新旧対照表

(傍線部分は改正部分)

修正後	修正前	備考
平成26年度「地層処分の安全審査に向けた評価手法等の	平成26年度「地層処分の安全審査に向けた評価手法等の	
整備(安全評価に向けた評価手法の整備)」報告書	整備(安全評価に向けた評価手法の整備)」報告書	
(平成27年3月)	(平成27年3月)	
平成27年3月31日	平成27年3月31日	
1. 序論	序論	
(修正無し)	(記載省略)	
1.3 成果概要	1.3 成果概要	
1.3.1 廃棄体・人工バリア材の性能評価モデルの整備	1.3.1 廃棄体・人工バリア材の性能評価モデルの整備	
(修正無し)	(記載省略)	
(2) 放射化金属の腐食モデルの作成	(2) 放射化金属の腐食モデルの作成	
使用済燃料の燃料被覆管の切断片であるハルは、地下 300m	使用済燃料の燃料被覆管の切断片であるハルは、地下 300m	
以深の地層に処分(地層処分)することが計画されている。ハ	以深の地層に処分(地層処分)することが計画されている。ハ	
ルの内部には原子炉内での放射化によって生成した放射性核	ルの内部には原子炉内での放射化によって生成した放射性核	
種が含まれており、地層処分後に溶出して人の生活圏に達し放	種が含まれており、地層処分後に溶出して人の生活圏に達し放	
射線影響を与える恐れがある。そのため、地層処分の安全性を	射線影響を与える恐れがある。そのため、地層処分の安全性を	
判断するためには、ハルの溶出量(溶出速度)を考慮した人へ	判断するためには、ハルの溶出量(溶出速度)を考慮した人へ	
の長期的な影響を評価(安全評価)する必要がある。これに対	の長期的な影響を評価(安全評価)する必要がある。これに対	
し、第2次TRU廃棄物処分研究開発取りまとめ(以下「第2次	し、第2次TRU廃棄物処分研究開発取りまとめ(以下「第2次	
TRU レポート」) ⁽³⁾ では、ハルからの放射性核種の溶出がジルカ	TRU レポート」) ⁽³⁾ では、ハルからの放射性核種の溶出がジルカ	

ロイの腐食にともない調和的に進展すると仮定し、長期的に一	ロイの腐食にともない調和的に進展すると仮定し、長期的に一	
定速度で進行するとした安全評価が行われた。	定速度で進行するとした安全評価が行われた。	
しかしながら、数千年あるいは数万年といった長期的な腐食量	しかしながら、数千年あるいは数万年といった長期的な腐食量	
(腐食速度)の評価をするためには、数年程度の試験で得られ	(腐食速度)の評価をするためには、数年程度の試験で得られ	
た腐食速度データを単に長期へ外挿するだけでは不十分であ	た腐食速度データを単に長期へ外挿するだけでは不十分であ	
り機構論的な裏付けが必要である。すなわち、腐食のメカニズ	り機構論的な裏付けが必要である。すなわち、腐食のメカニズ	
ムを解明することが必要である。	ムを解明することが必要である。	
平成 25 年度の試験では、PWR の燃料被覆管の母材であるジ	平成 25 年度の試験では、PWR の燃料被覆管の母材であるジ	
ルカロイ-4を用いて、酸化皮膜中の酸素イオン伝播支配の説お	ルカロイ-4を用いて、酸化皮膜中の酸素イオン伝播支配の説お	
よび酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作業	よび酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作業	
仮説における水素発生過程の同位体効果が異なることを利用	仮説における水素発生過程の同位体効果が異なることを利用	
して、100℃以下の低温域の温度条件で腐食メカニズムの解明	して、100℃以下の低温域の温度条件で腐食メカニズムの解明	
を行った。その結果、 <u>酸素イオン伝播メカニズムで想定した水</u>	を行った。その結果、二つのメカニズムで想定した水素同位体	記載の
<u>素同位体比(D/H比)を示したが、中間的な値を示したデータ</u>	<u>比(D/H 比)のどちらにもならず中間の値を示し</u> (図 1.3-4)、	適正化
<u>もあるため</u> (図 1.3-4)、二つの腐食メカニズムが共存している	二つの腐食メカニズムが共存していることが考えられたが、腐	
こと <u>も</u> 考えられたが、腐食メカニズムの解明には至らなかっ	食メカニズムの解明には至らなかった。	
た。		
ジルカロイ-4の腐食メカニズム解明手法は、新しい実験手法で	ジルカロイの腐食メカニズム解明手法は、新しい実験手法でま	記載の
まだ実績がないことから、平成26年度は、腐食メカニズムが知	だ実績がないことから、平成 26 年度は、腐食メカニズムが <u>明ら</u>	適正化
<u>られている</u> ジルカロイ <u>-4</u> 以外の金属で同様の試験を行い、メカ	<u>かになっている</u> ジルカロイ以外の金属で同様の試験を行い、メ	
ニズム解明手法の信頼性を <u>向上させ、</u> その上で昨年度に得られ	カニズム解明手法の信頼性を確認した。その上で昨年度に得ら	
た結果から再度ジルカロイ <u>-4</u> の腐食メカニズムについて考察	れた結果から再度ジルカロイの腐食メカニズムについて考察	
を行い、長期の腐食モデルを作成した。	を行い、長期の腐食モデルを作成した。	

0.12 + (mggilwarcharcharcharcharcharcharcharcharcharch	0.107 水拡散 で想定され たD/H比 0.08 0.06 0.04 0.04	図 の 修 正				
ၛ 0.00 0 20 40 60 80 酸化皮膜厚さ(nm)	0.02 0 0 0 10 酸化皮膜厚さ(nm) 0 10 10 10 10 10 10 10 10 10					
図 1.3-4 酸素イオン伝播の腐食メカニズムと水拡散の腐食メ	図 1.3-4 酸素イオン伝播の腐食メカニズムと水拡散の腐食メ					
カニズムで想定された水素同位体比と試験で測定されたジル	カニズムで想定された水素同位体比と試験で測定されたジル					
カロイ金属中の水素同位体比	カロイ金属中の水素同位体比					
水素発生過程の同位体効果を用いた腐食メカニズム解明手	水素発生過程の同位体効果を用いた腐食メカニズム解明手					
法の信頼性を確認するため、腐食メカニズムが <u>知られて</u> いる金	法の信頼性を確認するため、腐食メカニズムが <u>明らかになって</u>	記載の				
属を選定し試験をすることとした。炭素鋼は腐食メカニズムが	いる金属を選定し試験をすることとした。炭素鋼は腐食メカニ	適正化				
<u>知られて</u> いる金属であり、酸化皮膜中をH2O等の化学種が拡散	ズムが <u>明らかとなって</u> いる金属であり、酸化皮膜中を H ₂ O 等の					
して腐食が進展することなどが知られている ⁽⁴⁾ 。	化学種が拡散して腐食が進展することなどが知られている ⁽⁴⁾ 。					
(修正無し)	(記載省略)					
ジルコニウムは腐食メカニズムが <u>知られて</u> いる金属であり、 ポーラスな塊状酸化物を部分的に形成する金属として知られ	ジルコニウムは腐食メカニズムが <u>明らかになって</u> いる金属 であり、ポーラスな塊状酸化物を部分的に形成する金属として	記 載 の 適正化				
ている(6)。	知られている ⁽⁰⁾ 。					

