2021年3月12日 柏崎刈羽原発 緊急時演習 DIANA評価に用いたソースタームにつきまして

2021年4月19日

東京電力ホールディングス株式会社

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

ソースタームの評価方法

⇒主に

- ソースタームはシナリオによって変わるため、設置変更許可申請におけるSA 対策の有効性評価でも用いているMAAP(Modular Accident Analysis Program) コードによって評価
- ●ただし、緊急時には即応性が求められることや、効率的な人的リソースの活用が必須であることから、以下の3段階で対応を変更
 - ① GE22事象等により炉心への注水が途絶え、燃料損傷後の格納容器ベントの可能性が生じた段階(注水機能が復旧するまでの間)

⇒ 等を変更した様々なケースのMAAP解 析を事前に実施してデータベースを作成しており、その中から事象 進展に近しいデータを選択

② 上記状態から注水機能が復旧した段階(人的リソース等の関係から次の パターンの評価が可能となるまでの間)

に着目して事前に早見表を作成しており、その 中から事象進展に近しいデータを選択

③ 緊急時対策本部要員またはバックオフィス要員等によってMAAPを用いた事象進展予測が可能となった段階
 ⇒ 事象進展を踏まえたMAAP解析を実際に実施

- DIANA評価は2種類説明しており、それぞれ以下のソースターム評価方法を 採用
 - ▶ 午後の訓練再開時、最初に説明したDIANA評価 (2021.3.12 10:45時点の評価)
 - : ②早見表から選択
 - 【理由】評価の要請をいただいた午前中断面では無注水のままであったが、注水機能復旧の見込みがたっていたことから②を選定 (緊急時演習当日に対応)
 - ▶ 2番目に説明したDIANA評価 (2021.3.13 7:30時点の評価)
 - :③MAAP解析実施
 - 【理由】約1日スキップしている間に実施した評価の説明という位置 付けであったため、MAAP解析を行う人的リソースも確保で きたものと設定して③を選定
 - (条件付与の1つとして、シナリオ作成に用いたMAAP解析 結果を使用して事前に準備。

従って、シナリオで考慮している間欠PCVスプレイ等の効果は全て含んだ結果。)

- DIANA入力用ソースタームは以下の通り
 - ▶ 午後の訓練再開時、最初に説明したDIANA評価(②早見表) (2021.3.12 10:45時点の評価)

		希ガス (0.5MeV換 算)	全ヨウ素 (FCVSあり)	無機	有機	Cs-137沈着 等価 (FCVSあり)	Cs-134 (FCVSあり)	Cs-136 (FCVSあり)	Cs-137 (FCVSあり)
放出開始時刻 (h)	放出終了時刻 (h)	Bq(0.5MeV 換算)	Bq(I-131 等価量)	Bq(I-131 等価量)	Bq(I-131 等価量)	Bq(Cs−137 沈着等価量)	Bq(生值)	Bq(生值)	Bq(生值)
0	1	1.6E+18	1.8E+11	2.6E+10	1.5E+11	9.2E+09	2.2E+09	5.6E+08	1.8E+09
1	6	3.3E+16	1.5E+09	2.2E+08	1.3E+09	2.8E+08	6.3E+07	1.7E+07	5.2E+07
6	12	7.0E+15	1.5E+08	2.3E+07	1.3E+08	5.7E+08	1.4E+08	3.4E+07	1.1E+08
12	18	6.3E+15	9.2E+07	1.4E+07	7.8E+07	4.6E+08	1.1E+08	2.8E+07	8.7E+07
18	24	5.2E+15	5.8E+07	8.6E+06	4.9E+07	2.9E+08	6.6E+07	1.7E+07	5.4E+07

▶ 2番目に説明したDIANA評価(③MAAP解析) (2021.3.13 7:30時点の評価)

		希ガス (0.5MeV換 算)	全ヨウ素 (FCVSあり)	無機	有機	Cs-137沈着 等価 (FCVSあり)	Cs-134 (FCVSあり)	Cs-136 (FCVSあり)	Cs-137 (FCVSあり)
放出開始時刻 (h)	放出終了時刻 (h)	Bq(0.5MeV 換算)	Bq(I-131 等価量)	Bq(I-131 等価量)	Bq(I-131 等価量)	Bq(Cs−137 沈着等価量)	Bq(生值)	Bq(生值)	Bq(生値)
0	1	1.5E+18	1.5E+09	1.2E+09	3.5E+08	4.1E+10	9.6E+09	2.5E+09	7.8E+09
1	6	8.1E+16	6.9E+07	5.3E+07	1.6E+07	7.4E+09	1.7E+09	4.5E+08	1.4E+09
6	12	9.4E+14	5.6E+07	4.3E+07	1.3E+07	4.7E+09	1.1E+09	2.9E+08	9.0E+08
12	18	7.4E+14	5.9E+07	4.5E+07	1.4E+07	3.0E+09	7.0E+08	1.8E+08	5.7E+08
18	24	6.2E+14	5.9E+07	4.5E+07	1.4E+07	2.0E+09	4.5E+08	1.2E+08	3.7E+08

● これらの値は各放出開始時刻~終了時刻で放出する積算値のため、これを時間で割った放出率[Bq/h]で放出するものとしてDIANA評価を実施
 © Totave Flexing Power Company Holdings Inc. All Boots Preserved (新規製・転載業は、東京電力ホールディングス株式会社)

- 2番目に説明したDIANA評価については「DIANAによる放射性物質拡散 予測結果の通知[2回目]」という資料(頭紙)を付けており、その中で ソースタームは以下の記載
 - ・大気中の放出量(上記のフィルタベントの除去能力を考慮)[別紙※1]

希ガス(0.5MeV換算)	よう素(I-131甲状腺線量換算)	セシウム(Cs-137沈着等価)
1.5×10 ¹⁸ [Bq]	1. 7 × 10 ⁹ [Bq]	5. 8 × 10 ¹⁰ [Bq]

- これは前頁のソースタームの0~24h合算値の一部を代表として記載したもの
- なお、前頁下段の放出率の設定方法については、同資料別紙にも以下の通り
 明記 ※2:ベント開始後、継続的かつ段階的に放射性物質が放出されることが想定されるため、
 ベント開始(ベント弁開)から24時間後までの放出量を総量として、一定の時間帯

ベント開始(ベント弁開)から24時間後までの放出量を総量として、一定の時間帯 毎に均等な放出率で放出すると仮定して拡散評価を行っています(図1参照)。なお、 ベント弁の閉操作は格納容器内のパラメータや他の除熱手段の復旧見込み等を勘案 し判断するものであり、24時間後にベント弁を閉操作することを意図しているも のではありません。

