大飯3号機 加圧器スプレイライン配管溶接部における調査結果データリスト

12月4日公開会合資料でのコメント内容								
資料	頁	コメント内容						
1-1	1-2	出力運転時においてと書いているが停止時でも3MPa相当の力がかかっているのか。これは別の力学的な亀裂を広げる要因がないであろうという 証明のために記載しているのと思うので。8mmの変位量だったら3MPaという点を詳細に説明してほしい。						
	1-19	母材の熱影響の範囲(長さ、距離)を数字で出せるものがあるか。なければ(後日)教えていただきたい。						
	2-5 2-6	溶接のパスを切ったところ、クレーター(終始端部)があるところで、中の条件を変えられている可能性があるのかないのか。なければ、こういう様相が 全周に出ていると思うので、これの確認として、ここの部位だけで出ているのか、他も同じ条件で溶接して出ているのかを考察していただいて、原因 が何だったのかを確認したい。	3					
1-2	1	前回の説明(UT検出限界)と今回の説明・解放した破面との比較(PT指示)の説明を補強すること。	4					

加圧器スプレイライン配管切断時の変位に基づく拘束力評価(1/2) ①-1

1. 概要

今回の加圧器スプレイ配管切断時に計測された配管拘束変位(Z方向:-8mm)を基に、加圧器スプレイライン配管をモデル 化し、応力評価を実施した。応力評価においては、一次一般膜応力、熱膨張・管台変位による二次応力及び自重による一次曲げ応 力を算出し亀裂進展への影響を評価する。

2. 評価条件

5				
			主管	分岐管
	外径	1	14.3mm	60.5mm
	厚さ		13.5m	8.7mm
	材料		SUS3	16TP
		j	運転条件	
			温度	圧力
	出力運転時	F		
	(100%出力運	転)		
	冷態停止時	Ē		
すので公開することはできません。	(モード外)			

<u>加圧器スプレイライン配管切断時の変位に基づく拘束力評価(2/2)</u>

(1) - 2

3. 評価結果

配管切断時に確認された変位量(Z:-8mm)を基に、切断前に当該配管に作用していた拘束力(応力)は以下のとおり。

検討ケース	MCP管台 熱膨張変位量 (A,Dループ) (mm)	加圧器管台 熱膨張変位量 (mm)	強制変位量 (mm)	一次一般膜応力 Pm(MPa)	熱膨張及び管台変位 二次応力Pe(MP	だよる Pa)	自重による 一次曲げ応力Pb (MPa)	合計 (MPa)
冷温停止時 (モ−ド外)	X:0 Y:0 Z:0	X:0 Y:0 Z:0	X:0 Y:0 Z:0	0.0	0.0		3.8	4
冷温停止時 + 配管拘束変位 (モ−ド外)	X:0 Y:0 Z:0	X:0 Y:0 Z:0	X:0 Y:0 Z:-8	0.0	配管熱膨張:0.0 [※] 水平変位: 0.0 鉛直変位:56.2	56.2	3.8	60
出力運転時 (100%出力)	X:+23.8 Y:-34.8 Z:+2.0	X:0 Y:0 Z:+79.8	X:0 Y:0 Z:0	32.7	62.8		3.8	100
出力運転時 + 配管拘束変位 (100%出力)	X:+23.8 Y:-34.8 Z:+2.0	X:0 Y:0 Z:+79.8	X:0 Y:0 Z:-8	32.7	配管熱膨張 7.4 [※] 水平変位:56.8 鉛直変位:42.2	65.8	3.8	103

※「配管熱膨張」、「管台水平変位」、「管台鉛直変位」各個別の応力値は二次応力Peに対するそれぞれの寄与率の目安として記載(各個別の応力値の合計と二次応力Peは一致しない)

▶ 出力運転時の発生応力 約100MPaに対して、約8mmの配管拘束変位量を加味した場合の影響は、出力運転時において3MPa程度の上昇であり、亀裂の発生/進展に主たる影響を及ぼすものではないことを確認した。

熱影響部範囲の確認

<u>1.調査内容</u>

②cの断面でのエルボ側母材におけるHAZ(熱影響部)領域の範囲を、ビッカース計(1kg)を用いて計測した。

<u>2.調査結果</u>

ビッカース硬さ計測結果から判断したHAZ範囲を以下に示す。

➤ エルボ側母材のHAZ(熱影響部)を硬さの変化より判断すると、その範囲は溶融境界から約5mmであった。

2

溶接裏波部の周方向での断面マクロ組織観察結果(1/7)

切り出した①および③について、赤破線のとおり切断し溶接裏波部の断面マクロ・ミクロ観察を実施した。

溶接裏波部の周方向での断面マクロ組織観察結果(2/7)

部位① (終始端部) その1

内面側

➢ 初層TIG部を観察した結果、部位①(終始端部)に溶接品質上問題となる状況は無い。

▶ 部位①は部位③と比較して、デンドライト組織の向きが統一されていない状態となっている。これは終始端部の溶接金属の凝固状態を表している。

3-2

<u>溶接裏波部の周方向での断面マクロ組織観察結果(3/7)</u>

部位①(終始端部)その2

<u>溶接裏波部の周方向での断面マクロ組織観察結果(4/7)</u>

部位①(終始端部)その3

<u>溶接裏波部の周方向での断面マクロ組織観察結果(5/7)</u>

部位①(終始端部)その4

<u>溶接裏波部の周方向での断面マクロ組織観察結果(6/7)</u>

部位③ (一般部) その1

外観側

内面側

▶ 初層TIG部を観察した結果、部位③(一般部)に溶接品質上問題となる状況は無い。

▶ 部位③のデンドライト組織が溶接進行方向(配管周方向)に沿って成長している(溶接進行方向は写真上で左から右であると観察される)。

<u>溶接裏波部の周方向での断面マクロ組織観察結果(7/7)</u>

部位③その2

<u>調査結果とUT指示長さの妥当性確認結果(1/2)</u>

UT指示長さ51mmに対し、割れの長さ(PT指示長さ)は 60mmであり、UT指示長さのばらつきを考慮して整合していたと 評価する。

【指示長さの両端部における考察】

90°側:UT指示長さがPT指示長さより長い

ISIにおけるUTの周方向指示長さ測定はしきい値法(DAC20%)を 用いている。90°側は超音波の拡がりのため、実際の割れ長さよりも 幅広に検出したものと考える。

270°側: UT指示長さがPT指示長さより短い

1)検出レベル以下の亀裂深さ

①における赤破線部では最大で1.8mm程度の浅く複雑なき裂のため、UTによる検出が困難であったものと考える。なお、UTS※で報告された検出限界はSCCで2.8mmとされている (疲労き裂1.6mm)。
[各部位の亀裂深さ]①: 3.0mm ②a: 4.4mm

②b:3.5mm ③:1.5mm

※:財団法人 発電設備技術検査協会「平成13年度 原子力発電施設検査技術調査等 に関する事業報告書(非破壊的統一評価指標・基準の確立に関するもの)」

ISI-UT(45°)とPTの指示範囲比較

<u>調査結果とUT指示長さの妥当性確認結果(2/2)</u>

(4) - 2

