補正前	補正後(令和2年8月24日第13次補正までの完本)	
添付書類三	添付書類三	赤字:変更
へ. 津 波	へ. 津 波	下線:再如
(イ) 評価概要	(イ) 評価概要	る籄
(1) 施設の立地的特徴	(1) 施設の立地的特徴	(No.1) :
(2) 津波評価方針	(2) 津波評価方針	
(ロ) 既往津波に関する検討	(ロ) 既往津波に関する検討	
(1) 文献調査	(1) 文献調査	
① 既往津波	① 既往津波	
a. 近地津波	a. 近地津波	
b. 遠地津波	b. 遠地津波	
c. 既往津波の評価	c. 既往津波の評価	
② 潮 位	② 潮 位	
(2) 既往津波の再現性の確認	(2) 既往津波の再現性の確認	
① 対象津波	① 対象津波	
② 検討結果	② 検討結果	
(ハ) 既往知見を踏まえた津波の評価	(ハ) 既往知見を踏まえた津波の評価	
(1) 地震に起因する津波の評価	(1) 地震に起因する津波の評価	
 対象とする地震 	 ① 対象とする地震 	
② 数値シミュレーションの手法	② 数値シミュレーションの手法	
③ プレート間地震に起因する津波の評価	③ プレート間地震に起因する津波の評価	
a. 基本モデル	a. 基本モデル	
	(a) 三陸沖北部のプレート間地震	
	(b) 津波地震	
	(c) 北方への連動型地震	
b. 不確かさの考慮に係る評価	b. 不確かさの考慮に係る評価	
c. 尾駮沼の固有周期に係る検討	c. 尾駮沼の固有周期に係る検討	

日本原燃株式会社

備考

更箇所

処理施設または廃棄物管理施設と相違す

箇所

コメント No.

補正前	補正後(令和2年8月24日第13次補正までの完本)	
④ 海洋プレート内地震に起因する津波の評価	④ 海洋プレート内地震に起因する津波の評価	
⑤ 海域の活断層による地殻内地震に起因する津波の評価	⑤ 海域の活断層による地殻内地震に起因する津波の評価	
(2) 地震以外の要因に起因する津波の評価	(2) 地震以外の要因に起因する津波の評価	
① 地すべり等に起因する津波の評価	① 地すべり等に起因する津波の評価	
a. 対象地すべりの選定	a. 対象地すべりの選定	
b. 海底地すべりの数値シミュレーションの手法	b. 海底地すべりの数値シミュレーションの手法	
c.評価結果	c. 評価結果	
② 火山現象に起因する津波の評価	② 火山現象に起因する津波の評価	
(3) まとめ	(3) まとめ	
(ニ) 施設の安全性評価	(ニ) 施設の安全性評価	
(1) 評価概要	(1) 評価概要	
(2) 波源モデルの設定	(2) 波源モデルの設定	
(3) 評価結果	(3) 評価結果	
(ホ) 参考文献一覧	(ホ) 参考文献一覧	