【参考】ソースターム(2番目)MAAP解析結果

TEPCO

【参考】ソースターム(2番目)MAAP解析結果(補足)

● 前頁のソースターム解析結果における炉心の状態として、炉心溶融割合を MAAP出力パラメータから算出すると以下の通り

炉心<mark>溶融</mark>割合 =

● なお、福島第一原子力発電所事故前は以下のグラフを用いて炉心<u>損傷</u>割合を

提示していたが、これは希ガスの放出総量から「程度のめやす」を示したものである。また、希ガス以外の核種は考慮しておらず、かつD/W・S/Cの分布によっても変わることから、不確かさが非常に大きいものである。
そのため、"炉心の燃料が何本損傷したか"を把握で きるものではない。(損傷の定義もない) この点を配慮せずに提示してしまっていたことの反 省から、現在は炉心損傷割合の算出は行わない。
なお、燃料被覆管にピンホール等が発生することで 希ガスが漏えいすることから、希ガス漏えい割合≒ 燃料被覆管に何らかの損傷が発生した割合と考える と、本解析での割合はであった

【詳細】2021年3月12日のMAAP解析における入力情報(1/2)

● シナリオ及びMAAP解析結果(プラントパラメータ)は以下の通り

TEPCC

【詳細】2021年3月12日のMAAP解析における入力情報(2/2)

- ソースタームは前頁のプラントパラメータの経時変化を評価したMAAP解析 結果として得られた放射性物質の経時変化から算出しているが、この評価に おいては以下のような情報を入力
 - <u>RCICによる水位維持</u>

● 上記のような記述によって個々のイベント発生を表現し、事象進展に応じて 各イベントを連ねたINPUTファイルを作成してMAAP解析を実施 【補足】2021年3月12日のMAAP解析における入出力情報(1/7)

● MAAP解析の入力ファイルは以下の通り

@Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

無断複製・転載禁止 東京電力ホールディングス株式会社

【補足】2021年3月12日のMAAP解析における入出力情報(2/7)

TEPCO

● 2021年3月12日のMAAP解析の入力ファイルの内容は以下の通り

・イベントの定義

等

(メモ帳ベースで700頁強の 情報量)

● MAAP解析の出力ファイルは以下の通り

※出力も入力同様データの羅列であり、視覚的に理解できる状態とするため にはユーザーによる加工作業が必須 【補足】2021年3月12日のMAAP解析における入出力情報(4/7)

TEPCO

● 2021年3月12日のMAAP解析の出力ファイル(PLOTファイル)の内容は以下の通り

● 「環境へのFP放出割合」のうち希ガス・ヨウ素・セシウムに着目し、これら 核種の炉内内蔵量(ベント時までの時間減衰と親核種からの生成を考慮)を 乗じ、0.5MeV換算等の合算を行うことでDIANA入力用のソースタームを作 成

【補足】2021年3月12日のMAAP解析における入出力情報(5/7)

● 2021年3月12日のソースターム(2番目)作成に用いた情報は以下の通り

核種	当該核種 の崩壊定 数	γ線エネ ルギ	甲状腺換 算係数	沈着からの周辺線 量率換算係数	原子炉停止 直後の炉内 内蔵量(Bq)	ベントタイミング まで の時間減衰と親核種からの生 成を考慮した炉内内蔵量(Bq)	<u>DF</u> S/P : 粒子状ヨウ素 10
	s-1	MeV		(mSv/h)/(kBq/m2)	KK7	KK7	無機ヨウ素 10
Kr-85	2.05E-09	0.0022	-	-	6.258E+16	6.26E+16	FV :
Kr-85m	4. 30E-05	0.1590	-	-	1.414E+18	1.62E+16	
Kr-87	1.51E-04	0.7930	-	_	2.054E+18	2.99E+11	毎月1000 毎月1000
Kr-88	6.88E-05	1.9500	-	-	2.856E+18	2.24E+15	
Xe-131m	6.74E-07	0.0022	-	_	0.000E+00	4.27E+15	
Xe-133	1.52E-06	0.0450	_	_	7.770E+18	1.11E+19	セシリム 1000
Xe-133m	3.57E-06	0. 0420	_	_	0.000E+00	1.15E+17	
Xe-135	2.12E-05	0.2500	-	_	2. 241E+18	1.97E+18	※甲状腺換算係数は原
Xe-135m	7.38E-04	0. 4320	-	-	0.000E+00	2.49E+15	安委「発電用軽水型
I-131	9.95E-07	0.3810	1.000E+00	1.300E-06	3.826E+18	3.45E+18	原子炉の安全評価に
I-132	8.44E-05	2.2530	1.188E-02	7.800E-06	5. 602E+18	1.30E+17	関する審査指針」
I-133	9.26E-06	0.6080	2.500E-01	2.100E-06	7.958E+18	3.04E+18	次手の目的に
I-134	2.20E-04	2.7500	2.281E-03	8.900E-06	8.841E+18	1.07E+09	
I-135	2.91E-05	1.6450	5.000E-02	5.400E-06	7.550E+18	3.65E+17	率換昇係数はIAEA-
Cs-134	1.07E-08	1.5550	-	5.400E-06	6. 384E+17	6.38E+17	IECDOC-1162の他
Cs-136	6.12E-07	2.1650	-	7.400E-06	1.771E+17	1.66E+17	
Cs-137	7.33E-10	0.5970	-	2.100E-06	5.190E+17	5.19E+17	

 なお、MAAP内では希ガス(Kr、Xe)、ヨウ素(I)、セシウム(Cs)の他 にルビジウム(Rb)、テルル(Te)、ストロンチウム(Sr)、モリブデン (Mo)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、アンチモン (Sb)といった核種の挙動も評価しているが、環境への影響度から希ガス、 ヨウ素、セシウムを選定してDIANA入力用のソースタームを作成

【補足】2021年3月12日のMAAP解析における入出力情報(6/7)

● 希ガス、ヨウ素、セシウムは以下の理由から代表核種として選定

- 希ガス:スクラビング効果やフィルタベントでは除去できず、短期外部被ばくの主要な要因となるため (安全評価審査指針でも評価対象核種として選定)
- ヨウ素:体内に取り込んだ場合に甲状腺に蓄積し、内部被ばく影響を考慮するうえで重要な核種であるため (安全評価審査指針でも評価対象核種として選定)
- セシウム:土壌沈着での長期影響を考慮するうえで重要な核種であるため
 (福島第一原子力発電所事故後の調査等においても土壌沈着影響の主要な核種として確認)
- MAAP出力(環境へのFP放出割合)からDIANA入力用ソースタームへの変換 は以下の通り実施

TEPCC

【補足】2021年3月12日のMAAP解析における入出力情報(7/7)

