資料2

美浜 1,2 号	·炉廃止措置 審查資料
資料番号	添付 5-1
提出年月日	2021年8月27日

美浜発電所1,2号炉

残存放射能調査について

2021年8月 関西電力株式会社

1.	はじめに
2.	残存放射能調査について
	2.1 放射化汚染の評価について
	2.2 二次的な汚染の評価について
3.	汚染分布及び放射性固体廃棄物の推定発生量について

1. はじめに

本資料では、美浜発電所1号炉及び2号炉の廃止措置計画認可申請書「添付書類五 核燃料物質による汚染の分布とその評価方法に関する説明書」に記載した第1段階に 実施した残存放射能調査の内容について説明する。

2. 残存放射能調査について

解体対象施設の放射能レベルを評価し、解体対象施設の放射能分布及び放射能レベ ル区分別の放射性固体廃棄物の発生量を評価する。評価対象核種は、「発電用原子炉 廃止措置工事環境影響評価技術調査-環境影響評価パラメータ調査研究-(平成18 年度経済産業省原子力安全・保安院 放射性廃棄物規制課委託調査、財団法人電力中 央研究所)の添付 廃止措置工事環境影響評価ハンドブック(第3次版)」に基づい て第1表に示す55核種とし、解体対象施設の放射能レベルは、放射化汚染と二次的な 汚染とに区分して、第2段階の開始時点である2022年4月1日時点の放射能で評 価する。

	評価対象核種(55 核種)					
Н-3	Be-10	C-14	S-35	Cl-36	Ca-41	Mn-54
Fe-55	Fe-59	Co-58	Co-60	Ni-59	Ni-63	Zn-65
Se-79	Sr-90	Zr-93	Nb-94	Mo-93	Te-99	Ru-106
Ag-108m	Cd-113m	Sn-126	Sb-125	Te-125m	I-129	Cs-134
Cs-137	Ba-133	La-137	Ce-144	Pm-147	Sm-151	Eu-152
Eu-154	Ho-166m	Lu-176	Ir-192m	Pt-193	U-234	U-235
U-236	U-238	Np-237	Pu-238	Pu-239	Pu-240	Pu-241
Pu-242	Am-241	Am-242m	Am-234	Cm-242	Cm-244	—

第1表 評価対象核種

2.1 放射化汚染の評価について

解体対象施設の放射化汚染は、評価対象範囲の中性子束分布を計算し、この中性子 束分布を用いた放射能濃度分布の計算により解体対象施設の構造材の放射能濃度を核 種別に評価する。評価にあたっては、評価対象範囲の代表試料を採取・分析した結果 と比較することにより、妥当性を確認する。放射化汚染の評価方法の手順を第1図に 示す。

第1図 放射化汚染の評価方法

放射化汚染の評価対象範囲は、解体対象施設のうち、運転中の炉心及び使用済燃料 からの中性子照射の影響を受ける範囲とする。具体的には、原子炉容器、炉心支持構 造物及びその他の原子炉格納容器内設備並びに原子炉補助建屋内の使用済燃料ピット のラック、ライナー及びコンクリート壁である。 2.1.1 中性子束分布及び放射能濃度分布の計算

評価対象範囲の中性子束分布を評価し、この中性子束分布を用いて構造材の放射能 濃度を核種別に評価する。中性子束分布は、評価対象範囲の形状、材料組成及び原子 炉の出力を用いて計算する。

(1) 中性子束分布の計算

a. 幾何形状のモデル化

評価対象範囲の実形状を二次元輸送計算コードで扱うために、評価対象範囲に ついてR-θ体系、円筒体系又はX-Y体系にモデル化して評価する。

原子炉容器内の中性子束分布の計算においては、原子炉容器及び炉心支持構造 物の幾何形状を設定し、評価する。燃料集合体や炉心支持構造物等の複雑形状領 域については、構造物と冷却材の体積比を用いて密度と組成を均質化した計算モ デルにより中性子束分布を求める。モデル化の領域は、均質化した密度と組成の 違いから上蓋領域、上部プレナム部、燃料領域、下部プレナム部及び下部鏡領域 に分割して評価する。

燃料有効高さの範囲では、炉心支持構造物の周方向の形状の違いにより中性子 束分布に差異が生じるため、軸方向と水平方向を組み合わせて三次元的な評価を 行う。原子炉容器及び炉心支持構造物の軸方向及び水平方向の評価モデルを第2 図に示す。

b. 運転実績による出力分布の反映

中性子束分布の計算に用いる出力分布としては、水平方向モデルは実機の運転 実績(各サイクルの運転期間)に基づいた相対燃焼度分布を使用し、軸方向モデ ルについては、サイクルごとに大きく変わらないため2ループの平均的な出力分 布を使用する。また、線源スペクトルはU-235の核分裂スペクトルを用いる。

その他の原子炉格納容器内設備等の計算では、線源となる中性子束分布は、原子炉容器及び炉心支持構造物の中性子束分布の計算結果を引継いで設定する。

使用済燃料ピットにおける中性子東分布は、貯蔵中燃料の燃焼度、冷却期間 等を考慮して保守的な評価となる使用済燃料を、燃料ピットの壁近傍のラック に配置したとして一次元平板モデルにより計算する。

c. 二次元輸送計算コードによる計算

中性子束分布の計算では、二次元輸送計算コードDORTver. 3.2を使 用する。

中性子束分布の計算に使用する断面積ライブラリについては、国立研究開発法 人日本原子力研究開発機構にて整備されたJENDL-4.0に基づく、MAT XSLIB-J40を使用する。

中性子束分布の計算で使用する評価対象範囲の物質密度や物質組成については、 JIS規格等で定められる標準的な密度及び元素組成を使用する。

第2図(1/2) 原子炉容器及び炉心支持構造物の評価モデル(軸方向)

第2図(2/2) 原子炉容器及び炉心支持構造物の評価モデル(水平方向)

(2) 放射能濃度分布の計算

放射能濃度分布の計算は、(1)「中性子束分布の計算」で求めた中性子束分布、 運転実績による照射・冷却条件、代表試料による元素組成等を用いて行う。

a. 代表試料による元素組成の見直し

放射能濃度分布の計算で使用する構造材の元素組成には、過去の調査に基づく 元素組成を使用するが、2.1.2「代表試料の採取・分析」で採取・分析する代表 試料の元素組成についてはその結果を反映する。

b. 運転実績による照射・冷却条件の設定

放射能濃度分布の計算は、運転実績を踏まえた照射期間及び冷却期間に基づい て計算を実施する。照射期間は、保守的に、定検で停止している期間を除いて連 続照射したものとし、冷却期間は、原子炉停止後2022年4月1日までとする。 なお、取替工事を行った原子炉容器上蓋及び蒸気発生器は、取替時期を踏まえ て計算を実施する。放射能濃度分布の計算に用いる原子炉容器等の照射期間を第 2表及び第3表に示す。

c. 放射性核種生成崩壊計算コードによる計算

放射能濃度分布の計算ではORIGEN-2.1を使用する。放射能濃度分布の計算に用いる断面積は、JENDL-4.0を使用する。

第2表 原子炉容器及び炉心支持構造物の放射能濃度分布の計算における照射期間

	設備	照射期間 (EFPY)	備考
1号炉	原子炉容器 炉心支持構造物	22.1年	運転開始から運転停止まで (1970年11月~2010年11月)
	原子炉容器上蓋	6.8年	上蓋取替から運転停止まで (2001年8月~2010年11月)
2号炉	原子炉容器 炉心支持構造物	25.0年	運転開始から運転停止まで (1972年7月~2011年12月)
	原子炉容器上蓋	9.0年	上蓋取替から運転停止まで (2000年5月~2011年12月)