(修正無し)	(記載省略)	
気相中の水素同位体比	気相中の水素同位体比	
図 1.3-7 に炭素鋼とジルコニウムとジルカロイ <u>-4</u> (ジルカロ	図 1.3-7 に炭素鋼とジルコニウムとジルカロイ(ジルカロイ	記載の
イ <u>-4</u> は平成25年度データ)の気相中の水素同位体比(D/H比)	は平成25年度データ)の気相中の水素同位体比(D/H比)を酸	適正化
を酸化皮膜厚さに対してプロットした。炭素鋼の腐食に伴って	化皮膜厚さに対してプロットした。炭素鋼試料として測定して	
放出された水素の D/H 比は腐食試験に用いた溶液の D/H に比	<u>得られた D/H 比は、酸化皮膜の厚さに関わらず豊富な水のある</u>	
べて低く、明らかな同位体効果を示している。この D/H 比は平	条件で起こる水分解反応で想定された D/H 比と同様となり、強	
成 25 年度に得られたジルカロイ-4 の腐食に伴って放出された	い同位体効果を受けたことを示した。このことは、酸化皮膜の	
水素の D/H 比と同レベルである。炭素鋼の腐食における水の分	隙間を拡散してきた豊富な水と鉄との腐食反応のメカニズム	
解反応は豊富に水のある条件で起こるものであり、ジルカロイ	および鉄イオン (Fe2+) が酸化皮膜を拡散して液相/酸化皮膜界	
-4 の腐食に伴って放出される水素の D/H 比が炭素鋼のそれと	<u>面で液相にある豊富な水と反応をするメカニズムのそれぞれ</u>	
同等であるということは、ジルカロイ-4の腐食における水の分	で強い同位体効果を受けた水素を気相中に発生する炭素鋼の	
解反応も豊富に水のある条件で起こる、即ち、酸素イオン伝播	腐食メカニズムと整合した。ジルコニウムを試料として測定し	
メカニズムが支配的であることを示すものである。	<u>て得られた D/H 比は、皮膜の薄い場合 (5nm) も厚い場合 (31nm)</u>	
ジルコニウムの腐食に伴って放出された水素のD/H比も、ジ	<u>も豊富な水のある条件で起こる水分解反応で想定した D/H 比</u>	
ルカロイ-4や炭素鋼のそれと同レベルの値を示している。ジル	と同様であった。これは、酸化皮膜の一部を占める塊状酸化物	
<u>コニウムの腐食はもともと、水拡散メカニズムが支配的と考</u>	を通して豊富に供給される水とジルコニウムの腐食反応のメ	
え、腐食試験に用いた溶液の D/H 比と同程度の D/H 比の水素	カニズムでの強い同位体効果を受けた水素を気相中に放出す	
が放出されると予想していた。その予想は正しくなかった。ジ	<u>るジルコニウムの腐食メカニズムと整合した。また、D/H比が</u>	
ルコニウムの酸化皮膜が保護性の低い塊状酸化物となった場	皮膜の厚さにかかわらず低い値であった理由として、水拡散の	
合には、豊富に水のある条件下で水分解が起こることになるの	腐食メカニズムで発生した水素の影響が少なく、塊状酸化物の	
で、炭素鋼と同様の D/H 比になるわけだが、TEM 観察結果、	腐食メカニズムで発生した水素の影響を強く受けたことと、酸	

伝播メカニズムの場合に想定される D/H 比に近い値を示して	定された値であった。これは図 1.3-6 に示すジルコニウムの腐
いる。この傾向はジルカロイ-4について見られた傾向と同じで	食メカニズムのうち塊状酸化物の腐食メカニズムを反映する
ある。この結果からも、ジルコニウムとジルカロイ-4の腐食メ	ものである。酸化皮膜が少し厚くなった(31nm)条件では値が
カニズムが同じであると考えたくなるが、十分な根拠があるわ	少し高くなっていた。これは図 1.3-6 に示すジルコニウムの腐
<u>けではない。</u>	食メカニズムの塊状酸化物の腐食メカニズムと水拡散のメカ
	ニズムの共存を反映するものである。これは、薄い条件では強
	い同位体効果を受けた水素が D/H 比に強く影響が現れたが、少
	し厚くなった条件では強い同位体効果を受けた水素に加え弱
	い同位体効果を受けた水素の影響が D/H 比に現れてきたため
	<u>と考えられる。また、ジルカロイに比べて D/H 比が低く出てい</u>
	るのは、ジルコニウムの腐食メカニズムのうち塊状酸化物の腐
	食メカニズムが酸化皮膜/金属界面で起こっており強い同位体
	効果を受けた水素が金属中に吸収されたことを反映したもの
	<u>である。</u>
	炭素鋼やジルコニウムの水素同位体比測定の結果は、それぞれ
	の腐食メカニズムを反映するものであった。これは、腐食メカ
	ニズム解明手法の信頼性を示すものであった。このため、この
	腐食メカニズム解明手法で得られた、酸素イオン伝播メカニズ
	ムと水拡散メカニズムの共存とするジルカロイの腐食メカニ
	ズムは、信頼性があると考えた。

気相 N ₂ H ² ス相 H ² 液相 H ₂ O H ² 文 C ² (x = 0~2) C ² スr 2r 2r 2r 2r 2rO _x (x = 0~2) 金属間化合物析出物	気相 Q^2 -2H*+2e ⁻ →H ₂ H_2 液相 H_2 酸化皮膜 ZrO ₂ ZrO ₂ ZrO ₂ 之EO ₂ +4e 金属間化合物析出物 金属 Zr	図 の 修 正
図 1.3-10 ジルカロイ <u>-4</u> の腐食メカニズム模式図(平成 26 年	図 1.3-10 ジルカロイの腐食メカニズム模式図(平成 26 年度	
度案)	案)	
(修正無し)	(記載省略)	
2.3 放射化金属の腐食モデルの作成	2.3 放射化金属の腐食モデルの作成	
2.3.1 背景と目的	2.3.1 背景と目的	
使用済燃料の燃料被覆管の切断片であるハルは、地下 300m	使用済燃料の燃料被覆管の切断片であるハルは、地下 300m	
以深の地層に処分(地層処分)することが計画されている。ハ	以深の地層に処分(地層処分)することが計画されている。ハ	
ルの内部には原子炉内での放射化によって生成した放射性核	ルの内部には原子炉内での放射化によって生成した放射性核	
種が含まれており、地層処分後に溶出して人の生活圏に達し放	種が含まれており、地層処分後に溶出して人の生活圏に達し放	
射線影響を与える恐れがある。そのため、地層処分の安全性を	射線影響を与える恐れがある。そのため、地層処分の安全性を	
判断するためには、ハルの溶出量(溶出速度)を考慮した人へ	判断するためには、ハルの溶出量(溶出速度)を考慮した人へ	
の長期的な影響を評価(安全評価)する必要がある。これに対	の長期的な影響を評価(安全評価)する必要がある。これに対	
し、第2次TRU廃棄物処分研究開発取りまとめ(以下「第2次	し、第2次TRU廃棄物処分研究開発取りまとめ(以下「第2次	