令和2年8月24日

日本原燃株式会社

	-	•
補正前	補正後(令和2年8月24日第13次補正までの完本)	
へ. 津 波	へ. 津 波	
(イ) 評価概要	(イ) 評価概要	
(1) 施設の立地的特徴	(1) 施設の立地的特徴	
耐震重要施設等及び常設重大事故等対処施設の設置さ	評価対象施設である耐震重要施設等及び常設重大事故	記載の適
れる敷地は、そのほとんどの施設が標高約 55m及び海岸	<u>等対処施設</u> の設置される敷地は, <u>設置位置の標高が最も</u>	記載の適
からの距離約5kmの地点に位置しているが,一部の常設	<u>低い施設が標高約 50m (海岸からの距離約4km)の地点</u>	
重大事故等対処施設については,標高 50m付近(海岸か	<u>に位置し,それ以外の施設は</u> 標高約 55m及び海岸からの	
らの距離約4km)のエリアに位置している。敷地の概況	<mark>距離約5kmの地点</mark> に位置している。敷地の概況を <mark>添3</mark> ー	記載の適う
を添3-へ第1図に示す。	へ第1図に示す。	化)
(2) 津波評価方針	(2) 津波評価方針	
太平洋側沿岸及び尾駮沼沿いに耐震重要施設等及び常	太平洋側沿岸及び尾駮沼沿いに <u>耐震重要施設等及び常</u>	
設重大事故等対処施設に該当する取水設備は設置してい	<u>設重大事故等対処施設</u> に該当する取水設備は設置してい	
ないことを踏まえ、津波評価は水位上昇側のみ行う。	ないことを踏まえ、津波評価は水位上昇側のみ行う。	
津波評価に当たっては,まず,既往知見を踏まえた津	津波評価に当たっては、まず、既往知見を踏まえた津	
波の評価を行い,想定される津波の規模観について把握	波の評価を行い,想定される津波の規模観について把握	
した上で、施設の安全性評価として、すべり量が既往知	した上で、施設の安全性評価として、すべり量が既往知	
見を大きく上回る波源モデルによる検討を行い,津波が	見を大きく上回る波源モデルによる検討を行い,津波が	
耐震重要施設等及び常設重大事故等対処施設の設置され	耐震重要施設等及び常設重大事故等対処施設の設置され	
る敷地に到達する可能性がないことを確認する。	る敷地に到達する可能性がないことを確認する。	
津波の到達可能性について検討する敷地高さについて	津波の到達可能性について検討する敷地高さについて	
は、耐震重要施設等及び常設重大事故等対処施設の設置	は、耐震重要施設等及び常設重大事故等対処施設の設置	
位置の標高が最も低い施設でも標高 50m <mark>付近</mark> であること	<u>位置の標高が最も低い施設でも標高<mark>約</mark> 50mであることを</u>	記載の適
を踏まえ,保守的に標高40mとする。	<u>踏まえ,保守的に標高40mとする。なお,津波評価結果</u>	記載の充筆
	と対比する場合には、標高に係る表記を「T.M.S.	
	L.」とする。	

備考

- i正化 (コメント No. 10) i 正 化
- i正化(添3-へ第1図の施設配置の最新

i正化 実(コメント No. 9)

補正前	補正後(令和2年8月24日第13次補正までの完本)
(ロ) 既往津波に関する検討	(ロ) 既往津波に関する検討
(1) 文献調査	(1) 文献調査
① 既往津波	① 既往津波
敷地周辺に影響を及ぼしたと考えられる既往津波につ	敷地周辺に影響を及ぼしたと考えられる既往津波につ
いて,宇佐美ほか (2013) ⁽¹⁾ ,渡辺 (1998) ⁽²⁾ 等 ^{(3)~(21)}	いて,宇佐美ほか (2013) ⁽¹⁾ ,渡辺 (1998) ⁽²⁾ 等 ^{(3)~(21)}
により、文献調査を行った。	により、文献調査を行った。
a. 近地津波	a. 近地津波
敷地周辺に影響を及ぼしたと考えられる津波規模m	敷地周辺に影響を及ぼしたと考えられる津波規模m
(宇佐美ほか(2013) ⁽¹⁾)が2以上の主な既往の近地	(宇佐美ほか(2013) ⁽¹⁾)が2以上の主な既往の近地
津波を添3-へ第1表に,敷地周辺における主な既往	津波を添3-へ第1表に,敷地周辺における主な既往
の近地津波の津波高を添3-へ第2表に示す。また,	の近地津波の津波高を添3-へ第2表に示す。また,
主な既往津波高とその位置を添3-へ第2図に示す。	主な既往津波高とその位置を添3-へ第2図に示す。
これらより、敷地周辺に影響を及ぼしたと考えられ	これらより、敷地周辺に影響を及ぼしたと考えられ
る主要な津波として、津波の大きさ、波源からの伝播	る主要な津波として、津波の大きさ、波源からの伝播
距離及び津波による被害の大きさを考慮すると、1611	距離及び津波による被害の大きさを考慮すると、1611
年の津波, 1677 年の津波, 1856 年の津波, 1896 年明治	年の津波, 1677年の津波, 1856年の津波, 1896年明治
三陸地震津波, 1933年昭和三陸地震津波, 1968年十勝	三陸地震津波, 1933年昭和三陸地震津波, 1968年十勝
沖地震に伴う津波及び 2011 年東北地方太平洋沖地震に	沖地震に伴う津波及び 2011 年東北地方太平洋沖地震に
伴う津波の7つの津波を抽出した。これらの津波の推	伴う津波の7つの津波を抽出した。これらの津波の推
定波源域を添3-へ第3図に示す。	定波源域を添3-へ第3図に示す。
2011 年東北地方太平洋沖地震に伴う津波以前におい	2011 年東北地方太平洋沖地震に伴う津波以前におい
て、敷地周辺における主な既往の近地津波の津波高を	て、敷地周辺における主な既往の近地津波の津波高を
比較すると、添3-へ第2表に示すとおり、敷地南方	比較すると、添3-へ第2表に示すとおり、敷地南方
においては、1968年十勝沖地震に伴う津波が三沢市塩	においては,1968年十勝沖地震に伴う津波が三沢市塩
釜で 5.1m, 八戸市河原木で最大で 4.8mであり, 他の	釜で 5.1m, 八戸市河原木で最大で 4.8mであり, 他の
津波に比較して大きい。一方,敷地北方においては,	津波に比較して大きい。一方,敷地北方においては,