● MAAP出力(環境へのFP放出割合)からDIANA入力用ソースタームへの変換 は以下の通り実施(続き)

各放出量[Bq]は当該時刻までの積算値となっているため、ベント後1時間/6時間/12時間/18時間/24時間までの各 積算値から差分を計算し、各時間帯での合計放出量[Bq]を評価

● 損傷炉心から放出さ 原子炉建屋 れた放射性物質は ①LOCA破断口を経 原子炉格納容器 由してPCVへ移行 ②PCV内で浮遊・ 沈着 ③PCVスプレイも 放射性物質 相まってベント管 を通じてS/C移行 ④S/Pスクラビング $(\mathbf{1})$ 損傷炉心 (5) で一部除去されて 2 S/C気相部へ移行 ⑤W/WベントでFV を通って放出 という経路をとる。 サプレッション フィルタ ● 上記挙動を表す放射 $(\mathbf{4})$ チェンバ ベント 性物質の炉内内蔵量 に対する割合の経時 変化を次頁以降に示 す。

TEPCO

【詳細】2021年3月12日のMAAP解析におけるFP挙動(2/7)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

無断複製・転載禁止 東京電力ホールディングス株式会社

TEPC

【詳細】2021年3月12日のMAAP解析におけるFP挙動(3/7)

ベント直前の各Bq値(ヨウ素は粒子状ヨウ素)

坊 玮	ベントタイミングまでの時間減衰と	炉心から0	D放出割合	RPV内存在	生割合	PCV内存	存在割合	環境放出割合(F	FCVSのDF考慮)
1孩 1里	親核種からの生成を考慮した炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
Kr-85	6.3E+16	77%	4.8E+16	0%	3.8E+09	77%	4.8E+16	0%	0.0E+00
Kr-85m	1.6E+16	77%	1.2E+16	0%	9.8E+08	77%	1.2E+16	0%	0.0E+00
Kr-87	3.0E+11	77%	2.3E+11	0%	1.8E+04	77%	2.3E+11	0%	0.0E+00
Kr-88	2.2E+15	77%	1.7E+15	0%	1.4E+08	77%	1.7E+15	0%	0.0E+00
Xe-131m	4.3E+15	77%	3.3E+15	0%	2.6E+08	77%	3.3E+15	0%	0.0E+00
Xe-133	1.1E+19	77%	8.5E+18	0%	6.7E+11	77%	8.5E+18	0%	0.0E+00
Xe-133m	1.2E+17	77%	8.8E+16	0%	7.0E+09	77%	8.8E+16	0%	0.0E+00
Xe-135	2.0E+18	77%	1.5E+18	0%	1.2E+11	77%	1.5E+18	0%	0.0E+00
Xe-135m	2.5E+15	77%	1.9E+15	0%	1.5E+08	77%	1.9E+15	0%	0.0E+00
I-131	3.4E+18	78%	2.7E+18	10%	3.5E+17	68%	2.3E+18	0%	0.0E+00
I-132	1.3E+17	78%	1.0E+17	10%	1.3E+16	68%	8.8E+16	0%	0.0E+00
I-133	3.0E+18	78%	2.4E+18	10%	3.1E+17	68%	2.1E+18	0%	0.0E+00
I-134	1.1E+09	78%	8.3E+08	10%	1.1E+08	68%	7.2E+08	0%	0.0E+00
I-135	3.7E+17	78%	2.8E+17	10%	3.7E+16	68%	2.5E+17	0%	0.0E+00
Cs-134	6.4E+17	76%	4.8E+17	18%	1.1E+17	58%	3.7E+17	0%	0.0E+00
Cs-136	1.7E+17	76%	1.3E+17	18%	2.9E+16	58%	9.6E+16	0%	0.0E+00
Cs-137	5.2E+17	76%	3.9E+17	18%	9.2E+16	58%	3.0E+17	0%	0.0E+00
NN 1 44 0 4	마미ᄵᇄᆎᅣᇵᇵᇊᆝᅻᆝᆿᆂᆂᇈᄣᄀᆘᆿᆂᆂ								
ヘント仮24	度固龄调度口(/)谷B018(3)/玄口和十次3/3家)								
		「「「「」」	の毎年割る		と国へ		テ左到ム	理培协中割合([CV(SUDE)
核種	ベントタイミング までの時間減衰と	炉心からの (割)の)		RPV内存在	生割合 (P-v)	PCV内存 (割合)	存在割合	環境放出割合(F	-CVSのDF考慮)
核 種	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq)	<u>炉心からの</u> (割合)	D放出割合 (Bq)	RPV内存在 (割合)	生割合 (Bq)	PCV内存 (割合)	字在割合 (Bq)	環境放出割合(F (割合)	FCVSのDF考慮) (Bq)
核 種 Kr-85	ベントタイミング 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16	炉心から0 (割合) 77%	D放出割合 (Bq) 4.8E+16	RPV内存在 (割合) 0.00000028%	生割合 (Bq) 1.8E+08	PCV内存 (割合) 0.41%	存在割合 (Bq) 2.6E+14	環境放出割合(F (割合) 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16
核 種 Kr-85 Kr-85m	ベントタイミング 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16	炉心から0 (割合) 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16	RPV内存7 (割合) 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07	PCV内存 (割合) 0.41% 0.41%	字在割合 (Bq) 2.6E+14 6.7E+13	環境放出割合(F (割合) 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16
核 種 Kr-85 Kr-85m Kr-87	ベントタイミング 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 0.95+15	炉心から0 (割合) 77% 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11	RPV内存在 (割合) 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02	PCV内7 (割合) 0.41% 0.41% 0.41%	存在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09	環境放出割合(F (割合) 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11
核 種 Kr-85 Kr-85m Kr-87 Kr-88	ベントタイミング	炉心から0 (割合) 77% 77% 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15	RPV内存在 (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+03	PCV内存 (割合) 0.41% 0.41% 0.41% 0.41%	存在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12	環境放出割合(F (割合) 76% 76% 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m	ベントタイミング	<u>炉心から0</u> (割合) 77% 77% 77% 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15	RPV内存在 (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 2.2E+10	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41%	存在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 9.5E+19
核 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-132m	ベントタイミング 就種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 3.3E+15 8.5E+18	RPV内存在 (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 2 2E+09	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-133m	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 2.2E+17	炉心から0 (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77%	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1 5E+19	RPV内存在 (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+00	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+19
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 2.0E+18 2.5E+15	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18	RPV内存不 (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7 1E+06	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m L-131	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18	RPV内存イ (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	主割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 2.5E+17	PCV内存 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.2E+19	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	FCVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m I-131 I-131	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15 3.4E+18	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18	RPV内存イ (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028%	主割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.2E+16	PCV内存 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 9.9E+16	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m I-131 I-132 I-133	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 3.4E+18 1.3E+17 2.0E+18	炉心から0 (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18	RPV内存イ (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 10%	注割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 2.1E+17	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08
核	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 3.4E+18 1.3E+17 3.0E+18 1.1E+09	<u>炉心から0</u> (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18 8 3E+09	RPV内存イ (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 10% 10%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 3.1E+17 1.1E+09	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68% 68%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18 7.2E+09	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08 3.4E=01
核	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15 3.4E+18 1.3E+17 3.0E+18 1.1E+09 3.7E+17	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	D放出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18 8.3E+08 2.8E+17	RPV内存イ (割合) 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 0.00000028% 10% 10%	注割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 3.1E+17 1.1E+08 3 7E+16	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68% 68% 68%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18 7.2E+08 2.5E+17	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08 3.4E-01 1.2E+08
核	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15 3.4E+18 1.3E+17 3.0E+18 1.1E+09 3.7E+17	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	次出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18 8.3E+08 2.8E+17 4.8E+17	RPV内存イ (割合) 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 10% 10% 10%	生割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 3.1E+17 1.1E+08 3.7E+16	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68% 68% 68% 68%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18 7.2E+08 2.5E+17 3.7E+17	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 76%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08 3.4E-01 1.2E+08
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m I-131 I-132 I-133 I-134 I-135 Cs-134 Cs-136	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15 3.4E+18 1.3E+17 3.0E+18 1.3E+17 3.0E+18 1.1E+09 3.7E+17 6.4E+17	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	次出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18 8.3E+08 2.8E+17 4.8E+17 1.2E+17	RPV内存イ (割合) 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 10% 10% 10% 10%	王割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 3.1E+17 1.1E+08 3.7E+16 1.1E+17 2.9E+16	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68% 68% 68% 68% 58%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18 7.2E+08 2.5E+17 3.7E+17 9.6E+16	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 0.00000032% 0.00000032% 0.00000032% 0.00000032% 0.00000032% 0.00000032%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08 3.4E-01 1.2E+08 1.4E+10 3.7E+09
核種 Kr-85 Kr-85m Kr-87 Kr-88 Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m I-131 I-132 I-133 I-134 I-135 Cs-134 Cs-136 Oc-137	ベントタイミング までの時間減衰と 親核種からの生成を考慮した炉内内蔵量(Bq) 6.3E+16 1.6E+16 3.0E+11 2.2E+15 4.3E+15 1.1E+19 1.2E+17 2.0E+18 2.5E+15 3.4E+18 1.3E+17 3.0E+18 1.1E+09 3.7E+17 6.4E+17 1.7E+17	炉心からの (割合) 77% 77% 77% 77% 77% 77% 77% 77% 77% 77	次出割合 (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 2.7E+18 1.0E+17 2.4E+18 8.3E+08 2.8E+17 4.8E+17 1.3E+17	RPV内存イ (割合) 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 0.0000028% 10% 10% 10% 10% 10% 18%	注割合 (Bq) 1.8E+08 4.6E+07 8.5E+02 6.4E+06 1.2E+07 3.2E+10 3.3E+08 5.6E+09 7.1E+06 3.5E+17 1.3E+16 3.1E+17 1.1E+08 3.7E+16 1.1E+17 2.9E+16	PCV内7 (割合) 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 0.41% 68% 68% 68% 68% 68% 58% 58%	字在割合 (Bq) 2.6E+14 6.7E+13 1.2E+09 9.2E+12 1.8E+13 4.6E+16 4.7E+14 8.1E+15 1.0E+13 2.3E+18 8.8E+16 2.1E+18 7.2E+08 2.5E+17 3.7E+17 9.6E+16 2.9E+17	環境放出割合(F (割合) 76% 76% 76% 76% 76% 76% 76% 76% 76% 0.00000032% 0.00000032% 0.00000032% 0.00000032% 0.00000032% 0.00000032%	CVSのDF考慮) (Bq) 4.8E+16 1.2E+16 2.3E+11 1.7E+15 3.3E+15 8.5E+18 8.8E+16 1.5E+18 1.9E+15 1.1E+09 4.1E+07 9.6E+08 3.4E-01 1.2E+08 1.4E+10 3.7E+09 4.1E+07