第3表 その他の原子炉格納容器内設備等の放射能濃度分布の計算おける照射期間

	設備	照射期間 (EFPY)	備考
1号炉	原子炉格納容器内	22.1年	運転開始から運転停止まで (1070年11日~2010年11日)
			(1970年11月 2010年11月)
	蒸気発生器	11.3年	蒸気発生器取替から運転停止まで
			(1996年2月~2010年11月)
	使用済燃料ピット	51.3年	運転開始から第2段階開始時期まで
			(1970年11月~2022年4月)
2号炉	原子炉格納容器内	25.0年	運転開始から運転停止まで
			(1972年7月~2011年12月)
	蒸気発生器	13.2年	蒸気発生器取替から運転停止まで
			(1994年8月~2011年12月)
	使用済燃料ピット	49.7年	運転開始から第2段階開始時期まで
			(1972年7月~2022年4月)

2.1.2 代表試料の採取・分析

原子炉容器、炉心支持構造物、その他原子炉格納容器内設備等から代表試料(金属 及びコンクリート)を採取し、核種別の放射能濃度の測定及び元素組成の分析を実施 する。

原子炉容器及び炉心支持構造物の試料採取箇所としては、放射性廃棄物の放射能レベル区分境界付近、構造材の材質が大きく変化する(中性子束分布の変化が大きい) 箇所等を選定する。美浜1号炉において6試料を採取し、美浜2号炉において12試料 を採取する。原子炉容器及び炉心支持構造物の試料採取箇所を第4表及び第3図に示 す。

その他の原子炉格納容器内設備等の試料採取については、主に原子炉格納容器内の ストリーミングの影響を確認するため、複雑形状の設備、建屋コンクリート等から試 料を採取する。その他の原子炉格納容器内設備等の試料採取箇所並びに試料の種類及 び個数を以下に示す。

【試料採取箇所】

- ・1次遮蔽コンクリート周辺
- •1次冷却材出入口管台周辺
- ・ 炉内核計装配管室(ICIS配管室)
- ・ループ室
- ・原子炉キャビティ周り
- ・2次遮蔽コンクリート
- ・オペレーションフロア(O/F)周辺、外部遮蔽コンクリート
- ・一般通路部(ループ室出入口通路部で代表)

【試料の種類及び個数】

- (1号炉) 金属20試料 コンクリート35試料
- (2号炉) 金属19試料 コンクリート34試料

1 号炉			2 号炉	
位置 No.	採取機器	位置 No.	採取機器	採取目的
1	制御棒案内管	1	制御棒案内管	放射能レベル区分境界の確認
2	制御棒案内管	2	制御棒案内管	放射能レベル区分境界の確認
		3	下部炉心構造物	ストリーミング影響確認
		4	下部炉心構造物	ストリーミング影響確認
3	下部炉心構造物	5	下部炉心構造物	放射能レベル区分境界の確認
		6	下部炉心構造物	ストリーミング影響確認
4	原子炉容器	7	原子炉容器	ストリーミング影響確認
5	原子炉容器	8	原子炉容器	ストリーミング影響確認
6	原子炉容器	9	原子炉容器	放射能レベル区分境界の確認
		10	原子炉容器	ストリーミング影響確認
		11	下部炉心支持板	放射能レベル区分境界の確認
		12	下部炉心支持板	放射能レベル区分境界の確認

第4表 原子炉容器及び炉心支持構造物の試料採取箇所

第3図(1/2) 原子炉容器及び炉心支持構造物の代表試料採取箇所(1号炉)

採取位置	採取器機	
No. 1	制御棒案内管	
No.2		
No.3		
No.4	下如此同心推进的	
No.5	- 下部炉心桶运物	
No.6		
No.7		
No.8	唐之后命即	
No.9	原于炉谷品	
No.10		
No.11	てからいませた	
No.12	下部炉心文持板	

第3図(2/2) 原子炉容器及び炉心支持構造物の代表試料採取箇所(2号炉)

2.1.3 放射化汚染の評価結果

2.1.1「中性子束分布及び放射能濃度分布の計算」で計算した構造材の放射能濃度 を、2.1.2「代表試料の採取・分析」で分析した代表試料の放射能濃度と比較するこ とにより、放射能濃度分布の計算結果の妥当性を確認する。

主要な核種であるCo-60で比較した結果を第5表(原子炉容器及び炉心支持構造物) 及び第6表(その他の原子炉格納容器内設備等)に示す。原子炉容器及び炉心支持構 造物の比較においては、分析結果に対して計算結果が概ね10倍以内の範囲で推移し ており、その他の原子炉格納容器内設備等の比較においては、分析結果に対して計算 結果が約2倍から数十倍程度高く推移しているが、いずれも計算結果が保守側の結果 となっており、計算結果は妥当と判断する。

なお、その他の原子炉格納容器内設備等の一部のコンクリート試料については、 Co-60の分析結果に対して計算結果が下回っているが、当該の試料採取箇所は炉心か ら遠くに位置しており、放射能濃度が極めて低く、周辺公衆の線量評価及び放射性固 体廃棄物の発生量評価への影響はほとんど無いことから計算結果を採用する。

計算で得られた放射能濃度に、対象設備の物量を乗じて求めた放射化汚染による核 種別の推定放射能を第7表に示す。 第5表(1/2) 原子炉容器及び炉心支持構造物の分析結果と計算結果の比較

場所		材質	E:分析値 (Bq/g)	C:計算値 (Bq/g)	C/E
上立い言心、##、生物	制御棒案内管(下)	SUS304	4.31×10^{6}	$9.08 imes 10^{6}$	2.11
上的炉心桶垣初	制御棒案内管(上)	SUS304	$5.19 imes10^3$	$2.96{ imes}10^4$	5.70
下部炉心構造物	熱遮蔽体(炉心中央)	SUS304	1.97×10^{7}	$5.48 imes 10^{7}$	2.78
	原子炉容器(管台下部)	炭素鋼	$3.78 imes 10^2$	$5.67{ imes}10^2$	1.50
原子炉容器	原子炉容器(炉心上部)	炭素鋼	$1.69 imes 10^{5}$	3.14×10^{5}	1.86
	原子炉容器 (炉心中央)	炭素鋼	$7.64 imes 10^{5}$	$1.38 imes 10^{6}$	1.80

(Co-60) (1号炉)

第5表(2/2) 原子炉容器及び炉心支持構造物の分析結果と計算結果の比較

	場所	材質	E:分析値 (Bq/g)	C : 計算値 (Bq/g)	C/E
し立ひについまた。	制御棒案内管(下)	SUS304	$9.92 imes 10^{6}$	$2.61 imes 10^{7}$	2.63
上前从中心情担初	制御棒案内管(上)	SUS304	8.87×10^{3}	$7.62{ imes}10^4$	8.60
	炉心槽(管台下部)	SUS304	2.02×10^{3}	8.29×10^{3}	4.11
下立四合之共生生的	熱遮蔽体(炉心上部)	SUS304	1.08×10^{7}	$3.32 imes 10^{7}$	3.06
1、1113月7月1日11月1日190	熱遮蔽体(炉心中央)	SUS304	4.35×10^{7}	1.02×10^{8}	2.33
	炉心槽(炉心下部)	SUS304	$2.18 imes 10^{7}$	$6.23 imes 10^{7}$	2.86
	原子炉容器(管台下部)	炭素鋼	4.13×10^{2}	8.62×10^{2}	2.09
百乙后次吧	原子炉容器(炉心上部)	炭素鋼	$3.39 imes 10^{5}$	$7.39 imes 10^{5}$	2.18
原于炉谷奋	原子炉容器(炉心中央)	炭素鋼	$1.28 imes 10^{6}$	$2.19 imes 10^{6}$	1.71
	原子炉容器(炉心下部)	炭素鋼	$7.89 imes 10^{5}$	1.32×10^{6}	1.68
下立四合之共生生物	下部炉心支持板(上)	SUS304	$9.56 imes10^4$	1.19×10^{5}	1.25
下的炉心桶垣物	下部炉心支持版(下)	SUS304	1.55×10^{4}	1.93×10^{4}	1.25