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)
1856年の津波が、むつ市大畑・湊で4m、函館市函館	1856年の津波が,むつ市大畑・湊で4m,函館市函館
で3mであり,他の津波に比較して大きい。さらに,	で3mであり,他の津波に比較して大きい。さらに,
相田(1977) ⁽¹⁷⁾ によれば, 添3-へ第4図に示すよう	相田(1977) ⁽¹⁷⁾ によれば, 添3-へ第4図に示すよう
に,数値シミュレーションによる 200m等深線上の波高	に,数値シミュレーションによる 200m等深線上の波高
を基にした、海岸での平均的な津波高が示されてい	を基にした、海岸での平均的な津波高が示されてい
る。これによると,八戸付近より北方においては 1856	る。これによると,八戸付近より北方においては 1856
年の津波が最大となっている(相田(1977) ⁽¹⁷⁾ 以降の	年の津波が最大となっている(相田(1977) ⁽¹⁷⁾ 以降の
津波を除く)。	津波を除く)。
一方,2011 年東北地方太平洋沖地震に伴う津波高	一方,2011年東北地方太平洋沖地震に伴う津波高
は、添3-へ第2表及び添3-へ第2図に示すとお	は、添3-へ第2表及び添3-へ第2図に示すとお
り、敷地近傍の出戸から新納屋の範囲においては、	り、敷地近傍の出戸から新納屋の範囲においては、
1968 年十勝沖地震に伴う津波とほぼ同程度の津波高で	1968 年十勝沖地震に伴う津波とほぼ同程度の津波高で
ある。	ある。
以上より,敷地近傍に大きな影響を及ぼしたと考え	以上より、敷地近傍に大きな影響を及ぼしたと考え
られる近地津波は,1856 年の津波,1968 年十勝沖地震	られる近地津波は、1856年の津波、1968年十勝沖地震
に伴う津波及び 2011 年東北地方太平洋沖地震に伴う津	に伴う津波及び 2011 年東北地方太平洋沖地震に伴う津
波と評価した。	波と評価した。
b. 遠地津波	b. 遠地津波
敷地周辺に影響を及ぼした主な既往の遠地津波を添	敷地周辺に影響を及ぼした主な既往の遠地津波を添
3-へ第3表に,敷地周辺における主な既往の遠地津	3-へ第3表に、敷地周辺における主な既往の遠地津
波の津波高を添3-へ第4表に示す。	波の津波高を添3-へ第4表に示す。
敷地周辺に来襲した遠地津波の中では, 1960 年チリ	敷地周辺に来襲した遠地津波の中では, 1960 年チリ
地震津波が八戸市河原木で最大で 5.3m であり,敷地近	地震津波が八戸市河原木で最大で 5.3m であり,敷地近
傍の出戸から新納屋の範囲における津波高は、尾駮で	傍の出戸から新納屋の範囲における津波高は、尾駮で
1.0mが記録されている。	1.0mが記録されている。
以上より、敷地近傍に影響を及ぼしたと考えられる	以上より、敷地近傍に影響を及ぼしたと考えられる

