が認められていることから、長期的には制御棒クラスタ案内管(案内板)との間で摩耗が想定される。制御棒クラスタ案内管(案内板)の摩耗により、制御棒の案内機能に影響を及ぼす可能性がある事象としては、制御棒の制御棒クラスタ案内管(案内板)から放け出しが考えられる。制御棒被覆管の摩耗が進行し、径が御棒ので関禁等を及ぼすの主にしたがある事象としては、制御棒の制御棒のラスタ案内管(案内板)からなけ出しやすい状態となる。現行の制御棒の管替等を行っている。制御棒方ラスタ案内管(案内板)の摩耗では、予防の厚を担えないよう定期的に制御棒の管替等を行っている。制御棒クラスタ案内管(案内板)の摩耗では、予防のなけ出しの可能性が出て引きると、制御棒クラスタ案内管(案内板)の摩耗である。表のより、1年では、予防を指していて、「大阪の軍・大阪の軍・大阪の軍・大阪の軍・大阪の軍・大阪の軍・大阪の軍・大阪の軍・
243	炉内構造物	-	Δ2	摩耗	炉内計装用シン ブルチューブの 摩耗	炉内構造物	1981年3月、米国セーレム (Salem) 発電所 1 号炉他で炉内計装用シンブルチューブの摩耗による減肉が認められており、国内でも同様の事象が認められていることから、摩耗が想定される。 炉内計装用シンブルチューブの減肉が、シンブルチューブまわりの軸流による流体振動に起因することをモックアップ試験により確認している。また、減肉した炉内計装用シンブルチューブの耐圧健全性を確認するため、実機での減肉形状を模擬して外圧による圧壊試験を行い、限界減肉率を求めている。 一方、摩耗に関する一般知見として、現象が同じであれば単位時間当たりの摩耗体積は一定であり、摩耗発生箇所においては、炉内計装用シンブルチューブおよび炉内計装架内管の各形状 (図2.2-2) から、摩耗の進度に応じて、X部、Y部では接触面積が大きくなるため、摩耗深さの進度は緩やかになる。 原托深さの進度は緩やかになる。 原托深での進度は緩やかになる。 原科深での進度は緩やかになる。 京北深では、場所では、大部では、大部では、大部では、大部では、大部では、大部では、大部では、大部
244	炉内構造 物	-	Δ2	摩耗	支持ピン(止め ピン)の摩耗	炉内構造物	支持ピン(止めピン)については、1次冷却材の流体振動によりナットピン穴とピン部に 摩耗が想定される。 しかしながら、目視確認を実施し、摩耗が認められた場合は取替を実施することで、健全 性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

表1-1 日常劣化管理事象一覧(24/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
245	炉内構造物	-	Δ2	中性子照射に よる朝性低下	炉心そうの中性 子照射による 特性低下	炉内構造物	炉心そうに使用しているステンレス鋼は、中性子照射により靭性低下など機械的特性が変化する。 中性子照射による靭性低下は、従来より原子炉容器を中心に検討評価されてきている。原子炉容器に使用されている材料はフェライト系の材料であり、この材料は中性子照射によって、関連温度の上昇や上部棚吸収エネルギーの低下が顕着なため、従来から重要な経年分化事象として評価されている。 一方、炉心支持構造物のもり強度上重要な炉心そうに使用されている材料はオーステナイト系の材料であって、フェライト系材料とは金属結晶構造が異なり、靭性が高い材料である。しかし、発電設備技術検査協会「平成8年度 ブラント長寿命化技術開発に関する事業報告書」によるとオーステナイト系照射ステンレス鋼の破壊靭性値 J に試験的結果、図2・2・3に示すように、中性子照射に対して靭性値の低下が認められる。しかしながら、中性子照射に対して靭性値の低下が認められる。しかしながら、中性子照射に対して靭性値の低下が認められる。しかしながら、中性子照射に対して靭性値の低下が認められる。したしなければ、不安定破壊を起こず可能性は小さいと考える。なお、炉心そう溶接部は、成力集中がなく照射量が少ないため「日本機械学会 維持規格(JSME S NA1-2012)」「に基づく評価では、照射技型の方面食剤和発生の可能性は小さいとうるのなど、原対量が少ないため「日本機械学会 維持規格(JSME S NG1-2005/2007)」を準用し深さを板厚の1/4、長さは板厚の1.5倍の表面欠陥を周方向に仮定した(図2・2・4)。さらに、ここで万一有常な欠陥が存在すると仮定し、地震発生時の電製安定性評価を実施した。想定欠陥は、「日本機様学会 設計・建設規格(JSME S NG1-2005/2007)」を準用板中の半楕円表面絶裂の応力拡大係数とを変出した結果、「日本機様学会 設計・建設機を周方向に仮定した(図2・2・4)。 本板中の半楕円表面へ製の応力拡大係数にを変更出した結果、7.9 MPa√m となった。一方、図2・2・3中の J 「最下限値14 kJ/m2から、換算式により破壊射性値によった。一方、図2・2・3中の J 「最下限値14 kJ/m2から、換算式により破壊射性値によった。一方、図2・2・3中の J 「最下限値14 kJ/m2から、換算式により破壊射性値によった。破壊射性値を下回っており、不安定破壊は生じないことを確認した。
246	炉内構造物	-	Δ①	高サイクル疲 労割れ	炉心そう等の高 サイクル疲労割 れ	炉内構造物	下部炉内構造物の炉心そうと熱遮蔽材、上部炉内構造物の上部炉心支持柱と制御棒クラスタ案内管は冷却材高速流れにさらされており、流体によるランダム振動が発生する可能性があるため、振動発生時に繰返し応力を受ける炉心そう、上部炉心支持柱、制御棒クラスタ案内管に高サイクル疲労割れが想定される。 スタ案内管に高サイクル疲労割れが想定される。 大多な事内では、1899年7月に教育22号炉の再生熱交換器連絡管において、温度の異なる冷却材の含制流によるを確認している。 また、1999年7月に教育22号炉の再生熱交換器連絡管において、温度の異なる冷却材の含制流による温度ゆらぎ(サーマルスト・ライビング)が生じ、高サイクル熱疲労による疲労割れが発生しているが、炉内構造物において温度の異なる冷却材が合流する炉心そう出ロノズル部、上部炉立持板および制御棒クラスタ案内管等については、最大の温度差を考慮しても有意な応力は発生しないため、高サイクルを割割れ発生の可能性はない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
247	炉内構造物	-	Δ①	応力腐食割れ	上部炉心支持柱 等の応力腐食割 れ	炉内構造物	ステンレス鋼の上部炉心支持柱等は、応力腐食割れが想定される。 しかしながら、1次冷却材の水質を溶存酸素濃度5ppb 以下に管理していることから、応 力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、水中テレビカメラによる目視確認により、機器の健全性を確認している。
248	炉内構造 物	-	Δ①	応力腐食割れ	支持ピンの応力 腐食割れ	炉内構造物	ニッケル基合金 (750合金) の支持ピンについては1978年10月美浜3号炉にて応力腐食割れが認められている。 しかしながら、大飯3号炉の支持ピンは、応力腐食割れ感受性低減のため、新熱処理材応力低減化構造としていることから、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、水中テレビカメラによる目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
249	ケーブル	高圧ケー ブル	Δ①	劣化	シースの劣化	難燃高圧CSHVケーブル	シースは絶縁体と同様に、熱的、電気的、環境的要因による劣化が想定される。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は極 めて小さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
250	ケーブル	低圧ケー ブル	Δ①	劣化	シースの劣化	共通	シースは絶縁体と同様に、熱的、電気的、環境的要因による劣化が想定される。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は極めて小さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、系統機器の動作確認または絶縁抵抗測定により、機器の健全性を確認している。
251	ケーブル	同軸ケー ブル	Δ①	劣化	外部シースの劣 化	難燃三重同軸ケーブルー 1	外部シースは絶縁体と同様に、熱的、電気的、環境的要因による劣化が想定される。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は極 めて小さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
252	ケーブル	光ファイ バケーブ ル	Δ①	劣化	コード外被、 シースおよび心 線被覆の劣化	難燃光ファイバケーブル	コード外被、シースおよび心線被覆はケーブルやコードとしての構造の保持、外的な力等からの保護等の被覆材としての機能を有する。コード外被、シースおよび心線被覆が熱的および環境的要因で劣化して光ファイバ心線(コア、クラッド)に水素や水分が混入した場合、伝送光量が減少することが想定される。しかしながら、水素や水分を透過し難いシース構造であること、かつ自ら水素を発生することのないケーブル構成材料が使用されていること、およびケーブルは室内の空調環境下に布設されており、外部からの水分混入は考え難い。また、ケーブルに要求される伝送光量の維持に対する影響は極めて小さいことから、高経年化対策上着自すべき終生劣化事家ではない。なお、本ケーブルの伝送光量は常時監視されており、仮に伝送機能に影響を及ぼすレベルまで光量が減少した場合には、中央制御室へ警報を発信するが、これまでの運転中に光量低下による警報発信実績はない。
253	ケーブル	トレイ電線管	Δ2	腐食(全面腐食)	ケーブルトレイ (本体)等の腐食(全面腐食)	共通	ケーブルトレイ(本体)、取付ボルト、鋼材、ベースプレート、ユニバーサルクランプ、 Uボルト、Uバンド、ボルト、ナットおよびユニバーサルチャンネルは炭素鋼であり、腐 食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補除することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
254	ケーブル	トレイ電 線管	Δ2	腐食(全面腐食)	電線管 (本体) およびカップリ ングの外面から の腐食 (全面腐 食)	電線管	電線管 (本体) およびカップリングは炭素鋼であり、外面からの腐食が想定される。 しかしながら、外面については塗装により腐食を防止しており、塗膜が健全であれば腐食 進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 成じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
255	ケーブル	トレイ電 線管	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
256	ケーブル	ケーブル 接続部	Δ①	絶縁低下	端子台の絶縁低下	気密端子箱接続	端子台は無機物の磁器であり、経年劣化の可能性はない。 なお、長期使用においては表面の汚損による絶縁低下が想定される。 しかしながら、端子台は気密された接続箱内に設置され、塵埃の付着により表面が汚損す る可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、絶縁抵抗測定により、機器の健全性を確認している。
257	ケーブル	ケーブル 接続部	Δ2	腐食(全面腐 食)	ボックスコネク タの腐食(全面 腐食)	気密端子箱接続	ボックスコネクタ (気密端子箱接続) は銅合金であり、腐食が想定される。 しかしながら、巡視点検等で目視により状態を確認し、腐食が認められた場合は必要に応 じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
258	ケーブル	ケーブル 接続部	Δ2)	腐食(全面腐食)	ピンコンタクト 等の腐食(全面 腐食)	三重同軸コネクタ接続-1、高圧 コネクタ接続、加圧器ヒータコネ クタ接続	ビンコンタクト、ISコンタクトP、ブラグボディ、割りリング、ソケットコンタクト、ISコンタクト人、ジャックボディ(三重同軸コネクタ接続-1)、ビンコンタクト、ソケットコンタクト(加圧器ヒータコネクタ接続)、ビン端子、圧縮端子およびソケット(高圧コネクタ接続)は銅または銅合金であり、廣食が想定される。しかしながら、ニッケルメッキ、金メッキまたは銀メッキを施すことにより腐食を防止しており、系統機器点検時の目視確認または抵抗測定により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化年象ではない。
259	電気設備	メタクラ	Δ2	固着	操作機構(遮断 器)の固着	メタクラ(安全系)	遮断器の操作機構は、長期使用に伴いグリスが固化し、動作特性の低下が想定される。 しかしながら、注油、各部の目視確認、動作試験を実施することで、機器の健全性を維持 している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
260	電気設備	メタクラ	Δ2	汚損	消弧室(遮断 器)の汚損	メタクラ(安全系)	遮断器の消弧室は、遮断器の電流遮断動作に伴う消弧室でのアーク消弧により汚損した場合、消弧性能の低下が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
261	電気設備	メタクラ	Δ①	絶縁低下	ブッシング(進 断器)の絶縁低 下		遮断器のブッシングは有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。 れる。 しかしながら、ブッシングは屋内の筺体に内蔵しているため、塵埃が付着しにくい環境に ある。 また、主回路導体の通電時の最大温度100℃ に対して、ブッシングの耐熱温度は130℃ と十分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
262	電気設備	メタクラ	Δ①	摩耗	1 次ジャンク ション(遮断 器)の摩耗	メタクラ(安全系)	連断器の1次ジャンクションは、遮断器の盤からの出し入れに伴う摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない なお、分解点検時の目視確認により、機器の健全性を確認している。
263	電気設備	メタクラ	Δ①	摩耗	接触子(遮断 器)の摩耗	メタクラ(安全系)	連断器の接触子は、遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認および寸法計測により、機器の健全性を確認している。
264	電気設備	メタクラ	Δ①	ばねの変形 (応力緩和)	ばね(遮断器) の変形(応力緩 和)	メタクラ(安全系)	連断器の投入ばねは開放状態にて、また引外しばねは投入状態にて長期間保持されることにより、変形(応力緩和)が想定される。しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時の作動確認により、機器の健全性を確認している。
265	電気設備	メタクラ	Δ①	絶縁低下	投入コイルおよ び引外しコイル (遮断器) の絶 縁低下	メタクラ(安全系)	遮断器の投入コイルおよび引外しコイルの絶縁物は有機物であり、熱的、電気的、環境的 要因による絶縁低下が想定される。 しかしながら、投入コイルおよび引外しコイルは屋内の筐体に内蔵しているため、塵埃、 湿分等が付着しにくい環境にある。 また、投入コイルおよび引外しコイルは連続運転ではなく、作動時間も1秒以下と小さい ことから、コイルの発熱による温度上昇は小さいと考えられ、使用温度に比べて、十分余 裕のある絶縁種(A種: 許容最高温度105℃) を選択して使用していることから、絶縁 低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
266	電気設備	メタクラ	Δ①	腐食(全面腐食)	主回路導体の腐 食 (全面腐食)	メタクラ(安全系)	主回路導体はアルミニウム合金および銅であり、腐食が想定される。 しかしながら、エポキシ樹脂により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
267	電気設備	メタクラ	Δ①	絶縁低下	支持碍子の絶縁低下	メタクラ(安全系)	支持碍子は無機物の磁器であり、経年劣化の可能性はない。なお、長期の使用においては表面の汚損による絶縁低下が想定される。しかしながら、支持碍子は筐体に内蔵しているため、塵埃が付着しにくい環境にあり、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時の目視確認により、機器の健全性を確認している。
268	電気設備	メタクラ	Δ①	導通不良	操作スイッチの 導通不良	メタクラ(安全系)	操作スイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は盤内に収納されており、塵埃の付着による導通不良が発生する 可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の動作確認により、機器の健全性を確認している。
269	電気設備	メタクラ	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	メタクラ(安全系)	筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
270	電気設備	メタクラ	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	メタクラ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
271	電気設備	動力変圧器	Δ①	絶縁低下	垂直ダクトの絶縁低下	動力変圧器(安全系)	コイル内に使用している垂直ダクトは有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。 しかしながら、動力変圧器は空調された屋内に設置されていることから表面の汚損や水分の付着による絶縁低下の可能性は小さい。 また、使用時の温度170℃ に対して、垂直ダクトの耐熱温度は200℃ と十分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さいと考える。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
272	電気設備	動力変圧器	Δ①	緩み	鉄心の緩み	動力変圧器(安全系)	鉄心は珪素鋼板の薄板を積層し締付け、組み立てられているが、運転中の振動・温度変化 等により締付圧力が低下し、鉄心の緩みが想定される。 しかしながら、締付ボルトには回り止めが施されており、機器点検時の目視確認で緩みは 認められておらず、今後これらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
273	電気設備	動力変圧器	Δ①	腐食(全面腐食)	接続銅板の腐食 (全面腐食)	動力変圧器(安全系)	接続銅板は銅であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
274	電気設備	動力変圧器	Δ①	絶縁低下	銅板支持碍子の 絶縁低下	動力変圧器(安全系)	調板支持碍子は無機物の磁器であり、経年劣化の可能性はない。 なお、長期の使用においては表面の汚損による絶縁低下が想定される。 しかしながら、動力変圧器は空調された屋内に設置されていることから表面の汚損や水分 の付着による絶縁低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
275	電気設備	動力変圧器	Δ①	腐食(全面腐食)	鉄心締付ポルト の腐食(全面腐 食)	動力変圧器(安全系)	鉄心締付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部はメッキにより腐食を防止しており、これまでに有意な腐食は 認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時に代表として鉄心上部の枠締付ポルトを目視確認することにより、機器 の健全性を確認している。
276	電気設備	動力変圧 器	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	動力変圧器(安全系)	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。 また、機器点検時の目視確認によりメッキ面の状態を確認し、はく離等が認められた場合 は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
277	電気設備	パワーセ ンタ	Δ2	固着	操作機構(遮断 機)の固着	パワーセンタ(安全系)	連断器の操作機構は、長期使用に伴いグリスが固化し、動作特性の低下が想定される。 しかしながら、注油、各部の目視確認、動作試験を実施することで、機器の健全性を維持 している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
278	電気設備	パワーセ ンタ	Δ①	摩耗	接触子(遮断 器)の摩耗	パワーセンタ(安全系)	遮断器の接触子は、遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認 および寸法計測により、機器の健全性を確認している。
279	電気設備	パワーセ ンタ	Δ2	汚損	消弧室(遮断 器)の汚損	パワーセンタ(安全系)	遮断器の消弧室は、遮断器の電流遮断動作に伴う消弧室でのアーク消弧により汚損した場合、消弧性能の低下が想定される。 しかしながら、機器点検時の目視確認により機器の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
280	電気設備	パワーセ ンタ	Δ①	摩耗	1次ジャンク ション(遮断 器)の摩耗	パワーセンタ(安全系)	遮断器の 1 次ジャンクションは、遮断器の盤からの出し入れに伴う摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
281	電気設備	パワーセ ンタ	Δ①	絶縁低下	絶縁リンク、絶縁ペース(遮断子 大きに 大き 大 大 大 を 大 かん	パワーセンタ(安全系)	遮断器の絶縁リンク、絶縁ベース、支持碍子および絶縁支持板は有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。しかしながら、絶縁リンク等は屋内の筐体に内蔵しているため、塵埃、湿分等が付着しにくい環境にある。また、主回路導体の通電時の最大温度100℃ に対して、絶縁リンクの耐熱温度は180℃、絶縁ベースの耐熱温度は200℃、支持碍子の耐熱温度は120℃ 、絶縁支持板の耐熱温度は130℃ と十分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さいと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。なお、機器は食時の絶縁抵抗測定により、機器の健全性を確認している。
282	電気設備	パワーセ ンタ	Δ①	ばねの変形 (応力緩和)	ばね(遮断器) の変形(応力緩 和)	パワーセンタ(安全系)	遮断器のばねは投入状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の作動確認により、機器の健全性を確認している。
283	電気設備	パワーセ ンタ	Δ①	絶縁低下	投入コイルおよ び引外しコイル (遮断機) の絶 縁低下	パワーセンタ(安全系)	遮断器の投入コイルおよび引外しコイルの絶縁物は有機物であり、熱的、電気的、環境的 医因による絶縁低下が想定される。 しかしながら、投入コイルおよび引外しコイルは屋内の筐体に内蔵しているため、塵埃、 湿分等が付着しにくい環境にある。 また、投入コイルおよび引外しコイルは連続運転ではなく、作動時間も1秒以下と小さい ことから、コイルの発熱による温度上昇は小さいと考えられ、使用温度に比べて、十分余 裕のある絶縁種(A種: 許容最高温度105°C) を選択して使用していることから、絶縁 低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
284	電気設備	パワーセ ンタ	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	パワーセンタ(安全系)	主回路導体は銅およびアルミニウム合金であり、腐食が想定される。 しかしながら、エボキシ樹脂により腐食を防止しており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
285	電気設備	パワーセ ンタ	Δ①	導通不良	操作スイッチの 導通不良	パワーセンタ(安全系)	操作スイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は盤内に収納されており、塵埃の付着による導通不良が発生する 可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の動作確認により、機器の健全性を確認している。

表1-1 日常劣化管理事象一覧(28/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
286	電気設備	パワーセ ンタ	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	パワーセンタ(安全系)	筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 成じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
287	電気設備	パワーセ ンタ		腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	パワーセンタ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 成じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
288	電気設備	コント ロールセ ンタ	Δ①	腐食(全面腐食)		原子炉コントロールセンタ(安全 系)	主回路導体は銅であり、腐食が想定される。 しかしながら、錫メッキにより腐食を防止しており、これまでに有意な腐食は認められて おらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
289	電気設備	コント ロールセ ンタ	Δ①	絶縁低下	CLN限流装置の絶 縁低下	原子炉コントロールセンタ(安全 系)	CLN限流装置に使用している絶縁物は無機物の磁器であり、経年劣化の可能性はない。なお、長期の使用においては表面の汚損による絶縁低下が想定される。しかしながら、CLN限流装置は筐体に内蔵しているため、塵埃が付着しにくい環境にある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時の目視確認により、機器の健全性を確認している。
290	電気設備	コント ロールセ ンタ	Δ①	絶縁低下	母線支えの絶縁低下	原子炉コントロールセンタ(安全 系)	主回路導体を支持する母線支えは有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。 しかしながら、母線支えは屋内の筺体に内蔵しているため、塵埃、湿分等が付着しにくい 環境にある。 また、主回路導体の通電時の最大温度100℃に対して、母線支えの耐熱温度は155℃ と十 分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
291	電気設備	コント ロールセ ンタ	Δ2	腐食(全面腐食)	筐体の腐食 (全 面腐食)	原子炉コントロールセンタ(安全 系)	整体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
292	電気設備	コント ロールセ ンタ		腐食(全面腐食)	取付ボルトの腐食(全面腐食)	原子炉コントロールセンタ(安全 系)	取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視によりメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
293	電気設備	コント ロールセ ンタ	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	原子炉コントロールセンタ(安全 系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
294	タービン 設備	高圧ター ビン	Δ2	腐食(全面腐食)	主蒸気入口管および車室の外面 からの腐食(全 面腐食)	高圧タービン	主蒸気入口管および車室は炭素鋼または低合金鋼鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、さらに防水措置(保温)が設置されている場合は防水措置(保温)が設置されている場合は防水措置(に保温)が投態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
295	タービン 設備	高圧タービン	Δ2	腐食(流れ加 速型腐食)	主蒸気入口管および車室の腐食 (流れ加速型腐食)	高圧タービン	主蒸気入口管および車室は、炭素綱または低合金鋼鋳鋼であり、湿り蒸気流に常時さらされているため、流れ加速型腐食により減肉が想定される。 主蒸気入口管および車室の流れ加速型腐食発生想定部位をそれぞれ図2.2-1および図2.2-2に示す。 主蒸気入口管等については、流れ加速型腐食免生想定部位をそれぞれ図2.2-1および図2.2-2に素気入口管等については、流れ加速型腐食により減肉が想定される。 流れ加速型腐食による減肉の進行程度は物理的因子である流速、湿り度、渦流の発生の有無等。また、化学的因子である水質、温度等により影響されるが、それらの諸条件は機器単位で異なっていると考えられ、一律に流れ加速型腐食について正確に定量的な予測を行うことは困難である。 しかしながら、主蒸気入口管の流れ加速型腐食については「2次系配管肉厚の管理指針」に基づき、超音波探傷検査による肉厚測定を実施し、肉厚測定結果に基づく余寿命評価から次回測定または取替時期を設定している。 また、車室については分解点検許の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
296	タービン 設備	高圧ター ビン	Δ①	疲労割れ	主蒸気入口管および車室の疲労割れ	高圧タービン	主蒸気入口管および車室は、起動・停止および負荷変化時に発生する熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生しがたい したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
297	タービン 設備	高圧ター ビン	Δ2	変形	車室の変形	高圧タービン	車室は大型鋳物 でかつ構造が複雑であり、わずかなひずみが想定される。 しかしながら、分解点検時に水平継手面の隙間計測や当り状況の目視確認 により、機器 の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
298	タービン 設備	高圧ター ビン	Δ①	腐食(全面腐食)	車室ボルトの腐 食(全面腐食)	高圧タービン	車室ボルト は低合金鋼であり、フランジ面からの漏えいにより、内部流体によるボルト の腐食が想定される。 しかしながら、締付管理 により漏えい防止を図っており、これまでに有意な腐食は認め られておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検の目視確認 により、機器の健全性を確認している。
299	タービン 設備	高圧ター ビン	Δ2	腐食(全面腐食)	アウターグランド本体おイヤの外 ランドダンの肉 ラかから腐食)	高圧タービン	アウターグランドおよびグランドダイヤフラムリングは低合金鋼鋳鋼または炭素鋼であり、外面からの腐食が想定される。 しかしながら、分解点検時の目視 確認 により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
300	タービン 設備	高圧ター ビン	Δ①	腐食 (流れ加 速型腐食)	アウターグランド本体 デンドーグランド かく アウス から できる から できる から できる から できる できる できる できる できる から できる できる できる アイス	高圧タービン	アウターグランド本体およびグランドダイヤフラムリングはそれぞれ低合金鋼鋳鋼および 炭素鋼であり、流れ加速型腐食により減肉が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因がある今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
301		高圧ター	Δ2	腐食(全面腐食)	油止輪、軸受台 および台板等の	高圧タービン	油止輪、軸受台および台板は炭素鋼、カップリングポルト は低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
302	設備	ビン	Δ①	腐食(全面腐食)	腐食(全面腐食)		一方、内面およびカップリングボルトについては潤滑油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
303	タービン 設備	高圧ター ビン	Δ①	高サイクル疲 労割れ	動翼の高サイク ル疲労割れ	高圧タービン	タービン運転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月に美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、高圧タービン動翼では流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や磁粉探傷検査により、機器の健全性を確認している。
304	タービン 設備	高圧ター ビン	Δ2	応力腐食割れ	翼環ボルトの応 力腐食割れ	高圧タービン	翼環ボルトはステンレス鋼であり、応力集中部であるねじ部を有しており 、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 しかしながら、締付管理により過大な応力とならないよう管理していることから、応力腐食割れが発生する可能性は小さい。 また、分解点検時の目視確認 により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
305	タービン 設備	高圧ター ビン	Δ①	摩耗	車軸の摩耗	高圧タービン	車軸を支持する軸受はすべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器により油の浄化 を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
306	タービン 設備	高圧ター ビン	Δ①	腐食(流れ加 速型腐食)	車軸の腐食(流 れ加速型腐食)	高圧タービン	車軸は湿り蒸気雰囲気で使用しており、流れ加速型腐食により減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これま でに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考 えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
307	タービン 設備	高圧タービン	Δ①	高サイクル疲 労割れ	車軸の高サイク ル疲労割れ	高圧タービン	タービン運転時には車軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の応力集中部に対する目視確認や超音波探傷検査、磁粉探傷検査「こより、機器の健全性を確認している。
308	タ ー ビン 設備	高圧ター ビン	△2	応力腐食割れ	車軸の応力腐食割れ	高圧タービン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 1984年2月に、伊方 1 号炉の低圧タービンにおいて、片側 5 枚ある円板のうち上流側から 2 番目の第2 円板翼溝部に、応力腐食割れた考えられる割れが認められた。 しかしながら、車軸には応力腐食割れに対する感受性の低い降伏応力約690MPa級の材料を使用しており、降伏応力(0.2%耐力)と応力腐食割れの発生の関係、また、一定の低ひずみ速度で荷重を加えた場合の破面観察結果からも、降伏応力約900MPa級の材料では粒界割れの破面はごくわずかであり、応力腐食割れに対する感受性は低い。 さらに、分解点検時の応力集中部に対する目視確認や超音波探傷検査、磁粉探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
309	タービン 設備	高圧タービン	Δ2	摩耗、はく離	ジャーナル軸受 ホワイトメタル の摩耗、はく離	高圧タービン	ジャーナル軸受のホワイトメタルは、長時間の使用による摩耗、はく離が想定される。しかしながら、摩耗に対しては分解点検師の目視確認および車軸と軸受内面の隙間測定や軸受表面の当り幅の確認により、はく離についても分解点検時の目視確認およびホワイトメタル部の浸透探傷検査や超音波探傷検査により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
310	タービン 設備	高圧ター ビン	Δ①	摩耗	キーの摩耗	高圧タービン	軸受台は起動・停止による温度変化により台板上をスライドするため、台板に固定された キーの摩耗が想定される。 しかしながら、キーは低合金鋼であり、炭素鋼に比べ耐摩耗性が優れており、かつ軸受台 とキーの接触面は潤滑剤が注入 されており、摩耗が発生しがたい環境である。 さらに、起動・停止回数の多い火力発電所のターピンにおいても同様の構造、材料を採用 しこれまで問題なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検等の目視確認により、機器の健全性を確認している。
311	タ ー ビン 設備	高圧ター ビン	Δ①	腐食(全面腐 食)	車室支えボルト の腐食(全面腐 食)	高圧タービン	車室支えボルトは低合金鋼であり、腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検や巡視点検時の目視確認 により、機器の健全性を確認している。
312	タ ー ビン 設備	低圧ター ビン	Δ2	腐食(全面腐食)	外部車室および グランド本体の 外面からの腐食 (全面腐食)	低圧タービン	外部車室およびグランド本体は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
313	タービン 設備	低圧ター ビン	Δ2	腐食 (流れ加 速型腐食)	外部車室および グランド本体の 腐食(流れ加速 型腐食)	低圧タービン	外部車室内面は湿り蒸気流に常時さらされており、グランド本体は湿り蒸気雰囲気で使用しているため、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
314	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	外部車室ボルト の腐食(全面腐 食)	低圧タービン	外部車室ボルト は低合金鋼であり、フランジ面からの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理 により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検や巡視点検時の目視確認により、機器の健全性を確認している。
315	タービン 設備	低圧ター ビン	Δ2		第1内部車室お よび第2内部車 室の腐食(流れ 加速型腐食)	低圧タービン	第1内部車室および第2内部車室は炭素鋼および炭素鋼鋳鋼であり、湿り蒸気流に常時 さらされているため、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認 により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
316	タービン 設備	低圧ター ビン	Δ①	疲労割れ	第 1 内部車室お よび第 2 内部車 室の疲労割れ	低圧タービン	第1内部車室および第2内部車室は、起動・停止および負荷変化時に発生する入口側と出口側の蒸気温度差の変化による熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
317	タービン 設備	低圧ター ビン	Δ①	変形	第 1 内部車室お よび第 2 内部車 室の変形	低圧タービン	第1内部車室および第2内部車室は温度差によるひずみが想定される。 しかしながら、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に水平継手面の隙間計測や目視確認により、機器の健全性を確認して いる。
318	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	第1内部車室ボルトおよび第2 内の腐食(全面腐食)	低圧タービン	第1内部車室ボルトおよび第2内部車室ボルトは低合金鋼であり、腐食が想定される。 しかしながら、低圧タービン内部にあり、酸素濃度が低いことから腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する 要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
319	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	クロスオーバパ イプアダプタの 腐食(全面腐 食)	低圧タービン	クロスオーババイブアダブタは炭素鋼であり、蒸気による腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
320	タ 一 設 が よ が よ り で は よ り し り り り り り り り り り り り り り り り り り	低圧ター ビン	Δ2	腐食(全面腐 食)	油止輪、軸受箱 の 腐食(全面腐	低圧タービン	油止輪、軸受箱および台板は炭素鋼、カップリングボルト は低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
321			Δ①	腐食(全面腐食)	食)		一方、内面およびカップリングボルトについては潤滑油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
322	タービン 設備	低圧ター ビン		腐食(エロー ジョン)	動翼の腐食(エ ロージョン)	低圧タービン	最終段動翼群は流入する湿り蒸気流に常時さらされているため、蒸気中に含まれた水滴によるエロージョンが想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
323	タービン 設備	低圧ター ビン	Δ①	高サイクル疲 労割れ	動翼の高サイク ル疲労割れ	低圧タービン	タービン運転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月に美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、低圧タービン動翼では流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や磁粉探傷検査により、機器の健全性を確認している。
324	タービン 設備	低圧ター ビン			翼環の腐食(流 れ加速型腐食)	低圧ターピン	翼環は蒸気に常時さらされており、流れ加速型腐食により減肉が想定される。 しかしながら、使用環境が乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生しが たい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変 化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
325	タービン 設備	低圧ター ビン	Δ①	応力腐食割れ	翼環ボルトの応 力腐食割れ	低圧タービン	環環ボルトはステンレス鋼であり、応力腐食割れが想定される。 しかしながら、上流段は使用環境が乾き蒸気雰囲気であり、下流段は湿り蒸気雰囲気となるが温度が低く、応力腐食割れが発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたいしたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
326	タービン 設備	低圧ター ビン	Δ①	摩耗	車軸の摩耗	低圧ターピン	車軸を支持する軸受は、すべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器 により油の浄 化を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認 により、機器の健全性を確認している。
327	タービン 設備	低圧ター ビン	Δ①		車軸の腐食(流 れ加速型腐食)	低圧タービン	車軸は湿り蒸気雰囲気で使用しており、流れ加速型腐食により減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
328	タービン 設備	低圧ター ビン	Δ①	高サイクル疲 労割れ	車軸の高サイクル疲労割れ	低圧タービン	タービン運転時には車軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。したから、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
329	タ ー ビン 設備	低圧ター ビン	Δ2	応力腐食割れ	車軸の応力腐食割れ	低圧ターピン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 1984年2月に、伊方 1 号炉の低圧タービンにおいて、片側5 枚ある円板のうち上流側から 2 番目の第2 円板翼溝部に、応力腐食割れと考えられる割れが認められた。 ししながら、車軸には応力腐食割れに対する感受性のない降伏応力約620MPa級の材料を使用しており、降伏応力(0.2%耐力)と応力腐食割れの発生の関係、また、一定の低ひずみ速度で荷重を加えた場合の破面観察結果からも、降伏応力約620MPa級の材料では粒界割れの破面は存在せず、応力腐食割れに対する感受性は認められなかった。 さらに、分解点検時の応力集中部に対する目視確認 により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
330	タービン 設備	低圧ター ビン	Δ2	摩耗、はく離	ジャーナル軸受 およびスラスト するのホワイト メタルの摩耗、 はく離	低圧タービン	ジャーナル軸受およびスラスト軸受のホワイトメタルは、長時間の使用による摩耗、はく離が想定される。 はかしながら、摩耗に対しては分解点検時の目視確認および車軸と軸受内面の隙間測定や 軸受表面の当り幅の確認により、はく難についても分解点検時の目視確認およびホワイ トメタル部の浸透探傷検査や超音波探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
331	タービン 設備	低圧ター ビン	Δ①	摩耗	キーの摩耗	低圧タービン	軸受合は起動・停止による温度変化により台板上をスライドするため、台板に固定された キーの摩耗が想定される。 しかしながら、キーは低台金鋼であり、炭素鋼に比べ耐摩耗性が優れており、かつ運転時 の軸受箱の熱移動が小さく、摩耗が発生しがたい環境である。 さらに、起動・停止回数の多い火力発電所のターピンにおいても同様の構造、材料を採用 しこれまで問題なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検等の目視確認により、機器の健全性を確認している。
332	タービン 設備	主油ポン プ	Δ①	腐食(全面腐食)	主軸およびケー シング等の腐食 (全面腐食)	主油ポンプ	主軸、ケーシング、ケーシングボルト、ケーシング取付ボルトおよび中間リングは低合金 鋼、炭素鋼鋳鋼および炭素鋼であり、腐食が想定される。 しかしながら、主油ボンブは軸受合内に設置されており、内外面ともに油または油雰囲気 で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後も これらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認 により、機器の健全性を確認している。
333	タービン 設備	主油ポン プ	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	主油ポンプ	ポンプ連転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けた場合、段付部等の応力集中部に、高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確 認)、試運転時および機能確認時(こおける振動確認 (変位、速度、加速度の測定等) ならびに分解点検時の応力集中部に対する目視確認 により、機器の健全性を確認してい る。
334	タービン 設備	主油ポン プ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャピテー ション)	主油ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温に おける飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こ ることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階にお いて考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
335	タービン 設備	タービン 調速装置	Δ2	腐食(全面腐食)	油ポンプケーシ ング等の腐食 (全面腐食)	タービン調連装置	油ポンプのケーシング、アンロード弁およびリリーフ弁のケーシングは鋳鉄、アキューム レータチューブは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小技等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
336			Δ①	腐食(全面腐食)			一方、内面については内部流体が油で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
337	タービン 設備	タービン調速装置	Δ①	腐食(全面腐食)	油ポンプ主軸およびロータ等の腐食(全面腐食)	ターピン調速装置	油ポンプの主軸、ロータ、アンロード弁およびリリーフ弁のブランジャ、ポペット、ブッシュは低合金鋼であり、腐食が想定される。 しかしながら、内部流体は油で腐食が発生しがたい環境であり、これまでに有意な腐食は 認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認 により、機器の健全性を確認している。
338	タービン 設備	タービン調速装置	Δ①	摩耗	アンロード弁お よびリリーフ弁 のプランジャ、 ポペットおよび ブッシュの摩耗	タービン調速装置	アンロード弁およびリリーフ弁の開閉により摺動面、シート面で摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
339	タービン 設備	タービン 調速装置	Δ①	摩耗	アキュームレー タチューブおよ びピストンの摩 耗	タービン胴連装置	アキュームレータのチューブはビストンの動作により、摺動部で摩耗が想定される。 しかしながら、チューブには硬質クロムメッキ を施し、ビストンには耐摩耗性に優れた 材料を使用し、耐摩耗性を向上させるとともに、摺動部に潤滑油を注入することで摩耗 を防止しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変 化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認 により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
340	タービン 設備	タービン調速装置	Δ①	ばねの変形 (応力緩和)	アンロード弁お よびリリーフ弁 のばねの変形 (応力緩和)	タービン調速装置	アンロード弁およびリリーフ弁のばねは応力状態にて長期間保持されることにより、変形 (応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
341	タービン 設備	タービン 調速装置	Δ2	腐食(全面腐食)	アキュームレー タスタンドの腐 食 (全面腐食)	タービン調速装置	アキュームレータのスタンドは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
342	タービン 設備	タービン 動補かポービン タービン	Δ①	摩耗	主軸の摩耗	タービン動補助給水ポンプタービ ン	タービン動補助給水ポンプタービン(以下、本機器という)のころがり軸受部は、軸受と 主軸の接触面で摩耗が想定され、すべり軸受部については、軸受と主軸の接触面で摺動摩 抹が想定される。 しかしながら、本機器の運転時間は短いため、摩耗しがたく、すべり軸受は設計段階にお いて主軸と軸受間に潤滑剤を供給し、膜を形成させて流体潤滑状態となるように考慮して おり、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
343	タービン 設備	タービン 動補助ポ 水ポンシ タービン	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	タービン動補助給水ポンプタービ ン	タービン運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は 経年的に変化するものではない。 さらに、本機器の運転時間は短く、高サイクル疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等) な らびに 分解点検時の応力集中部に対する目視確認や浸透探傷検査 により、機器の健全性 を確認している。
344	タービン 設備	タービン 動補シポン タービン	Δ①	フレッティン グ疲労割れ	主軸のフレッティング疲労割れ	タービン動補助給水ポンプタービ ン	タービン運転時の主軸に外部荷重に起因する繰返し曲げ応力が作用したとき、その応力の 働いている方向や大きさによっては、主軸等に疲労割れが生じる可能性があり、焼きばめ により主軸に固定されている翼車において、主軸のフレッティング疲労割れが想定され る。 しかしながら、本機器の運転時間は短いため、フレッティング疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)によ り、機器の健全性を確認している。
345	タービン 設備	タービン 動補ポン タービン	Δ2	応力腐食割れ	翼車の応力腐食 割れ	タービン動補助給水ポンプタービ ン	要車は低合金鋼であり、湿り蒸気雰囲気の腐食環境下で使用されているため、翼車の応力 腐食割れが想定される。 しかしながら、本機器の運転時間は短いため、応力腐食割れ発生の可能性は小さい。 また、分解点検時に翼車への動震取持け状況および応力集中部に対する目視確認や浸透探 保検査により、機器の運転を動とであることから、高経年化対策上着目すべき経年劣 化事象ではない。
346	タ ー ビン 設備	タービン 動補ポン タービン	Δ①	疲労割れ	ケーシングの疲 労割れ	タービン動補助給水ポンプタービ ン	タービン起動時に発生する内部流体の温度、圧力の変化により材料に疲労が蓄積することから、ケーシングでの疲労割れが想定される。 しかしながら、本機器の定期運転も考慮した起動発停回数は限られているため、疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
347	タービン 設備	タービン 動補助給 水ポンジ タービン	Δ2)	腐食(全面腐 食)	ケーシングおよ び主油ポンプ ケーシングの 外面から食 (全面腐食)	タービン動補助給水ポンプタービ ン	ケーシング、主油ポンプケーシング、蒸気加減弁弁箱およびアクチュエータ本体は炭素鋼 鋳鋼または鋳鉄であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
348	タービン 設備	タービン 動補ポンビン タービン	Δ2	腐食(全面腐食)	調速機本体および定吐出圧制御 ビストン本体等 の腐食(全面腐食)	タービン動補助給水ポンプタービ ン	調速機本体、定吐出圧制御ピストン本体および起動速度制御ピストン本体は鋳鉄または炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទ可目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
349	タービン 設備	タービン 動補ポンド タービン	Δ①	摩耗	主油ポンプ歯車 および調速機駆 動歯車等の摩耗	タービン動補助給水ポンプタービ ン	主油ポンプは駆動歯車を介して主軸の回転力により駆動される歯車ポンプであり、歯車は 摩擦による摩耗が想定される。 駆動歯車は主油ポンプおよび調速機は主軸に直結された歯車を介して駆動される直径の異 なる歯車を組合わせており、歯車の歯面は接触により動力が伝達されるため、面圧条件に より摩耗が想定される。 しかしながら、本機器の運転時間は短く、歯車には潤滑油を供給し摩耗を防止しており、 摩耗が発生しがたい環境である。 したがつて、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
350	タービン 設備	タービン 動補ポンプ タービン	Δ①	腐食(全面腐食)	ケーシングおよ び蒸気加減弁弁 箱の内面からの 腐食(全面腐 食)	タービン動補助給水ポンプタービ ン	ケーシングおよび蒸気加減弁弁箱は炭素鋼鋳鋼であり、湿り蒸気雰囲気中の長期間の使用により、内面からの腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
351	タービン 設備	タービン 動補ポンデ タービン かパービン	Δ①	腐食(全面腐食)	主油ポンプケー シングカングルングルングルングルングルングルングルングルングルングルングルングルングルの内の食(全面腐食)	タービン動補助給水ポンプタービ ン	主油ポンプケーシングおよびアクチュエータ本体は鋳鉄であり、内面からの腐食が想定される。 しかしながら、内面については内部流体が油で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
352	タービン 設備	タービン 動補ポンピン タービン	Δ①	摩耗	ガバナ調速機構の摩耗	ک	ガバナ調連機構を構成する蒸気加減弁、定吐出圧制御ピストンおよび起動速度制御ピストンの摺動部に摩耗が想定される。 しかしながら、本機器の連転時間は短く、これまでに有意な摩耗は認められておらず、 今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測およびガバナ調速機構の作動確認により、機器の 健全性を確認している。
353	タービン 設備	タービン 動補かポンド タービン	Δ①	ばねの変形 (応力緩和)	ガバナ調速機構 ばねの変形(応 カ緩和)	٧	アクチュエータ、定吐出圧制御ピストンおよび起動速度制御ピストンのばねは応力状態に て長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、ガバナ調速機構の作動確認により、機器の健全性を確認している。
354	タービン設備	タービン 動補ポンピン タービン	Δ①	摩耗	アクチュエータ ピストン等の摩 耗	ン	アクチュエータピストン、ピストンロッドおよびプランジャの往復運動により、シリンダ接触面で褶動摩耗が想定される。しかしながら、本機器の運転時間は短く、シリンダ内部は封油および油で摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
355	タービン 設備	タービン 動補助ポ ポービン	Δ①	腐食(全面腐食)	アクチュエータ ピストン等の腐 食(全面腐食)	タービン動補助給水ポンプタービ ン	アクチュエータピストンおよびシリンダは鋳鉄、ピストンロッドおよびプランジャは低合金鋼であり、腐食が想定される。 しかしながら、シリンダ内部、アクチュエータ内部は封油、油および油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
356	タービン 設備	タービン 動補ポポービン タービン	Δ①	腐食(全面腐食)	ケーシングボル トの腐食(全面 腐食)	タービン動補助給水ポンプタービ ン	ケーシングボルトは低合金鋼であり、ケーシング合わせ面からの漏えいにより内部流体によるボルトの腐食が想定される。 しかしながら、綿付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
357	タービン 設備	タービン 動補ポポンド タービン	Δ2	腐食(全面腐食)	台板および取付 ボルトの腐食 (全面腐食)	タービン動補助給水ポンプタービ ン	台板および取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
358	タービン 設備	タービン 動主給水 ポンプ タービン	Δ2	腐食(全面腐食)	車室およびグラ ンド本体の外面 からの腐食(全 面腐食)	タービン動主給水ポンプタービン	族素鋼または炭素鋼鋳鋼部分の車室およびグランド本体は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
359	タービン	タービン動主給水	Δ2	腐食 (流れ加 速型腐食)	車室、グランド 本体および低圧		使素鋼または炭素鋼鋳鋼部分の車室およびグランド本体は、湿り蒸気流に常時さらされているため、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認 により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
360	設備	ポンプ タービン	Δ①	腐食 (流れ加 速型腐食)	ノズル室の腐食 (流れ加速型腐 食)	タービン動主給水ポンプタービン	一方、低圧ノズル室は、乾き蒸気雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認 により、機器の健全性を確認している。
361	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	疲労割れ	車室の疲労割れ	タービン動主給水ポンプタービン	車室は、起動・停止および負荷変化時に発生する熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
362	タービン 設備	タービン 動主給水 ポンプ タービン	Δ2	変形	車室の変形	タービン動主給水ポンプタービン	車室はステンレス鋼鋳鋼および炭素鋼を用いており、素材製作時の熱処理段階で寸法安定化が図られているが、車室は大型鋳物でかつ構造が複雑であり、わずかなひずみを発生することが想定される。 しかしながら、分解点検時の当り状況の確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
363	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	腐食(全面腐食)	車室ボルトの腐 食(全面腐食)	タービン動主給水ポンプタービン	車室ボルトは、低合金鋼および炭素鋼であり、フランジ面からの内部流体の漏えいや大気 の流入により、腐食が想定される。 しかしながら、締付管理により漏えい、大気の流入防止を図っており、これまでに有意な 協食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時等の目視確認により、機器の健全性を確認している。
364	タービン 設備	タービン 動主給水 ポンプ タービン	Δ2	腐食(エロー ジョン)	動業の腐食(エロージョン)	タービン動主給水ポンプタービン	動翼第5、6段は湿り蒸気雰囲気で使用されるため、蒸気中の水滴による衝撃で、翼入口 先端部がエロージョンにより減肉が想定される。 動翼第5、6段に流入する蒸気の湿り度が大きく、かつ周方向速度も大きいため、動翼先 端部の減肉が大きくなることが考えられ、減肉の進行によりステライトのはく離が想定さ れる。 しかしながら、エロージョンについては、分解点検時の目視確認により、ステライト板ろ う付部に対しては目視確認や浸透探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
365	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	高サイクル疲 労割れ	動翼の高サイク ル疲労割れ	タービン動主給水ポンプタービン	タービン運転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月に美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、動翼設計時に流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や浸透探傷検査、磁粉探傷検査により、機器の健全性を確認している。
366	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	腐食(全面腐食)	仕切板 (ノズル を含む) の腐食 (全面腐食)	タービン動主給水ポンプタービン	第1段仕切板(ノズルを含む)は炭素鋼であり、腐食が想定される。 しかしながら、第1段仕切板は、数き蒸気雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、一分後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
367	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	摩耗	車軸の摩耗	タービン動主給水ポンプタービン	車軸を支持する軸受は、すべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器により油の浄化 を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
368	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	腐食(流れ加 速型腐食)	車軸の腐食(流れ加速型腐食)	タービン動主給水ポンプタービン	車軸は湿り蒸気雰囲気で使用しており、流れ加速型腐食により減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
369	タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	高サイクル疲 労割れ	車軸の高サイクル疲労割れ	タービン動主給水ポンプタービン	タービン運転時には車軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は 経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検時の振動確認 (通常運転時の振動状態と差異がないことの触診による確 認)、試運転時および機能確認時における振動確認 (変位、速度、加速度の測定等)ならびに分解点検時の広力集中部に対する目視確認や浸透探傷検査 により、機器の健全性を 確認している。
370	タービン 設備	タービン 動主給水 ポンプ タービン	Δ2	応力腐食割れ	車軸の応力腐食割れ	タービン動主給水ポンプタービン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。1984年2月に、伊方 1号炉の低圧タービンにおいて、片側 5 枚ある円板のうち上流側から 2 番目の第2 円板翼溝部に、応力腐食割れと考えられる割れが認められた。しかしながら、車軸には応力腐食割れと考えられる割れが認められた。使用しており、降伏応力の腐食割れた対する感受性の低い降伏応力約690MPa級の材料を使用しており、降伏応力 (0.2%耐力)と応力腐食割れ発生の関係、また、一定のひずみ速度で荷重を加えた場合の破面観察結果からも、降伏応力約690MPa級の材料では粒界割れ破面はごくわずかであり、応力腐食割れに対する感受性は低い。 さらに、分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を維持している。
371	タービン	タービン 動主給水 ポンプ	Δ2	腐食(全面腐食)	軸 受台、カップ ポルトポルト よびも板の腐食	タービン動主給水ポンプタービン	軸受台、カップリングボルトおよび台板は、炭素鋼鋳鋼、炭素鋼または低合金鋼であり、 腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修 することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
372		タービン	Δ①	腐食(全面腐食)	(全面腐食)		一方、軸受台内面およびカップリングボルトについては、潤滑油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
373	タービン 設備	タービン 動主給水 ポンプ タービン	Δ2	摩耗、はく離	ジャーナル軸受 およびスラスト も受ホワイトメ タルの摩耗、は く離	タービン動主給水ポンプタービン	ジャーナル軸受およびスラスト軸受のホワイトメタルは、長時間の使用による摩耗、はく 離が想定される。 しかしながら、摩耗に対しては分解点検時の目視確認および車軸と軸受内面の隙間測定や 軸受表面の当り幅の確認により、はく離についても分解点検時の目視確認およびホワイト メタル部の浸透探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