(Co-60) (2号炉)

第6表(1/4) その他の原子炉格納容器内設備等の分析結果と計算結果の比較(Co-60)

	場所	材質	E : 分析値 (Bq/g)	C : 計算値 (Bq/g)	C/E
	ICIS 配管室奥ギャップ下	炭素鋼	4.45×10^{2}	8.60×10^{2}	1.93
ICIS	RVV ギャップ配管室奥ギャップ床面コンクリー	コンクリート	$3.17{ imes}10^{0}$	$2.09 imes10^2$	65.93
配管索	F	コンクリート	1.28×10^{-1}	$8.89 imes 10^{0}$	69.72
±	シンプルチューブサポート	炭素鋼	1.44×10^{2}	$3.42 imes 10^{2}$	2.37
		コンクリート	$< 1.24 imes 10^{-3}$	$9.77 imes 10^{-3}$	_
		コンクリート	$< 1.36 imes 10^{-3}$	$7.29{ imes}10^{-4}$	_
	KV 胴間内辺のI (人感報コンクリート (D(MOOS士位 NIC 左掲記が無いな人)	コンクリート	$< 1.38 \times 10^{-3}$	$7.65{ imes}10^{-3}$	_
	(以7907万位 NIS 入復司か無7 句7万)	コンクリート	$5.07 imes 10^{-3}$	$3.51 imes 10^{-1}$	69.19
		コンクリート	$6.67 imes 10^{-1}$	$2.51{ imes}10^1$	37.68
	R/V 胴部付近の 1 次遮蔽コンクリート (R/V90°方位 NIS 欠損部部分)	コンクリート	$2.45 imes 10^{-3}$	$1.01 imes 10^{-2}$	4.13
1		コンクリート	1.31×10^{-3}	$7.08 imes 10^{-4}$	0.54
次		コンクリート	$5.07 imes 10^{-3}$	1.31×10^{-1}	25.78
一一一般		コンクリート	3.71×10^{-1}	$1.23{ imes}10^1$	33.11
コン		コンクリート	$5.24 imes 10^{2}$	$1.12 imes 10^{3}$	2.14
2 2		コンクリート	$5.80 imes 10^{-3}$	$2.83{ imes}10^{-2}$	4.88
IJ 1		コンクリート	$1.50 imes 10^{-2}$	1.43×10^{-1}	9.52
Γ.	クリート (P(1000+位に近いコンクリート)	コンクリート	$4.55 imes 10^{-2}$	$7.96{ imes}10^{-1}$	17.50
		コンクリート	1.01×10^{-1}	$2.17{ imes}10^{0}$	21.52
		コンクリート	1.10×10^{0}	$1.66{ imes}10^1$	15.15
	B ループ S/G-HOT 側の保温材の R/V 側の一部(R/V 方位 90°方向)	SUS304	$1.51 imes 10^3$	1.38×10^{4}	9.14
	B ループ S/G-HOT 側の保温材のループ室側の 一部(R/V 方位 90°方向)	SUS304	1.11×10^{0}	$1.46 imes 10^{1}$	13.13

(1号炉) (1/2)