TRU レポート」) ⁽¹⁾ では、ハルからの放射性核種の溶出がジノ	レカ TRU レポート」) ⁽¹⁾ では、ハルからの放射性核種の溶出がジルカ
ロイの腐食にともない調和的に進展すると仮定し、長期的に	こ一 ロイの腐食にともない調和的に進展すると仮定し、長期的に一
定速度で進行するとした安全評価が行われた。	定速度で進行するとした安全評価が行われた。
しかしながら、数千年あるいは数万年といった長期的な概	8食 しかしながら、数千年あるいは数万年といった長期的な腐食
量(腐食速度)の評価をするためには、数年程度の試験で行	鼻ら 量(腐食速度)の評価をするためには、数年程度の試験で得ら
れた腐食速度データを単に長期へ外挿するだけでは不十分	うで れた腐食速度データを単に長期へ外挿するだけでは不十分で
あり機構論的な裏付けが必要である。すなわち、腐食のメス	カニ あり機構論的な裏付けが必要である。すなわち、腐食のメカニ
ズムを解明することが必要である。	ズムを解明することが必要である。
100℃付近(30℃~120℃)の低温域の試験では、腐食速度な	バ腐 100℃付近(30℃~120℃)の低温域の試験では、腐食速度が腐
食時間の経過とともに低下すること(2)(3)、腐食により発生し	した 食時間の経過とともに低下すること ⁽²⁾⁽³⁾ 、腐食により発生した
水素が金属中に吸収されるものと金属外に放出されるもの	Dに 水素が金属中に吸収されるものと金属外に放出されるものに
分かれること(2)(3)、発生した水素全量中の金属中に吸収され	nた 分かれること ⁽²⁾⁽³⁾ 、発生した水素全量中の金属中に吸収された
水素量の割合 (水素吸収率) が低温になるほど高くなること	⁽²⁾⁽³⁾ 水素量の割合 (水素吸収率) が低温になるほど高くなること ⁽²⁾⁽³⁾
などが分かっている。一方 300℃程度の高温域では、酸素-	イオ などが分かっている。一方 300℃程度の高温域では、酸素イオ
ンが酸化皮膜中のアニオン空孔を伝播して金属界面に達し	して ンが酸化皮膜中のアニオン空孔を伝播して金属界面に達して
腐食が進行すると考えられる酸化皮膜中の酸素イオン伝統	番支 腐食が進行すると考えられる酸化皮膜中の酸素イオン伝播支
配の説(仮説①)(4)と、水が酸化皮膜中の細孔を拡散して会	金属 配の説(仮説①)(4)と、水が酸化皮膜中の細孔を拡散して金属
界面に達して腐食が進行すると考えられる酸化皮膜中のた	K拡 界面に達して腐食が進行すると考えられる酸化皮膜中の水拡
散の説(仮説②) ⁽⁵⁾ が、腐食メカニズムとして提唱されてい	る。 散の説(仮説②) ⁽⁵⁾ が、腐食メカニズムとして提唱されている。
平成 25 年度の試験では、PWR の燃料被覆管の母材である	5ジ 平成 25 年度の試験では、PWR の燃料被覆管の母材であるジ
ルカロイ-4を用いて、酸化皮膜中の酸素イオン伝播支配の調	兑お ルカロイ-4 を用いて、酸化皮膜中の酸素イオン伝播支配の説お
よび酸化皮膜中の水拡散支配の説を作業仮説とし、二つの何	作業 よび酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作業
仮説における水素発生過程の同位体効果が異なることを利	前用 仮説における水素発生過程の同位体効果が異なることを利用

して、100℃以下の低温域の温度条件で腐食メカニズムの解明	して、100℃以下の低温域の温度条件で腐食メカニズムの解明	
を行った。その結果 <u>は酸素イオン伝播メカニズム支配の可能性</u>	を行った。その結果 <u>、二つのメカニズムで想定した水素同位体</u>	記載の
を示していたが (図 2.3-1)、酸素イオン伝播メカニズムに加え	<u>比(D/H 比)のどちらにもならず中間の値を示し(図 2.3-1)、</u>	適正化
て水拡散メカニズムも共存している可能性も残された (図 2.3-	<u>二つの腐食メカニズムが共存していることが考えられた</u> (図	
2)。	2.3-2)。	
ジルカロイ-4の腐食メカニズム解明手法は、新しい実験手法	ジルカロイの腐食メカニズム解明手法は、新しい実験手法で	
でまだ実績がないことから、平成26年度は、腐食メカニズムが	まだ実績がないことから、平成26年度は、腐食メカニズムが明	
明らかになっているジルカロイ以外の金属で同様の試験を行	らかになっているジルカロイ以外の金属で同様の試験を行い、	
い、メカニズム解明手法の信頼性向上を図った。その上で昨年	メカニズム解明手法の信頼性 <u>を確認する</u> 。その上で昨年度に得	
度に得られた結果から再度ジルカロイ <u>-4</u> の腐食メカニズムに	られた結果から再度ジルカロイの腐食メカニズムについて考	
ついて考察を行い、長期の腐食モデルを作成した。	察を行い、長期の腐食モデルを作成した。	

2.3.2 水素発生過程の同位体効果を用いた腐食メカニズム解	2.3.2 水素発生過程の同位体効果を用いた腐食メカニズム解	
明手法を適用する金属の選定	明手法を適用する金属の選定	
(1) 炭素鋼を選定した理由	(1) 炭素鋼を選定した理由	
水素発生過程の同位体効果を用いた腐食メカニズム解明手	水素発生過程の同位体効果を用いた腐食メカニズム解明手	
法の信頼性 <u>向上を図る</u> ため、腐食メカニズムが <u>知られて</u> いる金	法の信頼性 <u>を確認する</u> ため、腐食メカニズムが <u>明らかになって</u>	記載の
属を選定し試験をすることとした。炭素鋼は腐食メカニズムが	いる金属を選定し試験をすることとした。炭素鋼は腐食メカニ	適正化
知られている金属であり、酸化皮膜中をH2O等の化学種が拡散	ズムが <u>明らかとなって</u> いる金属であり、酸化皮膜中を H ₂ O 等の	
して腐食が進展することなどが知られている ⁽⁶⁾ 。	化学種が拡散して腐食が進展することなどが知られている ⁶⁰ 。	
(修正無し)	(記載省略)	
(2) ジルコニウムを選定した理由	(2) ジルコニウムを選定した理由	
ジルコニウムは腐食メカニズムが <u>知られて</u> いる金属であり、	ジルコニウムは腐食メカニズムが <u>明らかになって</u> いる金属	記載の
ポーラスな塊状酸化物を部分的に形成する金属として知られ	であり、ポーラスな塊状酸化物を部分的に形成する金属として	適正化
ている ⁽⁸⁾ 。	知られている ⁽⁸⁾ 。	
(修正無し)	(記載省略)	
2.3.3 試験方法	2.3.3 試験方法	
(1)ガラスアンプル試験体(ガス蓄積型浸漬腐食試験体)の調製	(1)ガラスアンプル試験体(ガス蓄積型浸漬腐食試験体)の調製	
①炭素鋼	①炭素鋼	
(修正無し)	(記載省略)	
②ジルコニウム	②ジルコニウム	
(修正無し)	(記載省略)	

表 2.3-1 比較金属試料の形状と1アンプル分の枚数

	放出水素ガス量測定	用試料	吸収水素量測定用調	表面分析用試料		
	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		形状	数量	形状	数
	70.00		70.00		70.03	튤
ジルコ	3mm×90mm×0.1mm	102 枚	3mm×50mm×0.05mm ⁴	6枚	3mm×30mm×0.1mm	1枚
ニウム						
炭素鋼	2mm×3mm×30mm	1個		\square	2mm×3mm×30mm	1個