						1
タービン 設備	タービン 動主給水 ポンプ タービン	Δ①	摩耗	キーの摩耗	タービン動主給水ポンプタービン	軸受台が起動・停止による温度変化により台板上をスライドするため、台板に固定された キーの摩耗が想定される。 しかしながら、小型のターピンであることから、運転時の熱移動量は小さく、摩耗が発生 しがたい環境である。 さらに、起動・停止回数の多い火力発電所のターピンにおいても同様の構造、材料を採用 しこれまで問題なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
コンク Jーかお骨 造 歩 造 物 造物	1	Δ①	コンクリートの 強度低下	アルカリ骨材反応による強度低下	共通	コンクリート中の反応性シリカを含む骨材と、セメントなどに含まれるアルカリ(ナトリウムイオン やカリウムイオン)が、水の存在下で反応してアルカリ珪酸塩を生成し、この膨張作用によりコンクリートにひい割れが生じ、コンリート構造物としての健全性が損なわれる可能性がある。使用している骨材(粗骨材、細骨材)については、建酸時にモルタルバー法(JIS A 5308)による反応性試験を実施し、反応性骨材ではないことを確認している。モルタルバー法による反応性試験の結果は、膨張率が材合66ヶ月で0、1%も満の場合は無害さる判定基準に対して最も高り骨材でも0、068%であった。また、定期的に目視確認を実施しており、アルカリ骨材反応に起因すると判断されるひび割れなどは認められていない。以上から、コンクリートのアルカリ骨材反応による強度低下については、高経年化対策上着目すべき経年劣化事象ではないと判断した。
コンク J - 物 大 き 数 き 物 造 物 造 物 き 数 き 物 き 物 き り き り き り き り き り り き り き り き	-	Δ①	コンクリートの 強度低下	凍結融解による 強度低下	共通	コンクリート中の水分が凍結し、それが気温の上昇や日射を受けることなどにより融解する凍結 融解を繰り返すことでコンクリートにひび割れが生じ、コンクリート構造物としての健全性が損な われる可能性がある。 日本建築学会、建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事」(2018)に示さ れる凍害危険度の分布図によると大飯3号炉の周辺地域は「ごく軽微」よりも危険度が低い。ま た、定期的に目視確認を実施しており、凍結融解に起因すると判断されるひび割れなどは認め られていない。 以上から、凍結融解による強度低下は、高経年化対策上着目すべき経年劣化事象ではないと 判断した。
コンク メント 構 よ 構 造 が 造 物 、 造 物 、 、 、 、 、 、 、 、 、 、 、 、 、	-	Δ①	コンクリートの 耐火能力低下		外部遮蔽壁、内部コンクリート、原 子炉周辺建屋、制御建屋、廃棄物 処理建屋	コンクリート構造物は、断面厚により耐火能力を確保する設計であるが、火災時の熱により剥落が生じ、部分的な断面厚の減少に伴う耐火能力の低下によりコンクリートの健全性が損なわれる可能性がある。 しかしながら、コンクリート構造物は通常の使用環境において、コンクリート構造物の断面厚が減少することはなく、また、定期的に目視確認を実施しており、火災時などの熱に起因すると判断される断面厚の減少は認められていない。 以上から、コンクリートの耐火能力は、高経年化対策上着目すべき劣化事象ではないと判断した。
コンク オート お は は は は は は は は は は は は は	-	Δ2	鉄骨の強度低 下	腐食による強度低下	原子炉周辺建屋(鉄骨部)、タービン建屋(鉄骨部)	鉄は一般に大気中の酸素、水分と化学反応を起こして腐食する。また、海塩粒子などにより、腐食が促進される。腐食が進行すると鉄骨の断面欠損に至り、鉄骨の強度低下につながる可能性がある。 しかしながら、定期的に目視確認を実施しており、強度に支障をきたす可能性のあるような鋼材の腐食は認められておらず、また、強度に支障をきたす可能性のあるような鋼材の腐食に影響する塗膜の劣化などが見られた場合には、その部分の塗替えなどを行うこととしている。以上から、腐食による強度低下は、高経年化対策上着目すべき劣化事象ではない**と判断した。
						※高経年化技術評価書には、「高経年化対策上着目すべき構造物・経年劣化事象の技術評価」 の章(23.4)にも同様の評価内容が記載されているが、2.34章は誤記であり削除した状態が正しい記載。
十測制御 設備	プロセス	Δ①	応力腐食割れ	1 次冷却材系統 に接する計装配 管等の応力腐食 割れ	1.次冷却材压力 加压器水位	1996年5月、米国セコイヤ(Sequoyah)発電所2号炉で、1次系水質環境下においても局所 的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食剤れによる漏えいが発生して いることから、応力腐食剤れが想定される。 しかしながら、当該部位については、SUS304系より耐応力腐食剤れ性の優れているSUS316 系を使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認および浸透探傷検査により、機器の健全性を確認している。
十測制御 設備	プロセス	Δ2	特性変化	換処理部、加速 度検出器、出力 部、電源装置、指 示計、記録計およ び自動/手動操	処理部「アニュラス水素濃度を除いて共通」、加速度検出器、出力部、電源装置「保護用地震計(水平用)」、指示計「保護用地震計(水平用)を除いて共通」、記録計「中性子東(出力領域) 「および自動ノ手動操作器「余熱除去流量、加圧器水位」	伝送器、信号変換処理部、加速度検出器、出力部、電源装置、指示計、記録計および自動 /手動操作器は長期間の使用に伴い、検出特性および信号伝達特性が変化し、長期間校正 を実施しない場合、実際のプロセス値に対し、測定値および制御値の誤差が大きくなるこ とや、マイグレーションが想定される。 しかしながら、信号処理・変換を行う電気回路部は定格値(定格電力・電圧・電流値)に 対して回路上は十分低い範囲で使用する設計としており、屋内に設置されていることから 環境変化の程度は小さく、短期間で入出力特性が変化する可能性は小さいと考える。 また、製造段階で製作不良に基づく回路電流集中を取り除くスクリーニング等を実施して いることから、マイグレーションが発生する可能性はいさいと考える。 さらに、機器点検時の実圧または模擬信号での校正試験・調整により、機器の健全性を維 持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
十測制御 設備	プロセス	Δ2	隣長 (王田勝 食)	クランプ他、ス タンション、筐 体、チャンネル	ス[余熱除去流量、加圧器水位、	ハインがファンフェン、ステンプョン(国体、デマンボルバース、取り バルド、金姫 発台および基礎金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
計測制御 設備	プロセス	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)		埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
- プ - プ - プ - プ - プ - プ - プ - プ - プ - プ	鉄造 コー物鉄造 コー物鉄造 コー物鉄造 別設 測設 別設 別設 別で カード 1 日本 1 日	鉄造 コー物鉄造 コーク ロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロ	鉄造物 コント 持ま構	一	(こよる 海域 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	対象を構

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
383	計測制御設備	プロセス	Δ2	応力腐食割れ	計装用取出配管、計器元弁、計器を含まれば、計器のの応力腐食割れ	余熱除去流量	余熱除去流量の計装用取出配管等はステンレス鋼であり、外表面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンによる応力腐食割れが想定される。しかしながら、周辺環境における塩分付着量を測定し、応力腐食割れに対して問題のないことを確認している。また、余熱除去流量の計装用取出配管等は屋内に設置されており、屋外に設置されている配管等と比較して環境条件は穏やかであり、大気中の海塩粒子が外表面に直接付着する可能性は小さい。 さらに、巡視点検時等の目視確認により機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
384	計測制御設備	制御設備	Δ①	導通不良	操作スイッチの 導通不良	共通	操作スイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は強内に収納されており、塵埃の付着による導通不良が発生する 可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の動作確認により、機器の健全性を確認している。
385	計測制御設備	制御設備	Δ2	特性変化	半導体基板、電 圧調整装置よよ び保護リレー (静止形) の特 性変化		半導体基板等は長期間の使用に伴い、入出力特性の変化やマイグレーションが想定される。 しかしながら、半導体基板等を構成している電気回路部は定格値(定格電力・電圧・電流)に対して回路上は十分低い範囲で使用する設計としており、屋内に設置されていることから環境変化の程度は小さく、短期間で入出力特性が変化する再性は小さいと考える。 また、製造段階で製作不良に基づく回路電流集中を取り除くスクリーニング等を実施していることから、マイグレーションが発生する可能取り除くスクリーニング等を実施していることから、マイグレーションが発生する可能では小さいと考える。さらに、機器点検時の調整試験および動作試験により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
386	計測制御設備	制御設備	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	共通	筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
387	計測制御設備	制御設備	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
388	計測制御設備	制御設備	Δ2	特性変化	電圧設定器の特 性変化		電圧設定器の小型直流モータは、ブラシの摩耗に伴う接触圧の低下による出力特性の変化が想定される。 しかしながら、ディーゼル発電機の起動回数は月に2~3回程度と少なく、その動作時間も約60秒・回と短いため、ブラシの摩耗に伴う接触圧の低下により、出力特性が変化する可能性は小さい。また、機器よのサラシの摩耗量測定により、機器の健全性を維持している。また、機器よ、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
389	計測制御設備	制御設備	Δ2	特性変化	シリコン整流器 の特性変化	ディーゼル発電機制御般	シリコン整流器のシリコン整流素子は、長期間の使用に伴い、熱により空乏層が変化し、 漏れ電流が増加することによる特性変化が想定される。 しかしながら、使用電流値と比べて一定の裕度を持つ定格の素子を使用することで、発熱 を低減するとともに、放熱板で冷却することによりシリコン整流素子の温度を一定温度以 下に保つように設計しており、特性が急激に変化する可能性は小さい。 また、機器点検時の抵抗測定により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
390	計測制御設備	制御設備	Δ2	特性変化	保護リレー(機 械式)の特性変 化		保護リレー (機械式) は、長期間の使用に伴い、回転軸および軸受の機械的摩耗および接点部分の電気的摩耗、損傷等により動作特性の変化が起定される。しかしながら、保護リレー (機械式) は、電気規格調査会標準規格に定める10,000回の耐久試験を型式試験として実施し、機構および特性に異常を生じないことを確認しており、また、屋内に設置されていることから環境変化の程度は小さく、短期間での急激な特性変化が生じる可能性は小さいと考える。また、回転軸受部・摺動部に油やグリスを使用していないことから、グリス等の固着により誘導用板の動作特性が変化することは考え難い。さらに、機器点検時の調整試験および動作試験により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
391	空調設備	ファン	Δ2	腐食(全面腐食)	ケーシングの腐食(全面腐食) まよびホッパー等の腐食(全面腐食)	全補機開閉器室空調ファン]	ケーシング、ホッパーおよびホッパー取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく難等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
392	空調設備	ファン		腐食(全面腐食)	羽根車の腐食 (全面腐食)		羽根車は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
393	空調設備	ファン	Δ①	摩耗	主軸の摩耗	安全補機開閉室空調ファン	ころがり軸受を使用しているファンについては、軸受と主軸の接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドベーバで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩 柱が発生し、主軸と軸受スリーブ間で微小すき間が 摩耗が発生する可能性がある。 しかしながら、これを防止するため主軸表面の仕上げは行わない適用としており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え がたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
394	空調設備	ファン	Δ2	腐食(全面腐 食)	主軸の腐食(全 面腐食)および 軸継手の腐食 (全面腐食)	主軸の腐食(全面腐食)[共通]、 軸継手の腐食(全面腐食)[安全 補機開閉器室空調ファン]	主軸および軸継手は炭素鋼または鋳鉄であり、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
395	空調設備	ファン	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	共通	ファン連転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、ファン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
396	空調設備	ファン	Δ2	腐食(全面腐食)	台床の腐食(全 面腐食)	共通	台床は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜また はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面が態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
397	空調設備	モータ	Δ①	腐食(全面腐食)	固定子コアおよ び回転子コアの 腐食(全面腐 食)	共通	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアはワニス処理、回転子コアはワニス処理または塗装により腐食 を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
398	空調設備	モータ	Δ2	腐食(全面腐食)	フレーム、端子 箱およびブラ ケットの食食 (全面腐食)	共通	フレーム、端子箱およびブラケットは炭素鋼または鋳鉄であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
399	空調設備	モータ	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	共通	回転子棒・エンドリングについては、モータの起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、発生応力は疲労強度より小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
400	空調設備	モータ	ΔΦ	摩耗	主軸の摩耗	共通	安全補機開閉器室空調ファンモータおよび空調用冷水ボンブモータはころがり軸受を使用しており、軸受と主軸の接触面で摩耗が想定される。軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、主軸表面をサンドベーバで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩託が発生し、主軸と軸受スリーブ間で微小すき間が生じ、運転中にフレッティングによる摩耗が発生し、主軸と軸受スリーブ間で微小すき間が生じ、運転中にフレッティングによる摩耗が発生する可能性がある。しかしながら、これを防止するため主軸表面の仕上げは行わない運用としており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認および寸法計測により、機器の健全性を確認している。で期内冷凍機モータは、油潤滑のすべり軸受を使用しており、軸受と主軸の接触面で摺動摩耗が想定される。しかしながら、主軸と軸受間に潤滑油が供給され膜が形成されるため、摺動摩耗が生じる可能性は小さい。主軸と軸受間に潤滑油が供給され膜が形成されるため、摺動摩耗が生じる可能性は小さい。主た、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
401	空調設備	モータ	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	共通	モータ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、モータ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、試運転時等における振動確認および分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
402	空調設備	モータ	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	共通	取付ポルトは炭素鋼または低合金鋼であり、腐食が想定される。しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜またはメッキ面が健全であれば腐食の可能性は小さい。の水態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
403	空調設備	空調ユ ニット	Δ2	腐食(全面腐食)	ユニット骨組鋼 材および外板の 腐食(全面腐 食)	安全補機開閉器室空調ユニット	ユニット骨組鋼材および外板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜また はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
404	空調設備	冷凍機	Δ①	腐食(全面腐食)	圧縮機羽根車の 腐食(全面腐 食)	空調用冷凍機	圧縮機の羽根車はアルミニウム合金鋳物であり、腐食が想定される。 しかしながら、内部流体は冷媒(フルオロカーボン)で腐食が発生しがたい環境であり、 これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があると は考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
405	空調設備	冷凍機	Δ①	摩耗	圧縮機主軸 (羽根車側、モータ側) および歯車の摩耗	空調用冷凍機	圧縮機の主軸(羽根車側、モータ側) および歯車は歯面によりトルクを伝達するため、摩 耗が想定される。 しかしながら、歯面には潤滑油が供給されており、摩耗が発生しがたい環境であり、これ までに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考 えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
406	空調設備	冷凍機	Δ①	高サイクル疲 労割れ	圧縮機および冷 水ポンプ主軸の 高サイクル疲労 割れ	空調用冷凍機	圧縮機および冷水ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で 縁返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定され る。 しかしながら、圧縮機および冷水ポンプ設計時には高サイクル疲労を考慮しており、この 設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確 認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)なら びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確 認している。
407	空調設備	冷凍機	Δ2	腐食(全面腐食)	圧縮機ケーシン グおよび冷媒配 管の腐食(全面	空調用冷凍機	圧縮機のケーシングおよび冷煤配管は鋳鉄または炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
408			Δ①	腐食(全面腐食)	腐食)		一方、内面については、内部流体が冷媒(フルオロカーボン)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
409	空調設備	冷凍機	Δ2	腐食(全面腐食)	熱交換器胴板外 面からの腐食 (全面腐食)	空調用冷凍機	熱交換器の胴板は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、さらに防水措置(保温)が設置されている場合は防水措置 (保温)の状態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
410	空調設備	冷凍機	Δ①	腐食(全面腐食)	熱交換器の胴板 内面および支持 板の腐食(全面 腐食)	空調用冷凍機	熱交換器の胴板内面および支持板は炭素鋼であり、腐食が想定される。 しかしながら、内部流体は冷媒 (フルオロカーボン) であり、腐食の発生がしがたい環境 である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器分解点検時の目視確認により、機器の健全性を確認している。
411	空調設備	冷凍機	Δ2	腐食 (流れ加 速型腐食)	凝縮器伝熱管の 内面腐食(流れ 加速型腐食)	空調用冷凍機	凝縮器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 場合金は腐食電位の高い貴な金属であり、耐食性は良いが、高速の流水中で使用すると、 流れ加速型腐食が発生することがある。 接縮器は自側流体が海水であるため、貝等の異物の付着により局所的に流速が増大し、流 れ加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態、付着状態は不確定 であることから、流速と腐食量について、一律で定量的な評価は野である。 しかしながら、開放点検時の渦流探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
412	空調設備	冷凍機	Δ2	腐食 (流れ加 速型腐食)	蒸発器伝熱管の 内面腐食(流れ 加速型腐食)	空調用冷凍機	蒸発器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、開放点検時の渦流探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
413	空調設備	冷凍機	Δ①	腐食(全面腐 食)	凝縮器および蒸 発器伝熱管の外 面からの腐食 (全面腐食)	空調用冷凍機	凝縮器および蒸発器の伝熱管は銅合金であり、外面からの腐食が想定される。 しかしながら、接する流体は冷媒 (フルオロカーボン) で腐食が発生しがたい環境であ り、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器分解点検時の目視確認や開放点検時の渦流探傷検査により、機器の健全性 を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
414	空調設備	冷凍機	Δ2	腐食(全面腐 食)	熱交換器耐圧構成品が換器が 成品が必要 成品が必要 が が の の の の の の の の の の の の の の の の の	空調用冷凍機	熱交換器(管板、水室)および冷水系統(配管、膨張タンク胴板、鏡板)は炭素鋼、冷水系統((冷水ボンブケーシング)は炭素鋼鋳鋼であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。一方、熱交換器耐圧構成品および冷水系統の炭素鋼使用部位の内面については内部流体が純水であり(凝縮器内面側を除く)、長期間の使用により腐食が想定される。しかしながら、酸素含有水中における炭素鋼の腐食挙動が放物線則に従うとして、運転開始後の4年の腐食量を評価した結果より、急激な腐食の進行により機器の健全性に影響を与える可能性はない。また、開放点検時または系統機器分解点検時の目視確認により、機器の健全性を維持している。したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
415	空調設備	冷凍機	Δ2	腐食(異種金 属接触腐食)	凝縮器水室等の 海水による腐食 (異種金属接触 腐食含む)	空調用冷凍機	凝縮器の管板は銅合金であり、長期間の使用により海水接液部において腐食が想定される。 また、凝縮器水室は炭素鋼であり、未水が接するためライニングを施工しているが、ライニングのはく離等により炭素鋼に海水が接した場合、管板の接液部が銅合金であるため、炭素鋼使用部位に異種金属接触腐食が想定される。しかしながら、開放点検時の目視確認で腐食やライニングの状況を確認し、機器の健全性を維持している。したいる。したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
416	空調設備	冷凍機	Δ①	腐食(キャビ テーション)	冷水ポンプ羽根 車の腐食(キャ ビテーション)	空調用冷凍機	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温に おける飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こ ることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階にお いて考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
417	空調設備	冷凍機	Δ2	腐食(全面腐食)	架台、台板、取 付ポルトおよび 支持脚の腐食 (全面腐食)	空調用冷凍機	架台、台板、取付ボルトおよび支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
418	空調設備	冷凍機	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	空調用冷凍機	膨張タンクは横置きであり、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり、長期間の使用により、腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
419	空調設備	ダクト	Δ2	応力腐食割れ	外板および接続 鋼材等の外面か らの応力腐食割 れ	排気筒	外板、接続鋼材および補強鋼材はステンレス鋼であり、外表面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンによる応力腐食割れが想定される。 しかしながら、外面については塗装により腐食を防止しており、塗膜が健全であれば腐食 進行の可能性は小さい。 また、空調設備点検時等で目視により塗膜の状態を確認し、はく離等が認められた場合は 必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
420	空調設備	ダクト	Δ2)		外板の腐食(全 面腐食)	安全補機開閉器室空調系統ダクト	外板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜また はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、さらに防水措置(保温)が設置されている場 合は防水措置(保温)の状態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
421	空調設備	ダクト	Δ2)	腐食(全面腐食)	接続鋼材および 補強鋼材等の腐 食(全面腐食)	安全補機開閉器室空調系統ダクト	接続鋼材、補強鋼材、サポート鋼材および接続ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、さらに防水措置(保温)が設置されている場合は防水措置(保温)の状態を確認することにより、機器の健全性を維持している。 (保温)の状態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
422	空調設備	ダクト	Δ①	劣化	伸縮継手の劣化	共通	伸縮継手は合成ゴムであることから環境的要因により劣化が想定される。 しかしながら、周囲温度は使用条件範囲内であり、これまでに有意な劣化は認められておらず。今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検等による可視範囲の目視確認により、機器の健全性を確認している。
423	空調設備	ダクト	Δ2	腐食(全面腐食)	サポート鋼材および接続ポルトの腐食(全面腐食)	排気筒	サポート鋼材および接続ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
424	空調設備	ダクト	Δ2	腐食(全面腐食)	埋込金物 (コンクリート埋設部以外)の腐食 (全面腐食)	排気筒	埋込金物 (コンクリート埋設部以外) は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

表1-1 日常劣化管理事象一覧(41/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
425	空調設備	ダンパ	Δ2		ケーシングおよ びダンパ羽根の 腐食(全面腐 食)	共通	ケーシングおよびダンパ羽根は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜また はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
426	空調設備	ダンパ	Δ2	固着	ダンパシャフト の固着	共通	ダンパシャフトは炭素鋼であり、潤滑油が不足した場合、長期間の使用による腐食により固着することが想定される。 しかしながら、ダンパシャフトの表面はクロムメッキを施し腐食を防止しており、腐食による固着の可能性は小さい。 また、ダンパ作動確認時の目視確認や給油により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
427	空調設備	ダンパ	Δ2		ハウジングの腐 食 (全面腐食)	補助建屋排気止めダンパ	ハウジングは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装またはクロムメッキにより腐食を防止しており、塗膜またはメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検令百目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
428	空調設備	ダンパ	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 力緩和)	補助建屋排気止めダンパ	ばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、ダンパ作動確認により、機器の健全性を確認している。
429	空調設備	ダンパ	Δ2	腐食(全面腐食)	接続ボルトの腐食(全面腐食)	共通	接続ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
430	機械設備	重機器サ ポート	Δ2	食)	サポートブラ ケット等大気接 触部の腐食(全 面腐食)	共通	サポートブラケット等は炭素鋼または低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、外観点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
431	機械設備	重機器サ	Δ②	中性子およびア線照射能化	サケトナラル ボッリブよび アナッリズよび アナル中照	原子炉容器サポート	原子炉容器サポートは他の重機器サポートに比べ原子炉容器炉心近傍に設置されており、 中性子および 7 線照射により材料の動性が低下することが想定される。 図211に解除低 12時面でかた評価が位を示す。 評価節位は原子炉容器サポートのうちせん断荷重が大きいサポートリブとし、当該部の運 評価節位は原子炉容器サポートのうちせん断荷重が大きいサポートリブとし、一つでは 計算的後の年時点における開始能で呼吸を行った。 評価は、運転開始後の年時点におしてS 2 地震力を受けたとしてもサポートの健全性が保 たれることを破壊力学評価を用いて検討した。 市力域が異りまなが思いをottoin II Appendix (EL 基づいて実施した。 まず、破壊靭性値の評価式としては、供試材を用いた静的破壊制性試験および動的破壊引能 化に関する電力共同研究実施当時のASME Section II Appendix (EL Table 1. at 1. at 2.
432	機械設備	重機器サポート	△2	摩耗	パッド、ヒンジ 摺動部の摩耗	原子炉容器サポート、蒸気発生器 サポート、1次冷却材ポンプサ ポート	機器の移動を許容し、重機器の自重を支えている原子炉容器サポート、蒸気発生器支持脚 および1次冷却材ポンプ支持脚の褶動部は、機器熱移動や振動により摩耗が想定される。摩耗が想定される代表部位として原子炉容器サポートの褶動部を図2.2~4に、蒸気発生器 支持脚おとび1次冷却材ポンプ支持脚の褶動部を図2.2~4に、蒸気発生器 支持脚おは1次冷却ポポンプ支持脚の褶動部を図2.2~5にずっ。原子炉容器サポート、蒸気発生器支持脚および1次冷却ポポンプ支持脚の褶動部と図2.2~5にです。原子炉容器サポート、蒸気発生器支持脚および1次冷却材ポンプ支持脚の褶動部は、重機器の自重を支えていることから当該部に受生する荷重は小さいとは言えないため、運転開始後04年時点における推定摩耗量を評価した。(holm)の理論式(機械工学便覧(日本機械学会編))により、概略の摩耗量の推定を行った。ホルムの式:W=K・S・P/PmW・摩耗優」[m³] 以:摩耗係数[m³] 以:摩耗係数[m³] 以:摩耗係数[m²] 以:摩耗係数[m²] 以:摩耗係数[m²] 以:摩耗係数に一] 以:序れたはは、表れてはは、表れでは、表れでは、表れでは、表れでは、表れでは、表れでは、表れでは、表れ