(1	景炉)	(2/2)
\ T	, <i>J</i> / <i>Y</i> /	

		場所	材質	E:分析值 (Bq/g)	C:計算値 (Bq/g)	C/E
		B ループ S / G 胴部の保温材の一部(メタル部 分)	SUS304	6.15×10^{-2}	1.13×10^{0}	18.44
1	レ 	B ループ S/G-HOT 側水室の保温材の一部 (R/V 方位 90°方向)	SUS304	3.02×10^{-1}	$3.30 imes 10^{0}$	10.92
	プ 室	B ループ RCP インターナル及び MCP-COLD 側管台の保温材一部(メタル部分)	SUS304	$<2.73 imes10^{-2}$	$2.69 imes 10^{0}$	_
		B ループループ室外側付近のコンクリート (R/V 及び S/G の放射が交わる部分)	コンクリート	$1.85 imes 10^{-3}$	$1.63 imes 10^{-2}$	8.81
EL-6.15m	O/F 以下の一般通路①	Bループ天井(RHR 配管貫通部)	コンクリート	1.94×10^{-3}	$2.05 imes 10^{-2}$	10.56
	0	A ループ入口床面付近(コンクリート端から 230mm)	コンクリート	$< 1.35 \times 10^{-3}$	$8.90 imes 10^{-3}$	_
EL.	F 以下	A ループ入口床面の配管サポート(コンクリー ト端から 230mm)	炭素鋼	$<\!2.83{ imes}10^{-2}$	1.04×10^{-1}	_
-2.15m	の一般	B ループ入口床面付近(コンクリート端から 280mm)	コンクリート	$1.85 imes 10^{-3}$	$8.15 imes 10^{-3}$	4.41
	通販	Bループ入口から1m程度離れた床面付近	コンクリート	$< 1.24 \times 10^{-3}$	$1.21 imes 10^{-3}$	_
	哈 ②	B ループ入口付近の電線管カバー(コンクリー ト端から 320mm)	炭素鋼	$<2.91 imes10^{-2}$	$8.64 imes 10^{-2}$	_
	0					
EL+4.0m	VF以下の一般通路③	B ループ入口床面(コンクリート端から 635mm)	コンクリート	$<1.21 \times 10^{-3}$	$4.30 imes 10^{-3}$	_
EL+4.0m	NF以下の一般通路③	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から 1,995mm の床面(キ ャビティから C/V270°方向) 	コンクリート コンクリート	$<1.21 \times 10^{-3}$ 1.35×10^{-3}	4.30×10^{-3} 7.25×10^{-3}	5.37
EL+4.0m	NF以下の一般通路③	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キャビティから C/V270°方向) 機器ハッチ開口部端から795mmの床面(キャビティから C/V270°方向) 	コンクリート コンクリート コンクリート	$<1.21 \times 10^{-3}$ 1.35×10^{-3} 2.49×10^{-3}	4.30×10^{-3} 7.25×10^{-3} 6.35×10^{-3}	
EL+4.0m	WF 以下の一般通路③	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 	コンクリート コンクリート コンクリート 炭素鋼	$<\!$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \end{array}$	
EL+4.0m	WF 以下の一般通路③	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング 	コンクリート コンクリート コンクリート 炭素鋼 炭素鋼	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.78\times10^{-2}$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \\ \hline 6.29 \times 10^{-2} \end{array}$	
EL+4.0m EL	VF以下の一般通路③	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング キャビティ開口部端から900mmの床面(キャ ビティからC/V0°方向) 	コンクリート コンクリート コンクリート 炭素鋼 ニンクリート	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.78\times10^{-2}$ $<2.05\times10^{-3}$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \\ \hline 6.29 \times 10^{-2} \\ \hline 6.79 \times 10^{-3} \end{array}$	 5.37 2.55
EL+4.0m EL+10.1n	NF以下の一般通路③ O/F	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング キャビティ開口部端から900mmの床面(キャ ビティからC/V0°方向) キャビティ別口部端から2,050mmの床面(キャ ビティからC/V0°方向) 	コンクリート コンクリート コンクリート 炭素鋼 コンクリート コンクリート	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.78\times10^{-2}$ $<2.05\times10^{-3}$ $<1.21\times10^{-3}$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \\ \hline 6.29 \times 10^{-2} \\ \hline 6.79 \times 10^{-3} \\ \hline 5.74 \times 10^{-3} \end{array}$	 5.37 2.55
EL+4.0m EL+10.1m	NF以下の一般通路③ O/F	Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング キャビティ開口部端から900mmの床面(キャ ビティからC/V0°方向) キャビティ開口部端から2,050mmの床面(キ ャビティからC/V0°方向) 格納容器循環空調装置架台(キャビティ開口部 端から1,200mm)	コンクリート コンクリート コンクリート 炭素鋼 コンクリート コンクリート コンクリート 炭素鋼	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.78\times10^{-2}$ $<2.05\times10^{-3}$ $<1.21\times10^{-3}$ $<2.97\times10^{-2}$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \\ \hline 6.29 \times 10^{-2} \\ \hline 6.79 \times 10^{-3} \\ \hline 5.74 \times 10^{-3} \\ \hline 7.23 \times 10^{-2} \end{array}$	- 5.37 2.55 - - - - -
EL+4.0m EL+10.1m	VF以下の一般通路③ O/F	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング キャビティ開口部端から900mmの床面(キャ ビティからC/V0°方向) キャビティがらC/V0°方向) キャビティからC/V0°方向) 格納容器循環空調装置架台(キャビティ開口部 端から1,200mm) A-RCP ハッチグレーチング(キャビティから C/V180°方向) 	コンクリート コンクリート コンクリート 炭素鋼 コンクリート コンクリート コンクリート 炭素鋼 炭素鋼	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.05\times10^{-2}$ $<2.05\times10^{-3}$ $<1.21\times10^{-3}$ $<2.97\times10^{-2}$ 3.70×10^{-2}	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline 7.25 \times 10^{-3} \\ \hline 6.35 \times 10^{-3} \\ \hline 2.52 \times 10^{-1} \\ \hline 6.29 \times 10^{-2} \\ \hline 6.79 \times 10^{-3} \\ \hline 5.74 \times 10^{-3} \\ \hline 7.23 \times 10^{-2} \\ \hline 6.83 \times 10^{-2} \end{array}$	- 5.37 2.55 - - - - 1.85
EL+4.0m EL+10.1m	NF以下の一般通路③ O/F	 Bループ入口床面(コンクリート端から 635mm) 機器ハッチ開口部端から1,995mmの床面(キ ャビティからC/V270°方向) 機器ハッチ開口部端から795mmの床面(キャ ビティからC/V270°方向) キャビティ手摺り(キャビティからC/V270°方 向) 機器ハッチグレーチング キャビティ開口部端から900mmの床面(キャ ビティからC/V0°方向) キャビティ開口部端から2,050mmの床面(キャ ビティからC/V0°方向) キャビティ開口部端から2,050mmの床面(キャ ビティからC/V0°方向) 格納容器循環空調装置架台(キャビティ開口部 端から1,200mm) A-RCP ハッチグレーチング(キャビティから C/V180°方向) B-RCP ハッチ開口部付近の床面(RCP ハッチ からC/V180°方向) 	 コンクリート コンクリート コンクリート 炭素鋼 コンクリート コンクリート 炭素鋼 コンクリート 	$<1.21\times10^{-3}$ 1.35×10^{-3} 2.49×10^{-3} $<2.93\times10^{-2}$ $<2.78\times10^{-2}$ $<2.05\times10^{-3}$ $<1.21\times10^{-3}$ $<2.97\times10^{-2}$ 3.70×10^{-2} $<1.24\times10^{-3}$	$\begin{array}{c} 4.30 \times 10^{-3} \\ \hline \\ 7.25 \times 10^{-3} \\ \hline \\ 6.35 \times 10^{-3} \\ \hline \\ 2.52 \times 10^{-1} \\ \hline \\ 6.29 \times 10^{-2} \\ \hline \\ 6.79 \times 10^{-3} \\ \hline \\ 5.74 \times 10^{-3} \\ \hline \\ 7.23 \times 10^{-2} \\ \hline \\ 6.83 \times 10^{-2} \\ \hline \\ 5.81 \times 10^{-3} \end{array}$	- 5.37 2.55 - - - - 1.85 -

第6表(3/4) その他の原子炉格納容器内設備等の分析結果と計算結果の比較(Co-60)

	場所	材質	E:分析值 (Bq/g)	C : 計算値 (Bq/g)	C/E
IC	ICIS 配管室足場グレーチング	炭素鋼	6.47×10^{1}	4.71×10^{2}	7.28
SI	ICIS 配管字像ギャップ中面コンクリート	コンクリート	$9.16 imes 10^{0}$	$5.30{ imes}10^1$	5.79
	ICIS 配信主英イヤック休園コンクックート	コンクリート	$1.06 imes 10^{0}$	$1.62 imes 10^{0}$	1.53
室	ICIS 配管室足場グレーチング	炭素鋼	$2.32{ imes}10^1$	$5.25{ imes}10^1$	2.26
		コンクリート	$1.99 imes 10^{-3}$	$3.46{ imes}10^{-2}$	17.37
		コンクリート	$< 1.14 \times 10^{-3}$	$4.95{ imes}10^{-3}$	_
	R/V 胴部内近の1 次遮蔽コンクリート (R/V90°方位 NIS 欠損部が無い部分)	コンクリート	$< 1.21 imes 10^{-3}$	$4.18 imes 10^{-4}$	_
		コンクリート	$< 1.26 imes 10^{-3}$	$8.88 imes 10^{-3}$	_
		コンクリート	$1.75 imes 10^{-2}$	$6.83 imes 10^{-1}$	39.01
1	R/V 胴部付近の 1 次遮蔽コンクリート (R/V90°方位 NIS 欠損部部分)	コンクリート	$2.32 imes 10^{-3}$	$3.42 imes 10^{-2}$	14.71
次		コンクリート	$< 1.18 \times 10^{-3}$	$4.88 imes 10^{-3}$	_
遮		コンクリート	$2.20 imes 10^{-3}$	$1.84 imes 10^{-1}$	83.58
		コンクリート	$2.98 imes 10^{-1}$	$2.17{ imes}10^1$	72.88
レカ		コンクリート	9.10×10^{0}	$3.07{ imes}10^2$	33.68
Ŭ.		コンクリート	$8.99 imes 10^{-3}$	$3.34 imes 10^{-1}$	37.18
		コンクリート	$1.33 imes 10^{-2}$	$2.16{ imes}10^{-1}$	16.16
1.	$\gamma = \gamma = 0.09 \gamma = 0.07 \gamma = 10.01 (COLD 配管構のコンクリート)$	コンクリート	$2.79 imes 10^{-3}$	$2.43 imes 10^{-1}$	86.87
		コンクリート	$2.90 imes 10^{-3}$	$9.54 imes 10^{-3}$	3.29
		コンクリート	$1.15 imes 10^{-1}$	$1.07 imes 10^{-1}$	0.93
	B ループ RV 管台付近の保温材(サンドプラ グ内)	SUS304	3.11×10^{3}	1.11×10^{4}	3.56
	Bループ室内 MCP 配管貫通部付近の保温材	SUS304	$4.54 imes 10^{0}$	$1.38 imes10^2$	30.45