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

【詳細】2021年3月12日のMAAP解析におけるFP挙動(4/7)

@Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

【詳細】2021年3月12日のMAAP解析におけるFP挙動(5/7)

(参考)無機ヨウ素・有機ヨウ素は

ベント後24時間経過時点の各Bq値

+#	呑	ベントまでの時間減衰と親核種からの生成を考	RPVからの 放出割合		W/W液	W/W液相			環境放出割合(FCVSのDF考慮)	
1%	悝	慮した粒子状ヨウ素炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
I-13	1無機	2 4 5 + 1 9	0.000016%	5.6E+11	0.000015%	5.0E+11	0.0000016%	5.6E+10	0.000000016%	5.6E+07
	有機	5.42+16	0.0000050%	1.7E+10	0%	0.0E+00	0.0000049%	1.7E+10	0.00000010%	3.5E+08
I-13	2無機	1 25+17	0.000016%	2.1E+10	0.000015%	1.9E+10	0.0000016%	2.1E+09	0.000000016%	2.1E+06
	有機	1.32+17	0.0000050%	6.5E+08	0%	0.0E+00	0.0000049%	6.4E+08	0.00000010%	1.3E+07
I-13	3無機	2 05+19	0.000016%	4.9E+11	0.000015%	4.4E+11	0.0000016%	4.9E+10	0.000000016%	4.9E+07
	有機	3.0E+18	0.0000050%	1.5E+10	0%	0.0E+00	0.00000049%	1.5E+10	0.00000010%	3.0E+08
I-13	4無機	1 15+00	0.000016%	1.7E+02	0.000015%	1.6E+02	0.0000016%	1.7E+01	0.000000016%	1.7E-02
	有機	1.12+09	0.0000050%	5.4E+00	0%	0.0E+00	0.0000049%	5.2E+00	0.00000010%	1.1E-01
I-13	5無機	2 75+17	0.000016%	5.9E+10	0.000015%	5.3E+10	0.0000016%	5.9E+09	0.000000016%	5.9E+06
	有機	3.72+17	0.0000050%	1.8E+09	0%	0.0E+00	0.0000049%	1.8E+09	0.00000010%	3.7E+07

ノウハウ記載のためマスキング実施

TEPCO

【詳細】2021年3月12日のMAAP解析におけるFP挙動(6/7)

格納容器内Cs分布

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

TEPC

【詳細】2021年3月12日のMAAP解析におけるFP挙動(7/7)