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
433	機械設備	重機器ナイナサ	Δ①	摩耗	ピン等の摩耗	ポンプサポート	機器の移動を許容するサポートの摺動部材は、機器熱移動や振動により摩耗が想定される。しかしながら、蒸気発生器サポートおよび 1 次冷却材ポンプサポートのオイルスナバは地震時の水平方向変位を拘束するものであり、通常運転時の蒸気発生器 D. 計サポートおよび P. 間が P. はいまい
434	機械設備	重機器サポート	Δ①	疲労割れ	ヒンジ溶接部の 疲労割れ	蒸気発生器サポート、1次冷却材ポンプサポート	支持脚は、プラント起動・停止時等に発生する機器の熱移動によるスライド方向以外の繰返し荷重により、ヒンジ溶接部において疲労割れが想定される。 しかしながら、スライド方向以外に発生する荷重はわずかであり、有意な応力変動を受けない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、外観点検時等の目視確認により、機器の健全性を確認している。
435	機械設備	空気圧縮 装置	Δ2	腐食(全面腐食)	制御用空気圧縮機ケーシング気とび制御事の変大が制御事のの食く全面腐食)	制御用空気圧縮装置	ケーシングおよび空気だめ外面等の大気接触部で鋳鉄または炭素鋼を使用している部位は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
436	機械設備	空気圧縮 装置	Δ①	腐食(全面腐食)	制御用空気圧縮 機ケーシング (内面) 等の腐 食(全面腐食)		ケーシング(内面)、ピストン、シリンダ(内面)、シリンダライナ(内外面)、中間冷却器邪魔板、中間冷却器管板(上流側)(冷却水側)、空気冷却器胴板(内面)、空気冷却器邪魔板、空気冷却器管板(上流側)(冷却水側)、制御用空気乾燥器再生空気冷却器停板(上流側)にかれ水側)、制御用空気乾燥器再生空気冷却器停板(上流側)にからいる部位は、底をがある。しかしながら、ケーシング(内面)は油雰囲気であり、シリンダ(内面)、空気冷却器管板(上流側)(冷却水側)および制御用空気乾燥器再生空気冷却器板(内面)の内部部流体はヒドラジン水(防鶴剤注入水)であり、ピストン、シリンダライナ(内面)および制御用空気乾燥器配管の吸着塔下流(内面)の内部流体はヒドラジン水(防鶴剤注入水)であり、ピストン、シリンダライナ(内面)がたが制御用空気乾燥器配管の吸着塔下流(内面)の内部流体は空気であり、腐食が発生しがたい環境である。また、中間冷却器伝熱管(空気側、冷却水側)および空気冷却器伝熱管(空気側、冷却水側)はよび空気冷却器伝熱管(空気側、冷却水側)は明合金であり、腐食が想定される。しかしながら、内部流体はヒドラジン水(防錆剤注入水)または空気であり、腐食が発生したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化本事ではない。
437	機械設備	空気圧縮 装置	Δ2	摩耗	制御用空気圧縮 機主軸等の摩耗	制御用空気圧縮装置	主軸(連接棒メタルおよび軸受との接触部)、モータ主軸(軸受との接触部)、ビストンロッド、ビストンピン、クロスヘッド、クロスヘッドガイド、ビストンおよびシリンダライナについては、摺動部に摩耗が想定される。しかしながら、分解点検時の寸法計測または目視確認により、状況を確認し、シリンダライナについては、内面をクロムメッキし、摺動するピストンリングを必要に応じて交換することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
438	機械設備	空気圧縮 装置	Δ①	腐食(全面腐食)	制御用空気圧縮 機主軸等の腐食 (全面腐食)	制御用空気圧縮装置	主軸、ピストンロッド、ピストンピン、連接棒、クロスヘッドおよびクロスヘッドガイドは鋳鉄または炭素鋼であり、腐食が想定される。しかしながら、油雰囲気にあり、腐食が発生しがたい環境にある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
439	機械設備	空気圧縮 装置	Δ①	高サイクル疲 労割れ	制御用空気圧縮ト 促生神、ドルン棒、ビータ主体、ビークル棒、ビークルを はび高力がある。 が割れ	制御用空気圧縮装置	主軸、ピストンロッド、連接棒、ピストンおよびモータ主軸には、制御用空気圧縮機運転 時に発生する応力により、疲労が蓄積し、高サイクル疲労割れが想定される。 しかしながら、設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に 変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
440	機械設備	空気圧縮 装置	Δ2	摩耗	制御用空気圧縮 機 V プーリの摩 耗	制御用空気圧縮装置	∨ブーリは、回転により∨ベルトとの接触部に摩耗が想定される。 しかしながら、∨ベルトの張力管理、∨ブーリの目視確認および寸法計測により、機器の 健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
441	機械設備	空気圧縮 装置	Δ①	高サイクル疲 労割れ	制御間を対しています。 制御間間 制 保証 を 知 を 気 に 報 伝 空 気 知 間 用 空 気 知 間 和 駅 和 間 明 間 制 器 日 間 明 は 別 ま 記 乗 は 常 る で 気 気 高 れ で 気 高 れ の 労 割 れ	制御用空気圧縮装置	制御用空気圧縮機中間冷却器伝熱管、制御用空気冷却器伝熱管および制御用空気乾燥器再 生空気冷却器伝熱管は外側を流れる冷却水により、伝熱管振動による高サイクル疲労割れ が想定される。 しかしながら、共振を起こさない固有振動数となるようなスパンで支持されている。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認および漏えい確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
442	機械設備	空気圧縮 装置	Δ①	腐食(全面腐食)	フランジボルト 等の腐食(全面 腐食)	制御用空気圧縮装置	フランジボルトおよびマンホール用ボルトは低合金鋼または炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時等の目視確認により、機器の健全性を確認している。
443	機械設備	空気圧縮 装置	Δ①	腐食(全面腐食)	制御用空気圧縮機モータ固定子コアおよび回転子コアの腐食(全面腐食)	制御用空気圧縮装置	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、ワニス処理により腐食を防止している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
444	機械設備	空気圧縮 装置	Δ2)	腐食(全面腐食)	制御用空気圧に縮出である。 一切では、 一切では は、 で で で で で の の の は で り で り で り で り で り で り で り で り で り で	制御用空気圧縮装置	端子箱は炭素鋼、フレームおよびブラケットは鋳鉄であり腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
445	機械設備	空気圧縮 装置	Δ①	疲労割れ	制御用空気圧縮機モータンドリングの疲労割れ	制御用空気圧縮装置	回転子棒・エンドリングについては、モータの起動時に発生する電磁力による繰り返し応力を受けるため、疲労割れが想定される。 しかしながら、発生応力は疲労強度より小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
446	機械設備	空気圧縮装置	Δ2	腐食(全面腐食)	制御用空気だめ 等の腐食 (全面 腐食)	制御用空気圧縮装置	制御用空気だめ等の湿り空気雰囲気で炭素鋼を使用している部位は長期使用により腐食が 想定される。 制御用空気だめの内面は塗装を施しているが、安全側に塗装がないと仮定して、酸素含有 水中における炭素鋼の腐食率動が放物線則に従うとして、運転開始後60年間の腐食量を評価した。その結果、表2、3-1に示すとおり運転開始後60年時点での推定腐食量は、設計上の腐れ代力して小さいことから、急激な腐食の進行により機器の健全性に影響を与える可能性はないと考える。また、制御用空気だめ、制御用空気圧縮機中間冷却器、制御用空気に縮機中間冷却器ドレンセバレータ、制御用空気が機器吸着塔、制御用空気が機器再生空気加み器、制御用空気氏線装置配管、制御用空気が機器以着塔、制御用空気乾燥器再生空気加み器、制御用空気乾燥器再生空気加み器、制御用空気乾燥器再生空気加み器、制御用空気乾燥器再生空気加み器、制御用空気乾燥器再生空気加み器、制御用空気乾燥器にしていていータ、制御用空気乾燥器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
446-1	機械設備	空気圧縮 装置	Δ2	特性変化	空気温度検出器 の特性変化	制御用空気圧縮装置	空気温度検出器は長期間の使用に伴い、検出特性および信号伝達特性の変化が想定される。 しかしながら、検出器は、耐食性等を考慮した材料を選定し設計しており、また屋内に設置されていることから環境変化の程度が小さく、短期間で入出力特性が変化する可能性は小さいと考える。また、抵抗測定および絶縁抵抗測定により、機器の健全性を維持している。また、抵抗測定および絶縁抵抗測定により、機器の健全性を維持している。今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
447	機械設備	空気圧縮 装置	Δ①	摩耗	制御用空気乾燥 器比例弁および 四方弁の弁体等 の摩耗	制御用空気圧縮装置	制御用空気乾燥器比例弁の弁体、四方弁の弁体および弁座ついては、内部流体中の異物と の衝突および開閉による摩耗が想定される。 しかしながら、御用空気圧縮機入口には吸気フィルタを設置し異物を除去している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
448	機械設備	燃料取扱 設備(ク レー・ 係)	Δ①	摩耗	走横行レールお よび車輪の摩耗	燃料取替クレーン	走横行レールおよび車輪はクレーンの走横行により摩耗が想定される。 しかしながら、レール上面、側面および車輪はガイドローラにより横滑りを防止しており、ころがり接触であることから摩耗が発生しがたい構造であり、これまでに有意な摩耗 は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時等の目視確認により、機器の健全性を確認している。
449	機械設備	燃料取扱 設備(ク レー係)	Δ2	腐食(全面腐食)	走横行レールお よび車輪の腐食 (全面腐食)	燃料取替クレーン	走横行レールおよび車輪は炭素鋼または低合金鋼鋳鋼であり、腐食が想定される。 しかしながら、走横行レールと車輪の接触部は、屋内に設置されており、腐食が発生する 可能性は小さい。 また、機能確認時等の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
450	機械設備	燃料取扱 設備(クリ 係)	Δ①	疲労割れ	走横行レールお よびブリッジ ガータの疲労割 れ	燃料取替クレーン	走横行レールおよびブリッジガータにはトロリ等の荷里が常時かかる状態となることから、疲労割れが想定される。 しかしながら、有意な応力変動が発生しないように設計されており、これまでに有意なき 製は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時等の目視確認により、機器の健全性を確認している。
451	機械設備	燃料取扱 設備 (ク レーン関 係)	Δ2	腐食(全面腐食)	レール押さえお よびブリッジ ガータ等の腐食 (全面腐食)	燃料取替クレーン	レール押さえ、ブリッジガータ、転倒防止金具、トロリ架台、各種減速機のケーシング、 軸継手のケーシング、固定マスト、モータ(低圧)フレーム、筐体およびチャンネルベー スは炭素鋼または鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補除することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
452	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	歯車の摩耗	燃料取替クレーン	車輪部、各種減速機および軸継手の歯車は摩擦により摩耗が想定される。 しかしながら、歯車は常に潤滑油が供給されており、摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、作動確認や機能確認時の目視確認により、機器の健全性を確認している。
453	機械設備	燃料取扱設備(クレーン関係)	Δ2	摩耗	ワイヤロープの 摩耗および素線 切れ	燃料取替クレーン	ワイヤローブはワイヤドラムおよびシーブと接するため、機械的要因により摩耗が想定される。 ワイヤドラムへの巻取りおよびシーブ通過時にローブが曲げられるため、素線切れが想定される。 しかしながら、外観点検時にワイヤローブ径の寸法計測や目視確認を行い、必要に応じて取替を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
454	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	シーブおよびワ イヤドラムの摩 耗	燃料取替クレーン	シーブおよびワイヤドラムはワイヤローブと接するため、機械的要因により摩耗が想定される。 しかしながら、シーブはワイヤの巻取りにそって回転し、また、ドラムの回転に合わせてワイヤが巻き取られるため、すべりが発生せず、摩耗が発生しがたい構造であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、外観点検時の目視確認により、機器の健全性を確認している。
455	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	マストチューブ ガイドローラ、 グリッパチュー ブおよびガイド レールの摩耗	燃料取替クレーン	マストチューブのガイドローラはグリッパチューブ昇降時に同チューブ外周またはガイドレールと接触しながら、同チューブを案内するため、摩耗が想定される。しかしながら、ガイドローラとグリッパチューブおよびガイドレールの間は、ころがり接触であることより摩耗量は軽敵であると考えられ、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機能確認時の作動確認により、機器の健全性を確認している。
456	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	燃料ガイドバー の摩耗	燃料取替クレーン	燃料ガイドバーは燃料昇降時に燃料グリッドと滑り接触するため、摩耗が想定される。 しかしながら、燃料対角方向に数mmの隙間を有し接触面圧が小さいことおよび燃料ガイド バーは硬度の高いステンレス鋼 (SUS630) で製作されており、これまでに有意な摩耗は認 められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。
457	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	シリンダケース およびピストン の摩耗	燃料取替クレーン	エアシリンダのシリンダケースおよびピストンはピストンの動作により摩耗が想定される。 しかしながら、シリンダケースとピストンはパッキンおよびグリスにより隔てられており、摩耗が発生しがたい構造であり、これまでに異常な動き等は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。
458	機械設備	燃料取扱設備(クレーン関係)	Δ①	摩耗	フィンガおよび ガイドビンの摩 耗	燃料取替クレーン	グリッパのフィンガはロッキングカムとの摺動および燃料ラッチ時のこすれにより摩耗が想定される。 グリッパのガイドピンは、燃料への挿入時に燃料上部ノズル (SUS304) との接触により摩耗が想定される。 しかしながら、フィンガおよびガイドピンは、ロッキングカムおよび燃料上部ノズルに比べて耐摩柱性に優れた材料 (SUS303) を使用し、摩耗を抑制しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、外観点検時の寸法計測や浸透探傷検査および機能確認時の作動確認により、機器の健全性を確認している。
459	機械設備	燃料取扱 設備(クレーン関 係)	Δ2	摩耗	ロッキングカム の摩耗	燃料取替クレーン	グリッパのロッキングカムはフィンガとの機械的要因により摩耗が想定される。 しかしながら、外観点検時の寸法計測および機能確認時の作動確認により、機器の健全性 を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
460	機械設備	燃料取扱設備(クレーン関係)	Δ①	摩耗	ロックラッチの 摩耗	燃料取替クレーン	グリッパのロックラッチはフィンガとの機械的要因により摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、外観点検時の寸法計測および機能確認時の作動確認により、機器の健全性を確認し ている。
461	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	腐食(全面腐食)	モータ(低圧) 固定子コアおよ び回転子コアの 腐食(全面腐 食)	燃料取替クレーン	モータ(低圧)の固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはワニス処理または塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
462	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	腐食(全面腐食)	電磁ブレーキ固定鉄心の腐食(全面腐食)	燃料取替クレーン	電磁ブレーキの固定鉄心は珪素鋼板および鋼であり、腐食が想定される。 しかしながら、電磁ブレーキの固定鉄心はワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
463	機械設備	燃料取扱 設備(クレーン関係)	Δ①	ばねの変形 (応力緩和)	グリッパおよび 電磁ブレーキの ばねの変形 (応 カ緩和)	燃料取替クレーン	グリッパおよび電磁ブレーキのばねは応力状態にて長期間保持されることにより、変形 (応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時の作動確認や機能・性能試験時の制動確認により、機器の健全性を確認 している。
464	機械設備	燃料取扱 設備(クレーン関係)	Δ①	摩耗	電磁ブレーキブ レーキ板の摩耗	燃料取替クレーン	電磁ブレーキのブレーキ板は制動時にブレーキライニングを押し付けられることにより摩 耗が想定される。 しかしながら、材料をライニングより硬い鋳鉄として摩耗を抑制しており、これまでに有 意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがた い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
465	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	電磁ブレーキラ イニングの摩耗	燃料取替クレーン	電磁ブレーキのライニングは制動操作により摩耗が想定される。 しかしながら、ブレーキライニングの許容摩耗量から算出される最大動作回数に対する1 定期検査当たりの動作回数の割合は十分小さいと評価しており、これまでに有意な摩耗は 認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
466	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	はく離	電磁 ブレーキラ イニングのはく 離	燃料取替クレーン	電磁ブレーキのライニングは高温度環境での長期間の使用によりはく離が想定される。 2008年7月、教質 2 号炉のタービン動補助給水ポンプ起動入口弁の直流電動機用電磁ブ レーキにおいて、電磁ブレーキのライニングのはく離が発生しているが、この事象は、当 族弁が外気の影響を受ける高温度エリアに設置されていたことに伴い発生した結露水が イニングの接着面に浸透し、接着力を低下させたものである。 しかしながら、大飯3号炉については、燃料取替クレーンは、高温度環境にはなく、結露 水が発生しがたい環境であり、これまでに有意なはく離は認められておらず、今後もも、 らの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年タ 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
467	機械設備	燃料取扱設備(クレース) 係)	Δ2	特性変化	ロードセル荷重 変換部の特性変 化	燃料取替クレーン	ロードセルは長期間の使用に伴いひずみゲージのはがれ等による特性変化が想定される。 しかしながら、ひずみゲージ貼付け都は、不活性(窒素)ガスを封入した気密構造になっ ており、ひずみゲージの酸化を防止しているため、ひずみゲージ貼付け部が腐食してはが れが発生する可能性は小さい。 また、機能・性能試験により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
468	機械設備	燃料取扱 設備(ン関 (人) (条)	Δ2	特性変化	荷重監視装置お よび速度制御装 置の特性変化	燃料取替クレーン	商重監視装置および速度制御装置は長期間の使用に伴い入出力特性の変化やマイグレーションが想定される。 しかしながら、荷重監視装置および速度制御装置を構成している電気回路部は定格値(定 格電力・電圧・電流値)に対して回路上は十分低い範囲で使用する設計としており、屋内 に設置されていることから環境変化の程度は小さく、短期間で入出力特性が変化する可能 性は小さい。 製造段階で製作不良に基づく回路電流集中を取り除くスクリーニング等を実施しているこ とから、マイグレーションが発生する可能性は小さい。 また、速度削御装置は機器点検時の作動確認、荷重監視装置は機能・性能試験により、機 器の健全性を維持している。 さらに、ブラント運転中は基板を取りかし、格納容器外に保管することととしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
469	機械設備	燃料取扱 設備(ン関 係)	Δ①	導通不良	操作スイッチお よび押釦スイッ チの導通不良	燃料取替クレーン	操作スイッチおよび押釦スイッチは接点部分に浮遊塵埃が付着することにより、導通不良が想定される。 しかしながら、接点部分は筐体または盤内に収納されており、塵埃の付着による導通不良 が発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能・性能試験時の作動確認により、機器の健全性を確認している。
470	機械設備	燃料取扱 設備(クレー) 係)	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	燃料取替クレーン	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部はメッキにより腐食を防止しており、メッキ面が健全であれば 腐食進行の可能性は小さい。 また、巡視点検等で目視によりメッキ面の状態を確認し、はく離等が認められた場合は必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
471	機械設備	燃料移送 装置	Δ①	摩耗	レールおよび車 輪の摩耗	燃料移送装置	レールおよび車輪は機械的要因により摩耗が想定される。 しかしながら、水中での水潤滑によるころがり接触であることから摩耗が発生しがたい構造であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。
472	機械設備	燃料移送 装置	Δ①	摩耗	スプロケットお よびチェーン (ローラ外面) の摩耗	燃料移送装置	走行駆動部のスプロケットおよびチェーンは相互の接触により摩耗が想定される。 しかしながら、ころがり接触であることから摩耗が発生しがたい構造であり、これまでに 有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがた い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、外観点検時の寸法計測や目視確認により、機器の健全性を確認している。
473	機械設備	燃料移送 装置	Δ①	摩耗	かさ歯車の摩耗	燃料移送装置	走行駆動部のかさ歯車は機械的要因により摩耗が想定される。 しかしながら、水中での水潤滑により摩耗が発生しがたい環境であり、これまでに有意な 摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
474	機械設備	燃料移送 装置	Δ2		減速機ケーシン グ等の腐食(全 面腐食)	燃料移送装置	滅速機のケーシングおよび軸、軸継手のケーシングおよびスプロケット、走行駆動部の架台、基礎金物(大気接触部)およびモータ(低圧)のフレームは鋳鉄、炭素鋼またはアルミーウム合金鋳物であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
475	機械設備	燃料移送 装置	Δ①	摩耗	歯車等の摩耗	燃料移送装置	減速機の歯車、軸継手のスプロケットおよびチェーン (ブッシュ部) は機械的要因により 摩耗が想定される。 しかしながら、歯車等は常に潤滑油が供給されており、摩耗が発生しがたい環境であり、 これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があると は考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。
476	機械設備	燃料移送 装置	Δ①	腐食(全面腐 食)	モータ(低圧)の固定子コアおよび回転子コアおの腐食(全面腐食	燃料移送装置	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはワニス処理または塗装により腐食を防止し ており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因 があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
477	機械設備	燃料移送 装置	Δ①	腐食(全面腐食)	電磁ブレーキの 固定鉄心の腐食 (全面腐食)	燃料移送装置	電磁ブレーキの固定鉄心は珪素鋼板および鋼であり、腐食が想定される。 しかしながら、電磁ブレーキの固定鉄心はワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
478	機械設備	燃料移送 装置	Δ①	ばねの変形(応力緩和)	電磁ブレーキの ばねの変形(応 力緩和)	燃料移送装置	電磁ブレーキのばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能・性能試験時の制動確認により、機器の健全性を確認している。
479	機械設備	燃料移送 装置	Δ①	摩耗	電磁ブレーキブレーキ板の摩耗	燃料移送装置	電磁ブレーキのプレーキ板は制動時にプレーキライニングを押付けられることにより摩耗が想定される。 しかしながら、材料をライニングより硬い鋳鉄として摩耗を抑制しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
480	機械設備	燃料移送 装置	Δ①	摩耗	電磁 ブレーキの ライニングの摩 耗	燃料移送装置	電磁ブレーキのライニングは制動操作により摩耗が想定される。 しかしながら、ブレーキライニングの許容摩耗量から算出される最大動作回数に対する 1 定期検査当たりの動作回数の割合は十分小さいと評価しており、これまでに有意な摩耗は 認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
481	機械設備	燃料移送 装置	Δ①	はく離	電磁 ブレーキラ イニングのはく 離	燃料移送装置	電磁ブレーキのライニングは高湿度環境での長期間の使用によりはく離が想定される。 2008年7月、教質 2号炉のターピン動補助給水ポンブ起動入口弁の直流電動機用電磁ブ レーキにおいて、電磁ブレーキのライニングのはく離が発生しているが、この事象は、当 抜弁が外気の影響を受ける高湿度エリアに設置されていたことに伴い発生した結露水がラ イニングの接着面に浸透し、接着力を低下させたものである。 しかしながら、大飯3号炉については、燃料移送装置は、高湿度環境にはなく、結露水が 発生しがたい環境であり、これまでに有意なはく離ば認められておらず、今後もこれら 傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
482	機械設備	燃料移送 装置	Δ①	導通不良	押釦スイッチの 導通不良	燃料移送装置	押釦スイッチは接点部分に浮遊塵埃が付着することにより、導通不良が想定される。 しかしながら、接点部分は筐体または盤内に収納されており、塵埃の付着による導通不良 が発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能・性能試験時の作動確認により、機器の健全性を確認している。
483	機械設備	燃料移送 装置	Δ2	腐食(全面腐食)	筐体、チャンネルベースおよび ルベースおよび 基礎金物等の腐食(全面腐食)	燃料移送装置	水圧制御装置の基礎金物(大気接触部)、筐体、チャンネルベース、取付ボルトおよび制御盤支持部の基礎ボルト(大気接触部)は炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装またはメッキにより腐食を防止しており、塗膜またはメッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
484	機械設備	新燃料貯 蔵設備	Δ2	腐食(全面腐食)	サポート部材の腐食(全面腐食)	新燃料ラック	サポート部材は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 成じて補除することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
485	機械設備	原子炉容 器上蓋付 属設備	Δ①	疲労割れ	圧カハウジング の疲労割れ	制御棒駆動装置	圧力ハウジングは、プラントの起動・停止時等による熱過渡を繰り返し受けるため、疲労割れが想定される。 しかしながら、起動・停止時等に発生する荷重はわずかであり、有意な応力変動を受けない構造となっており、疲労割れが発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機能確認時の漏えい確認により、機器の健全性を確認している。
486	機械設備	原器属	Δ2	摩耗	サーマルスリー ブの摩耗	制御棒駆動装置	サーマルスリーブは、原子炉容器上蓋管台との接触部における摩耗が想定される。2017年12月、フランスのベルビル(Belleville)発電所2号炉において、サーマルスリーブが降耗により落下し、制御棒落下試験時に全挿入できない事象が発生している。サーマルスリーブは原子炉容器上蓋の制御棒駆動装置管台の内側に設置され、管台とは固定されておらず、管台のテーパー部にサーマルスリーブののでは、管台の下のでは、関2.2-1に示すようにスプレイノズルから噴出する1次冷却材の流れ(頂部パイパス流)が原子炉容器上蓋に沿って上昇し、耳部付近で合流した後に下降する流れが存在する。この流れが作用することでサーマルスリーブに流体励起振動が生じ、サーマルスリーブのつランジ部が自重を行いているの流れが作ますることで、摩耗が進展すると考えられる。そのため、頂部プレナム内のパイパス流間が持ちくと支重方面の元イパス流の流れがまさくと重度の温度が低いブラント「一で01dブラント)が摩耗に対する感受性が大きいと考えられる。 コの流れが大きいと考えられる。 コの流れが大きく上蓋頂部の温度が低いブラント(「一で01dブラント)が摩耗に対する感受性が大きいと考えられる。 コの門限プラントにおいては、2019年に、頂部プレナムへのパイパス流量比が大きく、フークレート(指動速さと接触荷重の積)が大きい標準型4ループブラントの育ち、上蓋の供用年数が比較的長いブラントを代表ブラントとして、サーマルスリーブの摩耗状況の確認のためにサーマルスリーブの下盤を計削しているが、直ちにフラン部の破断に至るような摩耗の進度は認められていない。一方、大郎3号炉については、第12回定期検査時(2006年度)に原子炉容器の上蓋収替に合わせてサーマルスリーブも取替えられており、摩耗状況を確認した国内代表ブラントも、世末が表した。
487	機械設備	原子炉容 器上蓋付 属設備	Δ2	摩耗	プランジャの摩 耗	制御棒駆動装置	制御棒の引き抜き・挿入動作を行うプランジャはその構造上、摺動部で摩耗が想定される。 しかしながら、コイル電流によるラッチ機構作動確認および制御棒落下試験により、スクラム時のプランジャ動作に伴うラッチアーム開放動作に影響のないことを確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
488	機械設備	原子炉容 器上蓋付 属設備	Δ2	摩耗	ラッチアームお よび駆動軸の摩 耗	制御棒駆動装置	ラッチアームおよび駆動軸は互いに接触する部位であり、摺動部で摩耗が想定される。 しかしながら、コイル電流によるラッチ機構作動確認により、機器の健全性を維持してい る。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
489	機械設備	原子炉容 器上蓋付 属設備	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)	制御棒駆動装置	制御棒駆動装置に使用しているばねは圧縮荷重が常時加わった状態で長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機能確認時の作動確認により、機器の健全性を確認している。
490	機械設備	原子炉容 器上蓋付 属設備	Δ2	腐食(全面腐食)	耐震サポートの腐食(全面腐食)	制御棒駆勁装置	低合金鋼の耐震サポートは、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、外観点検時等の目視確認により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
491	機械設備	非核燃料 炉心構成 品	Δ2	摩耗	被覆管の摩耗	制御棒クラスタ	通常運転時の1次冷却材の流れにより、制御棒クラスタ案内管内等で制御棒が流体振動を起こす。その結果、制御棒と制御棒クラスタ案内管案内板等との間で摩耗が想定される。制御棒クラスタの構造と挿入位置関係を図2.2-1に示す。 米国ボイントピーチ (Point Beach) 発電所2号炉で被覆管の摩耗が認められたという報告が、1984年3月にされたため、国内グラントでも検討を行い、摩耗測定結果から摩耗の進行を評価しており、予防保全的に摩耗深さが肉厚を超えないよう定期的に取替を行っている。 元一被覆管が減肉により貫通してもただちに制御棒クラスタの機能に与える影響は小さいことを確認している。(中略)しかしながら、予防保全的に摩耗深さが肉厚を超えないような管理を行なっている。具体的には、制御棒クラスタ案内管案内板部については摩耗が被覆管肉厚に達するまでに、制御棒引抜き位置を原子炉長冷給や反応度の補債機能への影響は問題ないようステップ変更することにより被覆管と制御棒クラスタ案内管案内板の影響は問題ないようステップで見が高とにより被覆管と制御棒クラスタ案内管案内板との干渉範囲をずらし、さらに、にのいて、自動の機全では、大きにはり、機器の健全性を維持している。 ことに、全制御棒クラスタの落下試験を実施し、挿入性に問題のないことを確認することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化・事象ではない。
492	機械設備	非核燃料 炉心構成 品	Δ①	照射誘起型応 力腐食割れ	被覆管の照射誘 起型応力腐食割 れ	制御棒クラスタ	制御棒クラスタは被覆管の照射誘起型応力腐食割れが想定される。 しかしながら、照射誘起型応力腐食割れの感受性を呈する中性子照射量を超す高照射領域 は制御棒板管管においては先端部のみであるが、当該部位では、使用初期には内外差圧に よる極小さな応力しか発生しない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、制御棒クラスタは中性子照射量に応じた取替を計画的に行うことにより、機器の健 全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
493	機械設備	非核燃料 炉心構成 品	Δ2		被覆管先端部の 照射誘起割れ (外径増加によ るクラック)	制御棒クラスタ	被覆管先端部は外径増加によるクラックが想定される。 中性子吸収体が中性子照射量の比較的大きな制御棒先端部においてスウェリングし、外径 が増加することにより次第に被覆管に内圧を付加するようになる。 一方、被覆管は照射されるにつれて一様伸びが低下し、割れの発生限界ひずみが低下す る。 これらの事象の相乗効果により、照射量が大きな領域に入ると、内圧を付加された被覆管 に発生するひずみが大きくなり割れ発生限界ひずみ量に達することによって、クラックが 発生する可能性がある。 しかしながら、制御棒クラスタは中性子照射量に応じた取替を計画的に行うことにより、 機器の健生性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
494	機械設備	非核燃料 炉心構成 品	Δ①	照射スウェリング	被覆管の照射スウェリング	制御棒クラスタ	制御棒クラスタは被覆管の照射スウェリングが想定される。 しかしながら、照射スウェリング量は制御棒先端部の照射誘起割れに対する照射量暫定取 替基準に達した時点で微量であり、制御棒と燃料集合体内に制御棒を導く制御棒案内シン ブル細径部(ダッシュボット部)間ギャップは確保される。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、制御棒クラスタは中性子照射量に応じた取替を計画的に行うことにより、機器の健 全性を確認している。
495	機械設備	非核燃料 炉心構成 品	Δ2	照射クリープ	被覆管の照射クリープ	制御棒クラスタ	被覆管先端部は照射クリープの発生が想定される。 しかしながら、吸収材によって変形が制限され、外観検査にて有意な変形のないことを確 認し、制御棒クラスタは中性子照射量に応じた取替を計画的に行うことにより、機器の健 全性を維持している。 全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
496	機械設備	非核燃料成 炉心品		中性子吸収能力の低下	中性子吸収体の中性子吸収能力の低下	制御棒クラスタ	中性子吸収体は中性子吸収により、その成分元素が中性子吸収断面積の小さな元素へと変換されるため、中性子吸収能力は徐々に低下する。中性子吸収能力が低下すると制御機能が満足できないことが想定される。しかしながら、運転中制御棒は制御棒案内管内へ引き抜かれているため、照射量はわずかである。また、制御棒クラスタの暫定取替基準の照射を受けた場合でも、個々の制御棒の核的損耗は0.07%と核安全設計の余裕の範囲(10%)内にあり、制御能力としては十分余裕がある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、制御棒クラスタは中性子照射量に応じた取替を計画的に行うことにより、機器の健全性を確認している。
497	機械設備	非核燃料 炉心構成 品	Δ①	摩耗	スパイダー溝の 駆動軸接手との 干渉部の摩耗	制御棒クラスタ	駆動軸とのラッチの際にはスパイダー溝内に駆動軸の接手が挿入される構造になっており、ステッピングおよび制御棒クラスタのラッチ、アンラッチにより干渉部で摩耗が想定される。 しかしながら、接手山とスパイダー溝は隙間なくかみ込み一体となっており、ステッピング時に摩耗が発生しがたい。また、スパイダー村ともがを乗り返さおよび比摩耗量も同程度と考えられることから、スパイダー溝についても摩耗が発生しがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、制御棒クラスタは計画的に取替を行うことにより、機器の健全性を確認している。
498	機械設備	非核燃料 炉心構成 品	Δ2	熱時効	スパイダー、 ベーンおよび フィンガの熱時 効	制御棒クラスタ	スパイダー、ベーンおよびフィンガはステンレス鋼鋳鋼であり、高温での長時間の使用に 作い朝性の低下を起こすことが想定される。 しかしながら、HIP (熱間等方加圧) 処理により内部欠陥をなくしており、外観検査にて 表面に異常のないことを確認し、制御棒クラスタは計画的に取替を行うことにより、機器 の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
499	機械設備	非核燃料 炉心構成 品	Δ①	ばねの変形 (応力緩和)	照射によるばね の変形(応力緩 和)	制御棒クラスタ	ばねは制御棒クラスタのスパイダー内にあり、中性子照射により応力緩和してばね力が徐々に低下することが想定される。 しかしながら、運転中制御棒は炉心から引き抜かれているため、照射量がわずかであり、ばねの応力緩和が発生しがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、制御棒クラスタは計画的に取替を行うことにより、機器の健全性を確認している。
500	機械設備	濃縮減容 設備	Δ2	応力腐食割れ	ステンレス鋼使 用部位の応力腐 食割れ	廃液蒸発装置	蒸発器胴側、加熱器管側、濃縮液ポンプおよび配管の内部流体は濃縮廃液であり、蒸発器等の内部では廃放落発濃縮することにより、塩化物イオン濃度が上昇することとなり、温度も約105℃となることから、応力腐食割れが想定される。底な環境としては、塩化物イオン濃度および流体温度が支配的であり、応力腐食割れ発生の関係を図2.2-1に示す。しかしながら、蒸発器胴側、加熱器管側、濃縮液が2プおよび配管のステンレス側使用が位の応力成食割れについては開放点検時または分解点検時に内面の目視確認や試運転時の漏えい確認により、機器の健全性を維持している。
501	機械設備	濃縮減容 設備	Δ ①		伝熱管の摩耗お よび高サイクル 疲労割れ	廃液蒸発装置	加熱器、コンデンサ、ベントコンデンサおよび蒸留水冷却器の伝熱管は伝熱管振動により 摩耗および高サイクル疲労割れが想定される。 しかしながら、伝熱管は外表面の流体によって発生するカルマン渦による振動と共振せ ず、流力弾性振動も発生しない構造となっており、摩耗および高サイクル疲労割れが発生 しがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認等や漏えい確認により、機器の健全性を確認している。
502	機械設備	濃縮減容 設備		腐食 (流れ加 速型腐食)	伝熱管の腐食 (流れ加速型腐 食)	廃液蒸発装置	加熱器、コンデンサ、ベントコンデンサおよび蒸留水冷却器の伝熱管には流れ加速型腐食により減肉が想定される。 しかしながら、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しており、流れ 加速型腐食の発生がしがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認等や漏えい確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
503			Δ2	スケール付着			加熱器管側の内部流体である廃液の不純物持ち込みによるスケール付着が発生し、伝熱性 能に影響を及ぼすことが想定される。 しかしながら、開放点検時の清掃や運転中の処理流量および温度等のパラメータ監視により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
504	機械設備	濃縮減容 設備	Δ①	スケール付着	伝熱管のスケー ル付着	廃液蒸発装置	加熱器胴側は胴側流体、コンデンサ、ベントコンデンサおよび蒸留水冷却器は管側および 胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが 想定される。 しかしながら、内部流体は蒸気、蒸留水、またはヒドラジン水 (防錆剤注入水) であり、適切な水質管理により不純物の流入は抑制されており、スケール付着による伝熱性能低下が発生しがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の清掃や運転中の処理流量および温度等のパラメータ監視により、機器の健全性を確認している。
505	機械設備	濃縮減容 設備	Δ2	腐食(全面腐食)	加熱器胴側胴板の外面からの腐食(全面腐食)	廃液蒸発装置	加熱器の胴側胴板は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、さらに防水措置(保温)が設置されている場合は防水措置 (保温)の状態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
506	機械設備	濃縮減容 設備	Δ①		加熱器胴側胴板の内面からの腐食(流れ加速型腐食)	廃液蒸発装置	加熱器の胴側胴板は炭素鋼を使用しており、流れが乱れる部位では流れ加速型腐食により 減肉が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
507	機械設備	濃縮減容	Δ2	腐食(全面腐食)	炭素鋼耐圧構成 品等の腐食 (全 面腐食)	廃液蒸発装置	コンデンサ管側、ベントコンデンサ管側、蒸留水冷却器胴側の耐圧構成品および支持棒は 炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、さらに防水措置(保温)が設置されている場合は防水措置 (保温)の状態を確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
508			Δ①	腐食(全面腐食)			一方、内面および支持棒については内部流体がヒドラジン水(防錆剤注入水)であり、腐食が発生しがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
509	機械設備	濃縮減容 設備	Δ①	摩耗	主軸の摩耗	麂液蒸発装置	すべり軸受を使用している濃縮液ポンプおよび蒸留水ポンプは軸受と主軸の接触面で摺動 摩耗が想定される。 しかしながら、設計段階において主軸と軸受間に潤滑利を供給し、膜を形成させて流体潤 滑状態となるように考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
510	機械設備	濃縮減容 設備	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	廃液蒸発装置	濃縮液ポンプおよび蒸留水ポンプはポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡損点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
511	機械設備	濃縮減容設備	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	廃液蒸発装置	濃縮液ポンプおよび蒸留水ポンプはポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が 沸騰し、蒸気泡の発生と助壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階にお いて考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
512	機械設備	濃縮減容設備	Δ①	腐食(全面腐食)	フランジボルト およびケーシン グボルトの腐食 (全面腐食)	廃液蒸発装置	フランジボルトおよびケーシングボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
513	機械設備	濃縮減容 設備	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	廃液蒸発装置	支持脚、架台、スカート、台板および取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
514	機械設備	濃縮減容設備	Δ2	腐食(全面腐食)	支持脚 (スライ ド脚) の腐食 (全面腐食)	廃液蒸発装置	コンデンサ、ベントコンデンサおよび蒸留水冷却器は横置きであり、支持脚 (スライド 脚) が設置されているが、スライド部は炭素鋼であり、長期間の使用により、腐食による 固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
515	機械設備	乾燥造粒 装置	Δ2	腐食(全面腐食)	ロータ軸等の腐食(全面腐食)	乾燥造粒装置	乾燥機のロータ軸、ディストリビュータ、固定翼、胴側胴板および液入口管台にはステンレス鋼またはニッケル基合金(内面クラッド、肉盛)が使用されているが、濃縮廃液および濃縮粉体の固形分等により、長期的には腐食が想定される。しかしながら、分解点検時に目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
516	機械設備	乾燥造粒 装置	Δ2	応力腐食割れ	ステンレス鋼使 用部位の応力腐 食割れ	乾燥造粒装置	濃縮廃液および濃縮粉体には塩化物イオンが含まれており、乾燥機内等で蒸発濃縮される際の温度も約120~145°でと高く、濃縮廃液に接液する乾燥機および濃縮粉体に接触する粉体計量器、混合ホッパ、配管および伸縮継手のステンレス鋼使用部位において応力腐食割れが想定される。しかしながら、ステンレス鋼使用部位の応力腐食割れについては分解点検時に目視確認や浸透探傷試験により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
517	機械設備	乾燥造粒 装置	Δ2	摩耗	胴側胴板の摩耗	乾燥造粒装置	乾燥機の胴側胴板内面と回転する可動翼が接触するため、長期間の使用により、胴側胴板 の摩耗が想定される。 しかしながら、分解点検時の目視確認や寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
518	機械設備	乾燥造粒 装置	Δ2	腐食(全面腐食)	乾燥機胴側胴板 等の外面からの 腐食(全面腐 食)	乾燥造粒装置	乾燥機の胴側胴板、液入口管台、ジャケット側胴板、造粒機の駆動シリンダのロッドカバーおよびシリンダチューブの大気接触部は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
519	機械設備	乾燥造粒 装置	Δ①	腐食(流れ加 速型腐食)	乾燥機胴側側り (グリント側側側り がよ側胴板 (利力) かり間に (間の内の (間の内の (間の内の (間の内の (間の内の (配の型) (配の型)	乾燥造粒装置	乾燥機胴側胴板 (ジャケット側) およびジャケット側胴板 (胴側胴板側) は炭素鋼を使用 しており、流れが乱れる部位では流れ加速型腐食により減肉が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統分解点検時の目視確認等により、機器の健全性を確認することとしている。
520	機械設備	乾燥造粒 装置	Δ①		伝熱管の摩耗お よび高サイクル 疲労割れ	乾燥造粒装置	乾燥機復水器の伝熱管は伝熱管振動により摩耗および高サイクル疲労割れが想定される。 しかしながら、伝熱管は外表面の流体によって発生するカルマン渦による振動と共振せ ず、流力弾性振動も発生しない構造となっており、摩耗および高サイクル疲労割れが発生 しがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認等や漏えい確認により、機器の健全性を確認している。
521	機械設備	乾燥造粒 装置	Δ①	腐食 (流れ加 速型腐食)	伝熱管の腐食 (流れ加速型腐 食)	乾燥造粒装置	乾燥機復水器の伝熱管には流れ加速型腐食により減肉が想定される。 しかしながら、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しており、流れ 加速型腐の発生がしがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認等や漏えい確認により、機器の健全性を確認している。
522	機械設備	乾燥造粒 装置	Δ2)	腐食(全面腐食)	乾燥機復水器管 側胴板および管 側平板の腐食	乾燥造粒装置	乾燥機復水器の管側胴板および管側平板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗膜等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等の目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて構築することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
523			Δ①	腐食(全面腐食)	(全面腐食)		一方、内面については内部流体がヒドラジン水(防鶴剤注入水)で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
524	機械設備	乾燥造粒 装置	Δ①	スケール付着	多孔板孔部およ び伝熱管のス ケール付着	乾燥造粒装置	乾燥機ミストセパレータおよび乾燥機復水器は管側および胴側流体の不純物持ち込みによるスケール付着が発生し、集塵機能または伝熱性能に影響を及ぼすことが想定される。しかしながら、乾燥機ミストセパレータの内部流体は蒸気および復水、乾燥機復水器の内部流体は蒸気およびでドラジン水 (防錆剤注入水) であり、適切な水質管理により不純物の流入は抑制されており、スケール付着による集塵機能低下または伝熱性能低下が発生しがたい環境である。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
525	機械設備	乾燥造粒 装置	Δ①	摩耗	粉体排出扉等の 摩耗	乾燥造粒装置	粉体排出扉の開閉により、粉体計量器の胴板および粉体排出扉の接触部で摩耗が想定される。 しかしながら、胴板および粉体排出扉には硬質のステンレス鋼を使用しており、摩耗しがたく、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
526	機械設備	乾燥造粒 装置	Δ2	特性変化	粉体計量器ロー ドセル荷重変換 部の特性変化	乾燥造粒装置	粉体計量器のロードセルは長期間の使用に伴いひずみゲージのはがれ等による特性変化が 想定される。 しかしながら、ひずみゲージ貼付け部は、不活性(窒素)ガスを封入した気密構造になっ ており、ひずみゲージの酸化を防止しているため、ひずみゲージ貼付け部が腐食してはが れが発生する可能性は小さい。 また、外観点検時の目視確認や出力確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
527	機械設備	乾燥造粒 装置	Δ2	摩耗・変形	混合用内羽根等 の摩耗・変形	乾燥造粒装置	混合用内羽根、外羽根および混合ホッパは、ペレット状に成形するために濃縮粉体とパインダを混合させるが、固まった濃縮粉体の負荷により摩耗・変形が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
528	機械設備	乾燥造粒 装置	Δ①	摩耗	造粒器フォーク エンドの摩耗	乾燥造粒装置	造粒機ロッドの往復動作により、フォークエンドの摩耗が想定される。 しかしながら、フォークエンドには硬質のステンレス鋼を使用しており、摩耗しがたく、 これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があると は考えがたい。 くなって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
529	機械設備	乾燥造粒 装置	Δ①	摩耗	駆動シリンダシ リンダチューブ 等の摩耗	乾燥造粒装置	駆動シリンダビストンロッドの往復動作により、シリンダチューブ、ビストンおよびビストンロッドの摺動面で摩耗が想定される。 しかしながら、耐摩耗性をよくするためビストンおよびビストンロッドの表面を硬質クロムメッキで皮膜しており、シリンダ内部は作動油で摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
530	機械設備	乾燥造粒 装置		腐食(全面腐食)	フランジボルト 等の腐食(全面 腐食)	乾燥造粒装置	乾燥機、乾燥機ミストセパレータおよび乾燥機復水器のフランジボルトは低合金鋼または 炭素鋼であり、ロリングまたはガスケットからの漏えいにより、内部流体によるボルトの 腐食が想定される。 しかしながら、純付管理により漏えい防止を図っており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
531	機械設備	乾燥造粒 装置	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	乾燥造粒装置	支持脚、架台、ラグ、ブラケット、取付ボルトおよびステイロッドは炭素鋼または低合金 鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
532	機械設備	乾燥造粒 装置		腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	乾燥造粒装置	乾燥機復水器は横置きであり、支持脚(スライド脚)が設置されているが、スライド部は 炭素鋼であり、長期間の使用により腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健 全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
533	機械設備	雑固体焼 却設備	Δ2	減肉	雑固体焼却炉耐 火煉瓦の減肉	雑固体焼却設備	高温で使用される雑固体焼却炉の耐火煉瓦は溶融・燃焼時の高温雰囲気下でハロゲンガス 等による浸食減肉が想定される。 しかしながら、開放点検時に目視確認や寸法計測および必要に応じて耐火煉瓦の張替によ り、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
534	機械設備	雑固体焼 却設備	Δ2	割れ	耐火煉瓦および 耐火キャスタブ ルの割れ	雑固体焼却設備	雑固体焼却炉、一次セラミックフィルタ、二次セラミックフィルタおよび炭素鋼配管には 耐火煉瓦および耐火キャスタブルが内張りされているが、起動・停止時の温度変化による 割れが想定される。 しかしながら、開放点検時に目視確認および必要に応じて耐火煉瓦および耐火キャスタブ ルの張替により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
535	機械設備	雑固体焼 却設備		腐食(全面腐食)	炉外殻等の腐食 (全面腐食)	雑固体燒却設備	雑園体焼却炉の炉外酸、一次セラミックフィルタ、二次セラミックフィルタの外殻および 炭素鋼配管は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部の炉外般等は耐熱塗装により腐食を防止しており、塗膜が健全 であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 一方、内面については耐火煉瓦および耐火キャスタブルが内張りされており、通常の使用 条件では有意な腐食減肉は想定されないが、内面の耐火煉瓦および耐火本プルに減 肉、割れ等が発生した状況では、腐食性ガス(HOI、80以ほか)が炉外般等まで侵入するこ とにより、内面からの酸露点腐食が想定される。 しかしながら、開放点検師の目視症とや肉厚測定により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
536	機械設備	雑固体焼 却設備	Δ2	変形	支持プレートの 変形	雑固体焼却設備	支持プレートは起動または停止時の温度変化により、変形が想定される。 しかしながら、開放点検時の目視確認や寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
537	機械設備	雑固体焼 却設備	Δ2	応力腐食割れ	伸縮継手の応力腐食割れ	雑固体焼却設備	排ガス中には腐食性ガス(HOI、SOXほか)が含まれており、内面の耐火煉瓦および耐火キャスタブルに減肉、割れ等が発生した場合、伸縮継手のステンレス鋼の使用部位において応力腐食割れが想定される。しかしながら、開放点検時の目視確認により、機器の健全性を維持している。したいながって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
538	機械設備	雑固体焼 却設備	Δ①	腐食(全面腐食)	ケーシングボル トおよびフラン ジボルトの腐食 (全面腐食)	雑固体焼却股備	ケーシングボルトおよびフランジボルトは炭素鋼であり、フランジ面またはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検等の目視確認により、機器の健全性を確認している。
539	機械設備	雑固体焼 却設備	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	雑固体焼却設備	架台、支持脚および取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装またはメッキにより腐食を防止しており、塗膜または メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
540	機械設備	水素再結 合装置	Δ2	水素反応機能 低下	触媒プレート (触媒)の水素 反応機能低下	静的触媒式水素再結合装置	触媒プレート (触媒) は常時原子炉格納容器内の空気と接触しているため、水素反応機能の低下が想定される。 しかしながら、機能確認時の目視確認や機能検査により、機器の健全性を維持している。 しかいて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
541	機械設備	水素再結合装置	Δ2	腐食(全面腐食)	架台の腐食(全 面腐食)	静的触媒式水素再結合装置	架台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
542	機械設備	基礎ボル ト	Δ2		大気接触部の腐 食(塗装あり 部) (全面腐 食)	共通	基礎ボルトは炭素鋼または低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
543	機械設備	基礎ボル ト	Δ2	腐食(全面腐食)	大気接触部の腐食(塗装なし部)(全面腐食)	屋外の基礎ポルト共通	コンクリート直上部は、大気接触部であり、基礎ボルトには、炭素鋼または低合金鋼を使用していることから、腐食を起こす可能性があり、その場合には、基礎ボルトの腐食減肉により支持機能の低下が懸念される。また、メカーカルアンカの場合、コンクリートに埋設されているテーパボルトとシールドには大気に接触している部分があるため、シールドおよびテーパボルトの腐食の進行により支持機能の低下が懸念される。しかしながら、60年時点での推定腐食量を考慮した健全性評価の結果、機器の支持機能が喪失する可能性は低い。また、巡視点検で目視により異常のないことを確認し、機器の健全性を確認している。また、巡視点検で目視により異常のないことを確認し、機器の健全性を確認している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
544	機械設備	基礎ボルト	Δ①		大気接触部の腐食(強装なし 部)(全面腐食)	屋内の基礎ポルト共通	基礎ポルトは炭素鋼または低合金鋼であり、コンクリート直上部等は大気接触部であることから腐食が想定される。 しかしながら、基礎ポルト代表箇所のナットを取外してコンクリート直上部の大気接触部を目視確認したところ腐食は認められていない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検で目視により異常のないことを確認し、機器の健全性を確認している。
545	電源設備	ディーゼル発電機	Δ2	腐食(全面腐食)	フドカインカンカンカンカンカイン・ペール・マンカインイン・スングッドの大きなのである。	ディーゼル発電機	フレーム、エンドカバー、冷却ファン、軸受台、インダクタおよびベッドは炭素鋼であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により、インダクタは亜鉛メッキにより腐食 を防止しており、塗膜またはメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
546	電源設備	ディーゼル発電機	Δ①	腐食(全面腐食)	固定子コアおよ び回転子コアの 腐食(全面腐 食)	ディーゼル発電機	固定子コアおよび回転子コアは珪素鋼板または炭素鋼であり、腐食が想定される。 しかしながら、ワニス処理により腐食を防止しており、これまでに有意な腐食は認められ ておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
547	電源設備	ディーゼル発電機	Δ①	摩耗	主軸の摩耗	ディーゼル発電機	ディーゼル発電機は、油潤滑のすべり軸受を使用しており、軸受と主軸の接触面で摺動摩 まが想定される。 しかしながら、主軸と軸受間に潤滑油が供給され膜が形成されるため、摺動摩耗が生じる 可能性は小さい。 また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因が あるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
548	電源設備	ディーゼ ル発電機	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	ディーゼル発電機	発電機運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、良付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、発電機設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
549	電源設備	ディーゼ ル発電機	Δ①	摩耗	スリップリング の摩耗	ディーゼル発電機	スリップリングは、発電機運転時にブラシと摺動しながら回転子コイルに電力を供給しているため、ブラシとスリップリングの接触面で摩耗が超定される。 しかしながら、運転時間が短く、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
550	電源設備	ディーゼル発電機	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	ディーゼル発電機	取付ポルトは炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
551	電源設備	ディーゼ ル機関	Δ①	摩耗	ピストン等摺動 部の摩耗	ディーゼル機関	ビストンおよびビストンリングとシリンダライナ、ビストンビンとビストンビン軸受、ス イングビンとスイングビン軸受、クランク軸とクランクビン軸受およびクランク軸と主軸 受の各摺動部は摩耗が想定される。 しかしながら、当該部は油雰囲気で摩耗が発生しがたい環境であり、これまでに有意な摩 耗け認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
552	電源設備	ディーゼ ル機関		腐食(全面腐食)	ビストン上部燃 焼室面等の腐食 (全面腐食)	ディーゼル機関	燃料が燃焼する過程で燃料油中に含有されている硫黄が燃焼し二酸化硫黄になる。機関停止後シリンダ内および排気管内に燃焼ガスが残留し、この燃焼ガス中の二酸化硫黄と水分とが結合すると硫酸になる。このため、ピストン上部、シリンダライナ(燃焼室面)、シリンダカバー(燃焼室面)、過給機ターピンハウジング(燃焼室面(全面))および排気管(燃焼室面(全面))の腐食が想定される。しかしながら、機関停止時に燃焼室内おとび排気管(燃焼で面(全面)の腐食がわるエアーランにより燃焼室および排気管内から排出され新しい空気が吸入されることしなり腐食発生の要因が取り除かれることから、腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。(今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
553	電源設備	ディーゼ ル機関	Δ①	疲労割れ	ピストン上部 (頂部)等の疲 労割れ	ディーゼル機関	ビストン上部(頂部)、シリンダライナおよびシリンダカバーは機関の始動・停止に伴い 燃焼室構成品等が常温から高温になり、再び常温に戻ることによる疲労割れが想定され る。 しかしながら、ビストン上部(頂部)等は有意な応力変動を受けないように設計されてお り、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認している。
554	電源設備	ディーゼ ル機関	Δ①	カーボン堆積	ピストン上部頂 面等燃焼室構成 部品のカーボン 堆積	ディーゼル機関	燃焼室構成部品であるピストン上部、ピストン下部、シリンダライナおよびシリンダカバーにカーボンを主とする燃焼残渣物が堆積すると、燃焼が悪化することが想定される。しかしながら、これまでに有意なカーボンの推積は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
555	電源設備	ディーゼ ル機関	Δ①	高サイクル疲 労割れ	クランク軸等の 高サイクル疲労 割れ	ディーゼル機関	ディーゼル機関運転時はクランク軸、シリンダ冷却水ポンプ軸、過給機タービンロータ、燃料油供給ポンプ軸、燃料噴射ポンプローラビンおよび潤滑油ポンプ軸に定常応力と変動 応力が発生し、高平均応力下で繰り返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、クランク軸等は有意な応力変動を受けないように設計されており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、試運転時等の振動確認や分解点検時の目視確認および応力集中部に対する浸透探傷検査により、機器の健全性を確認している。
556	電源設備	ディーゼル機関	Δ2	腐食(全面腐食)	はずみ車等外面からの腐食(全面腐食)	ディーゼル機関	はずみ車、間隔板、シリンダカバー、カバーボルト、各種ポンプケーシング、吸気管、空 気冷却器ケーシング、過給機タービンハウジング、排気管、排気管サポート、シリンダブ ロック、フレーム、クランク室安全弁体およびブレート、各種弁弁箱、燃料噴射弁弁本 体、燃料噴射管、始動弁案内筒およびボルト、調連機本体、燃料噴射ポンプ調整装置は本 輸、シャフト、レバーおよび腕、非常用停止装置ピストン案内およびレバー、計器盤は低 合金銅、炭素銅、錆鉄または炭素銅鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により、機器の健全性を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
557	電源設備	ディーゼ ル機関	Δ①	摩耗	歯車および歯車 ポンプケーシン グの摩耗	ディーゼル機関	各種ポンプ駆動・被駆動歯車およびカム駆動装置の各歯車は歯面により、トルクを伝達するため摩耗の発生が想定される。 燃料油供給ポンプ、潤滑油ポンプは歯車ポンプであり、歯車とケーシングの接触部は摩耗が想定される。 しかしながら、年間運転時間は短く、歯面およびケーシングは潤滑油または燃料油により 摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれ らの傾向が変化する要因があるとは考えがたい。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
558	電源設備	ディーゼ ル機関	Δ①	摩耗	ねじり振動防止 装置の摩耗	ディーゼル機関	ねじり振動防止装置は機関運転時にクランク軸に働くねじり振動に対し、内蔵の駆動輪と 慣性円盤の相対的なモーメントを内蔵はねの摩擦と潤滑油の移動により振動エネルギーを 吸収する。クランク軸のねじり振幅およびこれによるねじり応力を抑制する機能を有して おり、接触部で摩耗が想定される。 しかしながら、当該部は油雰囲気で摩耗が発生しがたい環境であり、これまでに有意な摩 耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 なお、分解点検時の目視確認により、機器の健全性を確認している。
559	電源設備	ディーゼ ル機関	Δ①	腐食(全面腐食)	ねじり振動防止 装置の腐食(全 面腐食)	ディーゼル機関	ねじり振動防止装置は鋳鉄および炭素鋼であり、腐食が想定される。 しかしながら、当該部は油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐 食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
560	電源設備	ディーゼ ル機関	Δ①	疲労割れ	カップリングボ ルトの疲労割れ	ディーゼル機関	ディーゼル機関と発電機を結合するカップリング部はカップリングにはずみ車をはさみ カップリングボルトで結合しているため、起動・運転時にはカップリングボルトに変動応 力が作用することから、疲労割れが想定される。 しかしながら、ボルトは有意な応力変動を受けないように設計されており、この設計上の 考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
561	電源設備	ディーゼ ル機関	Δ①	摩耗	カム軸等の摩耗	ディーゼル機関	カム軸とカム軸受(すべり)、各種カムと吸排気弁駆動装置のローラおよび軸と軸ブッシュおよび球端付ネジ棒と球端受は摺動またはころがり接触をしており、摩耗が想定される。 しかしながら、機関の運転時間は短く、潤滑油により摩耗防止を図っており、摩耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
562	電源設備	ディーゼ ル機関	Δ①	腐食(全面腐 食)	シリンダライナ 等接液部の腐食 (全面腐食)	ディーゼル機関	シリンダライナ、シリンダカバー、シリンダ冷却水ボンブケーシング、過給機タービンハウジング、排気弁弁箱、シリンダブロックおよび燃料噴射弁弁本体は特殊鋳鉄、鋳鉄、炭素鋼鋳鋼、低合金鋼または炭素鋼であり、長期使用により腐食が想定される。しかしながら、内部流体は亜硝酸水(防鯖剤注入水)で腐食しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
563	電源設備	ディーゼ ル機関	Δ①		シリンダ冷却水 ポンプ羽根車の 腐食 (キャビ テーション)	ディーゼル機関	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
564	電源設備	ディーゼ ル機関	Δ①	摩耗	吸気弁、排気弁 弁棒および弁箱 の摩耗	ディーゼル機関	吸気弁、排気弁の弁棒および弁箱は弁の開閉により摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により状態を確認し、機器の健全性を確認している。
565	電源設備	ディーゼ ル機関	Δ①	ばねの変形 (応力緩和)	各種弁ばねの変 形(応力緩和)	ディーゼル機関	各種弁のばねは応力状態にて長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や作動確認により、機器の健全性を確認している。
566	電源設備	ディーゼ ル機関	Δ2	異種金属接触 腐食	空気冷却器管板 等の海水による 腐食(異種金属 接触腐食を含 む)	ディーゼル機関	空気冷却器の管板は銅合金であり、長期使用により海水接液部において腐食が想定される。 また、空気冷却器水室は炭素鋼鋳鋼であり、海水が接するためライニングを施工しているが、ライニングのはく離等により炭素鋼鋳鋼に海水が接した場合、管板が銅合金であるため、炭素鋼部位に異種金属接触腐食が想定される。しかしながら、開放点接時の目視確認で腐食やライニングの状況を確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
567	電源設備	ディーゼ ル機関	Δ2	腐食(流れ加速型腐食)	空気冷却器伝熱 管内面の腐食 (流れ加速型腐食)	ディーゼル機関	空気冷却器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 銅合金は腐食電位の高い貴な金属であり、耐食性が良いが、高速の流水中で使用すると、流れ加速型腐食が発生することがある。 当該機器は管側流体が海水であるため、貝等の異物の付着により局所的に流速が増大し、流れ加速型腐食が発生する場合があるが、貝等の異物の付着により局所的に流速が増大し、流れ加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態、付着状態は不確定であるとから、流速と腐食量について、一律で定量的な評価は困難である。 しかしながら、開放点検時に渦流探傷検査や漏えい検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
568	電源設備	ディーゼ ル機関	Δ2	スケール付着	空気冷却器伝熱 管のスケール付 着	ディーゼル機関	管側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが 想定される。 しかしながら、開放点検時の目視確認や清掃により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
569	電源設備	ディーゼ ル機関	Δ①	カーボン堆積	過給機タービン ハウジング等の カーボン堆積	ディーゼル機関	過給機タービンハウジングおよびタービンノズルはシリンダ内の燃焼により発生したカーボンが排気管を経由して堆積し、機関性能を低下させることが想定される。しかしながら、負荷運転時に排気温度、過給圧力が正常であることを確認しており、これまでに有意なカーボンの堆積は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なか、分解点検時の目視確認により、機器の健全性を確認している。
570	電源設備	ディーゼ ル機関	Δ①	クリープ	過給機タービン ロータのクリー ブ	ディーゼル機関	過給機のターピンロータは機関運転時、高温になりかつ遠心力等が作用するので、使用材料によってクリーブによる損傷が想定される。 しかしながら、ブラント運転開始後60年時点の予測累積運転時間(2,000時間未満)は金属材料研究所データにおいて示されたクリーブ破損寿命(100,000時間以上)と比較して短い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
571	電源設備	ディーゼ ル機関	Δ①	腐食(全面腐食)	シリンダブロック等内面からの腐食(全面腐食)	ディーゼル機関	シリンダブロック、フレーム、燃料油供給ポンプのケーシング、燃料油供給ポンプ調圧弁の弁箱、燃料項射ポンプのケーシング、潤滑油ポンプ間圧分の弁箱がび非常用停止装置のピストン案内は鋳鉄または炭素鋼鋳鋼であり、内面からの腐食が想定される。しかしながら、内部流体は油で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
572	電源設備	ディーゼ ル機関	Δ①	摩耗	シリンダ安全弁 弁箱等摺動部の 摩耗	ディーゼル機関	シリンダ安全弁の弁箱および弁棒等は弁の開閉による摩耗が想定される。 しかしながら、シリンダ内の異常昇圧時の保護目的で設置されており作動回数はほとんど ない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
573	電源設備	ディーゼ ル機関	Δ①	摩耗	燃料油供給ポン ブ調圧弁弁体等 の摩耗	ディーゼル機関	燃料油供給ポンプ調圧弁の弁体等、燃料噴射ポンプのプランジャ等および潤滑油ポンプ調 圧弁の弁体等は作動による摺動に伴い摩耗が想定される。 しかしながら、摺動部は燃料油または潤滑油中で解耗が発生しがたい環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
574	電源設備	ディーゼ ル機関	Δ①		燃料噴射ポンプ プロクタの腐 食(キャビテー ション)	ディーゼル機関	燃料噴射ポンプデフレクタでは燃料の噴射過程における圧力変動が大きく、キャビテーションによるエロージョンが想定される。 しかしながら、燃料噴射ポンプデフレクタはキャビテーションの発生を抑制する構造としており、ブラント連転開始後00年時点の予測累積運転時間(2,000時間未満)に対し、同型のディーゼル発電機関で十分な使用実績(12,000時間程度)もある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
575	電源設備	ディーゼ ル機関	Δ①	摩耗	始動弁弁箱等摺 動部の摩耗	ディーゼル機関	始動弁、インターロック弁および始動空気管制弁の弁箱等は弁等の作動により摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
576	電源設備	ディーゼ ル機関	Δ2	固着	燃料噴射ポンプ 調整装置組立品 の固着	ディーゼル機関	燃料噴射ポンプ調整装置組立品のばね鞘、シャフト、レバー、腕は長期にわたって使用した場合。機関外部に露出しているシャフトや腕に潤滑油の変質、塵埃の堆積による摩擦増加、固着等が発生し、リンクの摺動抵抗が増大することが想定される。しかしながら、分解点検時の摺動抵抗計測により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
577	電源設備	ディーゼ ル機関	Δ①	導通不良	圧力・温度ス イッチ接点部の 導通不良	ディーゼル機関	圧力・温度スイッチは浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分はケース内に収納されており、塵埃の付着による導通不良が発生 する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の作動確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
578	電源設備	ディーゼ ル機関	Δ2	特性変化	圧力・温度ス イッチの特性変 化	ディーゼル機関	圧力・温度スイッチは長期間の使用に伴い、特性の変化が想定される。 しかしながら、圧力・温度スイッチは測定対象毎に耐圧性、耐食性等を考慮した材料を選 定し設計しており、屋内に設置されていることから環境変化の程度が小さく、短期間で特 性が変化する可能性は小さい。 また、機器点検時の校正試験・調整により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
579	電源設備	DGポンプ	Δ①	摩耗	主軸等の摩耗	共通	ころがり軸受を使用している燃料弁冷却水ポンプおよび各モータについては、軸受と主軸の接触面で摩耗が超定される。 動受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩 耗が発生し、主軸と軸受スリーブ間で微小すき間が生じ、運転中にフレッティングによる 摩耗が発生する可能性がある。 しかしながら、これを防止するため主軸表面の仕上げは行わない運用としており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
580			Δ①	摩耗			すべり軸受を使用している燃料油移送ポンプについては、軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、設計段階において主軸・従動軸と軸受間に潤滑剤を供給し、膜を形成させて流体潤滑状態となるように考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
581	電源設備	DGポンプ		高サイクル疲 労割れ	主軸等の高サイ クル疲労割れ	共通	ポンプ運転時には主軸等に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、ポンプおよびモータ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診による確認)、試運転時および機能確認時における振動確認(変位、速度、加速度の測定等)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
582	電源設備	DGポンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャピテー ション)	燃料弁冷却水ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温に おける飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気池の発生と崩壊が起こ ることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプおよび機器配置設計段階にお いて考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
583	電源設備	DGポンプ	Δ①	摩耗	歯車およびケー シングの摩耗	燃料油移送ポンプ	燃料油移送ポンプは歯車ポンプであり、歯車および歯車とケーシングの接触部で摩耗が想定される。 しかしながら、内部流体は燃料油で摩耗が発生しがたい環境であり、これまでに有意な摩 耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
584	雪頂設供	DGポンプ		腐食(全面腐食)	軸受箱の腐食	燃料弁冷却水ポンプ	軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
585	电 <i>ii</i>	bunk 3 3		腐食(全面腐 食)	(全面腐食	maret Ji I II MUJA A V	一方、内面については軸受を潤滑するための潤滑油により油雰囲気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
586	雷酒設備	DGポンプ	Δ2	腐食(全面腐食)	ケーシング、 ケーシングカ パーおよびリ	共通	ケーシング、ケーシングカバーおよびリリーフ弁は炭素鋼鋳鋼または炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
587			Δ① 腐食(全面腐 食)	ハーのよいの リーフチの腐食 (全面腐食)	e valid	一方、内面については内部流体が亜硝酸水 (防鯖剤注入水) または燃料油で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
588	電源設備	DGポンプ	Δ①	ばねの変形 (応力緩和)	リリーフ弁ばね の変形(応力緩 和)	燃料油移送ポンプ	リリーフ弁ばねは常時内部流体圧力に相当する圧縮荷重が加わった状態で長期間保持されることにより、変形(応力緩和)が想定される。しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時等の作動確認により、機器の健全性を確認している。