(記載省略)

ジルコ

ニウム 炭素鋼

(修正無し)

(2) 腐食試験の手順及び分析方法 調製したガラスアンプル試験体を 100℃に設定した恒温槽内 に静置し、25日間保存した。所定期間経過後、アンプル開封器 内でアンプルを開封してガラスアンプル気相部に放出された 水素ガスをガスクロマトグラフ(島津製作所 GC-2014) により 測定後、同様に水素ガスを商量サンプリングし API-MS を用い て軽水素及び重水素を分析した。次にガラスアンプルよりジル カロイ試料を取り出し、不活性ガス融解-ガスクロマトグラフ (Leco 社製 RH-404) によって吸収された水素測定し、不活性 ガス融解-ガスクロマトグラフで抽出された水素を API-MS を 用いて軽水素及び重水素を分析した(図2.3-6)。 用いて軽水素及び重水素を分析した(図2.3-6)。 さらに、腐食試験終了後のジルコニウム試料表面について 透過型電子顕微鏡 (TEM) を用いた分析を行い、酸化皮膜厚さ、 過型電子顕微鏡(TEM)を用いた分析を行い、酸化皮膜厚さ、 皮膜組成及び結晶構造を調べた。具体的には、収束イオンビー 皮膜組成及び結晶構造を調べた。具体的には、収束イオンビー

(2) 腐食試験の手順及び分析方法

放出水素ガス量測定用試料

形状

3mm×90mm×0.1mm^t

2mm×3mm×30mm

調製したガラスアンプル試験体を 100℃に設定した恒温槽内 に静置し、25日間保存した。所定期間経過後、アンプル開封器 内でアンプルを開封してガラスアンプル気相部に放出された 水素ガスをガスクロマトグラフ(島津製作所 GC-2014) により 測定後、同様に水素ガスを適量サンプリングし API-MS を用い て軽水素及び重水素を分析した。次にガラスアンプルよりジル カロイ試料を取り出し、不活性ガス融解-ガスクロマトグラフ (Leco 社製 RH-404) によって吸収された水素測定し、不活性 ガス融解-ガスクロマトグラフで抽出された水素を API-MS を さらに、腐食試験終了後のジルコニウム試料表面について透

表 2.3-1 比較金属試料の形状と1アンプル分の枚数

数量

2個

吸収水素量測定用試料

形状

数量

100枚 3mm×50mm×0.05mmⁱ 2枚 3mm×30mm×0.1mmⁱ 1枚

表の修

Æ

表面分析用試料

形状

数

量

していると考えられた。							状酸化物が腐食速度に影響を	与えて	こいる	と考;	えられ	た。	
これらに対し、炭素鋼の	試験前	jに 908	ジルカロイで放出水素等価腐	食速度	を (腐	食に。	とり発	生し気相中					
nm の酸化被膜を付与した	ケース	でも腐	食速周	度は	1/4 程	度に低	に放出された分の水素量を腐	食量	と等値	≣とし	て算	出した腐食	
下したのみである。ジルコ	ニウム	やジル	/カロ/	1-41	こ比べ	て保護	速度) が酸化皮膜 5nm で 0.03	$4 \mu m$	/v、酸	化皮	茣 27n	mで0.0012	
<u> </u> 性が低い最表細の酸化皮膜	「の特徴	<u>、</u> なま1	てい	<u>スレ</u> ラ	<u>- パロ</u> 去 ラ ら	ht-	um/u に対し 最表細でけ酸(<u>・/// III</u> レ皮晴	<u>, 11</u> nn	、で 5	22 r	m/y 酸化皮	
1171 因《 水平 哟 》 段 旧 及 肤	RV/N B	1221			ラヘウ	<u>0407</u> 0			: 111111 1		<u>∠∠µ</u> 1. →咁店		
							展 1350nm $C 2.14 \mu$ m/y となり	$(, \nu)$	レカロ	1 ()	文脵片	きごか 5.4 倍	
							<u>に対し腐食速度が 10%程度</u> に	こなっ	てい	るのに	上比べ	て、皮膜が	
							<u>120 倍程度になっても腐食速度</u>	度は40	0%程	度にし	しかな	っていない	
							ことはジルカロイに比べて	痃食 侮	這個	がほり	- 6,2	たい炭素鋼	
											<u></u>		
							のホーフスな酸化皮膜か腐食	速度	に影響	馨を与	ってて	いると考え	
							られた。						
まっこう一府会法座し水目	主瓜口豆豆	*					末 2 2 2 府会 法 座 上 水 美 四	utor 🕁					まの版
— 衣 2.3-2 腐良还皮 ⊂ 小→	糸奴収台	1^					— 衣 2.3-2 腐良速度 C 小 糸 吹	424					衣の修
金属試料	ジルコニウ	ウム	ジルカロ	1-4	炭	素鋼	試料	ジルコ	ニウム	ジル	カロイ	炭素鋼	正
酸化皮膜厚さ(nm)	9.3~ 4	6.3~ 5	5.5~	57.5~	0~	908~	初期酸化皮膜厚さ(nm)	5	31	5	27	11 1350	
腐食試験開始時~終了時	20.4	52.1	19.9	61.2	372	994		0.0545	0.0014	0.034	0.0012	5.22 2.14	
成山小茶寺恤腐良速度(μm/y) 吸収水素等価度食速度(μm/y)	0.068 0	0010 0	0.074	0.0015	5.0	0.85		0.1396	0.0179	0.0818	0.0101	北ま四回したい	
発生水素*等価腐食速度(um/y)	0.135 0	0.073	0.18	0.046	水素	 {吸収	光王(放山"吸收) 小条守Ш) [] [] [] [] [] [] [] [] [] [71.0	0.0193	70.5	99.6	小糸吸収しない	
水素吸収率(%)	49.4	98.6	58.8	97.2		ない	<u> </u>	71.5	52.7	70.5	09.0		
(2) 表面分析							(2)表面分析						
図 2.3-7 に TEM による観察と EDX 分析及び電子線回折の結						吉 図 2.3-7 に TEM による観察と EDX 分析及び電子線回折の結							
図 2.3-7 に TEM による権	観察と]	EDX 分	计 析及	び龍	于称巴	肝の結	図 2.3-7 に TEM による観察	EL SEL	JX 分	祈 及(ド電子	線回折の結	
図 2.3-7 に TEM による 果を示す。これから、ジル	観察と] /コニウ	EDX 分 ムとシ	う 析 び ルカ	び電- ロイ ⁻	ナ緑回 で同様	旅に結晶	図 2.3-7 に TEM による観察 果を示す。これから、ジルコ:	ミと EL ニウム	JX 分 へとジ		ド電子 コイで	線回折の結 同様に結晶	