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
遠地津波は、1960 年チリ地震津波であるが、近地津波	遠地津波は、1960年チリ地震津波であるが、近地津波	
の津波高を上回るものではないと評価した。	の津波高を上回るものではないと評価した。	
c. 既往津波の評価	c. 既往津波の評価	
既往津波に関する文献調査の結果,敷地近傍に大き	既往津波に関する文献調査の結果,敷地近傍に大き	
な影響を及ぼしたと考えられる既往津波は,1856年の	な影響を及ぼしたと考えられる既往津波は,1856年の	
津波, 1968年十勝沖地震に伴う津波及び 2011年東北地	津波, 1968年十勝沖地震に伴う津波及び 2011年東北地	
方太平洋沖地震に伴う津波と評価した。	方太平洋沖地震に伴う津波と評価した。	
② 潮 位	② 潮 位	
敷地近傍における潮位の観測は、国土交通省港湾局む	敷地近傍における潮位の観測は、国土交通省港湾局む	
つ小川原港で実施されている。2008 年 4 月から 2013 年	つ小川原港で実施されている。2008 年 4 月から 2013 年	
3月までの観測結果によると潮位は以下のとおりであ	3月までの観測結果によると潮位は以下のとおりであ	
る。	る。	
最高潮位 T.M.S.L.+0.999m	最高潮位 T.M.S.L.+0.999m	
朔望平均満潮位 T.M.S.L.+0.670m	朔望平均満潮位 T.M.S.L.+0.670m	
平均潮位 T.M.S.L.+0.049m	平均潮位 T.M.S.L.+0.049m	
朔望平均干潮位 T.M.S.L0.767m	朔望平均干潮位 T.M.S.L0.767m	
最低潮位 T.M.S.L1.04m	最低潮位 T.M.S.L1.04m	
(2) 既往津波の再現性の確認	(2) 既往津波の再現性の確認	
① 対象津波	① 対象津波	
解析モデル及び計算方法の妥当性確認のため、既往津	解析モデル及び計算方法の妥当性確認のため、既往津	
波について数値シミュレーションを行い、計算結果と実	波について数値シミュレーションを行い、計算結果と実	
際の津波痕跡高との比較による既往津波の再現性の検討	際の津波痕跡高との比較による既往津波の再現性の検討	
を行った。	を行った。	
再現性の検討においては、過去に敷地近傍に大きな影	再現性の検討においては、過去に敷地近傍に大きな影	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
響を及ぼしたと考えられる津波である 1856 年の津波,	響を及ぼしたと考えられる津波である 1856 年の津波,	
1968年十勝沖地震に伴う津波及び 2011年東北地方太平	1968 年十勝沖地震に伴う津波及び 2011 年東北地方太平	
洋沖地震に伴う津波を対象とした。これらの波源モデル	洋沖地震に伴う津波を対象とした。これらの波源モデル	
のうち,1856年の津波及び1968年十勝沖地震に伴う津	のうち, 1856 年の津波及び 1968 年十勝沖地震に伴う津	
波の波源モデルの位置及び諸元を添3-へ第5図に示	波の波源モデルの位置及び諸元を添3-へ第5図に示	
す。2011年東北地方太平洋沖地震に伴う津波の波源モデ	す。2011 年東北地方太平洋沖地震に伴う津波の波源モデ	
ルについては,内閣府(2012) ⁽²⁷⁾ において示される波源	ルについては,内閣府(2012) ⁽²⁷⁾ において示される波源	
モデルとした。	モデルとした。	
数値シミュレーションについては、弾性体理論	<mark>津波に伴う水位変動の評価</mark> は,弾性体理論(Mansinha	
(Mans <mark>h</mark> inha and Smylie(1971) ⁽²⁵⁾)に基づき海面変位	and Smylie(1971) ⁽²⁵⁾)に基づき海面変位を算定し <mark>た上</mark>	
を算定し,非線形長波理論に基づき平面二次元の差分法	で,非線形長波理論に基づき, <mark>差分法による</mark> 平面二次元	記載の適
を用いて津波評価を行った。数値シミュレーションにお	モデルによる津波シミュレーションプログラムを用いて	係る記載
ける主な計算条件を添3-へ第5表に示す。	実施した。また、敷地は尾駮沼に隣接していることか	
	ら,尾駮沼からの遡上を考慮できるモデルを設定した。	
	数値シミュレーションにおける主な計算条件を添3-~	
	第5表に示す。	
沿岸域及び海底地形のモデル化に当たっては、国土地	沿岸域及び海底地形のモデル化に当たっては、国土地	
理院 ⁽³⁴⁾ ,日本水路協会(2011) ⁽²⁸⁾ 等 ^{(29)~(33)} を用いて設定	理院 ⁽³⁴⁾ ,日本水路協会(2011) ⁽²⁸⁾ 等 ^{(29)~(33)} を用いて設定	
し,また,土木学会(2016) ⁽⁴⁷⁾ を参考とし,水深と津波	し、また、計算格子分割の設定に当たっては、土木学会	記載の適正化
の周期から推定される津波の波長を基に, <mark>計算格子分割</mark>	(2016) ⁽⁴⁷⁾ を参考とし,水深と津波の周期から推定され	
<mark>を行っ</mark> た。数値シミュレーションに用いた計算領域(東	る津波の波長を基に,最大1440mから最小5mまでの格	記載の充実
西約 1000km, 南北約 1300km) とその水深及び格子分割を	子サイズを設定し た。数値シミュレーションに用いた計	
添3-へ第6図に,敷地近傍の計算領域とその水深及び	算領域(東西約 1000km, 南北約 1300km)とその水深及び	
格子分割を添3-へ第7図に示す。	格子分割を添3-へ第6図に、敷地近傍の計算領域とそ	
	の水深及び格子分割を添3-へ第7図に示す。	
再現性の評価指標としては,相田(1977) ⁽¹⁷⁾ による既	再現性の評価指標としては,相田(1977) ⁽¹⁷⁾ による既	