表1-1 日常劣化管理事象一覧(58/62)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
589	電源設備	DGポンプ	Δ①	腐食(全面腐食)	ケーシングボル トの腐食(全面 腐食)	共通	ケーシングボルトは炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
590	電源設備	DGポンプ	Δ2	腐食(全面腐食)	台板および取付 ボルトの腐食 (全面腐食)	共通	台板および取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទ「目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
591	電源設備	DGポンプ		腐食(全面腐食)	フレーム、端子 箱およびブラ ケットの腐食 (全面腐食)	共通	フレーム、端子箱およびブラケットは鋳鉄および炭素鋼であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
592	電源設備	DGポンプ	Δ①	腐食(全面腐	固定子コアおよ び回転子コアの 腐食(全面腐 食)	共通	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはワニス処理または塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
593	電源設備	DGポンプ	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	共通	回転子棒・エンドリングについては、モータの起動時に発生する電磁力による繰返し応力 を受けるため、疲労割れが想定される。 しかしながら、アルミ系でん式・(一体形成)であり、回転子棒とスロットの間に隙間を生 じることはなく、疲労割れが発生しがたい構造である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
594	電源設備	DG熱交換 器	Δ2	サイクル疲労	伝熱管の摩耗お よび高サイクル 疲労割れ	共通	胴側流体および管側流体により伝熱管振動が発生した場合、管支持板部等で伝熱管に摩耗または高サイクル疲労割れが想定される。 管外表面を流れる流体による振動で伝熱管の強度上想定される振動形態としては、カルマン渦による振動と流が弾性振動がある。 しかしながら、対状保全として、分解点検時の渦流探傷検査等を実施し、機器の健全性を 維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
595			Δ2	腐食(流れ加 速型腐食)			伝熱管は銅合金であり、管側の内部流体である海水により流れ加速型腐食による減肉が想定される。 しかしながら、分解点検時の渦流探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
596	電源設備	DG熱交換 器	Δ①	腐食 (流れ加 速型腐食)			一方、胴側の内部流体は亜硝酸水 (防錆剤注入水) または潤滑油であり、流速が遅いこと から流れ加速型腐食が発生しがたい環境であり、これまでに有意な腐食は認められておら ず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や渦流探傷検査により、機器の健全性を確認している。
597			Δ2	スケール付着			管側の内部流体である海水の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが認定される。 しかしながら、分解点検時の目視確認や伝熱管の洗浄により機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
598	電源設備	DG熱交換 器	Δ①	スケール付着	伝熱管のスケー ル付着	共通	一方、胴側の内部流体は亜硝酸水 (防錆剤注入水) または潤滑油であり、適切な水質管理により不純物の流入は抑制されており、スケール付着による伝熱性能低下が発生しがたい環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
599	電源設備	DG熱交換 器	Δ2	異種金属接触腐食	管側耐圧構成品 の海水による腐 食(異種金属接 触腐食を含む)	共通	管側流体が海水であり、接液部に銅合金を使用しているため、長期使用により腐食が想定される。また、海水に接する水室の炭素鋼部位にはライニングを施工しているが、ライニングのはく離等により炭素鋼に海水が接した場合、管板が銅合金であるため、炭素鋼に異種金属接触腐食が想定される。 しかしながら、分解点体の自視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
600	電源設備	DG熱交換 器	Δ①	腐食(全面腐食)	胴側耐圧構成品 等の内面の腐食 (全面腐食)		胴板、胴フランジおよび邪魔板は炭素鋼であり、腐食が想定される。 しかしながら、内部流体は亜硝酸水(防錆剤注入水)または潤滑油で腐食が発生しがたい 環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する 要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
601	電源設備	DG熱交換 器	Δ2	腐食(全面腐 食)	水室等の外面からの腐食(全面腐食)	共通	水室、胴板および胴フランジは炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
602	電源設備	DG熱交換 器	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)		フランジボルトは炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
603	電源設備	DG熱交換 器	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	共通	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
604	電源設備	DG熱交換 器	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	共通	冷却器は横置きであり、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
605	⊕ in ≎n. #±	DC sto ER	Δ2	腐食(全面腐食)	胴板等耐圧構成		胴板等耐圧構成品等は炭素鋼または炭素鋼鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
606	電源設備	DG容器	Δ①	腐食(全面腐食)	品等の腐食(全面腐食)	動空気だめ、潤滑油主フィルタ、 燃料油第2フィルタ	一方、内面については内部流体が亜硝酸水 (防錆剤注入水) 、潤滑油、燃料油および空気で腐食が発生しがたい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
607	電源設備	DG容器	Δ2)	腐食(全面腐食)	取付脚等の腐食 (全面腐食)	シリンダ冷却水タンク,燃料油 サービスタンク,起動空気だめ、	シリンダ冷却水タンク、燃料油サービスタンク、潤滑油主フィルタ、燃料油第2フィルタの取付ボルトおよび起動空気だめの取付脚は炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。また、巡視点検令目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
608	電源設備	DG容器	Δ2	目詰り	エレメント等の目詰り	潤滑油主フィルタ, 燃料油第2 フィルタ	潤滑油主フィルタのエレメントおよび燃料油第2フィルタのこし網は、長期使用により目詰まりが想定される。 しかしながら、潤滑油主フィルタについては、逆洗機構を有しており、手動駆動弁を操作することでエレメントに付着した異物をはく離させて目詰まりを防止する構造であり、また、燃料油第2フィルタについては、機関運転時に出入口の差圧管理を実施しており、目詰りの発生(差圧上昇)時には、待機側に切替えることで対処している。また、分解点検時の目視症認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
609	電源設備	DG容器	Δ①	腐食(全面腐食)	胴板等耐圧構成 品及び支持脚等 の外面からの腐 食(全面腐食)		重油タンクの胴板等耐圧構成品および支持脚等は炭素鋼であり、屋外土中に埋設されていることから外面の状況が把握できず、腐食が想定される。しかしながら、胴板等町圧構成品の外面は、消防法の規制に基づいた塗装がされたうえ乾燥砂で覆われており、腐食が発生しがたい環境にある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、消防法に基づく漏れ点検により、耐圧部の健全性を確認している。
610	電源設備	DG容器	Δ①	腐食(全面腐食)	胴板等の内面か らの腐食(全面 腐食)	重油タンク	胴板等は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体は、燃料油であり、腐食が発生しがたい環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
611	電源設備	DG配管	Δ2	腐食(全面腐食)	母管等の外面か らの腐食(全面 腐食)	シリンダ冷却水系統配管、潤滑油 系統配管、燃料油系統配管	炭素鋼の配管等は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等を施しており、塗膜等が健全であれば腐食進行の可能 性は小さい。 また、巡視点検等で目視により塗膜等の状態を確認し、はく離等が認められた場合は必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
612	電源設備	DG配管	Δ①	腐食(全面腐食)	母管の内面からの腐食(全面腐食)		シリンダ冷却水系統配管、潤滑油系統配管および燃料油系統配管の母管は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体はシリンダ冷却水系統配管が亜硝酸水 (防錆剤注入水)、潤滑油 系統配管が潤滑油、燃料油系統配管が燃料油で腐食が発生しがたい環境であり、これまで に有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えが たい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
613	電源設備	DG配管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	シリンダ冷却水系統配管	フランジボルトは炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時等の目視確認等により、機器の健全性を確認している。
614	電源設備	DG弁	Δ2	腐食(全面腐食)		本体、弁蓋[燃料弁冷却水温度制御弁、潤滑油温度制御弁]、管本体[潤滑油温度制御弁]	本体、弁蓋および管本体等は炭素鋼鋳鋼または炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
615	電源設備	DG弁	Δ①	腐食(全面腐食)	弁蓋ポルト等の 腐食(全面腐 食)		弁蓋ボルトは炭素鋼であり、パッキンまたはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認等により、機器の健全性を確認している。
616	電源設備	DG弁		腐食(全面腐食)	手動レバーの腐食(全面腐食)	主始動弁	手動レバーは炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទ日視により塗膜の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を機能を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
617	電源設備	DG弁	Δ①	摩耗	弁棒、ピスト ン、手動弁棒お よび弁座の摩耗	主始動弁	弁棒、ピストン、手動弁棒および弁座は弁の開閉により、摩耗が想定される。 しかしながら、摺動部には潤滑利を注入し、弁の開閉頻度が少なく摩耗しがたい環境であ り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
618	電源設備	DG弁	Δ①	ばねの変形 (応力緩和)	ばねの変形 (応 力緩和)	主始動弁	ばねは応力状態にて長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性節囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時等の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
619	電源設備	直流電源設備	Δ2	腐食(全面腐 食)	架台および筐体 の腐食(全面腐 食)	架台 [蓄電池] 筐体 [ドロッパ]	架台および筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装または亜鉛メッキにより腐食を防止しており、塗膜また はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜またはメッキ面の状態を確認し、はく離等が認められ た場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
620	電源設備	直流電源設備	Δ2	特性変化	ダイオードの特 性変化	ドロッパ	ダイオードは、高い温度で運転し続けると、特性変化が想定される。 しかしながら、使用電流値と比べて一定の裕度を持つ定格の素子を使用することで発熱を 低減するとともに、放熱板やファン等で冷却することにより素子の温度を一定温度以下に 保つように設計しており、特性が急激に変化する可能性は小さい。 また、機器点検時の特性試験により、機器の健全性を維持している。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
621	電源設備	直流電源設備	Δ2)	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
622	電源設備	無停電電源	Δ2	特性変化	IGBTコンバー タ、IGBTイン パータおよびダ イオードの特性 変化	計装用電源盤	IGBTコンバータ、IGBTインバータおよびダイオードは、高い温度で運転し続けると、特性 変化が想定される。 しかしながら、使用電流値と比べて一定の裕度を持つ定格の素子を使用することで発熱を 低減するとともに、放熱板で素子の温度を一定温度以下に保つように設計しており、特性 が急激に変化する可能性は小さいと考える。 また、機器点検時の特性試験により機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
623	電源設備	無停電電源	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	計装用電源盤	筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
624	電源設備	無停電電源	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	計装用電源盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
625	電源設備	計装用分電盤	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	計装用分電盤	主回路導体は銅であり、腐食が想定される。 しかしながら、錫メッキにより腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 、機器点検時の目視確認により、機器の健全性を確認している。
626	電源設備	計装用分電盤	Δ2	腐食(全面腐食)	筐体および架台 の腐食(全面腐 食)	計装用分電盤	筐体および架台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
627	電源設備	計装用分電盤	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	計装用分電盤	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視によりメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
628	電源設備	計装用分電盤	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	計装用分電盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
629	電源設備	制御棒駆動装置用電源設備	Δ①	摩耗	接触子(遮断 器)の摩耗	原子炉トリップ遮断器盤	連断器の接触子は、遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認および寸法計測により、機器の健全性を確認している。
630	電源設備	制御棒駆動装置用電源設備	Δ①	絶縁低下	投入コイルおよ び引外しコイル (遮断器) の絶 縁低下	原子炉トリップ遮断器盤	遮断器の投入コイルおよび引外しコイルの絶縁物は有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。 しかしながら、投入コイルおよび引外しコイルは屋内の筐体に内蔵しているため、塵埃、湿分等が付着しにくい環境にある。 また、投入コイルおよび引外しコイルは連続運転ではなく、作動時間も1秒以下と小さいことから、コイルの発熱による温度上昇は小さいと考えられ、使用温度(約60°C)に比べて、十分余裕のある絶縁種(4種:許容最高温度105°C)を選択して使用していることから、絶縁低下の可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
631	電源設備	制御棒駆動装置用電源設備	Δ2	汚損	消弧室(遮断 器)の汚損	原子炉トリップ遮断器盤	遮断器の消弧室は、遮断器の電流遮断動作に伴う消弧室でのアーク消弧により汚損した場合、消弧性能の低下が想定される。 しかしながら、機器点検時の目視確認により、機器の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
632	電源設備	制御棒駆動装置用電源設備	Δ①	ばねの変形 (応力緩和)	ばね(遮断器) の変形(応力緩 和)	原子炉トリップ遮断器盤	遮断器のばねは投入状態にて長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の作動確認により、機器の健全性を確認している。
633	電源設備	制御棒駆動装置用電源設備	Δ2	固着	操作機構(遮断 器)の固着	原子炉トリップ遮断器盤	遮断器の操作機構は、長期使用に伴いグリスが固化し、動作特性の低下が想定される。 しかしながら、注油、各部の目視確認、動作試験を実施することで、機器の健全性を維持 している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
634	電源設備	制御棒駆動装置用電源設備	Δ①	絶縁低下	絶縁リンク、絶 縁ペース(遮断 器)および絶縁 おちば、(が絶縁 すった) の絶縁 低 の 絶縁 で の を を の で の で の で で の で の で の で り で り で り で り	原子炉トリップ遮断器盤	遮断機の絶縁リンク、絶縁ベースおよび絶縁支持板は有機物であり、熱的、電気的、環境 的要因による絶縁低下が想定される。 しかしながら、屋内の筐体およびダクト内に設置されているため、塵埃、湿分等が付着し にくい環境にある。 また、主回路導体の通電時の最大温度100℃に対して、絶縁リンクの耐熱温度は180℃、絶 縁ベースの耐熱温度は200℃、絶縁支持板の耐熱温度は180℃と十分余裕を持った耐熱性を 有していることから、絶縁低下の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
635	電源設備	制御棒駆動装置用電源設備	Δ①	摩耗	1次ジャンク ション (遮断 器) の摩耗	原子炉トリップ遮斯器盤	遮断器の1次ジャンクションは、遮断器の盤からの出し入れに伴う摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
636	電源設備	制御棒駆動装置用電源設備	Δ①	腐食(全面腐食)	母線導体 (バス ダクト) の腐食 (全面腐食)	原子炉トリップ遮断器盤	バスダクト母線導体は銅であり、腐食が想定される。 しかしながら、耐熱性PVCチューブにより腐食を防止しており、これまでに有意な腐食は 認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
637	電源設備	制御棒駆動装置用電源設備	Δ2	腐食(全面腐食)	外被(パスダク ト)の腐食(全 面腐食)	原子炉トリップ遮断器盤	外被は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
638	電源設備	制御棒駆動装置用電源設備	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	原子炉トリップ遮断器盤	主回路導体は銅であり、腐食が想定される。 しかしながら、耐熱性PVCテープ巻きにより腐食を防止しており、これまでに有意な腐食 は認められておらず、今後もこれらの傾向が変化する要因があるとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を確認している。
639	電源設備	制御棒駆動装置用電源設備	Δ①	絶縁低下	支持碍子の絶縁 低下	原子炉トリップ遮断器盤	支持碍子は無機物の磁器であり、経年劣化の可能性はない。 なお、長期使用においては表面の汚損にる絶縁低下が想定される。 しかしながら、支持網子は屋内の筐体に内蔵しいるため、塵埃が付着しにくい環境にあ り、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化する要因があ るとは考えがたい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の目視確認により、機器の健全性を維持している。
640	電源設備	制御棒駆動装置用電源設備	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	原子炉トリップ遮斯器盤	筐体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点接等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
641	電源設備	制御棒駆動装置用電源設備	Δ2	腐食(全面腐食)	取付ポルトの腐 食(全面腐食)	原子炉トリップ遮断器盤	取付ボルトは炭素鋼であり、腐食が想定される。しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視によりメッキ面の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
642	電源設備	制御棒駆動装置用電源設備	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	原子炉トリップ遮断器盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗膜が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗膜の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