(2号炉) (1/2)

第6表(4/4) その他の原子炉格納容器内設備等の分析結果と計算結果の比較(Co-60)

(2号	炉)	(2/2)
	// /	

場所			材質	E:分析値 (Bq/g)	C:計算値 (Bq/g)	C/E
		B ループ S/G 胴部の保温材の一部(メタル部 分)	SUS304	$4.44 imes 10^{-2}$	1.13×10^{0}	25.39
n l	/	B ループ S/G-HOT 側水室の保温材の一部(メ タル部分)	SUS304	$2.68 imes 10^{-1}$	3.47×10^{0}	12.97
ブ 室	e M	B ループ RCP インターナルと COLD 配管が 繋がる位置	SUS304	$2.59 imes 10^{-1}$	8.60×10^{0}	33.22
		B ループ室外側付近のコンクリート(R/V 及び S/G の放射が交わる部分)	コンクリート	$1.25 imes 10^{-3}$	$1.36 imes 10^{-2}$	10.82
EL-6.15m	O/F 以下の一般通路①	B ループ天井(S/G-BDS 貫通部)	コンクリート	$< 1.25 imes 10^{-3}$	$4.09 imes 10^{-5}$	_
	Q	A ループ入口階段の壁面	コンクリート	$< 1.89 imes 10^{-3}$	$1.10 imes 10^{-2}$	_
	国	Aループ入口床面の配管サポート	炭素鋼	$<\!2.82\! imes\!10^{-2}$	$1.04 imes 10^{-1}$	_
E	以下の一般通路②	B ループ入口階段の壁面	コンクリート	$< 1.29 \times 10^{-3}$	$6.37{ imes}10^{-3}$	_
-2.15m		B ループ入口から 1m 程度離れた壁面(入口コ ンクリートから 1,750mm)	コンクリート	1.53×10^{-3}	$6.14 imes 10^{-4}$	0.40
		B ループ入口付近の配管サポート	炭素鋼	$<\!2.89{ imes}10^{-2}$	$1.10 imes 10^{-1}$	_
		キャビティ開口部近傍手摺り端から 210mm 床 面(キャビティから C/V270°方向)	コンクリート	$< 1.25 imes 10^{-3}$	$6.16 imes 10^{-3}$	_
		キャビティ開口部近傍手摺り端から 1,710mm 床面(キャビティから C/V270°方向)	コンクリート	$< 1.85 imes 10^{-3}$	$5.19 imes 10^{-3}$	_
		キャビティ昇降階段瀬渡し部金属	炭素鋼	$5.64 imes 10^{-2}$	$1.28 imes 10^{-1}$	2.27
		機器ハッチグレーチング	炭素鋼	$<\!\!2.88{ imes}10^{-2}$	$3.65{ imes}10^{-2}$	-
E		キャビティ開口部近傍手摺り端から150mmの 床面(キャビティからC/V0°方向)	コンクリート	$< 1.21 \times 10^{-3}$	4.69×10^{-3}	-
L/10.1	0/F	機器ハッチ開口部端から 150mm の床面(キャ ビティから C/V0°方向)	コンクリート	$< 1.21 \times 10^{-3}$	4.30×10^{-3}	-
B		キャビティ手摺り支持部(キャビティから C/V0°方向)	炭素鋼	$<2.96 imes10^{-2}$	$4.45{ imes}10^{-2}$	_
		A-RCP ハッチグレーチング(キャビティから C/V180°方向)	炭素鋼	$<\!2.91\! imes\!10^{-2}$	$7.03 imes 10^{-2}$	_
		B-RCP ハッチ開口部から 150mm の床面 (RCP ハッチから C/V180°方向)	コンクリート	$<1.28\times10^{-3}$	4.93×10^{-3}	_
		B-RCP ハッチグレーチング(キャビティから C/V180°方向)	炭素鋼	$<2.71 imes10^{-2}$	8.21×10^{-2}	

評	価対象核種	1 号炉	2号炉
1	H-3	$2.3 imes 10^{14}$	$3.4 imes 10^{14}$
2	Be-10	4.9×10^{7}	4.8×10^{7}
3	C-14	3.7×10^{13}	3.1×10^{13}
4	S-35	2.7×10^{5}	1.6×10^{6}
5	Cl-36	5.1×10^{12}	2.5×10^{12}
6	Ca-41	6.1×10^{-10}	5.4×10^{10}
7	Mn-54	0.7×10	9.4×10^{12}
0	Fo-55	9.5×10^{16}	2.9×10^{12} 2.5×10^{16}
0	Fe 55	1.0×10^{10}	2.3×10^{10}
9	Fe-59	8.4×10 ⁶	$3.8 \times 10^{\circ}$
10	C0-58	0.4×10^{6}	3.9×10^{16}
10	C0-60	2.7×10^{10}	4.9×10^{10}
12	N1-59	1.2×10^{14}	1.5×10^{14}
13	N1-63	1.5×10^{10}	1.9×10^{10}
14	Zn-65	3.1×10^{9}	1.2×10^{10}
15	Se-79	6.1×10^{8}	7.4×10^{8}
16	Sr-90	9.7×10^{9}	1.1×10^{10}
17	Zr-93	$6.4 imes 10^{6}$	7.5×10^{6}
18	Nb-94	$6.4 imes 10^{10}$	$5.9 imes 10^{10}$
19	Mo-93	7.1×10^{11}	7.5×10^{11}
20	Tc-99	$8.7 imes 10^{10}$	$8.3 imes 10^{10}$
21	Ru-106	$1.9 imes10^7$	$2.6 imes 10^{7}$
22	Ag-108m	$2.2 imes 10^{12}$	$1.2 imes 10^{12}$
23	Cd-113m	$9.3 imes 10^{6}$	1.1×10^{7}
24	Sn-126	$1.3 imes 10^{5}$	1.2×10^{5}
25	Sb-125	$8.0 imes 10^{11}$	$1.7 imes 10^{12}$
26	Te-125m	3.0×10^{11}	$6.5 imes 10^{11}$
27	I-129	7.9×10^{6}	1.2×10^{7}
28	Cs-134	1.4×10^{11}	1.6×10^{11}
29	Cs-137	2.1×10^{10}	2.1×10^{10}
30	Ba-133	4.8×10^{10}	4.8×10^{10}
31	La-137	1.3×10^{6}	1.6×10^{6}
32	Ce-144	2.1×10^{6}	4.3×10^{6}
33	Pm-147	5.1×10^{11}	6.1×10^{11}
34	Sm-151	6.8×10 ¹¹	6.6×10^{11}
25	Fu-152	3.0×10^{12}	0.0×10 4 1 × 1012
26	Eu 152 Eu-154	3.3×10^{12}	4.1×10 9.8 × 1012
27	Ho-166m	2.6×10^{-1} 7 4 × 108	2.6×10^{-1} 7.0 × 108
- 37	I 10 100m	1.4×10^{3}	$1.9 \times 10^{\circ}$ 1.6 × 105
30	Lu-170	$1.4 \times 10^{\circ}$	$1.0 \times 10^{\circ}$
39	Dt-192m	$3.3 \land 10^{11}$	$3.4 \land 10^{11}$
40	FU-193	$4.4 \wedge 10^{12}$	$4.4 \wedge 10^{12}$
41	U-234	8.2×10 ⁴	$1.1 \times 10^{\circ}$
42	U-235	$3.7 \times 10^{\circ}$	$4.9 \times 10^{\circ}$
43	U-236	5.4×10^{3}	4.7×10^{3}
44	U-238	8.0×10 ⁷	1.1×10 ⁸
45	Np-237	8.6×10^{3}	7.2×10^{3}
46	Pu-238	1.1×10^{9}	7.7×10^{8}
47	Pu-239	1.4×10^{8}	9.9×10^{7}
48	Pu-240	1.4×10^{8}	8.8×107
49	Pu-241	$2.3 imes 10^{10}$	1.5×10^{10}
50	Pu-242	$1.5 imes 10^{6}$	1.0×10^{6}
51	Am-241	8.1×10^{8}	4.8×10^{8}
52	Am-242m	$1.9 imes 10^{7}$	1.2×10^{7}
53	Am-243	$2.2 imes 10^{7}$	1.9×10^{7}
54	Cm-242	$1.6 imes10^7$	$1.0 imes 10^{7}$
55	Cm-244	$5.5 imes10^9$	7.4×10^{9}
	1 1 1	約58×10 ¹⁶	約94×10 ¹⁶