令和2年8月24日

日本原燃株式会社

備考

) 適正化(尾駮沼からの遡上の考慮に 2載は(ハ)_(1)_②より移動)

正化

補正前	補正後(令和2年8月24日第13次補正までの完本)
往津波高と数値シミュレーションにより計算された津波	往津波高と数値シミュレーションにより計算された津波
高との比から求める幾何平均値K及びばらつきを表す指	高との比から求める幾何平均値K及びばらつきを表す指
標κを用い,土木学会(2016) ⁽⁴⁷⁾ に示される「0.95 <k< td=""><td>標κを用い,土木学会(2016)⁽⁴⁷⁾に示される「0.95<k< td=""></k<></td></k<>	標κを用い,土木学会(2016) ⁽⁴⁷⁾ に示される「0.95 <k< td=""></k<>
<1.05, κ <1.45」を再現性の目安とした。	<1.05, κ <1.45」を再現性の目安とした。
② 検討結果	② 検討結果
既往津波高と数値シミュレーションによる津波高の比	既往津波高と数値シミュレーションによる津波高の比
較を添3-へ第8図に示す。	較を添3-へ第8図に示す。
1856 年の津波においてはK=1.01, κ=1.42(n=	1856 年の津波においてはK=1.01, κ=1.42 (n=
71), 1968 年十勝沖地震に伴う津波においてはK=	71), 1968 年十勝沖地震に伴う津波においてはK=
0.99, κ=1.44 (n=313)及び2011年東北地方太平洋	0.99, κ=1.44 (n=313) 及び2011 年東北地方太平洋
沖地震に伴う津波においてはK=0.952, κ=1.36 (n=	沖地震に伴う津波においてはK=0.952, κ=1.36 (n=
660)が得られ,土木学会(2016) ⁽⁴⁷⁾ の目安を満足して	660)が得られ,土木学会(2016) ⁽⁴⁷⁾ の目安を満足して
いることから、解析モデル及び計算方法の妥当性を確認	いることから、解析モデル及び計算方法の妥当性を確認
した。	した。
(ハ) 既往知見を踏まえた津波の評価	(ハ) 既往知見を踏まえた津波の評価
(1) 地震に起因する津波の評価	(1) 地震に起因する津波の評価
 対象とする地震 	 対象とする地震
地震に起因する津波の評価においては、敷地に影響を	地震に起因する津波の評価においては、敷地に影響を
与える可能性がある津波の波源として、プレート間地	与える可能性がある津波の波源として、プレート間地
震,海洋プレート内地震及び海域の活断層による地殻内	震、海洋プレート内地震及び海域の活断層による地殻内
地震について検討した。	地震について検討した。
② 数値シミュレーションの手法	② 数値シミュレーションの手法
数値シミュレーションにおける主な計算条件,計算領	数値シミュレーションにおける主な計算条件,計算領