表1-2 耐震安全性評価の対象外とした事象(一)とその理由(1/3)

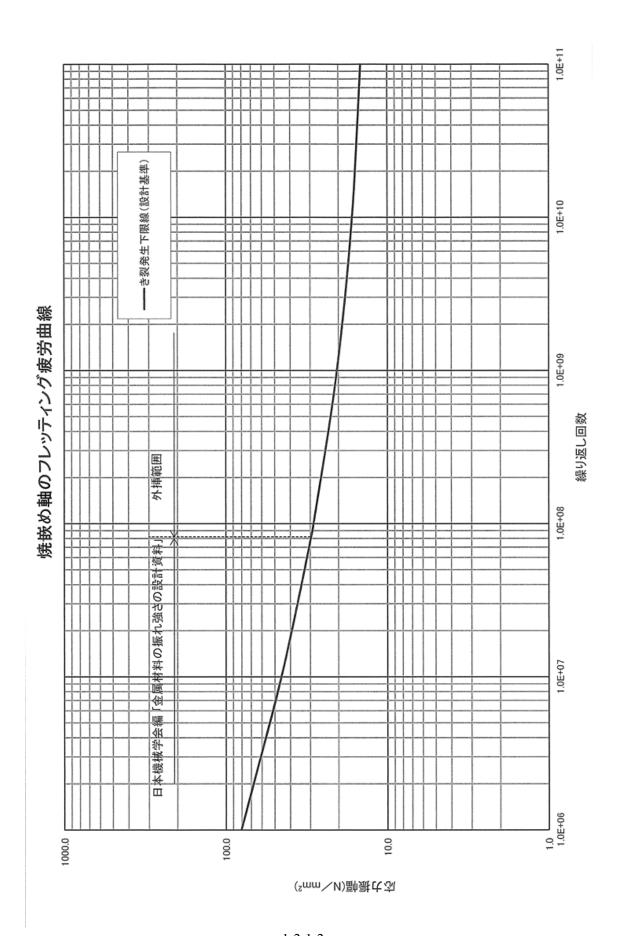
No.	損傷モード	経年劣化事象	今後も発生の可能性がない、または小さいとした理由	機器・部位の例		
			潤滑剤により摩耗を防止している。	・回転機器の軸ーすべり軸受、歯車 ・ビストン等の摺動部		
			摩耗の原因となる振動が生じない。	・仕切弁の弁体一弁棒連結部		
			ころがり接触である等、摺動が生じない。			
			作動回数が少ない、運転時間が短い。	・		
			ブッシュ等で保護されている等、直接接触しない。	・空気作動装置のピストンーピストンガイド等・燃料取替クレーンのシリンダケースーピストン		
1	減肉	摩耗	摺動相手より硬い材料である。	・空気作動装置のピストンロッドーブッシュ等 ・燃料取扱設備電磁ブレーキのブレーキ板ーブレーキライニング		
			摩耗の原因となる異物を除去している。	・・ 制御用空気圧縮装置空気乾燥器比例弁の弁体等		
			主軸表面の仕上げは行わない運用としている。	・ターボポンプ、ファンおよびモータの主軸		
			耐摩耗性に優れた材料を使用している。	・充てんポンプのブランジャーグランドパッキン ・蒸気加減弁の弁体 - 弁箱弁座部 ・ターピンの軸受台 - キー ・燃料取扱設備の燃料ガイドパー - 燃料グリッド		
			作用する荷重が小さい。	・リフト逆止弁の弁体ー弁体ガイド、弁体ーはめ輪 ・重機器サポートの摺動部材		
			これまでの点検において有意な摩耗は確認されていない。	・特殊弁の弁体および弁座シート面、弁棒、アクチュエータ・・メタクラ、パワーセンタ等 遮断器の接触子、1次ジャンクション		
			油雰囲気である。	・減速機ケーシングの内面		
			内部流体が油である。	・ポンプ軸受台の内面 ・ポンプの軸受箱、潤滑油ユニット、油圧ユニット内面		
			内部流体がヒドラジン水(防錆剤注入水)、亜硝酸水(防錆剤注入水)またはpH等を			
			管理した脱気水(絵水)である。 窒素ガス、希ガス、フロンまたは空気である。	- ディーゼル機関付属設備の冷却水系統の機器内面 - 安全注入系統等の窒素ガスラインの機器内面 - モータの空気/冷却器伝熱管 - 計器用空気系統の機器内面		
			内部流体が冷媒(フルオロカーボン)である。	・空調用冷凍機圧縮機等の内面		
2	減肉	全面腐食	締付管理により内部流体の漏えい防止を図り、漏えいによる腐食が発生しがたい。	・ケーシングボルト、フランジボルトおよび弁蓋ボルト等		
			ワニス処理、樹脂または塗装により腐食を防止している。	・モータの固定子コアおよび回転子コア ・電磁ブレーキの固定鉄心		
			塗装等により腐食を防止している。	・空調ファンの羽根車 ・重油タンク外面		
			メッキにより腐食を防止している。	・変圧器の鉄心締付ボルト ・ コントロールセンタおよび計装用交流分電盤の主回路導体		
			腐食発生要因を取り除く運用をしている。	・ディーゼル機関のピストン等		
			これまでの点検において有意な腐食は確認されていない。	・タービンの車室支えボルト、特殊弁の外面		
3	減肉	異種金属接触腐食	除外(
4	減肉	孔食	除外(一)なし			
5	減肉	ピッティング	 運転中は高温状態となりシート面のステンレス鋼内張り表面に強固な酸化皮膜が形 ・原子炉容器の上部蓋および上部胴フランジシート面 ・加圧器のマンホールシート面			
6	減肉	隙間腐食	MC-41vo。			
			耐流れ加速型腐食性に優れた材料を使用している。	・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸		
		流れ加速型腐食	内部流体がpH等を管理した脱気水である。	・熱交換器の炭素鋼の管側耐圧構成品		
7	減肉		内部流体の流速が遅い。	・ディーゼル機関熱交換器の伝熱管内面		
			乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生しがたい。	・インターセプト弁の弁箱、低圧タービンの翼環等		
			これまでの点検において有意な腐食は確認されていない。	・高圧タービンのアウターグランド本体およびグランドダイヤフラムリング ・廃液蒸発装置の加熱器		
			キャビテーションを起こさないよう設計段階において考慮している。	ポンプの羽根車		
8	減肉	キャビテーション	キャビテーションの発生を抑制する構造としている。	・ディーゼル機関の燃料噴射ポンプデフレクタ		
9	減肉	エロージョン	除外(
			温度ゆらぎが生じない。	・1次冷却材ポンプ熱遮蔽装置のシェル、ハウジングおよびフランジ・再生熱交換器の連絡管		
			発生応力は疲労強度より小さい。アルミ充てん式(一体形成)は回転子棒とスロットの間に隙間を生じることはなく疲労割れが発生しがたい構造。	・モータの回転子棒・エンドリング		
10	割れ	疲労割れ	の間に感覚を受けない。 有意な過渡を受けない。	・原子炉格納容器のライナーブレート ・機器搬入口等の胴等耐圧構成品 ・主蒸気止め弁の弁体 ・タービンの車室等 ・蒸気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部 ・燃料取扱設備の走横行レールおよびブリッジガータ ・制御棒駆動装置の圧カハウジング ・ディーゼル機関のビストン、カップリングポルト		
			作動回数が少ない。	・加圧器安全弁のベローズ ・タービン動補助給水ポンブタービンのケーシング		
			サーマルスリーブにより保護されている。	・1 次冷却材ポンプの主軸		

表1-2 耐震安全性評価の対象外とした事象(一)とその理由(2/3)

No.	損傷モード	経年劣化事象	今後も発生の可能性がない、または小さいとした理由	機器・部位の例		
			設計時に高サイクル疲労を考慮している。	・ポンプ、モータの主軸等、タービンの車軸		
			有意な応力は発生しない。	・炉内構造物の炉心そう等		
11	割れ	高サイクル疲労割れ	共振した場合でも十分な安全率を有する設計としている。	・ディーゼル機関のクランク軸等・ターピンの動翼		
			共振を起こさない固有振動数となるようなスパンで支持されている。	・制御用空気圧縮装置の空気冷却器、空気乾燥器の伝熱管		
			カルマン渦による振動と共振せず、流力弾性振動も発生しない構造となっている。	・廃液蒸発装置、乾燥造粒装置の熱交換器伝熱管		
			曲げ応力振幅は疲労限を下回っている。	・ターボポンプの主軸		
12	割れ	フレッティング疲労割れ	運転時間が短い。	・タービン動補助給水ポンプタービンの主軸		
			690系ニッケル基合金を使用している。	・原子炉容器の蓋管台、空気抜管台等		
			000ポープブルを日並と区内している。	・加圧器のスプレイライン用管台等 ・加圧器の温度計用管台およびレベル計用管台内面		
			316系ステンレス鋼を使用している。	・余熱除去系統の配管内面 ・1 次冷却材に接する計装配管等		
			熱処理を行った後に管台を溶接しており、材料の鋭敏化はない。	・ ・ 苦圧タンクの管台内面		
			表層・内部共硬くない。	・加圧器後備ヒータのシースおよびプラグ		
			耐熱鋼(ステンレス鋼)は応力腐食割れ感受性が小さい。	・蒸気加減弁の弁体ボルト		
			超音波ショットピーニング(応力緩和)を施工している。	・蒸気発生器の冷却材出入口管台セーフエンド		
13	割れ	応力腐食割れ	ウォータージェットピーニング(応力緩和)を施工している。	・原子炉容器の600系ニッケル基合金使用部位		
13	리기	ルンノノ検及された	バックシート部に過大な応力が発生しないようにしている。	・仕切弁、玉形弁の弁棒		
			伝熱管を液圧拡管としている。	・蒸気発生器伝熱管の管板クレビス部		
			新熱処理材応力低減化構造としている。	・炉内構造物の支持ピン		
			使用温度が低い、または高温で使用する場合は溶存酸素温度を低減している。	- 余熱除去ポンプ、熱交換器伝熱管、1次冷却材管の母管および管台等のステンレス鋼使用部位 ・低圧タービンの翼環ボルト		
			水質を適切に管理している。	・ 熱交換器の伝熱管等ステンレス鋼使用部位 ・ 炉内構造物の上部炉心支持柱等		
			L 酸素型応力腐食割れ発生環境下に置かれる時間が極めて短い。	・加圧器のヒータスリーブ(溶接部含む)		
			水環境にない。	・電気ペネトレーションの端板、ヘッダー		
13-1	割れ	溶接部の施工条件に起 因する内面からの粒界 割れ	2020年8月に確認された「大飯3号炉 加圧器スプレイ配管溶接部における有意な 指示」は特異な事象であり、亀裂発生部位は同様の事象が発生しない施工条件で 取り替えられている。			
14	割れ	照射誘起型 応力腐食割れ	高照射領域は内外差圧による極小さな応力しか発生しない。 ・制御棒クラスタの被覆管			
15	割れ	粒界腐食割れ				
16	割れ	照射誘起割れ(外径増 加によるクラック)	除外(-)なし		
17	材質変化	熱時効	亀裂の原因となる経年劣化事象の発生が想定されない。	・・1次冷却材ポンプの羽根車 ・余熱除去系統の仕切弁および安全注入系統のスイング逆止弁のステンレス鋼鋳 鋼製弁箱、弁蓋		
18	材質変化	中性子照射による靭性	除外(-)なし		
19	材質変化	低下 中性子および γ 線照射	除外(-)なし		
20	材質変化	脆化 中性子吸収能力の低下	制御棒の核的損耗は核安全設計の余裕の範囲内である。	・制御棒クラスタの中性子吸収体		
			蒸発試験結果から油分減少量を推定し、許容値に対して十分低いことを確認してい			
			る。 耐放射線試験を実施し長期の運転を考慮しても特に問題ないことを確認している。	・メカニカルスナバのグリス		
21	材質変化	劣化	周囲温度は使用条件範囲内である。	・空調ダクトの伸縮継手		
			機器の機能の維持に対する影響は極めて小さい。	・ケーブルのシース		
22	絶縁特性低下	絶縁低下		1		
23	絶縁特性低下	汚損				
24	導通不良	導通不良	耐震安全性に影響を与えない	いことが自明な経年劣化事象		
25	導通不良	断線				
26	特性変化	特性変化				
27	コンクリートの強度低下	アルカリ骨材反応	使用している骨材については、モルタルバー法による反応性試験を実施し、反応性骨がでけない。ことを確認している	・コンクリート構造物		
28	強度低ト コンクリートの 強度低下	凍結融解	骨材ではないことを確認している。 日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリートエ事」(20 日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリートエ事」(20 日本建築学会「建築」といる。 日本経験が低い。	・コンクリート構造物		
29	コンクリートの	耐火能力低下	■	・コンクリート構造物		
30	耐火能力低下 鉄骨の強度低下	腐食	時などの熱に起因すると判断される断面厚の減少は認められていない。 除外(-)なし		
31	その他	クリープ	 金属材料研究所データにおいて示されたクリープ破損寿命と比較して機関の運転時			
	7.710		間は短い。			

表1-2 耐震安全性評価の対象外とした事象(一)とその理由(3/3)

No.	損傷モード	経年劣化事象	今後も発生の可能性がない、または小さいとした理由	機器・部位の例			
			ばねに発生する応力は弾性範囲であり、ばね材料と使用環境温度の実態調査結果 と比べて、同等か余裕のある環境で使用している。	・スプリングハンガ、安全逃し弁、空気作動装置、特殊弁、しゃ断器、電磁ブレーキ、 制御棒駆動装置等のばね			
32	その他	応力緩和	ばねにはほとんど荷重は加わらない。	・加圧器圧力計・水位計上部元弁のばね			
32	ての他	心刀称	ばねの変形(応力緩和)が発生したとしても、機能に影響しない。	・リフト逆止弁のばね			
			運転中制御棒は炉心から引き抜かれているために照射量がわずかである。	・制御棒クラスタのばね			
33	その他	照射クリープ	除外(-)なL			
34	その他	照射スウェリング	照射スウェリング量は照射量暫定取替基準に達した時点で微量であり、制御棒案内 シンブル細径部間ギャップは確保される。				
35	その他	デンティング	除外(-)なし				
36	その他	変形	これまでの点検において有意な変形は確認されていない。	・低圧タービンの第1内部車室および第2内部車室			
37	その他	はく離	高湿度環境にはなく、結露水が発生しがたい環境である。	・燃料取扱設備、燃料移送装置の電磁ブレーキライニング			
38	その他	緩み	回り止めが施されている。	・変圧器の鉄心			
39	その他	スケール付着	適切な水質管理により不純物の流入は抑制されている。	・ディーゼル機関付属設備熱交換器伝熱管(胴側)			
40	その他	流路の減少	除外(-)なし			
41	その他	目詰まり	除外(-)なL			
42	その他	カーボン堆積	これまでの点検において有意なカーボン堆積は確認されていない。	・ディーゼル機関ピストン上部頂面等燃焼室構成部品、過給機タービンハウジング 等			
43	その他	固着	除外(-)なし				
44	その他	耐火物の減肉	除外(-)なし				
45	その他	水素反応機能の低下	除外(-)なし				


タイトル	高サイクル疲労割れに係る説明
説明	以下について、次ページ以降に示す。
	別紙 1-1-1 ターボポンプ主軸の高サイクル疲労割れ 別紙 1-1-2 炉内構造物炉心そう等の高サイクル疲労割れ

タイトル	ターボポンプ 主軸の高サイクル疲労割れ
概要	充てんポンプの主軸折損について、内部流体に空気が流入しない系統構成 としている内容を示す。
説明	国内PWRプラントにおいて、2011年に充てんポンプの主軸折損事象が発生している(NUCIA 通番11455)。本事象は、羽根車焼嵌めに伴う割リングと接触する主軸溝部において折損が発生したものである。原因として、折損箇所が応力集中の高い形状であったこと、応力が発生していたこと、および体積制御タンク低水位運転時の空気流れ込みで生じる振動があったことが挙げられている。
	本事象を踏まえて、大飯3号においては空気流れ込みによる振動に対する 対策として、内部流体に空気が流入しない系統構成としている。
	具体的には、体積制御タンクから充てんポンプ入口配管への空気の流入 を防止するため、体積制御タンクが低水位となる期間が一定期間継続しな い管理とするよう運転操作所則に反映している。 また、充てんポンプ入口配管にベントラインを設置しており、万一配管に 空気が流入しても充てんポンプへ流入することはない。
	以上

タイトル	炉内構造物 炉心そう等の高サイクル疲労割れ							
概要	炉心そう等の高サイクル疲労割れについて、15×15燃料を対象とした1/5 スケールモデル流動試験の結果を適用することの妥当性を以下に示す。 炉内構造物において温度の異なる冷却材が合流する部位における最大温度 差の値を以下に示す。							
説明	表 1 、 2 に $1/5$ スケールモデル流動試験 *1 と大飯 3 号炉の炉内流速と各部の固有振動数を示すが、大飯 3 号炉の炉内流速・固有振動数(解析値)は $1/5$ スケールモデル流動試験のモデルプラントと大きな相違はないことから、大飯 3 号炉に $1/5$ スケールモデル流動試験の結果を適用することは妥当であると考える。 なお、炉内構造物における最大温度差は、原子炉容器内温度差の最大値 (Thot (約 \mathbb{C}) から、約 \mathbb{C} となる。							
	 表 1							
	部位 大飯3/4号炉 1/5スケール流動試験 のモデルプラント							
	炉心そうのRV入口管台 近傍ダウンカマー (熱遮へ い体部)上部プレナムの出口ノ ズル近傍							
	表 2 固有振動数比較(Hz)							
	部位 大飯3/4号炉 1/5スケール流動試験 のモデルプラント							
	炉心そう 制御棒クラスタ案内管 上部炉心支持柱							
	※1:メーカ社内試験「1/5模型によるPWR炉内構造物の流動振動試験」							
	以上							

タイトル	フレッティング疲労割れに係る説明						
説明	以下について、次ページ以降に示す。						
	別紙1-2-1 ターボポンプ主軸のフレッティング疲労割れに対する評 価内容						
	別紙1-2-2 ターボポンプ主軸のフレッティング疲労割れに対する保 全内容						

タイトル	ターボポンプ 主軸のフレッティン	グ疲労割れに	対する評価内容						
概要	余熱除去ポンプ、原子炉補機冷却水ポンプおよび電動補助給水ポンプの主軸のフレッティング疲労割れについて、曲げ応力振幅と疲労限の比較評価の内容を示す。								
説明	各ポンプの運転中に主軸に生じる曲げ応力振幅と、疲労限との比較を以下に示す。								
	ポンプ	疲労限 [N/mm²]	発生する 曲げ応力振幅 [N/mm²]						
	余熱除去ポンプ	14. 7	11.8						
	原子炉補機冷却水ポンプ		7. 7						
	電動補助給水ポンプ		8. 4						
	を考慮した設計値を用いて、一般的 焼嵌め軸のフレッティング疲労世 鋼データの「金属材料疲労強度の設 価曲線を用いている。本文献データ に疲労強度は引張強さや材質に依有 ータの内、最も厳しい下限線を10 ¹¹ [ンレス鋼製ポンプ主軸の評価にポン ンレス鋼製ポンプ主軸の評価にポン テンレス鋼)(三菱重工業株式を引 また、ステンレス鋼製の供試体を用 また、ステンレス鋼製の供試体を用 結果、炭素鋼データより定めた評価 ていない(添付2)。 いずれのポンプも発生する曲げだ まとから、主軸のフレッティングが 考える。	線を添付1に 計資料(日本 は炭素 Mと は は けまでい が が が が は で い の り し て や も し で い の り し で い の り し て い の り し い で い の り し い し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、	に示す。本疲労曲線は、炭素機械学会)」より定めた評るものであるが、当該文献でいることから、文ステ設定したものを用いてステンである。 ッティング疲労データ(におアンク疲労データ)にったカーステングを対対験を行ったして下回るデータは得られ						
	以								

1-2-1-2

添付-1

MHI-NES-1053 改0 平成25年2月5日

ポンプ主軸のフレッテイング疲労データについて (ステンレス鋼)

平成25年2月

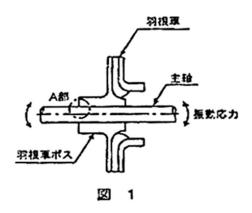
三菱重工業株式会社

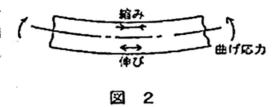
1. はじめに

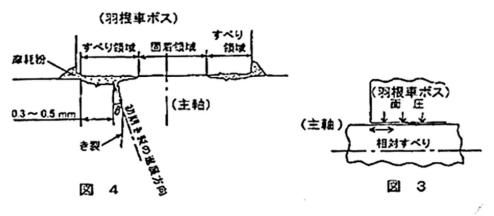
原子力発電所の高経年化対策におけるポンプ主軸の羽根車焼ばめ部に発生する可能性のあるフレッティング疲労割れに対する評価は、文献データ $^{(1)}$ に主軸の曲げ応力振れ振幅と繰返し数との間の割れの発生関係が示されており、このうち最も厳しい下限線を 10^{11} 回まで外挿した S·N 曲線により行っている。

上記文献データは炭素鋼、合金鋼によるものであるが、当該文献に疲労限度は引張強さや材質に依存しないとされていることから、ステンレス鋼製ポンプ主軸の評価にも適用している。

本報告では、過去に三菱にて実施したステンレス鋼主軸のフレッティング疲労試験結果と上 記の S-N 曲線との比較を行った。


2. ポンプ主軸のフレッティング疲労割れメカニズム(2)


羽根車を有する主軸は図1のように、振動 応力による曲げの繰返し応力を受ける。


主軸は曲げ応力を受ければ、図 2 に示す ように、軸表面が伸びる部分と反対側で縮む 部分が生じることから、繰返し応力を受ける 時、軸表面は繰返し伸び縮みする。

焼きばめた羽根車を有する主軸は、図 1 の A 部において、図 3 に示すように面圧が 加わった状態で、軸表面の伸び縮みによる相対すべりが生じる。

1回転毎に羽根車(羽根車ボス)と主軸間に相対すべりが生じ、繰返し回数が多く、かつ曲げ応力が大きい(すべり量が多い)場合は、図 4 のように羽根車(羽根車ボス)端面近傍の主軸側にフレッティング疲労割れが発生する。

3. 試験実施時期

昭和61年~平成元年

4. 試験要領

(1) 供試体

供試体の概要を以下に示す。

材 質: 軸: SUS304、インペラボス: SCS13

軸:SUS403、インペラボス:SCS1N

寸 法: 軸径:50mm

インペラボス長さ:62.5mm

形 状: ポンプ主軸模擬品 (図5)

焼ばめ面圧: 21.5N/mm²(2.2kgf/mm²), 49N/mm²(5kgf/mm²)

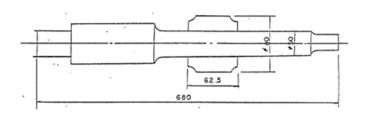


図5 供試体の外形例

(2) 試験装置

試験装置の概要を以下に示す。

片持ちはり式回転曲げ疲労試験装置

2台

回転数 (周期)

3600 min⁻¹ (固定)

最大曲げモーメント

2940N·m(300kgf·m)

(曲げ応力 215N/ mm²(22kgf/mm²) 相当)

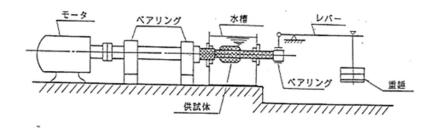


図 6 試験装置(概念図)

(3) 試験方法

モータに供試体を直結し、垂錘で曲げ荷重をかけながら $3600 \, \mathrm{min}^{-1}$ で回転させる。 試験は原則として破断までとする。ただし、繰返し数の最大は、 $N=10^8$ とする。 試験終了時には、軸外面の外面観察及び液体浸透探傷検査でき裂状況を調査し、き裂の 有無を確認する。

試験条件を下記に示す。

・試験温度:室温~50℃程度

・試験環境:水中試験(1次系相当水:ほう素濃度 2100ppm)

・繰返し数: 10⁸サイクル・繰返し速度: 3600min⁻¹

5. 試験結果

軸に生じたき裂のうち、代表的な破面を図7に示す。図8にき裂の断面ミクロによる観察例を示す。き裂は粒界貫通型で軸表面に対して直角ではない角度をもって生じており、典型的なフレッティング疲労き裂の様相を呈している。ただし、き裂が深く進展するに従って、軸表面に垂直な方向に進展していく傾向が見られる。これは、軸表面では曲げ応力よりもせん断応力が支配的であるため、斜めに進展し、き裂が深く進展するに従い、せん断力が小さくなり、反対に曲げ応力が支配的になって、き裂の進展方向が曲げ応力で進展する軸と直角な方向に遷移してくるためである。

図7 フレッティング破面例

図8 フレッティング疲労き裂の断面ミクロ観察例

ステンレス鋼によるフレッティング水中試験の結果を繰返し回数No.と曲げ応力振幅 σ a の関係を図 9 に示す。一点鎖線は文献デー9(1)より定めた評価曲線を示す。試験結果からこの評価曲線を下回るデータは得られず、評価曲線が妥当であることが確証できた。