PCVスプレイ前後のBq値

PCVスプ	レイ直前の各Bq値(<u>ヨウ素は粒</u> 子状ヨウ素)												
ᄨ	ベントタイミング までの時間減衰と	RPVからの	D放出割合	D/W気	相	D/W液相	+沈着	W/W	W気相	W/W液	相+沈着	環境放出割合(FC	VSのDF考慮)
12 13	親核種からの生成を考慮した炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
I-131	3.4E+18	53%	1.8E+18	0.12%	4.0E+15	39%	1.3E+18	0.018%	6.3E+14	15%	5.1E+17	0%	0.0E+00
I-132	1.3E+17	53%	7.0E+16	0.12%	1.5E+14	39%	5.0E+16	0.018%	2.4E+13	15%	1.9E+16	0%	0.0E+00
I-133	3.0E+18	53%	1.6E+18	0.12%	3.5E+15	39%	1.2E+18	0.018%	5.6E+14	15%	4.5E+17	0%	0.0E+00
I-134	1.1E+09	53%	5.7E+08	0.12%	1.2E+06	39%	4.1E+08	0.018%	2.0E+05	15%	1.6E+08	0%	0.0E+00
I-135	3.7E+17	53%	2.0E+17	0.12%	4.2E+14	39%	1.4E+17	0.018%	6.7E+13	15%	5.4E+16	0%	0.0E+00
Cs-134	6.4E+17	52%	3.3E+17	0.061%	3.9E+14	38%	2.4E+17	0.018%	1.2E+14	14%	8.6E+16	0%	0.0E+00
Cs-136	1.7E+17	52%	8.6E+16	0.061%	1.0E+14	38%	6.3E+16	0.018%	3.0E+13	14%	2.3E+16	0%	0.0E+00
Cs-137	5.2E+17	52%	2.7E+17	0.061%	3.2E+14	38%	2.0E+17	0.018%	9.5E+13	14%	7.0E+16	0%	0.0E+00
PCVスプ					+0					AL (AL)*#			
核 利	_ ペントタイミンク までの時間減衰と	RPVから0	り放出割合	D/W文	,怕	D/W液相	十沉宿	W/V	₩ え 柏	W/W液	相十沉宿	境境放出割合(FC	VSのDF考慮)
	- 親核種からの生成を考慮した炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
I-131	3.4E+18	54%	1.9E+18	0.19%	6.7E+15	15%	5.2E+17	0.013%	4.6E+14	39%	1.3E+18	0%	0.0E+00
I-132	1.3E+17	54%	7.0E+16	0.19%	2.5E+14	15%	2.0E+16	0.013%	1.8E+13	39%	5.0E+16	0%	0.0E+00
I-133	3.0E+18	54%	1.6E+18	0.19%	5.9E+15	15%	4.6E+17	0.013%	4.1E+14	39%	1.2E+18	0%	0.0E+00
I-134	1.1E+09	54%	5.7E+08	0.19%	2.1E+06	15%	1.6E+08	0.013%	1.4E+05	39%	4.1E+08	0%	0.0E+00
I-135	3.7E+17	54%	2.0E+17	0.19%	7.1E+14	15%	5.5E+16	0.013%	4.9E+13	39%	1.4E+17	0%	0.0E+00
Cs-134	6.4E+17	52%	3.3E+17	0.060%	3.9E+14	14%	9.2E+16	0.013%	8.6E+13	37%	2.4E+17	0%	0.0E+00
Cs-136	1.7E+17	52%	8.6E+16	0.060%	1.0E+14	14%	2.4E+16	0.013%	2.2E+13	37%	6.2E+16	0%	0.0E+00
Cs-137	5.2E+17	52%	2.7E+17	0.060%	3.1E+14	14%	7.5E+16	0.013%	7.0E+13	37%	1.9E+17	0%	0.0E+00

ベント前後のBq値

ベント直前の各Bq値(ヨウ素<u>は粒子状ヨ</u>ウ素)

+#	ボントタイミング までの時間減衰と	RPVからの)放出割合	D/W気	相	D/W液相·	+沈着	W/W	′気相	W/W液 [;]	相+沈着	環境放出割合(FCVS	SのDF考慮)
松	^裡 親核種からの生成を考慮した炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
I-13	3.4E+18	68%	2.3E+18	0.00028%	9.8E+12	18%	6.4E+17	0.000019%	6.6E+11	49%	1.7E+18	0%	0.0E+00
I-13	1.3E+17	68%	8.8E+16	0.00028%	3.7E+11	18%	2.4E+16	0.000019%	2.5E+10	49%	6.4E+16	0%	0.0E+00
I-13	3.0E+18	68%	2.1E+18	0.00028%	8.6E+12	18%	5.6E+17	0.000019%	5.8E+11	49%	1.5E+18	0%	0.0E+00
I-13	1.1E+09	68%	7.2E+08	0.00028%	3.0E+03	18%	2.0E+08	0.000019%	2.1E+02	49%	5.2E+08	0%	0.0E+00
I-13	3.7E+17	68%	2.5E+17	0.00028%	1.0E+12	18%	6.7E+16	0.000019%	7.0E+10	49%	1.8E+17	0%	0.0E+00
Cs-13	4 6.4E+17	58%	3.7E+17	0.015%	9.8E+13	17%	1.1E+17	0.000019%	1.2E+11	41%	2.6E+17	0%	0.0E+00
Cs-13	6 1.7E+17	58%	9.6E+16	0.015%	2.6E+13	17%	2.8E+16	0.000019%	3.2E+10	41%	6.9E+16	0%	0.0E+00
Cs-13	7 5.2E+17	58%	3.0E+17	0.015%	8.0E+13	17%	8.6E+16	0.000019%	1.0E+11	41%	2.1E+17	0%	0.0E+00
ベント後	24時間経過時点の各 <u>Bq値(ヨ</u> ウ素は粒子状ヨウ素)												
++	¹⁴ ベントタイミング までの時間減衰と	RPVからの	D放出割合	D/W気 ^x	相	D/W液相·	+沈着	W/W	気相	W/W液	相+沈着	環境放出割合(FCVS	SのDF考慮)
核	裡 親核種からの生成を考慮した炉内内蔵量(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)	(割合)	(Bq)
I-13	3.4E+18	68%	2.3E+18	0.000018%	6.4E+11	17%	5.8E+17	0.00000019%	6.7E+08	51%	1.7E+18	0.00000032%	1.1E+09
I-13	2 1.3E+17	68%	8.8E+16	0.000018%	2.4E+10	17%	2.2E+16	0.00000019%	2.5E+07	51%	6.6E+16	0.00000032%	4.1E+07
I-13	3.0E+18	68%	2.1E+18	0.000018%	5.6E+11	17%	5.1E+17	0.00000019%	5.9E+08	51%	1.5E+18	0.00000032%	9.6E+08
I-13	1.1E+09	68%	7.2E+08	0.000018%	2.0E+02	17%	1.8E+08	0.00000019%	2.1E-01	51%	5.4E+08	0.00000032%	3.4E-01
I-13	3.7E+17	68%	2.5E+17	0.000018%	6.7E+10	17%	6.2E+16	0.00000019%	7.0E+07	51%	1.8E+17	0.00000032%	1.2E+08
Cs-13	4 6.4E+17	58%	3.7E+17	0.00048%	3.1E+12	15%	9.8E+16	0.00000051%	3.2E+09	43%	2.7E+17	0.0000022%	1.4E+10
Cs-13	6 1.7E+17	58%	9.6E+16	0.00048%	8.0E+11	15%	2.5E+16	0.00000051%	8.4E+08	43%	7.1E+16	0.0000022%	3.7E+09
Cs-13	7 5.2E+17	58%	3.0E+17	0.00048%	2.5E+12	15%	7.9E+16	0.0000051%	2.6E+09	43%	2.2E+17	0.0000022%	1.1E+10