結晶構造で大きな差異はみられなかった。	結晶構造で大きな差異はみられなかった。	
表 2.3-3 に HR-RBS 分析による密度の結果を示す。 ジルカロ	表 2.3-3 に HR-RBS 分析による密度の結果を示す。 これから、	記載の
<u>イ-4の酸化皮膜は密度(5.4±1.9)g/cm³であり、誤差が大きいも</u>	ジルカロイの酸化皮膜が密度 5.4g/cm ³ であるのに対しジルコニ	適正化
<u>のの、知られている ZrO2の密度(5.6 g/cm³)に近い値を示した。</u>	ウムの酸化皮膜では 4.7g/cm ³ となり密度が低い傾向がみられ	
ジルコニウムの酸化皮膜の密度についてはデータが一つしか	た。これは、酸化皮膜中の一部にポーラス状で密度の低い塊状	
<u>ないため誤差の評価が困難であり、精緻な議論はできないもの</u>	酸化物が存在していることを反映していると考えられた。	
<u>の、知られている ZrO2の密度(5.6 g/cm³)に比べて著しく低いと</u>		
は考えられない。		

表之	2.3-3	HR-	RBS 分	が析に。	よる <u>表</u>	面皮膜	の密度算出結	<u>果</u>	表	₹ 2.3-3 H	IR-RBS 分	析による <u>・</u>	ジルカロイとジルコニウムの密	表の修
		J	腐食試験纠	条件					<u></u> 度	手之				正
	供試材				TEM 皮膜	面密度	休藉宓庻					-		
	材質	酸化皮膜付与	皮膜 (nm)	温度 (℃)	期間 (日)	厚さ (nm)	$(\times 10^{15} \text{atoms/cm}^2)$	×10 ¹⁵ atoms/cm ²) (g/cm ³)			TEM観察膜厚	体積密度		
	Zry-4	無	5.5*1	100	25	6.3	60.0	7.3			(nm)	(g/cm^3)	_	
	Zry-4	無	5.5*1	100	121	13.5	70.7	4.0		N 11 + (
	Zry-4	有	57.5*2	100	25	19.7	109.5	4.2		シルカロイ	25	5.4		
	Zry-4	有右	57.5 ⁻² 46.3 ^{*3}	100	121	13.6	104.3	6.0					-	
	Zi	'H	40.5	100	23	9.0	51.7	1.1		ジルコニウム	35	4.7		
*1.	酸化	皮膜の	+与を彳	行わな	い試約	乳に生産	せしていた酸 化	:皮膜(TF	м					
		フ 志 に	<u>, , , , ,</u>	1 1 2		11-14/								
<u> </u>	ふてし	る計1	町但)											
<u>*2:</u>	*1(5.5	nm) -	- 付与	した酸	化皮膜	<u> 英(52 nn</u>	n, 重量法による	5評価値)						
*3:	*1(9.3	nm) -	- 付与	した酸	化皮膜	漠(37 nn	n,重量法による	5評価値)						
(2) -1/=	を同た	┟┟┟┟┟							(2) 水志同	估休业			
(3)水素同位体比						(3) 小糸匠	J1 <u>V</u> 14+FC							
15	気相中	の水	素同位	体比					(]	〕気相中の	水素同位体	比		
	图 2.3-	-8 に)	炭素鋼	とジル	レコニ	ウムと	ジルカロイ(ミ	ジルカロ	1	図 2.3-8	に炭素鋼と	ジルコニ	ウムとジルカロイ(ジルカロイ	
はュ	平成 2:	5 年度	デーク	タ)の	気相中	の水素	同位体比(D/	H 比)を	酸に	は平成 25 年	Ξ度データ)	の気相中	『の水素同位体比(D/H 比)を酸	
化质	皮膜厚	さに	対して	プロッ	ットし	た。炭	素鋼 <u>の腐食に(</u>	半って放	<u>出</u> 化	と皮膜厚さ	に対してプ	゜ロットし	た。炭素鋼 <u>試料として測定して</u>	記載の
<u>5</u> ‡	1た水	素の	D/H b	とは腐	食試驗	兪に用い	ヽた溶液の D/ŀ	Iに比べ	<u>て</u> 得	寻られた D	旧比は、酸	化皮膜の	厚さに関わらず豊富な水のある	適正化
<u>低</u> <	く、明	らかた	3同位	体効果	を示し	してい	る。この D/H b	」は平成	<u>25</u> <u></u>	条件で起こ	る水分解反	応で想定	<u>された D/H 比と同様となり、強</u>	
年月	度に得	られ	たジル	/カロ/	イ-4 0	つ腐食に	こ伴って放出る	された水	<u>素</u> <u></u>	<u>い同位体効</u>	果を受けた	ことを示	した。このことは、酸化皮膜の	
\mathcal{O}	D/H 比	と同	レベル	~であ	る。炭	素鋼の	腐食における	水の分解	反	1 記を拡散	してきた豊	豊富な水と	: 鉄との腐食反応のメカニズム	
応け	ま豊富	に水	のある	条件で	ご起こ	るもの	であり、ジルフ	カロイ-4	のま	るよび鉄イ	オン (Fe ²⁺))が酸化用	皮膜を拡散して液相/酸化皮膜界	

腐食に伴って放出される水素の D/H 比が炭素鋼のそれと同等	<u>面で液相にある豊富な水と反応をするメカニズムのそれぞれ</u>
であるということは、ジルカロイ-4の腐食における水の分解反	で強い同位体効果を受けた水素を気相中に発生する炭素鋼の
応も豊富に水のある条件で起こる、即ち、酸素イオン伝播メカ	腐食メカニズムと整合した。ジルコニウムを試料として測定し
ニズムが支配的であることを示すものである。	て得られた D/H 比は、皮膜の薄い場合 (5nm) も厚い場合 (31nm)
<u>ジルコニウムの腐食に伴って放出された水素の D/H 比も、ジ</u>	<u>も豊富な水のある条件で起こる水分解反応で想定した D/H 比</u>
ルカロイ-4や炭素鋼のそれと同レベルの値を示している。ジル	と同様であった。これは、酸化皮膜の一部を占める塊状酸化物
<u>コニウムの腐食はもともと、水拡散メカニズムが支配的と考</u>	を通して豊富に供給される水とジルコニウムの腐食反応のメ
<u>え、腐食試験に用いた溶液の D/H 比と同程度の D/H 比の水素</u>	カニズムでの強い同位体効果を受けた水素を気相中に放出す
<u>が放出されると予想していた。その予想は正しくなかった。ジ</u>	るジルコニウムの腐食メカニズムと整合した。また、D/H比が
ルコニウムの酸化皮膜が保護性の低い塊状酸化物となった場	皮膜の厚さにかかわらず低い値であった理由として、水拡散の
合には、豊富に水のある条件下で水分解が起こることになるの	腐食メカニズムで発生した水素の影響が少なく、塊状酸化物の
で、炭素鋼と同様の D/H 比になるわけだが、TEM 観察結果、	腐食メカニズムで発生した水素の影響を強く受けたことと、酸
HR-RBS の結果、腐食速度の結果のいずれにも、塊状酸化物生	化皮膜が厚くなるにともない塊状酸化物も成長したことで塊
成の兆候は見られない。ジルコニウムの腐食のメカニズムも、	状酸化物の腐食メカニズムの影響が維持されたと考えられた。
ジルカロイ-4と同じ、即ち酸素イオン伝播メカニズムと考える	考察されたことも含めて、ジルコニウムの気相中の D/H 比は、
べきなのかもしれない。	ジルコニウムの腐食メカニズムを反映していると考えられた。