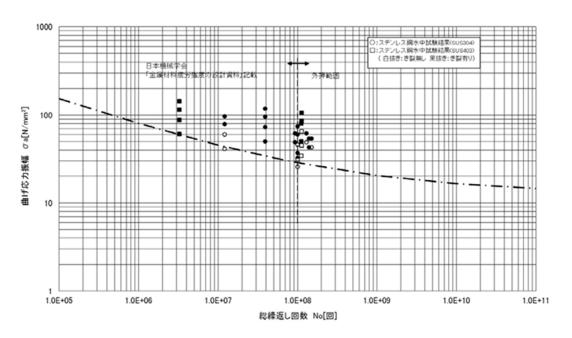


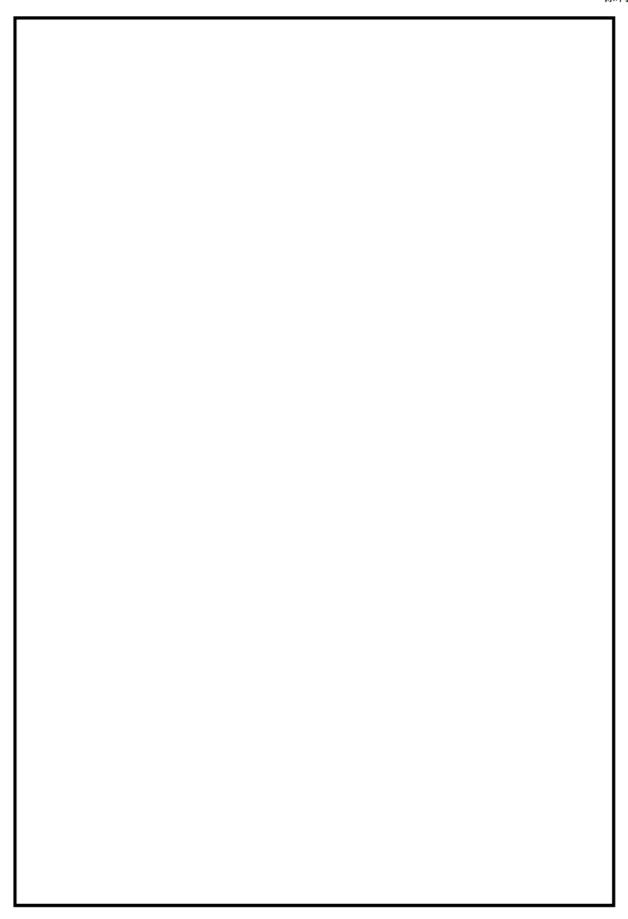
図9 繰返し回数と曲げ応力振幅の関係

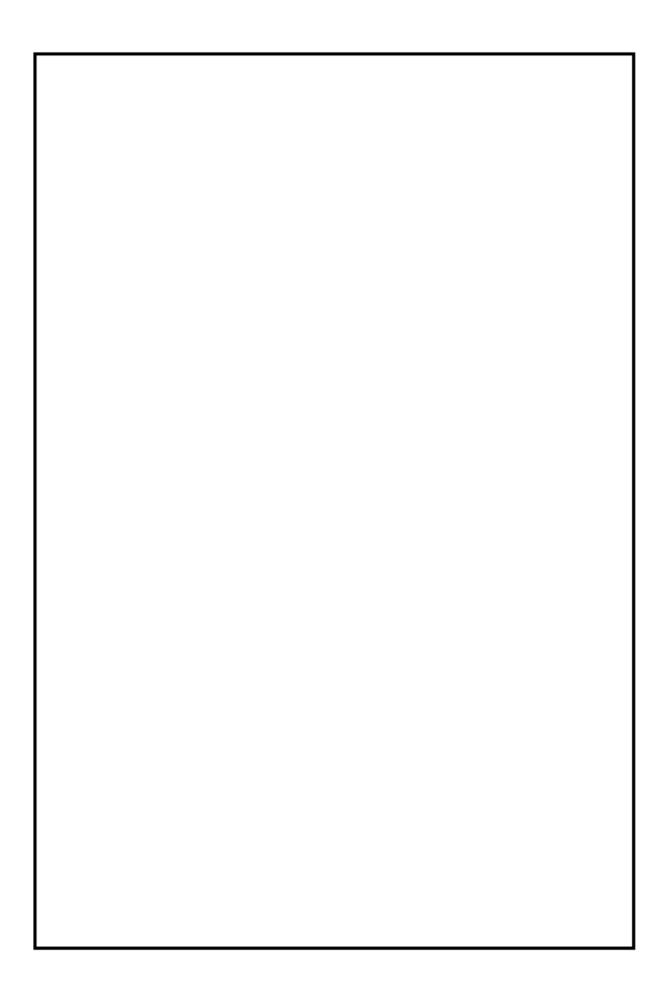
6. まとめ

ステンレス鋼によるフレッティング水中試験の結果は文献のデータにより定めた評価曲線 を下回るデータは得られず、評価曲線が妥当であることが確証できた。

以上

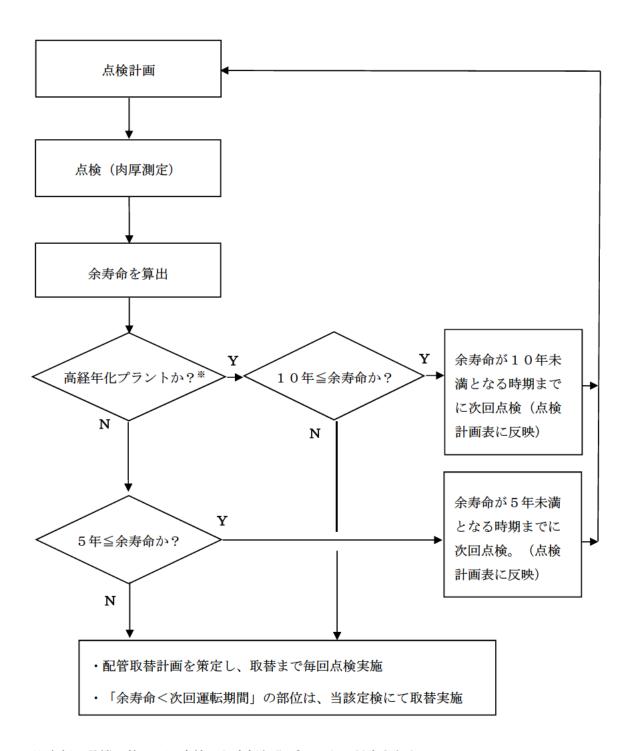
参考文献


- (1) 日本機械学会編 金属材料疲労強度の設計資料 (I) 一般, 寸法効果, 切欠効果 (改訂第2版),p.180, (1996)
- (2) 社団法人日本原子力学会 日本原子力学会標準原子力発電所の高経年化対策実施基準:2008,p108,(2009)


タイトル	ターボポンプ 主軸のフレッティング疲労割れに対する保全内容
概要	余熱除去ポンプ、原子炉補機冷却水ポンプ等の振動確認により機器の健全性を確認している内容を以下に示す。
説明	① 振動診断技術による振動確認 実施時期:プラント運転中(1回/3~6カ月程度)、定期検査中保全の高度化として、回転機器の振動診断技術を導入しており、プラント運転中の通常運転時や定期運転時、定期検査中の点検後の試運転時において、振動測定装置によりポンプ運転状態に異常がないこと(過去の振動データと著しい差異がないこと)を確認しており、許容値を上回るような異常な振動(想定しない過大荷重)がないことを確認することで、フレッティング疲労割れが発生する状態でないことを確認している。
	② 巡視点検での振動確認 実施時期:プラント運転中(毎日) 巡視点検(1~3回/日)においても運転員による触診、聴診棒による聴 診および目視によって異常な振動等の有無を確認している。
	③ 中央制御室での振動確認 実施時期:プラント運転中(常時監視) 余熱除去ポンプ、原子炉補機冷却水ポンプ等の軸受の振動速度は中央制 御室CRTでも確認可能であり、振動速度が上昇した場合には中央制御室 に警報が発信する。
	以上

タイトル	腐食(流れ加速型腐食)に係る説明
説明	以下について、次ページ以降に示す。
	別紙1-3-1 湿分分離器加熱器胴側耐圧構成品等の腐食(流れ加速型腐食) 別紙1-3-2 主蒸気入口管の流れ加速型腐食に対する肉厚管理について 別紙1-3-3 主蒸気系統配管および主給水系統配管の腐食(流れ加速型腐食)に対する肉厚測定について

タイトル	湿分分離器加熱器胴側耐圧構成品等の腐食(流れ加速型腐食)
概要	有意な腐食が生じている場合に補修を判断する方法を以下に示す。
説明	湿分分離器加熱器は定期的(1回/2定検)に目視点検を実施しており、機器の健全性を維持している。腐食が確認された場合には、社内文書「大飯発電所保修業務所則」(添付1)に基づき都度補修要否を判断する。



タイトル	主蒸気入口管の流れ加速型腐食に対する肉厚管理について
概要	主蒸気入口管(高圧タービン評価書)に対する、2次系配管肉厚管理指 針に基づく余寿命管理の内容を示す。
説明	主蒸気入口管については、社内標準「2次系配管肉厚の管理指針」を定め、余寿命管理を行っている。具体的には、超音波厚さ測定による配管の肉厚測定を実施し、測定結果に基づく余寿命評価から「次回測定時期」または「取替時期」を設定している。添付-1に肉厚管理方法の概要を示す。 なお、主蒸気入口管については、余寿命が10年未満の箇所が確認されておらず、至近の取替時期は未定である。 以 上

「2次系配管肉厚の管理指針」における肉厚管理方法の概要

※大飯3号機は第19回定検から高経年化プラントの対応を行う。

タイトル	主蒸気系統配管および主給水系統配管の腐食(流れ加速型腐食)に対する 肉厚測定について				
概要	主蒸気系統配管および主給水系統配管の腐食(流れ加速型腐食)について、至近の肉厚計測結果および余寿命評価結果を示す。				
説明	主蒸気系統配管および主給水系統配管の余寿命評価結果について以下に示す。				
		表 1 主蒸気・主給	水系統配管の余寿命	育評価結果について	-
		- /4	余寿命 10 年未満	最短の余寿命*	
		系統	の点検箇所数*	(年)	
		主蒸気系統配管	19	5. 4	
		主給水系統配管	2	5. 1	
	表として	[至近の肉厚測定結界	₹を添付−1に示す。		以上

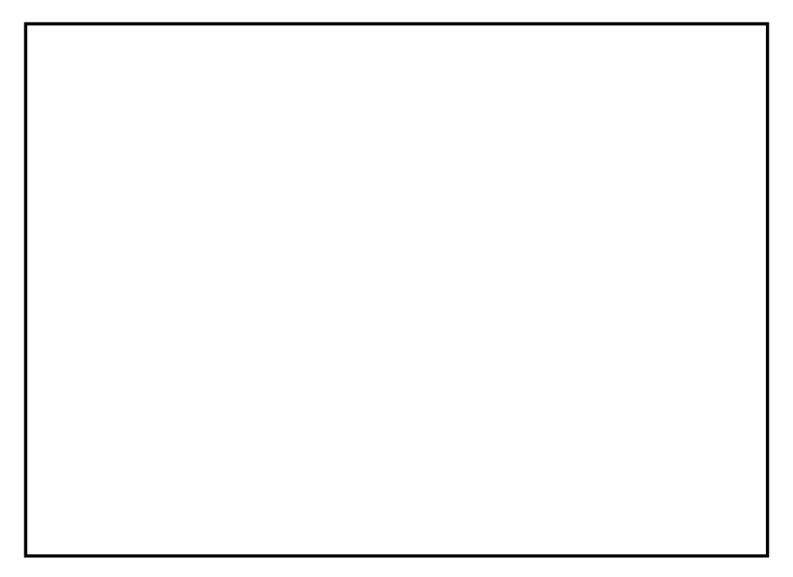
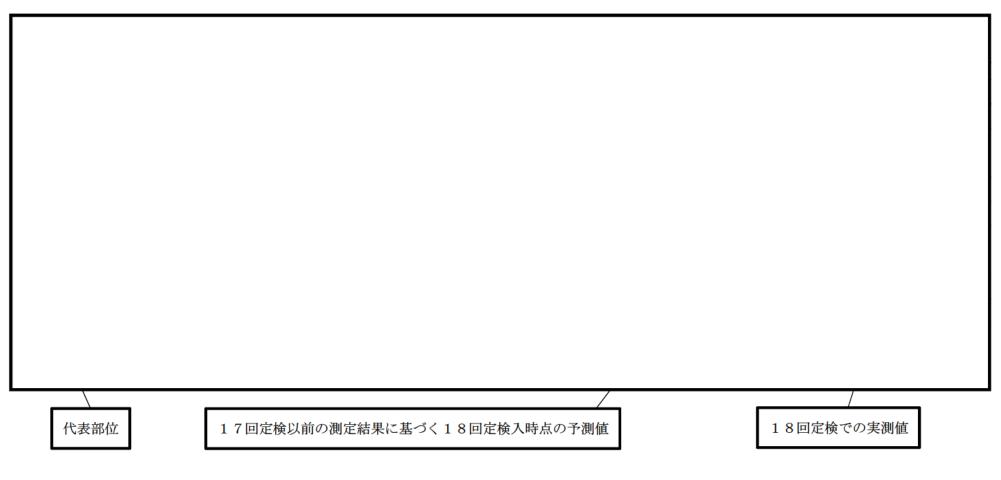
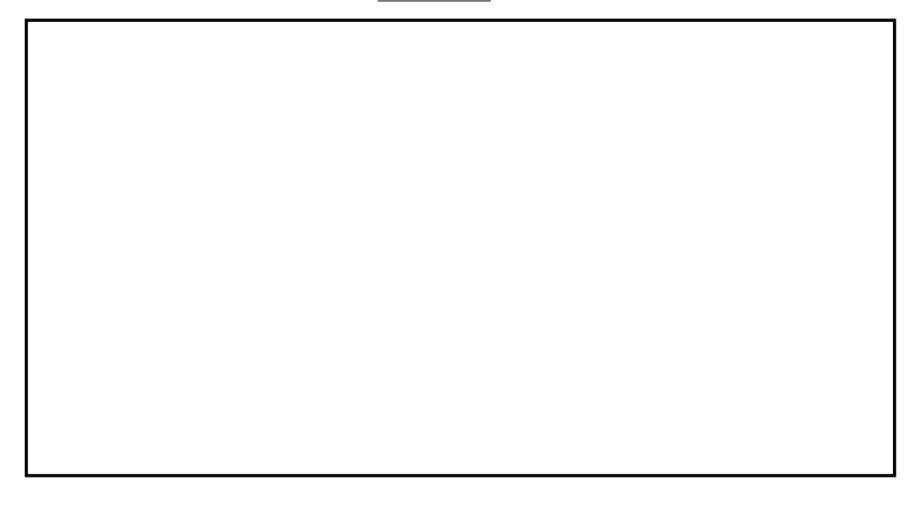



図1 スケルトン図と測定部位番号

表 2 代表部位の肉厚測定結果



タイトル	劣化(中性子照射による靭性低下)に係る説明
説明	以下について、次ページ以降に示す。
	別紙1-4-1 炉内構造物 炉心そうの中性子照射による靭性低下

タイトル	炉内構造物 炉心そうの中性子照射による靭性低下
概要	炉心そうの水中カメラによる目視確認について、その方法を以下に示す。
説明	炉心そうに対しては日本機械学会 維持規格に規定されているVT-3として、水中テレビカメラによる目視確認を実施している。VT-3では、炉心そうに有意な異常(過度の変形、部品の破損、機器表面における異常等)がないことを確認している。炉心そうの可視範囲については、補足説明資料(照射誘起型応力腐食割れ)の4.2 現状保全の図4-3に図示している。 なお、補足説明資料(照射誘起型応力腐食割れ)に示すとおり、炉心そうに照射誘起型応力腐食割れが発生する可能性は小さいと考えているが、炉心そう溶接部に仮想亀裂(溶接線中心に全周亀裂)を想定した亀裂安定性評価を行った場合においても、不安定破壊は起こらないことを確認している。評価結果は、補足説明資料(照射誘起型応力腐食割れ)の別紙4に示す。
	以上

タイトル	応力腐食割れに係る説明
説明	以下について、次ページ以降に示す。
	│ │別紙1−5−1
	別紙1-5-2 加圧器ヒータスリーブの応力腐食割れ
	別紙1-5-3 弁棒の応力腐食割れ
	別紙1-5-4 タービン翼環ボルトの応力腐食割れ
	別紙1-5-5 加圧器スプレイ配管溶接部の亀裂
	別紙1-5-6 ステンレス鋼配管の超音波探傷検査における探傷不可範 囲
	別紙1-5-7 加圧器スプレイ配管が取り付けられている箇所
	別紙1-5-8 1次冷却材管とセーフエンド溶接部の応力腐食割れ
	別紙1-5-9 ステンレス鋼配管、計装配管の酸素型応力腐食割れ

タイトル	蓄圧タンク管台の内面からの応力腐食割れ
概要	蓄圧タンクでは、タンク本体の熱処理を行った後に管台を溶接しており、材料の鋭敏化はないとする根拠を以下に示す。
説明	ロビンソン発電所のほう酸注入タンクで発生した応力腐食割れについては、ステンレス鋼製部位を炭素鋼製部位と同様に熱処理していたため、著しく鋭敏化が進んでいたことが原因であったと報告されている。 一方、大飯3号炉の蓄圧タンクについては炭素鋼製部位の熱処理を実施した後にステンレス鋼製部位の取り付けを実施していることから、有意な鋭敏化は発生していない。添付1に蓄圧タンクの製作手順の概要を示す。
	なお、蓄圧タンク(炭素鋼)と管台(ステンレス鋼)の溶接材料はニッケル合金であり、詳細は以下のとおりである。 銘柄
	以上

タイトル	加圧器ヒータスリーブの応力腐食割れ
概要	316系ステンレス鋼製のヒータスリーブでの応力腐食割れによる損傷事例に関し、酸素型応力腐食割れの特徴、民間研究での低荷重試験の試験条件及び試験結果を示す。
	米国ブレイドウッド (Braidwood) 発電所 1 号炉で316系ステンレス鋼製の
説明	ヒータスリーブに損傷が確認されている。
	 図1に示すとおり、ヒータスリーブの溶接部が熱影響等により鋭敏化し、
	 ヒータスリーブとヒータの隙間部で溶存酸素が高い場合に酸素型応力腐食
	 割れが発生する可能性があることから、定荷重試験を実施し過度に鋭敏化
	 したSUS316材でも、飽和酸素濃度(8ppm)環境下に置かれた時間が100時間
	 未満では応力腐食割れの発生が認められていないという結果が得られてい
	వ .
	一方、実機におけるヒータスリーブの使用・環境条件を検討した結果、溶
	 存酸素濃度が高くなる期間は、最長でもプラント初回起動時の40時間程
	 度 ^{※1} であるためヒータスリーブの酸素型応力腐食割れが発生する可能性は
	極めて低いと考えられる。(※1電力共通研究データ 加圧器ヒータスリー
	 ブ内の溶存酸素濃度が拡散及び酸化皮膜形成により器内水溶存酸素濃度と
	 等価となる時間) なお、運転時の1次冷却材は溶存酸素濃度0.005ppm以下と
	適切に管理されており、加圧器ヒータスリーブ近傍も同等と考えている。
	10
	
	
	8 *
	GBA)**
	∾_
	鋭敏化度 (EPR: C/cm
	E (E E D
	2000年
	義
	
	10 100 1000 10000 100000
	破断時間(hr)
	図1 定荷重応力腐食割れ試験結果 (電力共通研究データ)
	※2鋭敏化度は、測定した単位面積あたりの電気量を測定面での結晶粒度で補正した値として
	いる。GBA(Grain Boundary Area)は、結晶粒界の面積を表す ※3加圧器ヒータスリーブ溶接部実機使用温度:約

タイトル	弁棒の応力腐食割れ
ARY 1991	弁棒の水素脆化型応力腐食割れの特徴、発生要因、通常の応力腐食割れとの 主な相違および弁棒に付加される応力を以下に示す。
説明	水素脆化型応力腐食割れについて、主な特徴等を以下に示す。
	1. 水素脆化型応力腐食割れ
	・発生要因 関係の原金によるような大きな際になる原因なりで制みては 1 1
	陽極の腐食反応で生じた水素が陰極で吸収されて割れる(HE型: hydrogen embrittlement)
	· 特徵
	引張強度が高い材料ほど起り易い
	2. 通常の応力腐食割れ
	・発生要因
	陽極の腐食反応が活性経路に沿って進んで割れる(APC 型: Active pass
	corrosion)
	3. 相違点 上述のとおり、応力腐食割れはアノード溶解作用が支配的である。一方、 水素脆化型応力腐食割れは水素の影響による脆性的な破壊である。
	【弁のバックシートに関する運用について】
	川内2号機の抽出ライン弁棒折損トラブル (1989 年) 以降は、手動
	弁については、バックシート操作を実施しない運用に変更し、弁棒には応力
	が付加されないような運用としている。
	電動弁のうち、開側がトルクシートの弁については弁棒にかかるピーク応
	力を低減 以下) している。
	以上

タイトル	タービン翼環ボルトのSCC
概要	高圧タービンの翼環ボルトに使用しているステンレス鋼の種類を以下に示す。
説明	海外では析出硬化型のマルテンサイト系ステンレス鋼において、熱時効を伴う損傷事象が報告されている。 一方、タービン翼環ボルトに使用している材料は、以下のとおりであり、 マルテンサイト系ステンレス鋼ではあるが析出硬化型ではない。
	使用材料:SUH616相当
	なお、これまでに当該材料を使用したタービン翼環ボルトにおいて損傷 事象は発生していない。
	以上

タイトル	加圧器スプレイ配管溶接部の亀裂
概要	2020年に大飯3号炉第18回定期検査において確認された加圧器スプレイ配管溶接部における有意な指示について、調査結果を踏まえた評価方針を以下に示す。
説明	2020年8月、加圧器スプレイラインの1次冷却材管台と管継手の配管溶接部近傍内面に亀裂が確認されている。調査の結果、「過大な溶接入熱」と「形状による影響**」が重畳したことで表層近傍において特異な硬化が生じ、この特異な硬化が亀裂の発生に寄与したと推定された。亀裂は溶接熱影響部で粒界に沿って進展しており、粒界型応力腐食割れで進展したものと判断された。一方、国内外のPWRプラントにおいて類似の事例は確認されておらず、大飯3、4号機において同様の事象発生の可能性があると推定された部位全てに対し追加検査が行われたが、亀裂は認められていない**2。これらの状況から、亀裂の発生は「過大な溶接入熱」と「形状による影響」が重畳した特異な事象であったと考えられる。 亀裂発生部位については、第18回定期検査にて取替えを行う計画であり、取替えに際しては初層入熱量が過大とならない全層Tig溶接を採用するため、今後同様の事象が発生する可能性は小さい。当該部の亀裂は特異な事象と判断され、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、大飯3号炉で発生した事象は特異であるが、メカニズムが全て明らかになっていないことから、類似性の高い箇所に対しては第21回定期検査までの間、毎回検査を実施することとしている。また、第22回定期検査以降については、今後の知見拡充を踏まえて、対象・頻度を検討し供用期間中検査計画に反映を行う。
	※1 管台―エルボ形状では、変形領域が狭いため、溶接部近傍でひずみが大きくなる。 ※2 原子力規制委員会、第11回公開会合資料「資料1 大飯発電所3号機加圧器スプレイライン配管溶接部での事象への対応について」2021年2月12日. 上記については、配管の技術評価書(1 ステンレス鋼配管)の2.2.3章 および3.2章※3に新たな劣化事象として「溶接部の施工条件に起因する内面からの粒界割れ」を追加し、上記の評価内容を反映するとともに、長期施設管理方針に追加する。(添付1参照)なお、今後の知見拡充は、産業界で取り組むべき共通の技術課題としてATENA(原子力エネルギー協議会)が立ち上げた粒界割れWGに委員として参画し進めていく。本WGでは、主に発生メカニズムの解明、亀裂がある場合の健全性評価、検査技術の向上に関する項目について、国内外の有識者意見を反映しながら取り組みを行うことにしており、2021年度中を目途に研究計画を策定する予定である※4。 ※3 当該事象が発生した1次冷却系統配管に加え、類似性の高い箇所として余熱除去系統配管および安全注入系統配管(いずれも原子炉冷却材バウンダリ内)が対象。 ※4 第12回主要原子力施設設置者の原子力部門の責任者との意見交換会資料「資料2 ATENAが取り組んでいる主な課題への対応」2021年6月10日

「大飯3号炉 加圧器スプレイ配管溶接部における有意な指示」の 長期施設管理方針としての取り扱い

1. 事象名

溶接部の施工条件に起因する内面からの粒界割れ

2. 高経年化対策上の取り扱い

高経年化対策上着目すべき経年劣化事象ではない。

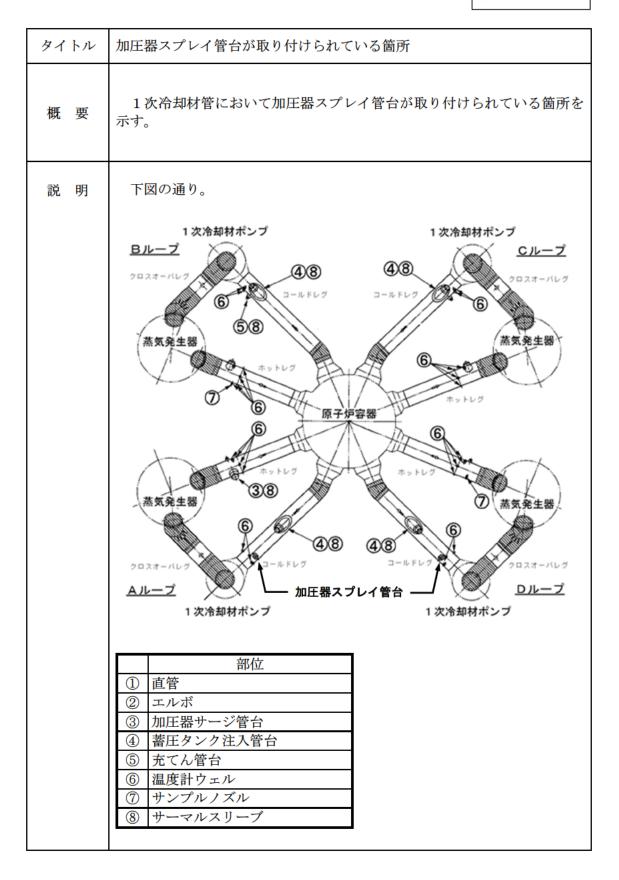
<判断理由>

項目	内容	補足
当該事象の	現在までの運転経験	・国内外の PWR プラントで経験したことがなく、
取り扱い	や当該事象の調査結	類似箇所に対して実施した追加検査においても
	果より、今後同様の 事象が発生する可能	同様の事象が確認できない。
		• 調査の結果、特異な事象と判断している。
		• 亀裂発生部位は同様の事象が発生しない施工条
	性は小さい。	件で取り替えられている。
現状保全	健全性を担保するた	類似箇所に対する第21回定期検査までの検査継
	めに継続実施する保	続、ならびに、知見拡充結果を踏まえた第22回定
	全策を明確にしてい	期検査以降の検査計画の検討について、社内文書に
	る。	定めて運用している。

3. 追加保全策の抽出要否

運転開始後30年経過前の段階で、既に現状保全に取り込み運用している内容であり、30年 経過以降に新たに実施すべき追加保全策として抽出することは要さないと考えている。

しかしながら、大飯3号炉は事象発生プラントであり、今後の知見拡充結果を踏まえて対 応することを明確にしておく観点から、高経年化対策上着目すべき経年劣化事象ではない ものの、以下の通り、長期施設管理方針に追加して管理する。


<長期施設管理方針への追加方針>

No	施設管理の項目	実施時期*1
3	ステンレス鋼配管溶接部の施工条件に起因する内面からの粒界割れ	中長期
	について、2020年8月に確認された「大飯発電所3号炉 加圧器スプ	
	レイ配管溶接部における有意な指示」を踏まえて実施する知見拡充	
	結果に基づき、第21保全サイクルまで継続して実施する類似性の	
	高い箇所に対する検査の結果も踏まえて、第22保全サイクル以降	
	の検査対象及び頻度を検討し、供用期間中検査計画に反映を行う。	

※1:実施時期における中長期とは2021年12月18日からの10年間をいう。

以上

タイトル	ステンレス鋼配管の超音波探傷検査における探傷不可範囲
概要	ステンレス鋼配管の超音波探傷検査における探傷不可範囲およびその探傷不可範囲に対する「日本電気協会軽水型原子力発電所用機器の供用期間検査における超音波探傷試験規程(JEAC4207-2016)」の「4500 オーステナイト系ステンレス鋼溶接金属部を透過させる探傷」の適用状況を示す。
説明	" · · · · · · · · · · · · · · · · · ·

タイトル	1 次冷却材管とセーフエンド溶接部の応力腐食割れ
概要	1次冷却材管と原子炉容器および蒸気発生器のセーフエンド継手に対する評価を示す。
説明	1 次冷却材管と原子炉容器及び蒸気発生器を接続するセーフエンドについてはステンレス鋼を使用しており応力腐食割れが想定される。しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体温度が低い(図1参照)また、定期検査後のプラント起動時には1次冷却材中の溶存酸素濃度を低減させるため、運転中は溶存酸素濃度が5ppb以下に低減された流体となっていることから、応力腐食割れが発生する可能性は小さい。(図2参照)製造時の検査としては、1次冷却材管とセーフエンドとの溶接部内面に浸透探傷検査を実施し、有意な欠陥が無いことを確認している。なお、浸透探傷検査に際して溶接の裏波を除去しており、表面仕上げ(バフ施工)が行われていると考えられる。現状保全としては、供用期間中検査として1次冷却材管とセーフエンドとの溶接部に対する超音波探傷検査を実施しており、これまでの検査において有意な欠陥は見つかっていない。したがって、高経年化対策上着目すべき経年劣化事象ではない。 上記を踏まえ、配管の技術評価書(4 1次冷却材管)における記載方針を以下に示す。 2.2.3(1) 母管および管台の応力腐食割れ母管(原子炉容器および蒸気発生器と接続するセーフエンドの溶接部を含む)および管台はステンレス鋼鋳鋼またはステンレス鋼を使用しており応力腐食割れが想定される。しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体温度が低い(最高でも80℃程度)ため、応力腐食割れが発生する可能性は小さい。
	また、定期検査後のプラント起動時には1次冷却材中の溶存酸素濃度低減のための運転操作を実施するため、高温(100℃以上)で使用する場合は溶存酸素濃度が5ppb以下に低減された流体となっていることから応力腐食割れが発生する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、溶接部を対象とした超音波探傷検査、浸透探傷検査または漏えい検査により機器の健全性を確認している。

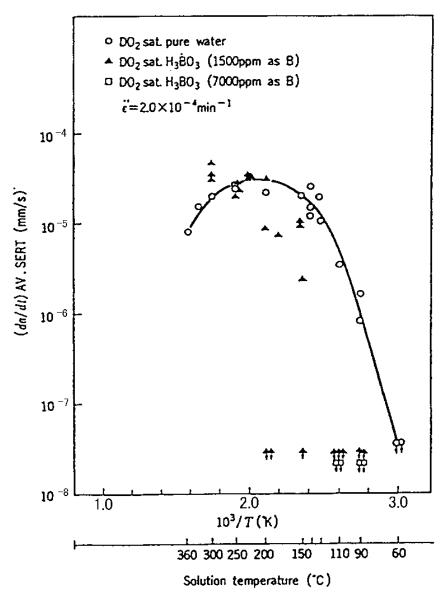
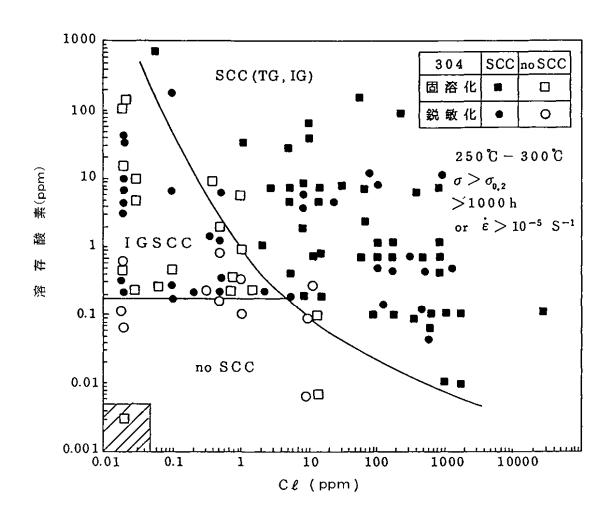



図1 応力腐食割れに対する温度の影響

[出典:水原ら、「高温水中のステンレス鋼の応力腐食割れ感受性に及ぼす鋭敏化度及びほう酸の影響」、三菱重工技報Vol.19 No.6 (1982)]

(説明) 溶存酸素濃度室温飽和の高温水環境下において、温度をパラメータとして低歪速度試験 (SERT: Slow Extension Rate Test) を実施したもので、温度が低くなるほど応力腐食割れ感受性が小さくなる傾向がある。

((da/dt) AV. SERTは、応力腐食割れ感受性の指標として低歪速度 試験における平均亀裂進展速度を表す。)

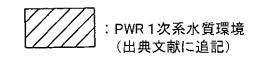


図2 応力腐食割れに対する溶存酸素と塩化物イオンの効果 [出典:M.O. Speidel, EPRI-JAPAN corrosion seminar, (1978)]

タイトル	ステンレス鋼配管、計装配管の酸素型応力腐食割れ
概要	高温かつ溶存酸素濃度が高くなる可能性のある範囲のステンレス鋼配管(計装用取出配管含む)において、耐応力腐食割れ性に優れたSUS316系材料を採用することにより、応力腐食割れが発生する可能性が小さくなる根拠を以下に示す。
説 明	SUS304系材料(18Cr-8Ni)とSUS316系材料(18Cr-12Ni-2.5Mo)を比較した場合、図1に示すとおりSUS316系材料の方が耐応力腐食割れ性に優れていることが知られている。SUS316はMoを添加することにより耐食性を向上させが料であり、図2のとおり強鋭敏化ステンレス鋼(18Cr-12Ni)でもMoを添加することで高温水中における耐SCC性が向上することが報告されている。そのため、応力腐食割れが発生する可能性は小さいと考えている。そのため、応力腐食割れが発生する可能性は小さいと考えている。そのため、応力腐食割れが発生する可能性は小さいと考えている。(※1)なお、取替に際しては、より耐応力腐食割れ性を向上させるために炭素含有量を0.05%以下に制限したSUS316系材料に取替えを進めている。(※1)なお、取替に際しては、より耐応力腐食割れ性を向上させるために炭素含有量を0.05%以下に制限したものを採用している。 溶接熱影響部は入熱により鋭敏化する可能性があり、その鋭敏化は材料の炭素量が多いほど生じやすく、応力腐食割れ感受性を増加させることが知られている。しかし、図3のとおり、炭素含有量を0.05%以下に制限することが確認されており、図4に示すとおり、PWR水質の酸素飽和環境下において、2C/cm²・GBA以下ではSUS316系材料の応力腐食割れ発生の感受性は無いことが確認されている。 (※1): 大飯3号炉は、申請時点(2020年12月2日)では、高温かつ溶存酸素濃度が高くなる可能性のある範囲の中で、化学体積制網系統のベント・ドレン管の一部にSUS304系材料が存在しているが、第19回定期検査時に炭素含有量を0.05%以下に制限したSUS316系材料に取替え予定である。なお、現時点(2021年1月28日申請、関原発第568号)の運転計画では、第19回定期検査に相当する次回の停止期間は2021年12月1日~2022年4月1日に予定されており、運転開始以後30年を経過する日(2021年12月17日)を跨ぐ期間となっている。そのため、「実用発電用原子炉施設における高経年化対策実施ガイド(令和2年3月31日最終改正、原子力規制委員会)」の3、36)に基づき、運転開始以後30年を経過する日までの将来の見込みに基づき評価を行う高経年化技術評価書上は、SUS316系材料に取替え後の状態としている。

上記を踏まえ、配管の技術評価書(1 ステンレス鋼配管)における記載 方針を以下に示す。

3.2.5 母管の内面からの応力腐食割れ [1次冷却系統配管、化学体積制御系統配管、安全注入系統配管]

1996年5月、米国セコイヤ(Sequoyah)発電所2号炉で、1次系水質環境下においても局所的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食割れによる漏えいが発生していることから、応力腐食割れが想定される。

しかしながら、高温かつ溶存酸素濃度が高くなる可能性のある範囲の溶接部については、耐応力腐食割れ性に優れたSUS316系材料を使用している。**1

したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

なお、溶接部を対象とした超音波探傷検査または漏えい検査により機器の健全性を確認している。

※1:評価実施時点(2020年11月時点)では、高温かつ溶存酸素濃度が高くなる可能性のある範囲の中で、化学体積制御系統のベント・ドレン管の一部にSUS304系材料が存在しているが、第19回定期検査時にSUS316系材料に取替え予定である。

•: Failure O: No failure

1	Applied stress	
Material	(kg/mm²)	
SUS304 -C	31	• • •
SUS304L-B	26	
SUS316	31	0
SUS321 -A	35	
SUS 347 -B	32	

図1 ステンレス鋼の応力腐食割れ感受性

[出典: 庄司三郎ら、「ステンレス鋼の高温水中における応力腐食割れ感受性」、防食技術、29、323-329 (1980)]