(単位:Bq)

(注) 2022年4月1日時点

2.2 二次的な汚染の評価について

二次的な汚染については、評価対象核種に応じて、核種組成比法、平均放射能濃度 法を用いて放射能濃度を評価する。評価対象核種は、放射化汚染の評価に使用した核 種と同じ55核種とする。

Co-60との相関関係がある評価対象核種(H-3以外の核種)については、核種組成 比法を用いて放射能濃度を評価する。核種組成比法では、機器、配管等の表面の放射 線量率を測定することで内表面に付着しているCo-60汚染密度に換算し、そのCo-60 を基準核種としてその他核種の表面汚染密度及び放射能濃度を評価する。

Co-60との相関関係がないH-3については、平均放射能濃度法を用いて放射能濃度 を評価する。

なお、Cl-36については、「1~3号廃棄物埋設施設のCl-36総放射能量・最大放射 能量の設定について(平成30年度 第245回核燃料施設等の新規制基準適合性に係 る審査会合 資料1-1-3(補足説明資料2))」において日本原燃(株)から示された 平均放射能濃度法及び核種組成比法を組み合わせた方法を用いて放射能濃度を評価す る。各評価方法の手順を第4図に示す。

(1) 核種組成比法による評価(H-3以外)

a. 放射線量率の測定

主に1次冷却材の流路となる原子炉冷却系統、化学体積制御系統、余熱除去系統、 1次系冷却水系統、格納容器冷却水系統、燃料ピット冷却系統及び安全注入系統 の機器、配管等の表面の放射線量率を測定する。測定数は1号炉においては150箇 所、2号炉において157箇所である。

b. Co-60の表面汚染密度の評価

機器、配管等の内面に残存している主たる汚染核種はCo-60であるため、放射線 量率の測定結果が全て Co-60 によるものとして、Co-60 の汚染密度を評価する。 c. Co-60以外の核種(H-3を除く)の表面汚染密度の評価 機器、配管等に残存している二次的な汚染については、運転中に発生する雑固体 廃棄物に付着した二次的な汚染と核種組成は同等であるとして、低レベル放射性 廃棄物の充填固化体に適用しているPWR共通のスケーリングファクタ(SF) を用いた核種組成比法等によって、Co-60以外の核種の表面汚染密度を評価する。

H-3 を除いた核種については、Co-60 と相関関係があるとして、Co-60 との核種 組成比を用いて評価する。

なお、運転中の充填固化体における核分裂生成核種については、Cs-137 を基準 核種として放射能濃度を評価しているが、過去の調査から Co-60 と Cs-137 には相 関性があると判断し、核分裂生成核種に対しても Co-60 を基準核種として表面汚染 密度を評価する。評価対象核種ごとの核種組成比設定値を第8表に示す。

d. 評価結果

以上で求めた二次的な汚染による表面汚染密度に、それぞれ機器、配管等の内表 面積を乗じて計算した、二次的な汚染による推定放射能を第9表に示す。

(2) 平均放射能濃度法による評価(H-3及びCl-36)

H-3及びCl-36については、平均放射能濃度法を用いて評価する。H-3及びCl-36の平均放射能濃度設定値を第8表に示す。

以上で求めた二次的な汚染による放射能濃度に、それぞれ機器、配管等の重量を 乗じて計算した、二次的な汚染による核種別の推定放射能を第9表に示す。

第8表 核種組成設定結果(全55核種)(1/2)

No.	核種	設定値	種類	設定根拠*
1	H-3	$7.6 imes10^7$	平均放射能濃度 (Bq/t)	1
2	Be-10	$5.6 imes 10^{-11}$	核種組成比(Be-10/Co-60)	(4)
3	C-14	$2.2 imes10^{-1}$	核種組成比(C-14/Co-60)	1
4	S-35	$8.9 imes 10^{-18}$	核種組成比(S-35/Co-60)	(4)
5	Cl-36	5.0×10^{-8}	核種組成比(Cl-36/Co-60)	3
C	Co. 41	$1.9 \times 10^{\circ}$ 1 4 × 10 ⁻¹⁰	十均	
0	Ma-54	1.4×10^{-10}	核種組成比(Ua 41/00 00) 按種組成比(Mm-54/Co-CO)	
		1.3×10^{-1}	核種租政比(MIN-34/00-60)	
8	Fe-55	3.0×10^{-9}	核種組成比 (Fe-55/C0-60)	(4)
9	Fe-59	9.9×10 ⁻²	核 椎 組 成 比 (Fe-59/Co-60)	(4)
10	Co-58	$3.0 imes 10^{0}$	核種組成比(Co-58/Co-60)	(4)
11	Co-60	$1.0 imes10^{0}$	基準核種	基準核種
19	Ni-59	5.4×10^{-3}	核種組成比(Ni-63/Co-60)	
14	NI 55	0.4×10	× (Ni-59/Ni-63)	<u> </u>
13	Ni-63	$6.7 imes 10^{-1}$	核種組成比(Ni-63/Co-60)	1
14	Zn-65	$2.6 imes 10^{-8}$	核種組成比(Zn-65/Co-60)	4
15	Se-79	$5.9 imes10^{-9}$	核種組成比(Se-79/Co-60)	4
16	Sr-90	$7.5 imes 10^{-4}$	核種組成比(Sr-90/Co-60)	2
17	Zr-93	$4.6 imes 10^{-5}$	核種組成比(Zr-93/Co-60)	4
18	Nb-94	$9.9 imes 10^{-4}$	核種組成比(Nb-94/Co-60)	1
19	Mo-93	$4.2 imes 10^{-5}$	核種組成比(Mo-93/Co-60)	1)
20	Tc-99	$1.5 imes 10^{-6}$	核種組成比(Te-99/Co-60)	1
21	Ru-106	$8.4 imes 10^{-5}$	核種組成比(Ru-106/Co-60)	4
22	Ag-108m	$1.7 imes 10^{-13}$	核種組成比(Ag-108m/Co-60)	4
23	Cd-113m	$1.3 imes 10^{-7}$	核種組成比(Cd-113m/Co-60)	4
24	Sn-126	1.1×10^{-8}	核種組成比(Sn-126/Co-60)	4
25	Sb-125	$4.4 imes 10^{-6}$	核種組成比(Sb-125/Co-60)	(4)
26	Te-125m	$4.1 imes 10^1$	核種組成比(Te-125m/Co-60)	4
07	I 190	1.0×10^{-7}	核種組成比(Cs-137/Co-60)	
21	1-129	1.2×10^{-7}	\times (I-129/Cs-137)	
28	Cs-134	$7.5 imes10^{-4}$	核種組成比(CS-134/Co-60)	2
29	Cs-137	$3.9 imes 10^{-2}$	核種組成比(CS-137/Co-60)	2