<u>けではない。</u>	食メカニズムの塊状酸化物の腐食メカニズムと水拡散のメカ	
	ニズムの共存を反映するものである。これは、薄い条件では強	
	い同位体効果を受けた水素が D/H 比に強く影響が現れたが、少	
	し厚くなった条件では強い同位体効果を受けた水素に加え弱	
	い同位体効果を受けた水素の影響が D/H 比に現れてきたため	
	<u>考えられる。また、ジルカロイに比べて D/H 比が低く出ている</u>	
	のは、ジルコニウムの腐食メカニズムのうち塊状酸化物の腐食	
	メカニズムが酸化皮膜/金属界面で起こっており強い同位体効	
	果を受けた水素が金属中に吸収されたことを反映したもので	
	ある。	
	れの腐食メカニズムを反映するものであった。これは、腐食メ	
	カニズム解明手法の信頼性を示すものであった。このため、こ	
	の腐食メカニズム解明手法で得られた、酸素イオン伝播メカニ	
	ズムと水拡散メカニズムの共存とするジルカロイの腐食メカ	
	ニズムは、信頼性があると考えた。	

	液相 ↓ 1µm ↓ 2µm 酸化皮膜 金属間化合物析出物 金属 図 2.3-13 金属間化合物析出物の大きさと遷移時の酸化皮膜 厚さの関係	
<u>(1)</u> 三乗則の検討	(2) 三乗則の検討	
酸素イオン伝搬メカニズムは拡散律速であるため二乗則の	<u>二つの</u> メカニズムは拡散律速であるため二乗則のモデルで	記載の
モデルであるが、経験則として提案されている三乗則のモデル	あるが、経験則として提案されている三乗則のモデルとの関係	適正化
との関係を検討する必要がある。試験期間の三乗則を説明する	を検討する必要がある。試験期間の三乗則を説明するのに、ジ	
のに、ジルカロイ-4の腐食メカニズムとして二乗則で表せる酸	ルカロイの腐食メカニズムとして二乗則で表せる酸素イオン	
素イオン伝播メカニズムの他に、試験片を研磨した直後に起こ	伝播メカニズム <u>と水拡散メカニズム</u> の他に、試験片を <u>水に入れ</u>	
<u>る表面の腐食(表面瞬時腐食)</u> があると考えた。 <u>この「表面瞬</u>	るという試験操作の際に起こる腐食(水との接触時腐食)があ	
<u>時</u> 腐食」は、例えば、試験片を水に入れることで酸化皮膜中に	<u>ると考えた。この「水との接触時</u> 腐食」は、例えば、試験片を	
クラックが発生して水が金属表面に供給され、その部分が瞬間	水に入れることで酸化皮膜中にクラックが発生して水が金属	
的に腐食するようなメカニズムを想定している。金属面に酸化	表面に供給され、その部分が瞬間的に腐食するようなメカニズ	
皮膜が瞬時にできて「表面瞬時腐食」は終わるので継続的な腐	ムを想定している。金属面に酸化皮膜が瞬時にできて「水との	
食メカニズムではない。	<u>接触時</u> 腐食」は終わるので継続的な腐食メカニズムではない。	
また、十分な水との反応であるため強い同位体効果を示す腐食	また、十分な水との反応であるため強い同位体効果を示す腐食	

メカニズムと考えられる。実際の処分環境においては、緩衝材	メカニズムと考えられる。実際の処分環境においては、緩衝材
を浸透した水が徐々にジルカロイに接触するため、この「 <u>表面</u>	を浸透した水が徐々にジルカロイに接触するため、この「 <u>水と</u>
瞬時腐食」は実験のみで表される現象であり、一種の Artifact (ア	<u>の接触時</u> 腐食」は実験のみで表される現象であり、一種の
ーティファクト)といえる。	Artifact (アーティファクト) といえる。
図2.3-12に表面瞬時腐食のメカニズムを考慮した時間と腐食	図2.3-14に水との接触時腐食のメカニズムを考慮した時間と腐
量の関係を示す。水拡散の腐食メカニズムの二乗則①と酸素イ	食量の関係を示す。水拡散の腐食メカニズムの二乗則①と酸素
オン伝播の腐食メカニズムの二乗則②及び水との接触時腐食	イオン伝播の腐食メカニズムの二乗則②及び水との接触時腐
のメカニズムがあり、それぞれの腐食量を加えたものが全腐食	食のメカニズムがあり、それぞれの腐食量を加えたものが全腐
量(黒点線)である。 <u>このようにして作成した全腐食量を三乗</u>	食量(黒点線)である。図 2.3-15 にこのようにして作成した全
則及び二乗則と重ねて図 2.3-13 にプロットした。試験期間で酸	腐食量と三乗則と二乗則をプロットした。試験期間で水拡散と
素イオン伝播と水との接触時腐食を足した腐食を時間でプロ	酸素イオン伝播と水との接触時腐食をたした腐食を時間でプ
ットした全腐食量(黒点線)と三乗則及び二乗則を比較すると、	ロットした全腐食量(黒点線)と三乗則及び二乗則を比較する
その腐食の進行は三乗則に近いことが分かる。腐食メカニズム	と、その腐食は三乗則に近いことが分かる。 <u>このため、試験期</u>
からはジルカロイ-4 の腐食の進行は二乗則に従うはずである	間の腐食が三乗則に見えると考えた。これが、試験結果が三乗
が、試験期間の腐食の進行が三乗則に見えることがあり得ると	則で整理される理由である。
考えられる。	

2.3.6 まとめ	2.3.6 まとめ	
昨年度は水素発生過程の同位体効果を用いた腐食メカニズ	昨年度は水素発生過程の同位体効果を用いた腐食メカニズ	
ム解明を行い、ジルカロイ <u>-4</u> の腐食メカニズムの解明を進め	ム解明 <u>手法</u> を行い、ジルカロイの腐食メカニズムの解明を進め	記載の
た。高温域での酸素イオン伝播支配の説と水拡散支配の説の二	た。高温域での酸素イオン伝播支配の説と水拡散支配の説の二	適正化
つを作業仮説とし、腐食メカニズムの同定を試み酸素イオン伝	つを作業仮説とし、腐食メカニズムの同定を試み酸素イオン伝	
播支配の腐食メカニズム単独 <u>もしくは両方</u> の腐食メカニズム	播支配の腐食メカニズム単独 <u>ではないことと、それぞれ</u> の腐食	
が共存していることを明らかにした。しかし、メカニズムの解	メカニズムが共存していることを明らかにした。しかし、メカ	
明に新しい実験手法を用いたため実績がなく、信頼性 <u>向上のた</u>	ニズムの解明に新しい実験手法を用いたため実績がなく、 <u>手法</u>	
めにデータの蓄積が必要であった。	<u>の</u> 信頼性 <u>を得ること</u> が必要であった。	
今年度は、腐食メカニズムが <u>知られて</u> いるジルカロイ <u>-4</u> 以外	今年度は、腐食メカニズムが <u>明らかになって</u> いるジルカロイ	
の金属を用いてメカニズム解明手法を用いた腐食試験を行い、	以外の金属を用いてメカニズム解明手法を用いた腐食試験を	
その結果をジルカロイ-4 と比較することにより本手法につい	行い、その <u>手法が信頼性のあるものであることを確認するとと</u>	
ての理解を深め、再度ジルカロイ-4の腐食モデルについて考察	もに、再度ジルカロイの腐食モデルについて考察した。	
<u>Lt.</u>	<u>腐食メカニズム解明手法で炭素鋼およびジルコニウムの腐</u>	
炭素鋼とジルカロイ-4 が同じく強い同位体効果を示すこと	食試験を行い、炭素鋼とジルコニウムそれぞれの腐食メカニズ	
がわかったことから、ジルカロイ-4の腐食において水の分解は	ムを反映した結果が得られた。これらのことから、メカニズム	
水が豊富に存在する条件下で起こっている、即ち、拡散による	解明手法が信頼性のあるものと確認することができ、同じメカ	
水の供給は律速過程になっていないことが明白となった。ま	ニズム解明手法で得られたジルカロイの腐食メカニズムは、信	
た、気相中へ放出された水素に比べて、金属中へ吸収された水	<u>頼性があると考えられた。</u>	
素について同位体効果が弱くなる傾向も見られなかったこと	ジルカロイの腐食メカニズムには酸素イオン伝播と水拡散の	
から、水拡散メカニズムの共存も考える必要はなく、ジルカロ	二つのメカニズムが共存することが確認された。これら二つの	
<u>イ-4の腐食メカニズムは酸素イオン伝播単独と考えられた。ま</u>	メカニズムに加えて、水との接触時腐食のメカニズムを仮定す	
た、ジルカロイ-4 試料は研磨直後に表面が酸化を受け、6nm程	<u>ることで、</u> 試験結果が三乗則で整理される理由を説明するとと	