(説明) 複数鋼種の鋭敏化処理 (620℃×24h) 試験片について、250℃の酸素飽和純水中で 単軸引張試験を実施したもの。SUS304 (0.06%C材) は破断したが、SUS316 (0.07% C材) を含む他の鋼種は破断せず、SUS316の耐応力腐食割れ性が優れていることが 分かる。

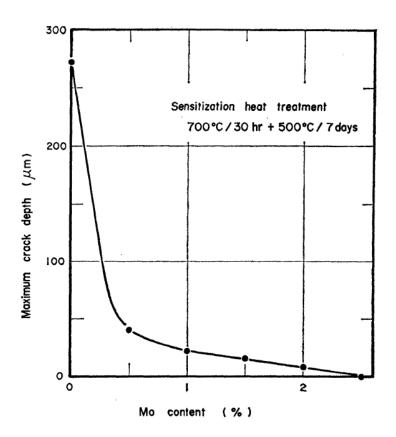


図 2 強鋭敏化 18Cr-12Ni ステンレス鋼の SCC 感受性に及ぼすモリブデン添加の影響 (CBB 試験: 250℃、20 ppm DO, 310 h)

[出典: M. Akashi and T. Kawamoto, "The Effect of Molybdenum Addition on SCC Susceptibility of Stainless Steels in Oxygenated High Temperature Water," *Boshoku Gijutsu*, 27, 165-171, (1978)]

(説明) SUS316は、SUS304相当のステンレス鋼にMoを添加することにより、耐食性を向上させた材料である。図は高温水中における応力腐食割れ特性に及ぼすMoの影響を評価したもので、CBB試験の結果では2.5%程度のMo添加により最大亀裂深さが大きく抑制されている。

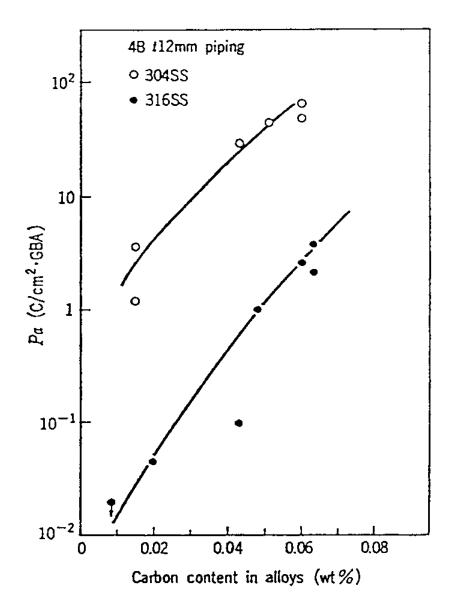


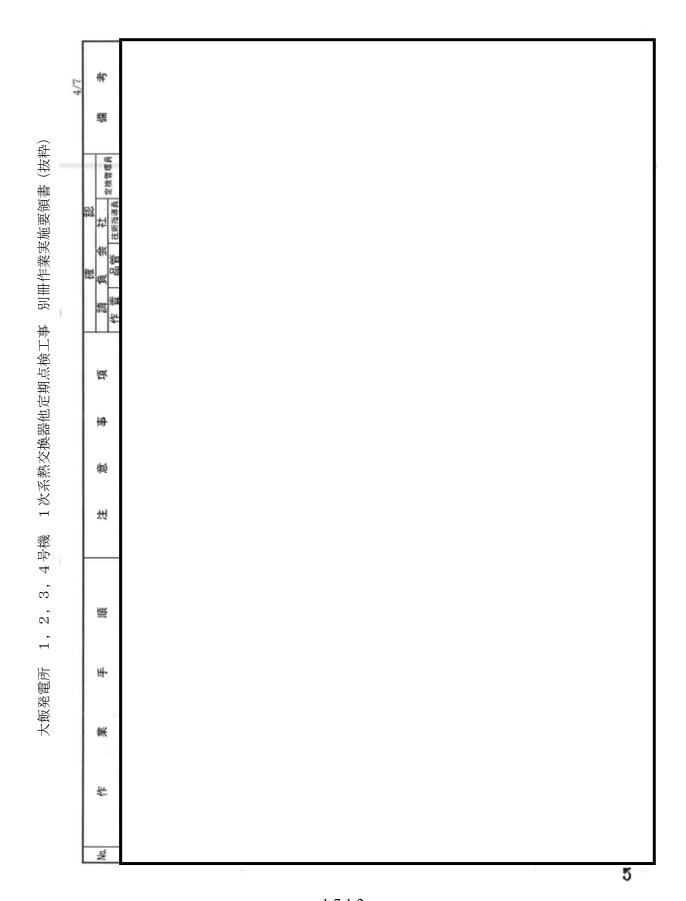
図3 材料および母材の炭素量の影響

[出典:水原ら、「高温水中のステンレス鋼の応力腐食割れ感受性に及ぼす鋭敏化度及びほう酸の影響」、三菱重工技報、Vol. 19、No.6 (1982)]

(説明) 炭素量の異なるSUS304およびSUS316配管を供試材として、同一溶接条件にて溶接継手を製作し管内面の鋭敏化度を測定したものである。SUS304、SUS316それぞれ炭素量が多いほど鋭敏化度(Pa)が大きくなる結果が得られている。

(鋭敏化度 (Pa) は、測定した単位面積あたりの電気量を測定面での結晶粒度で補正した値としている。GBA (Grain Boundary Area) は、結晶粒界の面積を表す。)

図4 EPR値とSCC感受性との相関性


[出典:水原ら、「高温水中のステンレス鋼の応力腐食割れ感受性に及ぼす鋭敏化度及びほう酸の影響」、三菱重工技報、Vol.19、No.6 (1982)] 注)出典元図中にその後の追加データを加えて見直したもの ※縦軸はSSRT試験における破面の全断面積とSCC破面の面積との比を SCC感受性パラメータとして定義

タイトル	摩耗に係る説明
説明	以下について、次ページ以降に示す。
	別紙1-6-1 炉内構造物の制御棒クラスタ案内管および炉内計装用シ ンブルチューブの摩耗

タイトル	炉内構造物制御棒クラスタ案内管 (案内板) および炉内計装用シンブルチュ ーブの摩耗について
概要	制御棒クラスタ案内管 (案内板) の摩耗について、全制御棒の落下試験の方法 (判定基準を含む)、頻度および至近の結果について以下に示す。 炉内計装用シンブルチューブの摩耗について、渦流探傷検査の方法 (判定基準を含む)、頻度および至近の結果を以下に示す。
説明	大飯3号炉においては、定期的(1回/1定検)に全制御棒の落下試験を実施しており、制御棒クラスタ全引抜き位置から全ストロークの85%挿入までの時間が判定基準内(2.5秒以下)であることを確認している。 至近の検査実績である第17回定期検査(2019年度)において、問題のないことを確認している。
	炉内計装用シンブルチューブについては、プローブを使用した渦流探傷検査(ECT)を実施しており、減肉信号がの減肉深さであることを確認している。なお、処置基準は下記の通り。
	渦流探傷検査は 1回/6定検 の頻度で実施している。 至近の検査実績である第18回定期検査(2020年度)において、処置 基準 (
	以上

タイトル	スケール付着に係る説明
説明	以下について、次ページ以降に示す。
	別紙1-7-1 多管円筒形熱交換器伝熱管のスケール付着
	別紙1-7-2 蒸気発生器伝熱管の渦流探傷検査
	別紙1-7-3 蒸気発生器管支持板穴のスケール付着
	別紙1-7-4 蒸気発生器伝熱管のスケール付着

タイトル	多管円筒形熱交換器伝熱管のスケール付着
概要	伝熱管のスケール付着について、伝熱管洗浄の例として原子炉補機冷却水 冷却器伝熱管のブラシ洗浄の方法及び頻度、再生熱交換器の運転中のパラ メータ監視による健全性確認の方法を示す。
	原子炉補機冷却水冷却器伝熱管の洗浄は定期的(1回/1定検)に実施し
説明	ており、伝熱性能を維持している。洗浄方法を添付1に示す。
	再生熱交換器の運転中のパラメータ監視としては、定期的(1回/2か
	月)に熱交換器の出入口温度(抽出側および充てん側)を監視しており、伝
	熱性能を確認している。なお、管側流体および胴側流体は、1 次冷却材であ
	り、適切な水室管理により不純物の流入は抑制されていることから、スケー
	ル付着の可能性は小さい。
	以上

タイトル	蒸気発生器伝熱管の渦流探傷検査
概要	蒸気発生器伝熱管の渦流探傷検査の検査間隔および範囲を以下に示す。
説明	大飯3号炉においては、蒸気発生器全4基の全伝熱管について、定期的 (1回/2定検)に渦流探傷検査を実施している。
	以上

タイトル	蒸気発生器管支持板穴のスケール付着
概要	管支持板穴のスケール付着について、傾向監視結果を示す。
説明	管支持板スケール付着については定期的(1回/2定検)に渦流探傷検査によりBEC穴閉塞率を測定している。測定結果を添付1に示す。
	以上

2020年10月 大飯発電所3号機 蒸気発生器支持板付着物評価業務 結果報告書(抜粋)

in the second	表 4. 各管支持板における平均 BEC 穴閉塞率 (大飯 3 号機 D-SG 第 7~第 5 管支持板)

表 5. 各管支持板における平均 BEC 穴閉塞率 (大飯 3 号機 D-SG 第 4~第 1 管支持板)	

	T
タイトル	蒸気発生器伝熱管のスケール付着
概要	高浜4号炉の第23回定期検査(2020年度)における、蒸気発生器伝熱管損傷の水平展開として、大飯3号炉での反映内容を以下に示す。
-3V - BB	高経年化評価書への反映方針を以下に示す。
説明	(1)本冊「4.2.2 国内外の新たな運転経験および最新知見の反映」
	の新たに考慮した主な運転経験として、以下を記載する。
	・高浜発電所4号炉 蒸気発生器伝熱管の損傷(2020年11月)
	(2) 別冊「蒸気発生器[2.2.3 高経年化対策上着目すべき経年劣化事象で
	(2) が聞う然気完全器[2:2.3 同程中に対象工程 りょうと程子がに事象 はない事象]」に記載の伝熱管の損傷について、新たな損傷モードとして以
	下を記載する。
	・管支持板直下部摩耗
	2020年11月、高浜4号炉において、管支持板直下部の伝熱管外面にスケールによる摩耗減肉が確認されている。本事象は、伝熱管下部の表面
	に生成された稠密層が主体のスケールが、プラント起動・停止に伴いは
	く離したものが運転中の上昇流で管支持板下面に留まり、伝熱管に繰り
	返し接触したことで摩耗減肉が発生したものと推定している。
	しかしながら、大飯3号炉については、2次側水質はAVT(All
	Volatile Treatment;全揮発性薬品処理)で管理しており、給水の水質
	をpH8.6~10.6と適切な管理により鉄持込量を抑制するとともに、第17
	回定期検査時(2019年度)および第18回定期検査時(2020~2021年度)
	に希薄薬液洗浄(ASCA(Advanced Scale Conditioning Agent))を実施
	している。また、第18回定期検査時(2020~2021年度)に回収したスケ
	ールの稠密層厚さは小さく、伝熱管との摩耗試験を行ったところ、試験
	開始後にスケールが欠損するか、スケールの方が早く摩耗した結果とな
	り、伝熱管に有意な摩耗減肉を発生させるようなスケールは確認されな
	かった。今後は、スケールの性状を監視するために、定期的に管板および第一、第二等主持によるになる。なる原収し、理察展展な影響は
	び第一・第二管支持板上面にあるスケールを回収し、稠密層厚さ計測お よびスケール摩耗試験を実施し、必要に応じて薬品洗浄をすることとし
	よいスケール学れ試験を美麗し、必要に応して楽品洗浄をすることとしているため、スケールによる摩耗減肉が発生する可能性は小さい。

	なお、スケールの性状の判定基準は以下のとおりである。
	【判定基準】 稠密層厚さが0.1mm未満および摩耗体積比(伝熱管/スケール)が0.1未満で
	<u> </u>
	以上

タイトル	マルテンサイト系ステンレス鋼の熱時効に係る説明
説明	以下について、次ページ以降に示す。
	別紙1-8-1 弁のマルテンサイト系ステンレス鋼の熱時効

タイトル	弁のマルテンサイト系ステンレス鋼の熱時効
概要	弁のマルテンサイト系ステンレス鋼の熱時効に対する考え方を以下に示す。
説明	海外では析出硬化型のマルテンサイト系ステンレス鋼において、熱時効を伴う損傷事象が報告されている。弁については、析出硬化型のマルテンサイト系ステンレス鋼の使用部位があることから、以下のとおり熱時効に対する考え方を整理する。
	マルテンサイト系ステンレス鋼については、IAEAのInternational Generic Ageing Lessons Learned (IGALL)の「TLAA 122 THERMAL AGEING OF MARTENSITIC STAINLESS STEELS」において、250℃を超える使用温度環境で熱時効の懸念があることが示されている。マルテンサイト系ステンレス鋼の熱時効は、ステンンレス鋼鋳鋼の熱時効と同様、材料の靭性が低下する事象であることから、「日本原子力学会原子力発電所の高経年化対策実施基準:2008 (AESJ-SC-P005:2008)」(以下「学会標準」)におけるステンレス鋼鋳鋼の熱時効の評価対象の抽出方法「C.5.2 評価対象」を準用し、以下の条件の全てに該当する部位に対しては評価対象として抽出が必要と考えている。 a. 使用温度が250℃以上の部位 b. 亀裂の原因となる経年劣化事象の発生が想定される部位
	c. 定期的な目視などの点検による亀裂発生の確認を行っていない部位 使用温度が250℃以上の弁のうち、マルテンサイト系ステンレス鋼が使用されており、学会標準の経年劣化メカニズムまとめ表(改訂版含む)で亀裂の原因となる経年劣化事象の発生が想定される部位(上記a,b項)としては、弁棒(応力腐食割れを想定)が挙げられる。ただし、弁棒については、弁開時に過度な応力が負荷されない運用を行っている。また、弁棒は定期的な分解点検時に浸透探傷検査を実施していることから、亀裂発生の確認を行っていない部位(上記c項)には該当しない。 以上より、全ての条件に該当する部位は存在しないことから、弁のマルテンサイト系ステンレス鋼については、熱時効の評価は不要と判断している。 以上

タイトル	日常劣化管理事象以外の事象(▲)について
概要	高経年化対策上着目すべき経年劣化事象ではない事象のうち、日常劣化 管理事象以外の事象 (▲) の一覧を示す。
説明	日常劣化管理事象以外の事象(▲)の一覧を表2に示す。

表2-1 日常劣化管理事象以外の事象一覧(1/5)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
1	熱交換器	多管円筒 形熱交換 器	•	腐食(全面腐食)	胴側耐圧構成品 等の腐食(全面 腐食)	余熟除去冷却器、原子炉補機冷却 水冷却器	胴側耐圧構成品等は炭素鋼であり、腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆剤注入水)であり、内面の腐食が発生しが たい環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考えがたい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
2	熱交換器	蒸気発生器	•	亀裂	1次側低合金鋼 部の内張り下層 部の亀裂		1 次側鏡板および管板には低合金鋼を用いており、ステンレス鋼およびニッケル基合金の 内張りを施している。一部の低合金鋼(SA-508 Class2)では大入熱溶接を用いた内張り で溶接後熱処理が行われると局部的に亀裂が発生することが米国PVRC(Pressure Vessel Research Council)の研究により隠認されている。これは内張り施工の際、6本の溶接ワイヤーで同時に溶接したために大入熱になったものである。 大飯3号炉においては図2.2-3に示すように、材料の化学成分(△G値)を踏まえ溶接入 熱を管理し辞接を実施しており、亀製の発生する可能性は小さいことから、高経年化対策 上着目すべき経年劣化事象ではない。
3	熱交換器	サンプル クーラ	•	腐食(流れ加 速型腐食)	伝熱管および胴 管の腐食(流れ 加速型腐食)	試料冷却器	耐流れ加速型腐食性に優れたステンレス鋼の伝熱管および胴管を使用しているため、流れ 加速型腐食が発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
4	熱交換器	サンプル クーラ	A	高サイクル疲 労割れ	伝熱管の高サイ クル疲労割れ	試料冷却器	試料冷却器は構造上、伝熱管と接触する部位がなく、有意な振動が発生する可能性はな い。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
5	熱交換器	サンプル クーラ	A	応力腐食割れ	伝熱管の応力腐 食割れ	試料冷却器	ステンレス鋼製の伝熱管は、応力腐食割れが想定される。 しかしながら、内部流体である1次冷却材の水質を溶存酸素濃度0.005ppm以下に管理して おり、応力腐食割れが発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
6	熱交換器	サンプルクーラ	•	スケール付着	伝熱管のスケー ル付着	試料冷却器	流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、伝熱管の内部流体は1次冷却材、胴管の内部流体はヒドラジン水(防鯖剤 注入水)であり、適切な水質管理により不純物の流入は抑制されていることから、スケー ル付着の可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
7	容器	原子炉容器	A	亀裂	上部蓋等低合金 鋼部の内張り下 層部の亀裂	原子炉容器	上部蓋、上部胴等には低合金鋼を用いており、ステンレス鋼の内張りを施している。一部の低合金鋼(SA-508 Class2)では大入熱溶接を用いた内張りで溶接後熱処理が行われると局部的に亀裂が発生することが米風のPVRC(Pressure Vessel Research Council)の研究により体題されている。これは内裏り施工の際、6本の溶接ワイヤーで同時に溶接したために大人熱気になったものである。大大阪3号炉においては図2.2-1に示すように材料の化学成分(⊿G値)を踏まえ溶接入熱を管理し溶接を実施しており、亀裂の発生する可能性は小さいことから、高終年化対策上着目すべき経年劣化事象ではない。
8	器容	加圧器本体	•	亀裂	上部鏡板等低合 金鋼部の内張り 下層部の亀裂	加圧器	上部鏡板、上部胴板等には低合金鋼を用いており、ステンレス鋼の内張りを施している。一部の低合金鋼(SA-508 Class2)では大入熱溶接を用いた内張りで溶接後熱処理が行われると局部的に亀裂が発生することが米国PVRC(Pressure Vessel Research Council)の研究により確認されている。これは内張り施工の際、6本の溶接ワイヤーで同時に溶接したために大入熱になったものである。 大飯3号炉においては図2.2-1に示すように材料の化学成分(⊿G値)を踏まえ溶接入熱を管理し溶接を実施しており、亀裂の発生する可能性は小さいことから、高終年化対策上着目すべき経年劣化事象ではない。
9	容器	プール型 容器	•	応力腐食割れ	ステンレス鋼使 用部位の応力腐 食割れ	使用済燃料ピット	2007年3月、美浜1号炉において原子炉キャビティのステンレスライニングで応力腐食割れが発生している。この事象は、ブラント建設時に原子炉格納容器開口部から持ち込まれた海塩粒子がコーナアングルやコーナブレート表面に付着、その後の定期検査時の原子炉キャビティ水張りにより発生した結露水により、塩化物イオンがコーナブレートの溶接線近傍の狭隘部分に持ち込まれ、さらに原子炉の運転で水分が蒸発し、ドライアンドウェット現象を繰り返すことで塩化物イオンが濃縮したことが原因と考えられているが、大気号炉の使用済燃料ビットには塩化物イオンの濃縮が想定される類似した箇所はないことから、応力腐食割れが発生する可能性はいさい。したがって、使用済燃料ビットのステンレス鋼使用部位の応力腐食割れは、高経年化対策上着目すべき経年劣化事象ではない。
10	容器	プール型 容器	A	腐食(隙間腐食)	プールゲートの 腐食(隙間腐 食)	使用済燃料ピット	プールゲート*とゲートバッキンにおけるブールゲート側の隙間腐食については、ほう酸水中の塩化物イオン濃度が0.05ppmを超えないように管理されており発生する可能性は小さい。また、ゲートバッキン取替時の目視確認において隙間腐食の兆候は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難いことから、高経年化対策上着目すぐ各経年劣化事象ではない。 ※材料:アルミニウム合金
11	配管	ステンレス鋼配管	A	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	余熱除去系統配管	1998年12月、大飯 2 号炉の余熱除去系統配管のドレン弁管台において、高サイクル疲労割れによる漏えいが発生している。この事象は配管取替に伴いドレン管の口径を変更したことにより、余熱除去ポンプと共振が発生し、ドレン弁管台溶接部に応力集中が発生したのである。しかしながら、大飯 3 号炉においては、必要な部位について振動計測に基づく応力評価等を行い、健全性を確認している。また、振動の状態は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
12	配管	ステンレス鋼配管	•	高サイクル疲 労割れ	温度計ウェルの 高サイクル疲労 割れ	余熱除去系統配管	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象はブラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生したものである。しかしながら、大飯3号炉の温度計ウェルは、原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省今の改正に任う電気事業法に基づく定期事業者検査の実施について(平成17・12・22原院第6号 平成17年12月27日 NISA-163a-05-3)」に基づき「日本機械学会 配管内円柱状構造物の流力振動評価指針(JSME S 012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所についても同様と考える。このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
13	配管	低合金鋼配管	A	疲労割れ	母管の疲労割れ		プラントの起動・停止時に発生する内部流体の温度、圧力の変化により、疲労割れが想定される。 しかしながら、プラントの起動時等に冷水が注入される炭素鋼配管の疲労評価結果では許 客値に対して十分余裕があり、同等以下の過渡しか受けない低合金鋼配管については、疲 労割れが発生する可能性はないことから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
14	配管	低合金鋼配管	•	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	主給水系統配管	1998年12月、大飯 2 号炉の余熱除去系統配管のドレン弁管台において、高サイクル疲労割れによる漏えいが発生している。この事象は配管取替に伴いドレン管の口径を変更したことにより、余熱除去ポンプと共振が発生し、ドレン弁管台溶接部に応力集中が発生したものである。しかしながら、大飯 3 号炉においては、必要な部位について振動計測に基づく応力評価等を行い、健全性を確認している。また、振動の状態は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
15	配管	低合金鋼配管	A	高サイクル疲労割れ	温度計ウェルの 高サイクル疲労 割れ		1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象はブラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生したものである。しかしながら、大飯3号炉の温度計ウェルは、原子力安全・保安院指示文書「発電用原子力設備に関する技術基準の定める省今の改正に任う電気事業法に基づく定期事業者検査の実施について(平成17・12・22原院第6号 平成17年12月27日 NISA-163a-05-3)」に基づき「日本機械学金 配管内円柱状構造物流力振動計画指針(SME S 012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所についても同様と考える。このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
16	配管	炭素鋼配 管	•	高サイクル疲労割れ	小口径管台の高 サイクル疲労割 れ	海水系統配管 [※]	1998年12月、大飯 2号炉の余熱除去系統配管のドレン弁管台において、高サイクル疲労割れによる漏えいが発生している。この事象は配管取替に伴いドレン管の口径を変更したことにより、余熱除去ポンプと共振が発生し、ドレン弁管台溶接部に応力集中が発生したものである。しかしながら、大飯 3号炉においては、必要な部位について振動計測に基づく応力評価等を行い、健全性を確認している。振動の状態は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。 ※代表機器以外の当該劣化事象の対象系統に誤記があり「低温再熱蒸気系統配管、グランド蒸気系統配管、ポンプタービン駆動蒸気系統配管、高温再熱蒸気系統配管、補助蒸気系統配管、補助終れ系統配管、復水系統配管、ドレン系統配管、タービン潤滑油系統配管」が正しい配載。
17	配管	炭素鋼配 管	•		温度計ウェル及 びサンブルノズ ルの高サイクル 疲労割れ	管、原子炉補機冷却水系統配管、 海水系統配管	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象はブラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生し、温度計ウェルの付け根部に応力集中が発生したものである。しかしながら、大飯3号炉の温度計ウェルおよびサンブルノズルは、原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定期事業者検査の実施について(平成17・12・22原院第6号 平成17年12月27日 NISA-163a-05-3)」に基づき「日本機械学会 配管内円柱状構造物の流力振動評価指針(JSME S 012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所についても同様と考える。このような条件は 経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
18	配管	1 次冷却材管	•	高サイクル疲 労割れ	温度計ウェル及 びサンプルノズ ルの高サイクル 疲労割れ	7.次分類材質	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象は、ブラント連転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生して、温度計ウェルの付け根部に応力集中が発生した。他のある。しかしながら、大飯3号炉の温度計ウェルおよびサンブルノズルは、原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定期事業者検査の実施について(平成17-12・22原院第6号 平成17年12月27日 NISA-163a-05-3)」に基づき「日本機械学会 配管内円柱状構造物の流力振動評価指針(JSME S 012-1998)」による評価を行い、問題とならないことを確認している。このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
19	配管	1 次冷却 材管	A	高サイクル疲 労割れ	サーマルスリー ブの高サイクル 疲労割れ		1981年7月、大飯2号炉の2点溶接タイプのサーマルスリーブで流体振動による高サイクル疲労割れが発生しているが、大飯3号炉のサーマルスリーブは全て全周溶接タイプ(図2.2-1)であり、2点溶接タイプに比べて発生応力が十分小さいことから、高経年化対策上着目すべき経年劣化事象ではない。
20	配管	1 次冷却 材管	A	応力腐食割れ	温度計ウェル等の応力腐食割れ		温度計ウェル、サンプルノズルおよびサーマルスリーブはステンレス鋼を使用しており応 カ腐食割れが想定される。 しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体 温度が低い(最高でも80℃程度)ため、応力腐食割れが発生する可能性は小さい。 また、定期検査後のブラント起動時には1次冷却材中の溶存酸素濃度低減のための運転操 作を実施するため、高温(100℃以上)で使用する場合溶溶存酸素濃度がppb以下に低減 された流体となっていることから応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
21	配管	配管サ ポート	•	腐食(全面腐食)	埋込金物のコン クリート埋設部 の腐食(全面腐 食)	共通	埋込金物は炭素鋼であり腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食を有するまで長時間を有することから、高経年化対策上着目すべき経年劣化事象ではない。
22	弁	電動装置	A	腐食(全面腐 食)	固定子コアおよ び回転子コアの 腐食 (全面腐 食)	共通	固定子コアおよび回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コアおよび回転子コアはエポキシモールド等により腐食を防止して いる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
23	弁	空気作動 装置	•	腐食(全面腐食)	継手、アキュム レータの内面か	ケース [主蒸気逃がし弁空気作動 装置]、シリンダ、鋼管および継 手、アキュムレータ [主蒸気隔離 弁空気作動装置]	しかしながら、内面については、内部流体が制御用空気であり、清浄な乾燥空気雰囲気で
24	弁	空気作動 装置	•	摩耗	ヨーク(弁棒接 続部)の摩耗	主蒸気逃がし弁空気作動装置	ヨーク (弁棒接続部) は、弁の開閉動作に伴う摩耗が想定される。 しかしながら、弁棒はヨーク (弁棒接続部) にねじ込みキャップスクリューで固定する構造としており、接続部のゆるみ等によって摩耗が発生する可能性はないことから、高経年 化対策上着目すべき経年劣化事象ではない。
25	炉内構造 物	1	A		炉心そう等の照 射下クリープ	炉内構造物	高照射環境下で使用される炉心そうおよびパッフルフォーマポルト (ステンレス鋼) には 照射下クリーブが想定される。 しかし、クリーブ破断を生じる荷重制御型応力は微小 であり、プラント運転に対し問題 とはならない。 したがって、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
26	炉内構造 物	-	A	照射スウェリ ング	炉心バッフルの 照射スウェリン グ	炉内構造物	PWRプラントでの照射スウェリング量は小さく、炉心バッフルの上下に十分な隙間が存在することから、炉心バッフルの炉心形成機能が失われるようなことはなく、 また、運転時間が先行している海外PWRプラントでもそのような事例は発生していないため、高経年化対策上着目すべき経年劣化事象ではない。(参考文献: J.P.Foster and J.E.Flinn, Journal of Nuclear Materials 89(1980)99-112)
27	炉内構造 物	-	A	ばねの変形 (応力緩和)	押えリングの変 形(応力緩和)	炉内構造物	ブラント運転中の押えリングは、高温環境下で一定圧縮ひずみのまま保持されているため、変形(応力緩和)が想定される。 しかしながら、押えリングに使用されているステンレス鋼(ASME SA182 Gr. F6b)は、応力緩和を生じにくい材料であり、押えリングの変形(応力緩和)が問題となる可能性はなく、高経年化対策上着目すべき経年劣化事象ではない。
28	ケーブル	トレイ電 線管	•	腐食(全面腐 食)	電線管(本体)およびカップリングの内面からの腐食(全面腐食)	電線管	電線管 (本体) およびカップリングは炭素鋼であり、内面からの腐食が想定される。 しかしながら、内面については、亜鉛メッキにより腐食を防止している。 また、内装物はケーブルのみであり、メッキ面への外力は加わらないため亜鉛メッキが剥がれることはなく、外面と比較して環境条件が緩やかであるため腐食の発生する可能性は小さいことから、高経年化対策上着目すべき経年劣化事象ではない。
29	ケーブル	トレイ電 線管	•	腐食(全面腐 食)	埋込金物および 電線管(コンク リート埋設部) の腐食(全面腐 食)	共通	コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物および電線管に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
30	ケーブル	ケーブル 接続部	•	腐食(全面腐 食)	端子等の腐食 (全面腐食)	気密端子箱接続、直ジョイント	端子、端子台(気密端子箱接続) および隔壁付スリーブ(直ジョイント)は銅または銅合金であり、腐らが想定される。 しかしながら、端子および端子台はニッケルメッキまたは錦メッキを施すことにより腐食を防止しており、さらに密封された構造であり、腐食が発生する可能性はないことから、高経年化対策上着目すべき経年劣化事家ではない。また、隔壁付スリーブは構造と端子部が熱収縮チューブにて密封されており、腐食が発生する可能性はないことから、高経年化対策上着目すべき経年劣化事象ではない。
31	電気設備	メタクラ	A	絶縁低下	計器用変流器 (貫通形) の絶 縁低下	メタクラ(安全系)	ー次コイルと二次コイルがモールドされている形式の計器用変流器の絶縁物は有機物であり、熱的、電気的、環境的要因による絶縁低下が想定される。しかしながら、一次コイルのない貫通型計器用変流器であり、二次コイルに係る電圧は低く、また、通電電流による熱的影響も小さい。また、空調された屋内に設置されており、コイル全体がモールドされていることから塵埃による影響もごく僅かであり、絶縁低下の可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着日すべき経年劣化事象ではない。
32	電気設備	メタクラ	A	腐食(全面腐 食)	埋込金物 (コン クリート埋設 部) の腐食 (全 面腐食)	メタクラ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
33	電気設備	パワーセ ンタ	A	絶縁低下	計器用変流器の 絶縁低下	パワーセンタ(安全系)	ー次コイルと二次コイルがモールドされている形式の計器用変流器の絶縁物は有機物であり、熟的、電気的、環境的要因による絶縁低下が想定される。しかしながら、一次コイルのない責通型計器用変流器であり、二次コイルに係る電圧は低く、また、通電電流による熱的影響も小さい。また、空調された屋内に設置されており、コイル全体がモールドされていることから塵埃による影響もごく僅かであり、絶縁低下の可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
34	電気設備	パワーセ ンタ	•	腐食(全面腐食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	パワーセンタ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
35	電気設備	コント ロールセ ンタ	A	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)		埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
36	コンクリート構造物および鉄骨構造物	-	A	テンドンの緊張力低下	熱(高温)による 緊張力低下	外部遮蔽壁、原子炉格納施設基礎 (テンドン定着部)	通常運転時の状態下でPC鋼より線に熱損傷が生じる可能性は極めて低いことから、熱(高温) による緊張力低下は高経年化対策上着目すべき経年劣化事象ではないと判断した。
37	コンクリート構造物および鉄骨構造物	-	A	テンドンの緊張力低下	放射線照射による緊張力低下	外部遮蔽壁、原子炉格納施設基礎 (テンドン定着部)	テンドンは高レベルの放射線を受ける使用環境にないことから、放射線照射による緊張力低下 は高経年化対策上着目すべき経年劣化事象ではないと判断した。
38	コンクリート構造物および鉄骨構造物	-	A	テンドンの緊張力低下	腐食による緊張力低下	外部遮蔽壁、原子炉格納施設基礎 (テンドン定着部)	プレストレスシステム(テンドンおよび定着具)の材料であるPC鋼より線などは一般に大気中の酸素、水分と化学反応を起こして腐食する。 しかしながら、大飯3号炉ではテンドンおよび定着具の腐食を防止するために、グリースキャップ およびシース内には防錆剤が充填されているため、テンドンおよび定着具が腐食する可能性はない。したがって、腐食による緊張力低下は高経年化対策上着目すべき経年劣化事象ではないと判断した。
39	コンクリート構造物および鉄骨構造物	-	A	テンドンの緊張力低下	疲労による緊張力低下	外部遮蔽壁、原子炉格納施設基礎 (テンドン定着部)	PCCVにおいて、通常運転時に繰返し載荷や振動を与える機器類はなく、また、プレストレスシステムの疲労試験(高サイクル疲労試験および低サイクル疲労試験)を施工に先立ち実施しており、疲労破壊する可能性は極めて低いことから、疲労による緊張力低下は高経年化対策上着目すべき経年劣化事象ではないと判断した。
40	コンクリート構造物および鉄骨構造物	-	A	鉄骨の強度低 下		原子炉周辺建屋(鉄骨部)、タービン建屋(鉄骨部)	繰返し荷重が継続的に鉄骨構造物にかかることにより、疲労による損傷が蓄積され、鉄骨の強度低下につながる可能性がある。 鉄骨構造物は、疲労破壊が生じるような風などによる繰返し荷重を継続的に受ける構造部材はないことから、風などによる疲労に起因する強度低下は高経年化対策上着目すべき劣化事象ではないと判断した。
41	計測制御設備	プロセス	A	腐食(流れ加 速型腐食)	オリフィスの腐 食(流れ加速型 腐食)	余熱除去流量	オリフィスは絞り機構であり、配管部と比較して流速が速くなることから流れ加速型腐食 により減肉が想定される。 しかしながら、余熱除去流量のオリフィスはステンレス鋼であり、流速を低く設計してい ることから、流れ加速型腐食が発生する可能性はないと考える。 したがって、高経年化対策上着目すべき経年劣化事象ではない。

展が考えられない、 小さいと判断した理由
割れが想定される。 、定期検査時に飽和溶存酸素濃度(最大約、(最高でも80°C程度)ため、応力腐食剤れが (冷却材中の溶存酸素濃度低減のための運転操 用する場合は、溶存酸素濃度が0.1ppm以下に 腐食割れが発生する可能性は小さい。 劣化事象ではない。
で プリートの大気接触部表面からの中性化の進 中性化に至り、埋込金物に有意な腐食が発生 対策上着目すべき経年劣化事象ではない。
で クリートの大気接触部表面からの中性化の進 中性化に至り、埋込金物に有意な腐食が発生 対策上着目すべき経年劣化事象ではない。
であり、熱的、電気的、環境的要因による絶 間されているため、塵埃、湿分等が付着しに とから、コイルの発熱による温度上昇は小さ して、コイルの許容最高温度は200でと十分 に、定格運転時に発生する電圧は7-010程度 低いことから、絶縁低下の可能性は小さいと ことから、高経年化対策上着目すべき経年劣
ているが長期の使用により、内面からの腐食 食が発生しがたい環境であることから、高経 へ。 (防錆剤注入水)」と記載されているが、誤記
プリートの大気接触部表面からの中性化の進 グリートの大気接触部表面からの中性化の進 が中性化に至り、埋込金物に有意な腐食が発生 対策上着目すべき経年劣化事象ではない。
ト(コンクリート埋設部)および埋込補強材 ・クリートの大気接触部表面からの中性化の進 中性化に至り、埋込金物等に有意な腐食が発 化対策上着目すべき経年劣化事象ではない。
。 の大気接触部表面からの中性化の進行により 、埋込金物に有意な腐食が発生するまで長期 べき経年劣化事象ではない。
御装置の基礎金物、走行駆動部、水圧制御装れる。 れる。 クリートの大気接触部表面からの中性化の進中性化に至り、基礎金物に有意な腐食が発生、対策上着目すべき経年劣化事象ではない。
山がかみあう構造になっており、ステッピン 手山部の摩耗が想定される。 くかみ込み一体となっており、ステッピング びスパイダ材と接手の硬さは同程度であり比 でも有意な摩耗はないと考えられることか ではない。
アンカボルトの接着力により強度を維持して けが低下し、支持機能への影響が想定され 接試験結果から有意な引抜力の低下は認めら ことから、高経年化対策上着目すべき経年劣
気接触部表面からの中性化の進行により腐食、埋込金物に有意な腐食が発生するまで長期 が、トの健全性を阻害する可能性は小さいと考 ト埋設部のボルト本体が樹脂に覆われている ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
対し事象ではない。 熱過渡により、疲労割れが想定される。 訳には、熱応力が基礎ポルトに直接付与されな ・バ、スライドサポート)を使用している。さ ・不適合事象は経験していない。 劣化事象ではない。
タッドボルト)の耐力は主にコンクリートと起こした場合、支持機能の喪失が想定され 上、 ・ト構造物および鉄骨構造物の技術評価書」につながるコンクリートの割れ等の発生の可能 対策上着目すべき経年劣化事象ではない。
よる損傷が想定される。 る応力は伸縮継手により吸収され非常に小さ たい。 ことから、高経年化対策上着目すべき経年劣
、べ 御れク中対 山手くびてで アカ 抜 こ 気、ル ト 劣 熱にバ不劣 タ起 トつ対 よるた埋き 装るし件策 が由み入れだ ンが 試 と 接埋と 埋 化 過は、返化 ッこ 構な策 もたい。