- 注)設定値は原子炉停止時点の値
- *: ①~④は以下のとおり
 - ①低レベル放射性廃棄物のうち、充填固化体における PWR 共通の平 均放射能濃度及びスケーリングファクタ
 - ②過去の調査により設定した核種組成比
 - ③「1~3号廃棄物埋設施設のCl-36総放射能量・最大放射能量の設定 について」において日本原燃(株)から示されたCl-36評価方法
 - ④解体引当金物量を算定する際に用いた二次的汚染データからCo-60を 基準核種として規格化した核種組成比

第8表 核種組成設定結果(全55核種)(2/2)

No.	核種	設定値		種類	設定根拠*
30	Ba-133	0.0		—	データなし
31	La-137	$2.7 imes 10^{-8}$	核種組成比	(La-137/Co-60)	(4)
32	Ce-144	$1.8 imes 10^{-4}$	核種組成比	(Ce-144/Co-60)	4
33	Pm-147	$4.7 imes 10^{-5}$	核種組成比	(Pm-147/Co-60)	(4)
34	Sm-151	$1.6 imes 10^{-6}$	核種組成比	(Sm-151/Co-60)	4
35	Eu-152	$6.5 imes 10^{-5}$	核種組成比	(Eu-152/Co-60)	2
36	Eu-154	$5.7 imes 10^{-5}$	核種組成比	(Eu-154/Co-60)	2
37	Ho-166m	$1.8 imes 10^{-11}$	核種組成比	(Ho-166m/Co-60)	(4)
38	Lu-176	0.0			データなし
39	Ir-192m	$6.5 imes 10^{-15}$	核種組成比	(Ir-192m/Co-60)	(4)
40	Pt-193	$9.2\! imes\!10^{-15}$	核種組成比	(Pt-193/Co-60)	(4)
41	U-234	$7.5 imes 10^{-9}$	核種組成比	(U-234/Co-60)	(4)
42	U-235	$1.6 imes 10^{-10}$	核種組成比	(U-235/Co-60)	(4)
43	U-236	$1.6 imes 10^{-9}$	核種組成比	(U-236/Co-60)	(4)
44	U-238	$1.9 imes 10^{-9}$	核種組成比	(U-238/Co-60)	(4)
45	Np-237	$1.8 imes 10^{-9}$	核種組成比	(Np-237/Co-60)	(4)
46	Pu-238	$1.2 imes 10^{-5}$	核種組成比	(Pu-238/Co-60)	(4)
47	Pu-239	$7.0 imes 10^{-4}$	核種組成比	(全α/Co-60)	2
48	Pu-240	$2.1 imes 10^{-6}$	核種組成比	(Pu-240/Co-60)	(4)
49	Pu-241	$2.6 imes10^{-4}$	核種組成比	(Pu-241/Co-60)	(4)
50	Pu-242	1.1×10^{-8}	核種組成比	(Pu-242/Co-60)	(4)
51	Am-241	$7.0 imes 10^{-4}$	核種組成比	(全α/Co-60)	2
52	Am-242m	$3.1 imes 10^{-8}$	核種組成比	(Am-242m/Co-60)	(4)
53	Am-243	1.3×10^{-7}	核種組成比	(Am-243/Co-60)	(4)
54	Cm-242	$3.4 imes 10^{-4}$	核種組成比	(Cm-242/Co-60)	(4)
55	Cm-244	$8.\overline{7 imes10^{-6}}$	核種組成比	(Cm-244/Co-60)	4

- 注)設定値は原子炉停止時点の値
- ※: ①~④は以下のとおり
 - ①低レベル放射性廃棄物のうち、充填固化体におけるPWR共通の平均放射能濃度及びスケーリングファクタ
 - ②過去の調査により設定した核種組成比
 - ③「1~3号廃棄物埋設施設のCl-36総放射能量・最大放射能量の設定 について」において日本原燃(株)から示されたCl-36評価方法
 - ④解体引当金物量を算定する際に用いた二次的汚染データからCo-60を 基準核種として規格化した核種組成比

⁽単位:Bq)

評伯	西対象核種	1 号炉	2 号炉
1	H-3	4.5×10^{10}	6.0×10^{10}
2	Be-10	5.1×10^{1}	8.2×10^{1}
3	C-14	1.5×10^{11}	2.7×10^{11}
4	S-35	0	0
5	C1-36	3.6×10^{4}	6.4×10^{4}
6	Ca-41	$1.3 imes10^2$	$2.0 imes10^2$
7	Mn-54	$1.2 imes 10^{7}$	4.4×10^{7}
8	Fe-55	$2.1 imes 10^{11}$	$3.9 imes 10^{11}$
9	Fe-59	0	0
10	Co-58	$1.3 imes 10^{-5}$	$5.1 imes 10^{-4}$
11	Co-60	$2.7\! imes\!10^{11}$	$4.6 imes 10^{11}$
12	Ni-59	$7.8\! imes\!10^9$	$1.1 imes 10^{10}$
13	Ni-63	$8.7 imes 10^{11}$	$1.2 imes 10^{12}$
14	Zn-65	$2.5 imes 10^{-1}$	$1.0 imes 10^{0}$
15	Se-79	$5.4 imes10^3$	$8.6 imes 10^{3}$
16	Sr-90	4.3×10^{8}	7.6×10^{8}
17	Zr-93	4.2×10^{7}	6.8×10^{7}
18	Nb-94	1.1×10^{9}	1.6×10^{9}
19	<u>Mo-93</u>	3.8×10^{7}	6.1×10^{7}
20	Tc-99	1.1×10^{6}	1.9×10^{6}
21	<u>Ru-106</u>	4.5×10^{4}	1.3×10^{5}
22	Ag-108m	1.5×10^{-1}	2.5×10^{-1}
23	<u>Cd-113m</u>	1.3×10^{4}	1.2×10^{3}
24	Sh-120 Sh-125	1.0×10^{4} 2.1 × 1.05	1.0×10^{4} 5.8 × 1.05
20	$\frac{50^{-120}}{T_{0}-125m}$	$3.1 \times 10^{\circ}$ 1 8 × 10 ⁻⁸	$\frac{0.0 \times 10^{6}}{1.1 \times 10^{-6}}$
$\frac{20}{27}$	Ie 125m I-190	1.0×10^{-5} 8.1 × 104	1.1×10^{-5} 1.5×10^{5}
$\frac{21}{28}$	$\frac{1129}{Cs-134}$	1.2×10^{-1}	1.3×10^{-3} 2.9 × 107
20	$C_{s} 134$	$\frac{1.2 \times 10^{-10}}{2.0 \times 10^{10}}$	$\frac{2.3 \times 10^{-10}}{3.8 \times 10^{10}}$
30	Ba-133	0	0
31	La-137	2.5×10^{4}	3.9×10^{4}
32	Ce-144	9.1×10^{3}	3.3×10^4
33	Pm-147	2.9×10^{6}	5.4×10^{6}
34	Sm-151	1.4×10^{6}	$2.2 imes10^6$
35	Eu-152	$2.5 imes10^7$	$4.7 imes 10^{7}$
36	Eu-154	$1.7 imes 10^{7}$	$3.2 imes 10^{7}$
37	Ho-166m	$1.6 imes 10^{1}$	$2.6 imes10^1$
38	Lu-176	0	0
39	Ir-192m	$5.8 imes 10^{-3}$	$9.3 imes 10^{-3}$
40	Pt-193	$7.4 imes 10^{-3}$	$1.2 imes 10^{-2}$
41	U-234	6.9×10^{3}	1.1×10^{4}
42	<u>U-235</u>	1.5×10^{2}	2.3×10^{2}
43	<u>U-236</u>	1.5×10^{3}	2.3×10^{3}
44	<u>U-238</u>	1.7×10^{3}	2.8×10^{3}
45	Np-237	1.6×10^{3}	2.6×10^{3}
46	Pu-238	1.0×10^{7}	1.6×10^{7}
47	Pu-239	$4.1 \times 10^{\circ}$	$\delta.b \times 10^{\circ}$
48	$Pu^{-}240$ $Du^{-}041$	$1.9 \times 10^{\circ}$ 1.5 × 1.08	$3.1 \wedge 10^{\circ}$ 9.4×10^{8}
49	$ru^{-}241$ D ₁₁ -949	$1.0 \land 10^{\circ}$	$4.4 \land 10^{\circ}$
50	$\frac{ru^{-}242}{\Lambda m - 9.41}$	$\frac{9.9 \times 10^{9}}{4.7 \times 10^{8}}$	$\frac{1.0 \land 10^{+}}{8.4 \times 108}$
59	$\frac{Am}{\Delta m} \frac{241}{242}$	$\frac{4.7 \times 10^{\circ}}{2.7 \times 10^{4}}$	$\frac{0.4 \times 10^{\circ}}{4.3 \times 10^{4}}$
53	Am-24211	1.1×10^{-1}	1.0×10^{-1}
54	Cm-242	7.3×10^{0}	5.5×10^{10}
55	Cm-244	5.5×10^{6}	9.0×10^{6}
50	<u></u> 計	約16×10 ¹²	約26×10 ¹²