度の皮膜を形成する。このことを考え合わせることにより、腐	もに、長期における腐食モデルを二乗則で表すことが妥当であ	
食試験結果が三乗則で整理される理由を説明するとともに、長	ることを示した。	
期における腐食モデルを二乗則で表すことが妥当であること		
を示した。		
(修正無し)	(記載省略)	
2.5 まとめ	2.5 まとめ	
(修正無し)	(記載省略)	
放射化金属の腐食モデルの作成については、腐食メカニズム	放射化金属の腐食モデルの作成については、腐食メカニズム	
が <u>知られて</u> いる金属を用いて昨年同様の腐食メカニズム解明	が <u>明らかになって</u> いる金属を用いて昨年同様の腐食メカニズ	記載の
手法を用いた腐食試験を行い、その結果をジルカロイ-4と比較	ム解明手法を用いた腐食試験を行い、 その実験手法が信頼性の	適正化
することにより本手法についての理解を深め、再度ジルカロイ	あるものであることを確認するとともに、ジルカロイとは異な	
-4の腐食モデルについて考察した。炭素鋼とジルカロイ-4が同	る腐食メカニズムのデータを得ることでの知見をもとに再度	
じく強い同位体効果を示すことがわかったことから、ジルカロ	ジルカロイの腐食モデルについて考察した。その結果、炭素鋼	
<u>イ-4 の腐食において水の分解は水が豊富に存在する条件下で</u>	とジルコニウムを試料金属とした腐食試験を行い、炭素鋼とジ	
起こっている、即ち、拡散による水の供給は律速過程になって	ルコニウムそれぞれの腐食メカニズムを反映した結果が得ら	
いないことが明白となった。また、気相中へ放出された水素に	れた。これらのことから、腐食メカニズム解明手法の信頼性を	
比べて、金属中へ吸収された水素について同位体効果が弱くな	確認することができ、その手法で得られたジルカロイの腐食メ	
る傾向も見られなかったことから、水拡散メカニズムの共存も	カニズムが信頼性のあると考えられた。このことから、ジルカ	
考える必要はなく、ジルカロイ-4の腐食メカニズムは酸素イオ	ロイの腐食メカニズムには酸素イオン伝播と水拡散の二つの	
レ伝播単独と考えられた。また、ジルカロイ-4 試料は研磨直後	メカニズムが共存することが確認された。さらに、これら二つ	

に表面が酸化を受け、6nm 程度の皮膜を形成する。このことを	のメカニズムに加えて、水との接触時腐食のメカニズムを仮定
<u>考え合わせることにより、腐食</u> 試験結果が三乗則で整理される	<u>することで、</u> 試験結果が三乗則で整理される理由を説明すると
理由を説明するとともに、長期における腐食モデルを二乗則で	ともに、長期における腐食モデルを二乗則で表すことが妥当で
表すことが妥当であることを示した。	あることを示した。
(修正無し)	(記載省略)
6. 受託事業の総括(平成 22 年度から平成 26 年度までの 5 年	6. 受託事業の総括(平成 22 年度から平成 26 年度までの 5 年
間の事業の取りまとめ)	間の事業の取りまとめ)
6.1 全体概要	6.1 全体概要
(修正無し)	(記載省略)
6.2.2 放射化金属の腐食モデルの作成	6.2.2 放射化金属の腐食モデルの作成
TRU 廃棄物のうち、ハル・エンドピース(以下、「ハル等」)	TRU 廃棄物のうち、ハル・エンドピース(以下、「ハル等」)
は地層処分対象の金属廃棄物であり、その内部には放射化によ	は地層処分対象の金属廃棄物であり、その内部には放射化によ
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル 等に地下水が接触しても、金属内部に含まれる核種は直ちに溶
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロ	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロ
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロイ)等の腐食・溶解とともに溶出すると考えられることから、	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル 等に地下水が接触しても、金属内部に含まれる核種は直ちに溶 出することはなく、母材であるジルコニウム系金属(ジルカロ イ)等の腐食・溶解とともに溶出すると考えられることから、
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロイ)等の腐食・溶解とともに溶出すると考えられることから、ハル等には核種の溶出抑制機能が期待されている。ハル等につ	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル 等に地下水が接触しても、金属内部に含まれる核種は直ちに溶 出することはなく、母材であるジルコニウム系金属(ジルカロ イ)等の腐食・溶解とともに溶出すると考えられることから、 ハル等には核種の溶出抑制機能が期待されている。ハル等につ
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロイ)等の腐食・溶解とともに溶出すると考えられることから、ハル等には核種の溶出抑制機能が期待されている。ハル等について、溶出抑制機能をふまえた核種溶出の評価を行うために	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル 等に地下水が接触しても、金属内部に含まれる核種は直ちに溶 出することはなく、母材であるジルコニウム系金属(ジルカロ イ)等の腐食・溶解とともに溶出すると考えられることから、 ハル等には核種の溶出抑制機能が期待されている。ハル等につ いて、溶出抑制機能をふまえた核種溶出の評価を行うために
は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度の C-14 などの核種を含む。処分後、ハル等に地下水が接触しても、金属内部に含まれる核種は直ちに溶出することはなく、母材であるジルコニウム系金属(ジルカロイ)等の腐食・溶解とともに溶出すると考えられることから、ハル等には核種の溶出抑制機能が期待されている。ハル等について、溶出抑制機能をふまえた核種溶出の評価を行うためには、炉内での放射化によって生じた核種のインベントリ評価に	は地層処分対象の金属廃棄物であり、その内部には放射化によって生成された高濃度のC-14などの核種を含む。処分後、ハル 等に地下水が接触しても、金属内部に含まれる核種は直ちに溶 出することはなく、母材であるジルコニウム系金属(ジルカロ イ)等の腐食・溶解とともに溶出すると考えられることから、 ハル等には核種の溶出抑制機能が期待されている。ハル等につ いて、溶出抑制機能をふまえた核種溶出の評価を行うために は、炉内での放射化によって生じた核種のインベントリ評価に