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

無断複製・転載禁止 東京電力ホールディングス株式会社

【参考】MAAPコード概要(1/9)

(福島第一原子力発電所事故発生後の詳細な進展メカニズムに関する未確認・未解明事項の調査・検討結果報告書 添付資料1 MAAPコードの概要 より転記(一部省略))

1. MAAP コードの特徴

MAAP コードは、米国電力研究所(EPRI)が所有するシビアアクシデント解析コードであり、軽水炉の炉心損傷、原 子炉圧力容器(RPV)破損、原子炉格納容器(PCV)破損からコア・コンクリート反応、放射性物質の発生・移行・ 放出に至る事故シーケンス全般の現象解析に用いることができる。コードシステムとしては、各事故過程のプロセスを 個別に評価するモジュールを統合することで、一連の事故シーケンスを評価する構成となっている。また、実プラン トに即した工学的安全施設や制御系がモデル化されているため、運転員操作を含むシステムイベントを扱うことができ、 事故進展過程において炉心が冷却可能な状態で終息するか、あるいはPCV が破壊し核分裂生成物(FP)が放出されるま でのシビアアクシデント解析を行うことができる。

MAAP コードは簡略化した形状や相関式等を使用する解析モデルに基づく"一点集中定数型近似モデル"に分類される コードである。コード内では解析対象とする領域を"ボリューム"と呼ばれる体積要素に分割し、それらを"ジャンクショ ン"と呼ばれる接合部で結合することで、質量及びエネルギ保存則に基づき領域内の1次元熱流動を評価する。炉心部で は、崩壊熱及び化学反応による発熱と冷却材及び構造材への熱伝達のバランスから燃料温度を評価し、それに基づき燃 料挙動(燃料損傷・溶融・移動)を評価する。下部プレナムにデブリが移行した後は、RPV 破損評価を行い、それに基 づきPCV への溶融燃料移行を判定する。PCV ではデブリによるコンクリート構造材の侵食及び化学反応等の物理化学現 象を扱う。

表1 にMAAP コードのモデル概要を、表2 に解析モデル設定の概要をまとめる。また、RPV 内の評価モデル概要を図 1 に、PCV 内の評価モデル概要を図2に、RPV 内下部プレナムにおける評価モデルの概要を図3 に示す。

2. 主な解析モデル

○原子炉施設解析モデル

RPV 内については、RPV 上部ヘッド、炉心上部構造物、炉心、下部プレナム、ダウンカマ、及び再循環ループ等に分割される。また、PCV 内については、ペデスタル、ドライウェル、ベント管及びウェットウェルに加え、PCV外への気相放出を考慮するために環境を模擬するボリュームを設定する。各ボリューム間には気液流動を扱うためのジャンクションを設定し、RPV 上部ヘッドとウェットウェル間には逃がし安全弁(SRV)を、ドライウェルとウェットウェル間には真空破壊弁を、またPCV から環境へのリークを模擬したジャンクションを設定する。RPV 内の主要構造物(シュラウド、炉心支持板、RPV 壁面、炉心上部構造物等)は、ヒートシンクとして設定する。RPV 内、及びPCV 内の水位は、水位体積テーブルを設定することで評価する。

【参考】MAAPコード概要(2/9)

○ 炉心部燃料挙動モデル

炉心部とは炉心支持板~燃料上部格子板を指し、燃料のヒートアップ及び燃料溶融挙動を取り扱うために、軸方向、 及び径方向のノード分割を行う。炉心部解析モデルでは被覆管過熱に伴う水-金属反応による発熱及び水素ガス発生を扱い、燃料温度上昇、破損、溶融に伴うキャンドリング、リロケーションを評価する。燃料形状については、溶融状況に 応じて4つのタイプ(健全燃料~流路閉塞状態)を考慮し、冷却状況によりクラスト形成、炉心横方向へのデブリ移行、 溶融プール形成を扱う。なお、炉心支持板部のノードが溶融温度に達した時点で、デブリの下部プレナム領域への移行 を判定する。

○ 下部プレナムデブリ冷却モデル

下部プレナムに移行したデブリについては、冷却状況により溶融デブリプール、クラスト、溶融金属層、粒子状デブリの形態を区別する。下部プレナムでは、デブリから冷却材及び構造材への熱伝達を評価するとともに、各種破損モード評価に基づくRPV 破損判定を行う。RPV 破損後は、デブリ及び冷却材のPCV下部への移行を評価する。

○ 格納容器内における物理化学現象評価モデル(コア・コンクリート反応モデル)

MAAP ではPCV 内での様々な物理化学現象を取り扱うことができるが、PCV下部(ペデスタル)に落下したデブリに ついては、コンクリート、冷却材への熱伝達、構造材への輻射等を評価し、冷却状態によりコア・コンクリート反応を 扱う。コア・コンクリート反応では、1 次元の熱伝達モデルによりコンクリート侵食を扱い、それに伴うガス、FP エア ロゾルの放出を評価する。

○ その他プラントモデル

高圧注水系、原子炉隔離時冷却系、及び消火系注水についてはMAAP コードにモデル化されたものを使用し、作動条件、注水特性及び水源については、機器仕様書、運転操作記録及び計測データを基 に設定する。

【参考】MAAPコード概要(3/9)