(注) 2022年4月1日時点

3. 汚染分布及び放射性固体廃棄物の推定発生量について

放射化放射能の評価結果及び二次的な汚染の評価結果による美浜1号 炉及び2号炉の汚染分布図を第5図に示す。また、放射能レベル区分別の 放射性固体廃棄物の推定発生量を第10表に、放射能レベル区分判定に用 いる基準を第11表に示す。

<u>第5図(1/2) 汚染の分布図(1号炉)</u>

第5図(2/2) 汚染の分布図(2号炉)

第10表 廃止措置期間全体にわたり発生する放射性固体廃棄物の推定発生量

		推定発生量~2~3		
		1 号炉	2 号炉	
低レ	放射能レベルの 比較的高いもの(L1)	約 80	約 80	
ベル放	放射能レベルの 比較的低いもの (L2)	約 620	約 790	
新 性 廃	^N 生 放射能レベルの 極めて低いもの(L3)	約 2,380	約 2,510	
業物	合計	約 3,070	約 3,360	
放射性物質として 扱う必要のないもの(CL)		約6,400	約7,500	

(単位:トン)

※1:放射能レベル区分は、以下のとおり。

・L1の区分値の上限は、原子炉等規制法施行令第31条に定める放射能濃度

- ・L1とL2の区分値は、「核燃料物質又は核燃料物質によって汚染された物第二種廃 棄物埋設の事業に関する規則」別表第1に定める放射能濃度の10分の1
- ・L2とL3の区分値は、「核燃料物質又は核燃料物質によって汚染された物第二種廃 棄物埋設の事業に関する規則」別表第2に定める放射能濃度の10分の1
- ・L3 と CL の区分値は、「工場等において用いた資材その他の物に含まれる放射性 物質の放射能濃度が放射線による障害の防止のための措置を必要としないものであ ることの確認等に関する規則」別表第1欄の33種類の放射性物質のうち、旧原子 力安全委員会が選定した放射性物質(核種)(旧重要10核種(H-3、Mn-54、Co-60、Sr-90、Cs-134、Cs-137、Eu-152、Eu-154、Pu-239及びAm-241))の放射 能濃度を、別表第2欄の放射能濃度で除した割合の合計値として1.0

※2:推定発生量

- ・二次的な汚染を生じている設備の一部(タンク等の容器形状)については、除染効 果(除染係数100)を見込んでいる。
- ・低レベル放射性廃棄物については、10トン単位で切り上げた値である。
- ・放射性物質として扱う必要のないものについては、100 トン単位で切り上げた値で ある。
- ・端数処理のため合計値が一致しないことがある。
- ・推定発生量には付随廃棄物を含まない。
- ・運転中に発生した使用済制御棒、使用済バーナブルポイズン、使用済プラギングデバイスを含む。
- ※3:この他、放射性廃棄物でない廃棄物(管理区域外からの発生分を含む。)が約 315,000トン(1号炉及び2号炉合算)発生する。

レベル区分	レベル区分判	主な変更核種	
	変更前	変更後	(数値は濃度 Bq/t)
L1 の区分値 の上限	原子炉等規制法施行令第31条に定める放射能 濃度	「核原料物質、核燃料物質及び原子炉の規制に 関する法律施行令」第31条に定める放射能濃 度	_
L1 と L2 の 区分値	国内で操業しているコンクリートピット埋設施 設の埋設許可条件と同等の最大放射能濃度	「核燃料物質又は核燃料物質によつて汚染され た物の第二種廃棄物埋設の事業に関する規則」 別表第1に定める放射能濃度の10分の1	H-3 :3.07×10 ¹¹ → t_{c} U Co-60 :2.78×10 ¹² →1.00×10 ¹⁴ Cs-137:1.04×10 ¹¹ →1.00×10 ¹³
L2 と L3 の 区分値	「原子炉等規制法施行令(昭和32年政令第3 24号。ただし、平成19年政令第378号の 改正前のもの。)」第31条第1項に定める 「原子炉施設を設置した工場又は事業所におい て生じた廃棄されるコンクリート等で容器に固 型化していないもの」に対する濃度上限値の 10分の1の放射能濃度	「核燃料物質又は核燃料物質によつて汚染され た物の第二種廃棄物埋設の事業に関する規則」 別表第2に定める放射能濃度の10分の1	H-3 :3.00×10 ⁸ → t_{c} ∪ Co-60 :8.10×10 ⁸ →1.00×10 ⁹
L3 と CL の 区分値	「製錬事業者等における工場等において用いた 資材その他の物に含まれる放射性物質の放射能 濃度についての確認等に関する規則」第2条に 定める放射能濃度	「工場等において用いた資材その他の物に含ま れる放射性物質の放射能濃度が放射線による障 害の防止のための措置を必要としないものであ ることの確認等に関する規則」別表第1欄の33 種類の放射性物質のうち、旧原子力安全委員会 が選定した放射性物質(核種)(旧重要 10 核 種(H-3、Mn-54、Co-60、Sr-90、Cs-134、 Cs-137、Eu-152、Eu-154、Pu-239 及び Am- 241))の放射能濃度を、別表第2欄の放射能 濃度で除した割合の合計値として 1.0	

第11表 放射性固体廃棄物のレベル区分判定に用いる基準について