必要がある。	必要がある。	
平成22年度は、処分環境で想定される条件に着目し、ジルカ	平成 22 年度は、処分環境で想定される条件に着目し、ジルカ	
ロイ-4の腐食速度データに関する既往情報を調査・整理し、い	ロイの腐食速度データに関する既往情報を調査・整理し、いず	追加
ずれの条件においても、ジルカロイ <u>-4</u> の腐食速度は時間ととも	れの条件においても、ジルカロイの腐食速度は時間とともに減	
に減少する傾向が認められるが、こうした現象について機構論	少する傾向が認められるが、こうした現象について機構論的に	
的に言及した腐食速度モデルは得られていないことが分かっ	言及した腐食速度モデルは得られていないことが分かった。	
た。		
平成23年度は、主に原子炉の炉水条件を対象とした300℃程	平成 23 年度は、主に原子炉の炉水条件を対象とした 300℃程	
度の高温域について提唱されている既往の経験則モデルを処	度の高温域について提唱されている既往の経験則モデルを処	
分場で想定される低温域に適用することについての妥当性を	分場で想定される低温域に適用することについての妥当性を	
検討するため、水素ガス発生量測定法による腐食試験と表面分	検討するため、水素ガス発生量測定法による腐食試験と表面分	
析を行うことによって 80℃~120℃までの低温域でのジルカロ	析を行うことによって 80℃~120℃までの低温域でのジルカロ	
イの腐食データを取得した。その結果、いずれの温度において	イの腐食データを取得した。その結果、いずれの温度において	
も3 乗則に沿って腐食が進行しており、得られた腐食速度定数	も3乗則に沿って腐食が進行しており、得られた腐食速度定数	
の温度依存性から、遷移前における高温域での経験則モデルを	の温度依存性から、遷移前における高温域での経験則モデルを	
低温域にも適用できる可能性が示唆された(図 6.2-2)。	低温域にも適用できる可能性が示唆された(図 6.2-2)。	
平成 24 年度は、1970 年代までのジルカロイの腐食データに	平成 24 年度は、1970 年代までのジルカロイの腐食データに	
基づく高温域の経験則モデルを低温域に外挿するにあたり、そ	基づく高温域の経験則モデルを低温域に外挿するにあたり、そ	
の信頼性を確認するために、平成 23 年度に実施した腐食試験	の信頼性を確認するために、平成 23 年度に実施した腐食試験	
に供したジルカロイ <u>-4</u> 試料と同じ組成の試料を用いて、やや高	に供したジルカロイ試料と同じ組成の試料を用いて、やや高め	追加
めの 180℃での腐食速度データを水素発生測定法及び腐食増量	の 180℃での腐食速度データを水素発生測定法及び腐食増量測	
測定法によって取得し、180℃の腐食速度定数は高温域での腐	定法によって取得し、180℃の腐食速度定数は高温域での腐食	
食速度定数のほぼ外挿直線上に位置していたことから、高温域	速度定数のほぼ外挿直線上に位置していたことから、高温域に	

に比べてより低温域に近い温度である 180℃の条件において	比べてより低温域に近い温度である 180℃の条件においても、	
も、ジルカロイ-4の腐食メカニズムは高温域と同じである可能	ジルカロイの腐食メカニズムは高温域と同じである可能性が	追加
性が示唆された。また、低温域と高温域の試験で用いている水	示唆された。また、低温域と高温域の試験で用いている水素ガ	
素ガス発生量測定法と腐食増量測定法を用いて腐食試験を行	ス発生量測定法と腐食増量測定法を用いて腐食試験を行い、2	
い、2 つの方法で腐食量(腐食深さ)に大きな差がなく(図 6.2-	つの方法で腐食量(腐食深さ)に大きな差がなく(図 6.2-3)、	
3)、水素ガス発生量測定法に基づく低温域の腐食速度データの	水素ガス発生量測定法に基づく低温域の腐食速度データの信	
信頼性を確認することができた。	頼性を確認することができた。	
平成 25 年度の試験では、PWR の燃料被覆管の母材であるジ	平成 25 年度の試験では、PWR の燃料被覆管の母材であるジ	
ルカロイ-4 を用いて、酸化皮膜中の酸素イオン伝播支配の説	ルカロイ-4 を用いて、酸化皮膜中の酸素イオン伝播支配の説	
と、酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作業	と、酸化皮膜中の水拡散支配の説を作業仮説とし、二つの作業	
仮説における水素発生過程の同位体効果が異なることを利用	仮説における水素発生過程の同位体効果が異なることを利用	
した 100℃以下の低温域の温度条件で腐食メカニズムの解明を	した 100℃以下の低温域の温度条件で腐食メカニズムの解明を	
行った。その結果、酸素イオン伝搬メカニズムで想定した水素	行った。その結果、 <u>二つの</u> メカニズムで想定した水素同位体比	記載の
同位体比(D/H比) <u>を示したが、中間的な値を示したデータも</u>	(D/H 比) <u>のどちらにもならず中間の値を示し</u> (図 6.2-4)、二	適正化
<u>あるため</u> (図 6.2-4)、二つの腐食メカニズムが共存しているこ	つの <u>の</u> 腐食メカニズムが共存していること <u>が</u> 考えられた。	
と <u>も</u> 考えられた。		

の D/H 比が、気相中へ放出された水素の D/H 比よりも弱い同	占める緻密な酸化皮膜を拡散して供給される水とジルコニウ	
位体効果を示さないことから、水拡散メカニズムの共存を考え	ムの腐食反応のメカニズム(水拡散の腐食メカニズム)および	
るべきではなく、酸素イオン伝播メカニズム単独と考えられ	酸化皮膜の一部を占める塊状酸化物を通して豊富に供給され	
<u>t.</u>	る水とジルコニウムの腐食反応のメカニズムとの二つのメカ	
酸素イオン伝播メカニズムに加えて、表面瞬時腐食を考慮す	ニズムが共存)を選定し試験を行った。その結果は、炭素鋼と	
ることで、試験結果が三乗則で整理される理由を説明するとと	ジルコニウムそれぞれの腐食メカニズムから想定される結果	
もに、長期における腐食モデルを二乗則で表すことが妥当であ	と整合するものであったことから、メカニズム解明に用いた手	
ることを示した。	法が信頼性のあるものと確認することができ、同じ手法で得ら	
	れたジルカロイの腐食メカニズムについても、信頼性があると	
	考えられ、ジルカロイの腐食メカニズムには酸素イオン伝播と	
	水拡散の二つのメカニズムが共存することが確認された。	
	また、ジルカロイの腐食メカニズムとして試験期間の二乗則	
	で表せる酸素イオン伝播メカニズムと水拡散メカニズムの他	
	に、試験片を水に入れるという試験操作の際に起こる腐食(水	
	との接触時腐食)が三乗則にどのように影響するのかについて	
	検討した。「水との接触時腐食」とは、例えば、試験片を水に入	
	れることで酸化皮膜中にクラックが発生し、水が金属表面に供	
	給され、その部分が瞬間的に腐食するようなメカニズムを想定	
	している。水拡散の腐食メカニズムの二乗則①と酸素イオン伝	
	播の腐食メカニズムの二乗則②及び水との接触時腐食のメカ	
	ニズムがあり、それぞれの腐食量を加えたものが全腐食量(黒	
	<u> 点線)である(図 6.2-5)。試験期間で水拡散、酸素イオン伝播、</u>	
	水との接触時腐食を全て考慮した腐食(全腐食量)を時間でプ	