表2-1 日常劣化管理事象以外の事象一覧(5/5)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
57	電源設備	直流電源設備	•	腐食(全面腐 食)	埋込金物 (コンクリート埋設 部) の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
58	電源設備	無停電電源	A	腐食(全面腐 食)	埋込金物 (コン クリート埋設 部) の腐食 (全 面腐食)	計装用電源盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
59	電源設備	計装用分電盤	A	腐食(全面腐 食)	埋込金物 (コン クリート埋設 部) の腐食 (全 面腐食)	計装用分電盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。
60	電源設備	制御棒駆動装置用電源設備	•	腐食(全面腐 食)	埋込金物 (コン クリート埋設 部) の腐食 (全 面腐食)	原子炉トリップ遮断器盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。

概要施設管	理目標の設定に係る権限について、以下に示す。
つ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	管理の実施方針に基づく施設管理目標の設定および目標の見直しに責任・権限は以下の通り。 力事業本部の業務に関する施設管理目標の責任・権限は原子力事業本にあり、原子力事業本部長が原子力事業本部の施設管理目標*を設定いる。 発電所の業務に関する施設管理目標の責任・権限は大飯発電所長にあ大飯発電所長が大飯発電所の施設管理目標*を設定している。 管理目標の設定は品質目標に含めて設定している。 理目標の例 発電所3号機事故再発防止対策を確実に実施します。 の遵守などコンプライアンスを徹底します。 査制度の本格運用に確実に対応します。 上記を踏まえ、評価書(本冊2.4)での施設管理目標に係る当社方針を以下に示す。 、施設管理の実施方針に基づき、原子力事業本部長、大飯発電所長は、事業本部、大飯発電所の各々の業務に関する施設管理目標を設定し、理の有効性評価の結果を踏まえて同目標の見直しを実施している。」

タイトル	協力事業者の力量管理方法について
概要	高経年化技術評価の実施における協力事業者の力量管理方法について、以 下に示す。
説明	高経年化技術評価のための業務委託先である協力事業者に対する力量管理は、以下の通り実施している。
	協力事業者に対する各業務委託の遂行に必要な技術力の有無を確認するため、委託を発注する部署がその都度協力事業者の技術力を評価している。 具体的には、過去の実績からの契約履行能力の有無、至近の委託先への品質監査結果等を評価している。更に、委託完了時には、契約時に行った評価と同様の観点から再評価を行っており、次回の発注時に行う評価の参考になるようにしている。なお、これらの規定は社内標準(「原子力事業本部他業務委託取扱要綱」)に定められている。また、協力事業者に対する品質監査として、3年(年度単位)に1回の頻度で、立入検査を実施して、品質保証計画書の遵守状況について確認行っている。
	なお、高経年化技術評価に係る解析業務を実施する委託先には、当該の解析業務を履行する技術力を要求しており、当社としても委託先が、「解析業務に係る必要な力量を明確にしているか」、「解析に従事する要員(原解析者・検証者)は必要な力量を有しているか」等の確認を行っている。

タイトル	消耗品・定期取替品の定義および抽出方法について
概要	高経年化技術評価における消耗品・定期取替品の定義および抽出方法について、以下に示す。
説明	高経年化技術評価において、消耗品・定期取替品は取替を前提としていることから評価の対象外としている。 消耗品・定期取替品の定義は高経年化対策実施手順書にて以下の通り定めている。 定期取替品:設計時に耐用期間内に計画的に取り替えることを前提にしており、交換基準を定めているもの 消耗品:供用に伴う消耗が予め想定される部品であって設計時に取替を前提とするもの、または、機器分解点検等に伴い必然的に交換されるもの
	定期取替品の例を以下に示す。 a) 検出器(中性子束検出器,温度検出器他) b) 電気盤構成品(ヒューズ,NFB他) c) 弁付属品(リミットスイッチ,ブースターリレー他)
	消耗品の例を以下に示す。 a)機械的摺動部品(軸受,ブッシュ他) b)電気的摺動部品(ブラシ他) c) 封密部品(パッキン, Oリング他) d)防食亜鉛板 e)フィルタ(粗フィルタ他)
	高経年化技術評価における消耗品・定期取替品の抽出は、各機器毎の消耗品・定期取替品が具体的に定められている保全指針(業務決定文書,原子力発電所保修業務要綱指針も含む)を参照している。

タイトル	消耗品・定期取替品のうちディーゼル機関排気管の伸縮継手の取り扱いに ついて
概要	ディーゼル機関の排気管の伸縮継手について、消耗品・定期取替品として 規定している文書及び取替実績を示す。
説 説 明	規定している文書及び取替実績を示す。 ディーゼル機関の排気管の伸縮継手を消耗品・定期取替品として規定している文書として保全指針を添付-1に示す。 また、伸縮継手の取替実績を以下に示す。 ・1994年度 ・2006年度 ・2017年度

タイトル	原子之	力施設情報公	開ライブラリー情報で最終報告ではない情報について				
概要	申請時において原子力施設情報公開ライブラリー情報で最終報告となっていない運転経験の件数と内容について、以下に示す。						
説明	2020年12月2日時点において、原子力施設情報公開ライブラリー 情報で最終報告となっていない情報は15件あり、その内容を下表に示す						
		表 申	詩時において最終報告とはなっていない情報				
	No.	ユニット	件名				
	1	浜岡5号	燃料取替機のマスト自動旋回装置の破損				
	2	高浜 4 号	蒸気発生器伝熱管の損傷				
	3	川内2号	原子力規制検査結果について「川内原子力発電所2 号機 配線処理室内における不適切なケーブル敷設 による火災影響軽減対策の不備」				
	4	浜岡3号	非常用ディーゼル発電機(A) 排気管伸縮継手ベロー ズのひび割れについて				
5 大飯3号 加圧器		大飯3号	加圧器スプレイ配管溶接部における有意な指示について				
	6	島根 2	廃棄物処理建物における巡視頻度の一部誤り				
7福島第一非常用ディー5方向の相違			非常用ディーゼル発電機プレートオリフィスの取付 方向の相違				
8 福		福島第二 1	非常用ディーゼル発電機プレートオリフィスの取付 方向の相違				
	9	浜岡 3,4	非常用ディーゼル発電機補機周りのオリフィス逆取 付け				
	10	志賀 1	オリフィスプレートの取付け方向の相違について				
	11	柏崎刈羽 1,2,3,4,5 ,6,7	非常用ディーゼル発電機プレートオリフィスの取付 方向の相違				
福島第一			福島第一原子力発電所1~3号機窒素ガス分離装置 (B)窒素濃度指示不良に伴う運転上の制限からの 逸脱について				
	13	浜岡 5	原子炉機器冷却海水系除塵設備内のフィルタの一部 破損				

No.	ユニット	件名
	柏崎刈羽	
14	1, 2, 3, 4, 5	避難経路扉の開閉に関する不適合について
	, 6	
15	福島第一	福島第一原子力発電所 管理対象区域における飲料
10	田四州	水の採取について

概要 内部流体として「空気、油、希ガス等またはヒドラジン水」を1つの ープとして取り扱い、代表機器を選定している理由を示す。)グル
っているが、「空気、油、希ガス等またはヒドラジン水」を内部流体に大飯3号炉のステンレス鋼配管については、いずれも、内部流体によっ管内面に想定される経年劣化事象が同一である(想定される経年劣化	
	持つて配

タイトル	蒸気発生器への異物混入防止対策ついて		
概要	蒸気発生器への異物混入防止対策とその有効性について、以下に示す。		
説明	高浜3号炉の第23回(2018年度)および第24回定期検査(2019年度)ならびに、高浜4号炉の第22回定期検査(2019年度)における 異物混入による蒸気発生器伝熱管の損傷事例を受けて、蒸気発生器への異 物混入対策として、工事手順書等に異物混入に関する以下の注意事項を反 映している。		
	 (1)機器内部に立ち入る前に、器内作業用の作業服に着替え、靴カバーの着用を実施する。 (2)開口部に周辺作業と隔離したエリアを設ける。 (3)最終異物確認時に直視で目視確認できない範囲は、ファイバースコープ等(鏡等の使用も可)にて確認する。 (4)ウエスは、新ウエスを使用する。 		
	(5) 新ウエスは再使用(使用済)ウエスと区別して管理する。 (6)作業中に発生した保温材の切れ端等の清掃・片付けについては一作業 一片づけを徹底し、異物の拡散を防止する。		
	結果、第18回定期検査時(2020年度)において、全ての蒸気発生器 伝熱管に対して渦流探傷検査を実施し、有意な指示のないことを確認して いる。		
	なお、高浜4号炉23回定期検査(2020年度)における、スケール付着による伝熱管の損傷事例の水平展開については、別紙1-7-4に示す。		
	以上		

タイトル	蒸気発生器および原子炉容器の冷却材出入口管台の600系ニッケル基合金 使用部位の応力腐食割れ対策について				
概要	蒸気発生器および原子炉容器の冷却材出入口管台の600系ニッケル基合金 使用部位の応力腐食割れ対策を以下に示す。				
説明	1.600系ニッケル基合金使用部位の応力腐食割れ対策 蒸気発生器の冷却材出入口管台については、第12回定期検査時(2006年度)に超音波ショットピーニング(以下、USPという)を施工している。 施工範囲を図1に示す。 原子炉容器の冷却材出入口管台については、第13回定期検査時(2007~2008年度)にウォータージェットピーニング(以下、WJPという)を施工している。施工範囲を図2に示す。 また、A冷却材出口管台溶接部については、第13回定期検査時に認められた傷を削り取った後に予防保全対策としてWJPを実施している。第14回定期検査時(2009年度)に600系ニッケル基合金で溶接補修により埋め戻し、その後、600系ニッケル基合金が一次冷却材と接する内面全周に対し、690系ニッケル基合金で溶接補修を行っている。690系ニッケル基合金は、添付1に示す電力共同研究による690系ニッケル基合金の温度加速定荷重応力腐食割れ試験の結果から、応力腐食割れが発生する可能性は小さいと考えられる。				
	2. USPおよびWJPの効果 USPおよびWJPの効果について、公開されている資料を添付2*に示す。USPまたはWJP施工後は表面に圧縮応力が得られることが確認されている。 持続性については、三菱重工業株式会社「ピーニングによる応力腐食割れ防止効果に関する研究」(出典:日本保全学会 第7回学術講演会要旨集)において、下記の通り各種条件で圧縮残留応力が保持されていることを確認していることから、USPおよびWJPの持続性に問題はないと判断している。(添付3参照) 3. ピーニング施工以降の検査実績 蒸気発生器の冷却材出入口管台については、USP施工以降の第13回(2007~2008年度)および第18回定期検査時(2020年度~)に超音波探傷検査、浸透探傷検査および渦流探傷検査を実施し、機器の健全性を確認している。 原子炉容器の冷却材出入口管台については、WJP施工以降の第14回				
	(2009年度),第15回(2010年度~2012年度),第17回(2019年度)および第18回定期検査時(2020年度~)に、超音波探傷検査および浸透探傷検査を実施し、機器の健全性を確認している。 各検査の探傷面を以下表に示す。				
	日次中へが岡田でも	浸透探傷検査	超音波探傷検査	渦流探傷検査	
	蒸気発生器冷却材	31.21, 37,31			
	出入口管台	外面	外面	内面	
	原子炉容器冷却材	外面	内面		

出入口管台

なお、蒸気発生器冷却材出入口管台のUSPについて、評価書(本冊2.4 大飯発電所3号炉の保全概要)の改善活動の記載方針を以下に示す。 「応力腐食割れ」

・蒸気発生器冷却材出入口管台溶接部の超音波ショットピーニング 国内外PWRプラントにおける応力腐食割れ事象を踏まえ、予防保全 として、溶接部表面の残留応力を低減させるため、600系ニッケ ル基合金が使用されている、冷却材出入口管台溶接部について、第 12回定期検査時(2006年度)に超音波ショットピーニング(応 力緩和)を実施した。

また、耐震安全性評価における取り扱いについては、大飯発電所3 号炉 高経年化技術評価(耐震安全性評価)補足説明資料の別紙20 に示している。

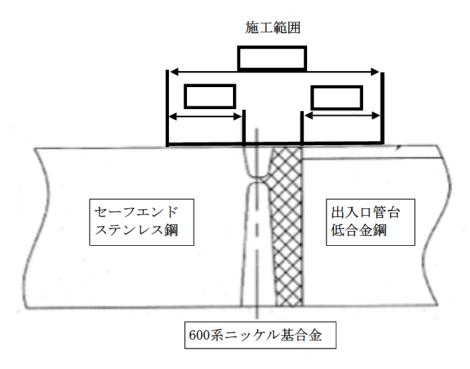


図1 蒸気発生器冷却材出入口管台の超音波ショットピーニングの施工範囲

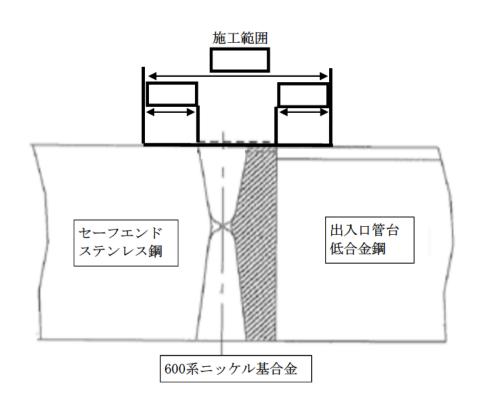
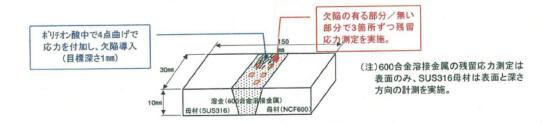


図2 原子炉容器冷却材出入口管台のウォータージェットピーニングの施工範囲


図 690系ニッケル基合金の定荷重応力腐食割れ(SCC)試験結果 [出典:電力共同研究「690 合金の PWSCC 長期信頼性確証試験(STEP5)2019 年度(中間報告書)」]

出典: MHI-NES-1043改0 平成21年7月「加圧水型軽水炉 原子炉容器及び蒸気発生器 600系Ni基合金部に適用するピーニング方法の応力腐食割れ防止に関する有効性評価書」

表1 試験片及び潜在欠陥導入条件

	600合金溶接金属	ステンレス鋼母材
	平板継手試験片	平板試験片
試験片形状	(長さ150mm×幅30mm×厚さ10mm)	(長さ150mm×幅30mm×厚さ10mm)
材質(注)	母材: NCF600+SUS316 溶金:600系合金 潜在欠陥導入前に鋭敏化熱処理実 施	母材: SUS316 潜在欠陥導入前に鋭敏化熱処理実施)
潜在欠陥導入	4 点曲げにより応力を負荷した状態で室温ポリチオン酸溶液に浸漬し、600 合金溶接金属部に欠陥導入(目標深さ 1 mm)	4 点曲げにより応力を負荷した状態で室温ポリチオン酸溶液に浸漬し、316 母材部に欠陥導入(目標深さ 1 mm)
試験片数	ピーニング方法毎に1体	ピーニング工法毎に1体

注)WJP/USPの対象材料は、600合金溶接金属の母材と溶接金属、ステンレス鋼の母材と溶接金属がある。 材料の違いによる影響は有意ではないと考えられるが、本評価書では600合金溶接金属と316系ステン レス鋼母材を代表に試験を行い、材質のよる有意な違いのないことを確認する。

図はSUS316/NCF600の平板継手試験片の600溶接金属部に潜在欠陥を導入した例を示す。 本確認では同寸のSUS316母材の平板試験片のSUS316母材部に潜在欠陥を導入した試験片も対象とした。

図1 試験片の形状 (600合金溶接金属の試験片の例)

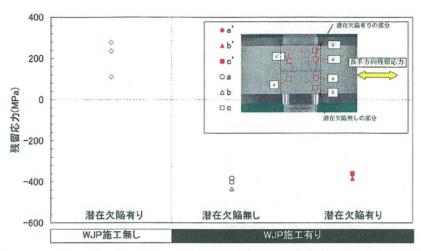


図 3 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果(600 合金溶接金属)

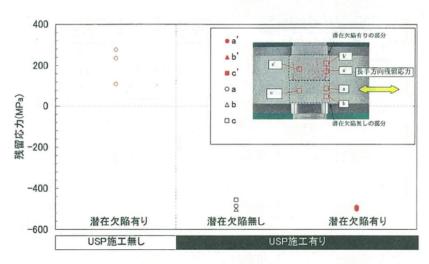


図 4 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果(600 合金溶接金属)

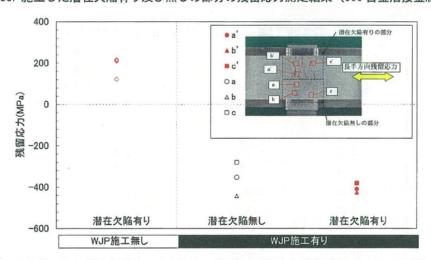


図 5 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果(SUS316 母材)

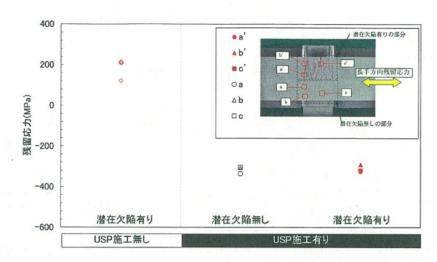


図 6 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

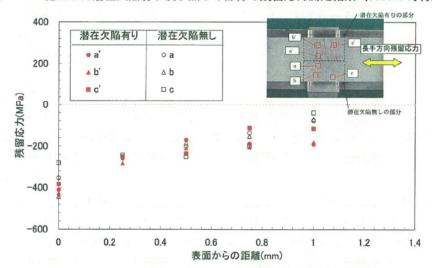


図 7 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

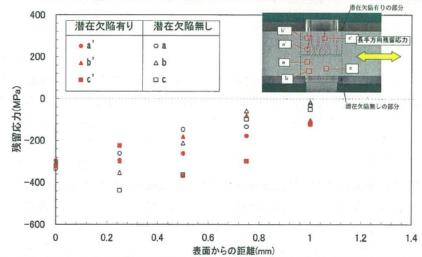


図 8 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

ピーニングによる応力腐食割れ防止効果に関する研究

Study on mitigation of stress corrosion cracking by peening

三菱重工業株式会社 技術本部 高砂研究所

前口貴治 Takahru MAEGUCHI 堤一也 Kazuya TSUTSUMI 豊田真彦 Masahiko TOYODA 太田高裕 Takahiro OHTA 岡部武利 Taketoshi OKABE 佐藤知伸 Tomonobu SATO

三菱重工業株式会社 神戸造船所

In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening(WJP) and ultrasonic shot peening(USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380°C, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation.

Keywords: Residual stress, Stress corrosion cracking, Water jet peening, Ultrasonic shot peening

1. 緒言

構造物の高温水中における劣化事象の一つとして 応力 腐 食 割 れ (SCC: Stress Corrosion Cracking)がある。その発生原因が構造物に生じた引張残留応力である場合、残留応力の低減が劣化防止対策として有効である。

加圧水型原子カプラント(PWR)の一次系環境下で 600 系 Ni 基合金が使用されている部位では、応力腐食割れ(PWSCC: Primary Water Stress Corrosion Cracking)の懸念があり、蒸気発生器(SG: Steam Generator)出入口管台や原子炉容器出入口管台等に対する予防保全策として超音波ショットピーニング(USP: Ultrasonic Shot Peening)、ウォータジェットピーニング(WJP: Water Jet Peening)をはじめとした残留応力低減(改善)技術を適用中である[1][2]。Fig.1 に原子炉容器における WJP 適用箇所を、Fig2 に蒸気発生器における USP 適用箇所をそれぞれ示す。

残留応力は機械的・熱的エネルギーの付与により減少(緩和)する。これは塑性変形やクリープ変形の結果,初期の弾性歪が非弾性歪に変換されることによって生じる[3][4][5]。WJPやUSP(以下,ピ

によって生じる[3][4][5]。WJP や USP (以下, 連絡先:前口貴治 高砂研究所 材料・強度研究室 〒674-8686 兵庫県高砂市荒井町新浜 2·1·1

E-mail:takaharu_maeguchi@mhi.co.jp

ーニングとする)を施工した箇所においても,熱時効や変動応力によって施工後の応力緩和が想定されるが,SCC 抑制効果の観点からプラント寿命に相当する期間中において,十分な残留応力改善効果が持続することが必要である。そこで,ピーニング施工後,実機の条件を加速模擬した高温において

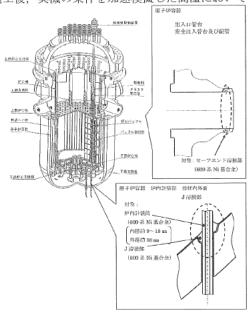


Fig.1 PWR プラント原子炉容器における WJP 施工箇所

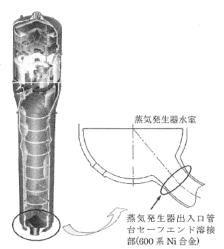
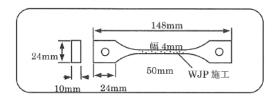


Fig.2 PWR プラント蒸気発生器における USP 施工箇所

様々な応力負荷の影響を検討した試験を行い,圧縮 残留応力の緩和の確認を行った。

2. 実施内容

実機プラントのピーニング施工部位においては 最高約320℃の温度となり、さらに内圧による引張 応力の発生や、起動停止に伴う繰返し応力が発生し、 これらによる残留応力の変化が想定される。このよ うな環境を模擬した条件下でのピーニングによる 圧縮残留応力の緩和挙動を調査した。


2.1 高温保持の影響

試験片は 600 系 Ni 基合金溶接金属(132 合金)であり、試験片中央部に PWR プラント炉内計装筒 J溶接部への施工と同条件で WJP 施工を行った。WJP 施工後, 試験片を実機プラント想定温度である 320℃及びこれよりも高い 350℃と 380℃の大気炉中において、1 時間から 1000 時間の保持を行った後, X線回折法で表面残留応力を計測した。測定値の評価としては、溶接金属部位おける X線残留応力測定の測定精度を考慮し、測定値は平均値を中心として上下に標準偏差の 2 倍の幅を有するバンドとして示した。

2.2 高温保持及び荷重負荷の影響

高温(360℃)において応力無負荷または一定応力 負荷の下で表面残留応力変化を測定するために、 Fig.3 に示す装置を製作した。試験片は 600 系 Ni 基合金溶接金属(132 合金)で Fig.3 の通り製作し、 試験片中央部に PWR プラント炉内計装筒 J 溶接部 への施工と同条件で WJP 施工を行った。なお、本 試験片は施工部の幅が 4mm と小さく、WJP 施工 した表面の塑性変形の拘束が実機施工部よりも小 さいことから、WJP による残留応力低減効果は小さい。

WJP 施工後, 試験片を試験装置に組み込み,無負荷または 200MPa の一定応力負荷条件とした。負荷応力 200MPa は,原子炉容器の耐圧試験圧力(内圧 21.45MPa)のみを負荷したケースでの応力解析を行い,炉内計装筒管台内面の周方向に WJP施工後に作用する最大応力が起動停止に伴う130MPa 程度であったことを参考とし,負荷する応力をこれより大きく材料の耐力以下の 200MPa と決定した。試験片を 360℃まで昇温し,表面の残留応力を最大 1000 時間まで測定した。測定は X 線回折法で行い,360℃において応力を負荷したまま実施した。なお, X 線回折法による残留応力測定においては,材料物性値の温度による変化を考慮した。

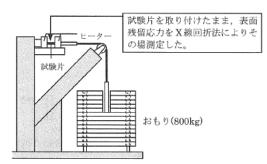


Fig.3 表面残留応力測定装置及び試験片の模式図

2.3 高温保持及び変動応力の影響

実機プラントの起動・停止に伴う変動応力は降伏 点以下(弾性範囲内)であり、残留応力に与える影響は小さいと考えられ、これを実験的に確認した。 (1)試験片及びピーニング施工

600 系 Ni 基合金母材と SUS316 を 600 系 Ni 基合金溶接金属(132 合金)で SMAW 溶接した継手板から Fig.4 に示す平板継手試験片を採取した。この試験片の Ni 基合金溶接金属部分に WJP または USP を施工した。施工条件は実機プラントにおいて実際に使用されている条件と同一とした。

(2)残留応力緩和試験

試験片の三点曲げにより、ピーニング施工面に繰返し変動応力(引張応力)を発生させた(Fig.5 参照)。付与する引張応力は、実機の発生応力の最大値相当

の 130MPa とした。

試験温度は 420℃とした。これは実際のプラント温度を 320℃で代表し、100℃の温度加速を行うこととして決定した。なお、供試材の耐力は試験温度 420℃とプラント温度(320℃)とで顕著な相違はなく、耐力に対する負荷応力の比はいずれの温度においてもほぼ同一と考えられる。

変動応力負荷のサイクルは、1230 秒間の130MPa 負荷を 1 サイクルとし、応力負荷と除荷は瞬時とした。これは年間のプラントの起動停止回数を最大 5 回と仮定し、起動から停止までの平均時間 1.8×10^3 時間 (320°C) に相当する時間を,Larson-Miller パラメータ(定数 20)により加速試験温度 420°C での経過時間に換算すると平均 1230 秒となることに基づいた。また,負荷回数は,60 年の寿命を考慮し、最大 300 回とした。

また、比較対象とするために、応力負荷を行わず に420℃で保持するケースも実施した。

変動応力負荷が 0, 10, 50, 150 及び 300 回に 到達試験片を試験機から取り外し, X 線回折法によって試験片長手方向の表面残留応力を測定した。残 留応力測定を終えた試験片は再び試験装置に組み 込み、変動応力負荷を続行した。

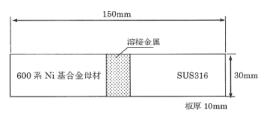


Fig.4 高温保持及び変動応力の影響調査に用いる試験片の形状

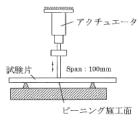


Fig.5 試験片への繰り返し応力負荷を示す模式図

3. 実験結果

3.1 高温保持の影響

Fig.6にWJP施工した600系Ni基合金溶接金属を320℃,350℃及び380℃で保持した後の残留応力測定結果を示す。いずれも熱処理初期に応力緩和が確認されたが、その後、残留応力に顕著な変化が

なく,ほぼ一定であることが分かった。初期の応力 緩和は加熱による応力再配分や遷移クリープによ る弾性歪の減少が原因と考えられる。

これら 3 水準の試験温度における残留応力の緩和挙動はいずれも類似しており、320~380℃の範囲では緩和量に有意な差がない。この温度範囲におけるクリープ速度が極めて小さく、X線残留応力で定量可能な残留応力緩和が生じないものと考えられる。

Fig.6 320,350 及び 380℃における 600 系 Ni 基 合金溶接金属の残留応力測定結果(測定温 度は室温)

3.2 高温保持及び応力負荷の影響

応力無負荷の場合と 200MPa の引張応力を負荷 し続けた場合の表面残留応力の緩和挙動を Fig.7に 示す。

応力無負荷の場合,温度を室温から360℃へ昇温した際に若干の応力緩和が認められた。これは3.1と同様に加熱による応力再配分,遷移クリーブによる弾性歪の減少によって生じたと推定される。しかし,温度が360℃に到達した後は,時間の経過に対して圧縮残留応力の緩和はほぼ認められず一定の残留応力を保持していると考えられた。

引張応力を負荷し続けた場合では,負荷直後に圧縮残留応力は大きく減少した。この減少量は負荷応力 200MPa とほぼ等しいと考えられる。その後,昇温や 360℃での保持中の応力緩和挙動は応力無負荷場合とほぼ同様であり,明確な緩和がなくほぼ負荷応力分だけ圧縮応力が減少している結果であった。

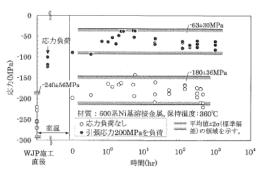


Fig.7 WJP施工した 600 系 Ni 基合金母材の残留応力測定結果(測定温度は 360℃)

3.3 高温保持及び変動応力の影響

Fig.8 に残留応力測定結果を時間に対して示す。 なお、WJP 施工と USP 施工のケースでは初期の残 留応力が異なっているため、同一グラフ上での比較 のために初期値に対する比として示した。

変動応力負荷のない場合,ある場合共に圧縮残留 応力の大きさは時間の経過に伴い減少する傾向を 示し,両者に顕著な相違は認められなかった。

420℃においては、320~380℃の場合とは異なり、時間に対して比較的明瞭に緩和が継続する傾向を示している。WJP 施工したステンレス鋼でも同様に 400℃以上ではそれ以下の温度と比べ残留応力速度が明瞭に増す傾向が報告されている[5]。別途実施した本材料のクリープ試験結果では、100℃の温度加速によってクリープ歪速度は 2 桁程度増大する結果であり、これに対応した緩和速度の増大が生じたものと考えられる。一方、応力の影響については、本検討で繰り返し負荷した引張応力130MPaは材料の弾性範囲内であるため、残留応力緩和への影響は小さいと推定される。

このような温度加速条件下においても、実機の運転期間中に想定される最大 300 回の変動応力負荷による残留応力の緩和量は小さく、圧縮残留応力が保持されることが確認できた。

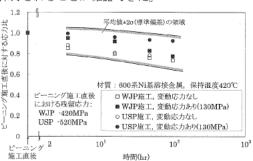


Fig.8 WJPまたはUSP施工後に420℃で変動応力 負荷した場合の残留応力測定結果(測定温 度は室温)

4. 結言

WJP または USP を施工した 600 系 Ni 基合金 を対象に、高温引張条件下における表面の残留応 力緩和挙動の緩和挙動を確認した。得られた結果 を以下にまとめる。

- (1) 320~380℃の高温保持中においては、初期に 圧縮残留応力の有意な緩和が生じるが、その 後は顕著な緩和が生じないことを確認した。
- (2) 実機の定常運転中の発生応力を模擬した弾性 範囲内の引張応力を負荷し続けた状態におい ても、緩和挙動は加速されないことを 320℃ での残留応力測定によって確認した。
- (3) 420℃において、実機の起動停止に伴う発生 応力を模擬した弾性範囲内の応力を繰り返し 負荷した場合でも、負荷がない場合と緩和挙 動に顕著な差は認められなかった。実機の運 転期間中に想定される300回の応力負荷回数 での残留応力の緩和量は小さく、圧縮残留応 力が保持されることが確認できた。

参考文献

- [1] 河野文紀, 大屋寿三, 沖村浩司, 名倉保身, 太 田高裕: 材料力学部門分科会・研究会合同シン ポジウム講演論文集, p.199 (2000)
- [2] 沖村浩司, 堀展之, 向井正行, 増本光一郎, 鴨和彦, 黒川政秋:三菱重工技報 Vol 43, No.4 p.41 (2006),
- [3] O.Vohringer: Institut fur Werkstoffkunde I, p.47 (1984)
- [4] H.Holzapfel, V.Schulze, O.Vohringer, Macherauch: Conf Proc. ICSP-6, p.413 (1996)
- [5] P. Krull, Th. Nitschke-Pagel: Conf Proc. ICSP-7, p.318 (1999)

(平成 22 年 5 月 31 日)

タイトル	スペアパーツの取り組みについて
概要	当社のスペアパーツに係る取り組みについて以下に示す。
説明	当社は、原子炉施設の円滑な運転をはかるために、購入発注しても直ちに製作調達することが困難であり、用途が限定され他に流用することが困難である等の基準を満たし、常備すべき最低限度のものを予備品として常備している。 予備品は、社内標準(原子力発電所保修業務要綱)に従い品目および数量が管理され、必要に応じて、同標準に基づく社内手続きを経て見直しが行われることになっている。 なお、安全上重要な機器はプラントメーカ等の主要メーカが供給しているため、それらの機器が製造中止になる場合は、当社は事前にメーカからその情報を入手しており、都度、製造中止予定品の必要数の確保(予備品として確保)や後継機器への取替えを計画したりするなどの検討を行っている。

タイトル	文書体系における現状保全に係るプログラムについて
概要	当社の品質マネジメントシステムに関する文書体系における現状保全に係るプログラムを以下に示す。
説 明	大飯発電所3号炉の設備の具体的な保全プログラムを規定する文書は以下の通り。 ・保修業務所則 ・生木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・土木建築業務所則 ・大水産工に従い、保全対象範囲の策定、保全重要度の設定、保全指針の策定、 点検計画の策定、保全結果の確認・評価等の保全プログラムを実施している。 なお、機械設備、電気計装設備については、設備情報管理、保全指針、点検計画、工事記録、不具合・懸案処理、作業票管理などを一元管理できる原子力保全総合システムを構築して、保全プログラムの運用に活用している。 また、2次系配管の減肉に関する管理については、別途定める2次系配管 肉厚の管理指針により、点検計画の策定、点検の実施、余寿命評価と措置を行うと共に、原子力配管肉厚管理システムを構築して、データを一元管理している。 なお、運転管理としては、発電業務所則により設備の監視および巡回点検 方法を定めて運用し、不具合箇所の早期発見および事故の未然防止を図ることとしており、化学管理業務所則により水質管理を行い、各系統の水質が管理値を満足していないと判断した場合は、水処理により適切な処置を講することとしている。

説明

品質マネジメントシステムにおける機器の保全プログラムに関する体系 を以下に示す。

また、評価書に記載する現状保全の内容と下記体系に基づく保全指針の 記載との対応例を添付1に示す。

保安規定

(1次文書)原子力発電の安全に係る品質保証規程

(2次文書) 施設管理通達

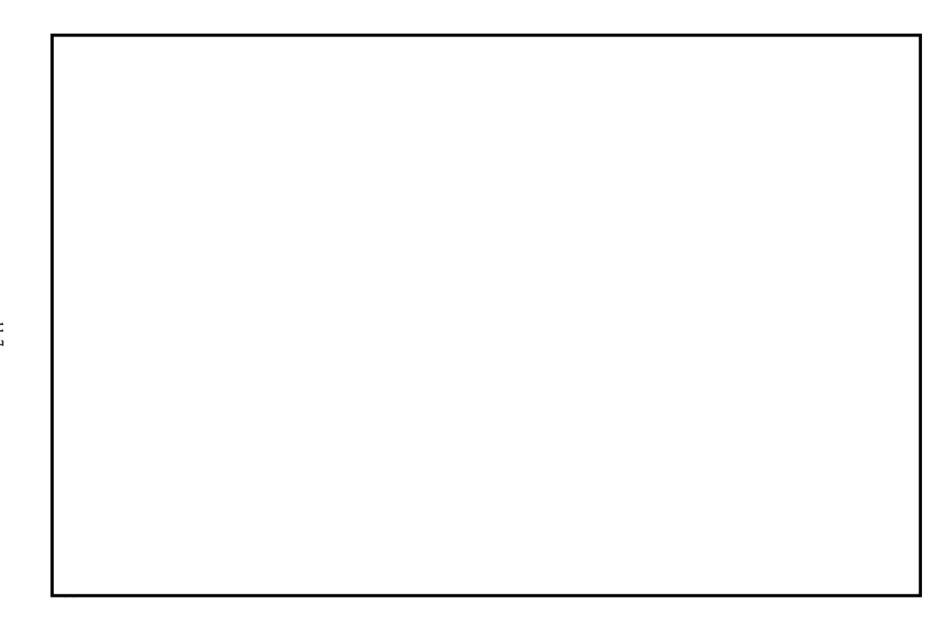
(3次文書)原子力発電所保修業務要綱原子力発電所保修業務要綱指針大飯発電所保修業務所則大飯発電所保修業務所則指針

⇒ 保全指針(原子力保全総合システム) ⇒具体的な機器の保全プログラム(保 全項目・頻度等)を規定

●評価書の記載

② 現状保全

固定子コイルおよび口出線・接続部品の絶縁低下に対しては、定期的な絶縁診断として絶縁抵抗測定、直流吸収試験、tan δ 試験および部分放電試験により、管理範囲に収まっていることの確認を行うとともに、傾向管理を行っている。


また、機器の運転年数に基づき(絶縁種別等により約18.5~21.5年)、直流吸収試験、 $\tan\delta$ 試験、部分放電試験の周期を短縮し、点検結果に基づき取替を検討するものとしている。

●保全指針の記載

水土油町 少山戦			