		図 1~3の番号	項目	解析モデル設定等
項目	MAAP モデル	との対応	소로 가드러	Zr 酸化: Cathcart モデルもしくは Baker-Just モデル
11	ボリューム・ジャンクションでモデル化、炉心ノー		金周"小汉応	SUS 酸化: White's parabolic equation モデルもしくは ANL モデル
体系のモテル化	ド分割(軸方向:13ノード/径方向:5リング)		被覆管破損判定	破損判定温度:1000 [K]
熱流動モデル	均質流モデル、ドリフトフラックスモデル、自然循 環、蒸発/凝縮、フラッシング、臨界流モデル、気 液対向流等	199999999		溶融物落下条件:炉心構成物質の各融点あるいは混合物質の平均溶融温 度 共晶反応モデル:UO ₂ -Zr(O) SUS-Zr B ₄ C-Steel B ₄ C-Steel-Zr
伝熱モデル	崩壊熱、燃料棒熱伝導、ヒートスラブ熱伝導、デブ リ熱伝導、冷却材熱伝達、燃料・構造物間の熱輻射、 溶融デブリ内の自然対流熱伝達、粒子状デブリから の熱伝達、圧力容器外冷却、圧力容器外熱損失、デ ブリ・RPV 壁面間ギャップ冷却等	3466999 9996666 6977999 6977999	燃料溶融	 ※融温度: 被覆管(ジルカロイ): 2125 [K] 二酸化ウラン: 3113 [K] SUS 構造物: 1700 [K] 制御材(B4C): 2700 [K]
炉心部燃料モデル	燃料ビートアック、水・金属反応(発熱、水素発生)、 燃焼損傷、キャンドリング、リロケーション、炉心 支持板破損等	99	炉心支持版破損	破損温度:1650 [K] 破損ロサイズ:0.01 [m ² /径方向リング]
下部プレナムデブリ モデル	層水堆積(粒子扒ケノリ、金属層、溶融ノール、タ ラスト)、RPV 破損(クリーブ破損、デブリジェッ トアタック、金属層アタック、RPV 貫通配管溶融、 壁面侵食)、溶融デブリ・冷却材相互作用(デブリエ ントレインメント)、水・金属反応(発熱、水素発生) 等	86699 9	下部プレナム	落下溶融物の粒子化: Ricou Spalding 相関式を適用したジェットブレー クアップモデル 粒子状堆積デブリ冷却:ドライアウト熱流束に関する Henry の相関式 デブリ-RPV ギャップ冷却: CHF ギャップ沸騰モデル
格納容器モデル	溶融炉心高圧飛散、ガス移行、水素爆発、冷却材プ ール Ph 履歴、FP エアロゾル挙動(蒸発、凝集、 沈着、拡散、熱泳動、沈降、フィルタ、プールスク ラビング他)等	69304		CRD チューブ脱落判定:メカニスティックモデル 破損ロサイズ (CRD チューブ脱落):半径 7.6 [cm] 破損ロサイズ (計装配管逸出):半径 2.5 [cm]
コア・コンクリート 反応モデル	クラスト成長/消滅、コア・コンクリート反応(コ ンクリート侵食、ガス、FP エアロゾル放出)等	****		デブリ-溶融コンクリート混合:考慮する コンクリート溶融温度:1500[K]
プラントモデル	炉内コンポーネント、制御系、主蒸気系、給水系、 注水設備(IC、RCIC、HPCI、LPCI、CS、消火系 注水他)、弁(SRV、MSIV、真空破壊弁、ラプチ ャディスク)、PCVベント、水源(CST、S/P、FP)、	2366749 999999999 69	コア・コンクリート反応	デブリ溶融プール-クラスト間の熱伝達係数:対流熱伝達率 (下方向/横方向) 堆積デブリ上の冷却材への熱流束:Kutateladzeの限界熱流束相関式 コンクリートの種類:玄武岩系コンクリート
	格納容器クーラ、RHR、SCS、リコンバイナ、イ		崩壞熱	ANSI/ANS5.1-1979 モデル
その他	 クナイタ等 核分裂生成物崩壊(RPV 内/PCV 内)、LOCA 時破 断モデル 	6000		

表1 MAAP コードの概要

表2 MAAP コード解析モデル設定の概要

【参考】MAAPコード概要(4/9)

BWR Primary System Modeling

図1 MAAP 原子炉圧力容器内モデルの概要

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

無断複製・転載禁止 東京電力ホールディングス株式会社

【参考】MAAPコード概要(5/9)

図2 MAAP 原子炉格納容器内モデルの概要

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

【参考】MAAPコード概要(6/9)

TEPCO

(福島第一原子力発電所事故発生後の詳細な進展メカニズムに関する未確認・未解明事項の調査・検討結果報告書 添付資料1 MAAPコードの概要 より転記(一部省略))

提供: EPRI

図3 MAAP 原子炉圧力容器下部プレナムモデルの概要

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

【参考】MAAPコード概要(7/9)

(柏崎刈羽原子力発電所 6号及び7号炉 重大事故等対策の有効性評価について 付録3 第5部 MAAP より転記(一部省略・強調))

3.3.7 核分裂生成物 (FP) 挙動モデル

FPは過熱された炉心からガス状として原子炉圧力容器内に放出される。なお、希ガス以外のほとんどのFPは単体 を作らないため化合物の化学種として放出される。炉心から放出されたFPのうち希ガス以外のFPは揮発性の高いCsI においても沸点は1,277℃であり、原子炉圧力容器あるいは原子炉格納容器内ではガス状態を維持できず、気相中で凝 縮しエアロゾル(微粒子)化する。エアロゾルであるため気相中での落下速度は遅く、ガスの流動とともに移動する。 ゆっくりと床に落下したFPエアロゾルは構造物表面に沈着あるいは水中へ移動する。水中の微粒子状FPは後述する よう素を除いて気相へ出てくることはない。FPエアロゾルは重力沈降以外に微粒子特有の移動(熱泳動・拡散泳動) で構造物表面に付着し、また、サプレッション・プール水中のスクラビングやスプレイによっても気相から除去される。 以上はMAAPのFP挙動モデルで模擬されている範囲である。

実際には、CsI 等のよう素化学種のエアロゾルでは、原子炉格納容器内に形成されるプール水中に溶解し、放射線により化学反応が促進され、揮発性の無機よう素I2(沸点184.3℃)や水中に溶けた有機物(塗装材等)と反応し、有機よう素が生成され、一部が気相に時間をかけて移動する。なお、水中のよう素の反応はプール水のpH や放射線量、水中の多様な有機物の濃度に強く依存し専用コードを使用しても精度の良い予測が非常に難しいことがよう素反応のOECD 国際標準問題等で示されている。このためMAAPではよう素反応モデルが試験的にオプションとして組み込まれているものの、よう素反応の結果は参照用としてFP計算にフィードバックされない。

本FP挙動モデルは主に以下のモデルから構成される。

<u>炉心燃料からの F P 放出モデル</u>

・ペレットが高温になり内部のFPが温度に依存してガス化し,ペレット外へ放出される。

<u>FPの状態変化・輸送モデル</u>

- F Pが気相温度に依存して、気相中で凝固しエアロゾル化する。そのエアロゾルは気相とともに移動し、また各種のメカニズムで構造物表面やプール水に移動する。
- F Pの移動に伴う崩壊熱分配モデル
 - ・ F P は崩壊熱を有するので、 F P の移動先で F P 量に依存した崩壊熱を発生し流体や構造物の熱源になる。

【参考】MAAPコード概要(8/9)

(柏崎刈羽原子力発電所 6号及び7号炉 重大事故等対策の有効性評価について 付録3 第5部 MAAP より転記(一部省略・強調))

また,本FPモデルにおける概要を以下に示す。_____表 3.3-

表 3.3-1 MAAPコードのモデル一覧 (5/5)

	1		A
 各FPの質量保存が考慮される。 	項	〔目	計算モデル
・ 原子炉圧力容器及び原子炉格納容器内の	溶融炉心の	原子炉格納	・コンクリート温度は,深さ方向に準定常の1次元の熱伝
FP形態はガス状, エアロゾル状, 沈着	挙動モデル	容器下部で	導方程式により温度分布を持つと仮定
を考慮する(希ガスはガス状のみ)。ま	(つづき)	の溶融炉心	・コンクリート温度がコンクリート溶融温度を超えると侵
た,水中及び溶融炉心内のFPを考慮す		の挙動 (コン	食開始。その際, コンクリート溶融潜熱及び化学反応熱
3.		クリート侵	の発生を考慮
・溶融炉心内に残存するFPは溶融炉心と		食)	・コンクリートから放出されるガス(水蒸気及び二酸化炭
とちに移動する			素)は直ちに溶融プールに侵入すると仮定し、溶融プー
			ル中の金属との酸化反応を考慮
			・コンクリートのスラグも溶融プールに侵入し、ウラン・
			ジルコニウム等と混合すると仮定
	FP挙動モ	FP放出	・FPは炉心温度に対する放出速度の相違に基づき12グル
れ、谷上イル干保仔式に考慮される。	テル		ーフに分類し、各FPクルーフの質量保存を考慮
・ F P の崩壊による発生エネルキは崩壊熱		い雨でわ 土人い込	・溶融炉心・コンクリート相互作用に伴うFP放出を模擬
データで考慮する。		遷移・輸达	・原于炉圧刀谷器及び格納谷器内のFP形態は谷クループ
 FPの崩壊による質量の変化は考慮しな 			に対し、ガス状、エアロソル状、沈宥を考慮(布ガスは ガス世のひ)また、大中耳が乾酔伝と中のFpた老歯
しい。			カム状のみ)。また、水中及び俗融炉心内のFPを考慮 ・ 与相及び流相中のFPの輸送け、熱水力計算から求めら
			・、X11及い彼相中のFFの軸送は、然小刀計算がら水のら れる体積法島からFD輸送島を計算
			403 (単位加重から)「「「「「「「「「」」」」」。 ・ FPボガスとエアロゾルの提合け」 気体の流れに乗って
			移動
			・溶融炉心内に残存するFPは溶融炉心とともに移動
			 ・水中のFPは区画間の水の流れとともに移動
			・格納容器及び原子炉圧力容器内での気体、エアロゾル及
			び構造表面上(沈着)の状態間の遷移を模擬
			・エアロゾルの沈着は,重力沈降,拡散泳動,熱泳動,慣
			性衝突,FPガス凝縮,FPガス再蒸発を模擬。沈着し
			たエアロゾルの再浮遊は考慮していない
		崩壊熱	・崩壊熱は各位置のFP量に応じて分配され,各エネルギ
			保存式に考慮
			 FP崩壊による発生エネルギは崩壊熱テータで考慮

【参考】MAAPコード概要(9/9)

(柏崎刈羽原子力発電所 6号及び7号炉 重大事故等対策の有効性評価について 付録3 第5部 MAAP より転記(一部省略・強調))

グループ	代表核種	説明
1	希ガス	希ガス (Xe, Kr)
2	CsI	CsI 及び RbI。よう素は全てアルカリF P と結合すると仮定。 また、セシウムがほとんどであるため、CsI の物性を用いる。
3	TeO ₂	酸化テルル(TeO ₂)。炉心内に放出されたテルルは直接TeO ₂ と なると仮定。原子炉圧力容器外で放出されたテルルは元素状態 にあると仮定するが、蒸気や酸素ガスが存在する場合には酸化 されてTeO ₂ になるものと仮定。
4	Sr0	ストロンチウムは主として原子炉圧力容器外から元素状態で 放出されるが、原子炉格納容器内で酸化されて Sr0 になるもの と仮定。原子炉圧力容器内放出についても、酸化されて Sr0 し なると仮定。
5	MoO ₂	二酸化モリブデン (MoO ₂) 。モリブデンが主にコンクリート 触時に放出されると考えられるためである。
6	Cs0H	CsOH 及び RbOH を表す。これは、よう素と結合した後に放出される Cs と Rb を表す。
7	Ba0	酸化バリウム (Ba0) を表す。Ba は化学的周期性から, Sr と じような挙動を示す。
8	La ₂ 0 ₃	Laを表す。La類の全三二酸化物の化学的挙動は同様であるので一つのグループとする。これらは不揮発性であるが、原子り 圧力容器内放出が許容されている。主として一酸化物の状態 原子炉圧力容器外に放出されるが、原子炉格納容器内で更に 化する。
9	CeO ₂	Ceの挙動はLaと同様であるが、化学量及びガス分圧が異なる ため、違うグループとしている。
10	Sb	アンチモンは元素の形態のまま原子炉圧力容器内及び原子炉 圧力容器外へ放出される。
11	Te ₂	原子炉圧力容器外に放出されたTeのうち酸化しないものはT のままとする。
12	UO ₂	ウラン及び超ウラン元素は特性が異なるため他のFPとは区別してグループ化する。これらは原子炉圧力容器外のみに放けため、原子炉圧力容器外のみに放けため、原子炉を始めたす。

表 3.3-2 MAAPコードのFPの核種グループ

FP 輸送パス:

- 1. 蒸気-エアロゾル (蒸発/凝縮)
- 2. 蒸気-ドライ壁(蒸発/凝縮)
- 3. エアロゾルー水(拡散泳動,重力沈降,熱泳動)
- 4. エアロゾルードライ水平壁(重力沈降,熱泳動)
- 5. エアロゾルードライ垂直壁(慣性衝突,熱泳動)
- 6. 水-水没水平壁(溶解/沈着)

出典: MAAP4 User's Manual, EPRI

図 3.3-15 格納容器内 FP 遷移モデル