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
域,水深及び格子分割については,添3-へ第5表,添	域、水深及び格子分割については、添3-へ第5表、添	
3-へ第6図及び添3-へ第7図に示す既往津波の再現	3-へ第6図及び添3-へ第7図に示す既往津波の再現	
性の確認と同様の条件とした。	性の確認と同様の条件とした。	
敷地は尾駮沼に隣接していることから、尾駮沼からの	評価位置については、尾駮沼の形状を踏まえ、添3-	記載の削隊
遡上を考慮できるモデルを設定し、評価位置について	へ第9図に示す尾駮沼奥の地点を選定した。また、尾駮	
は,尾駮沼の形状を踏まえ,添3-へ第9図に示す尾駮	沼入り口前面には防波堤が設置されていることから、防	
沼奥の地点を選定した。また、尾駮沼入り口前面には防	波堤を考慮して検討を行った。	
波堤が設置されていることから、防波堤を考慮して検討		
を行った。		
さらに、津波による影響を評価するに当たっては、朔	さらに、津波による影響を評価するに当たっては、朔	
望平均満潮位及び地殻変動量を考慮した津波高について	望平均満潮位及び地殻変動量を考慮した津波高について	
評価することとした。	評価することとした。	
③ プレート間地震に起因する津波の評価	③ プレート間地震に起因する津波の評価	
プレート間地震は,地震調査委員会 (2012) ⁽¹⁶⁾ で示さ	プレート間地震は,地震調査委員会 (2012) ⁽¹⁶⁾ で示さ	
れている三陸沖北部のプレート間地震,津波地震及び	れている三陸沖北部のプレート間地震,津波地震及び	
2011 年東北地方太平洋沖地震で得られた知見を踏まえ,	2011 年東北地方太平洋沖地震で得られた知見を踏まえ,	
三陸沖北部と隣り合う領域の連動を考慮した連動型地震	三陸沖北部と隣り合う領域の連動を考慮した連動型地震	
について検討した。	について検討した。	
連動型地震については、三陸沖北部から北方の千島海	連動型地震については、三陸沖北部から北方の千島海	
溝沿いの領域への連動を考慮した連動型地震(以下,	溝沿いの領域への連動を考慮した連動型地震(以下,	
「北方への連動型地震」という。)及び三陸沖北部から	「北方への連動型地震」という。)及び三陸沖北部から	
南方の日本海溝沿いの領域への連動を考慮した連動型地	南方の日本海溝沿いの領域への連動を考慮した連動型地	
震(以下、「南方への連動型地震」という。)が考えら	震(以下、「南方への連動型地震」という。)が考えら	
れるが、ここでは北方への連動型地震の波源モデルを設	れるが,ここでは北方への連動型地震の波源モデルを設	
定して検討を実施し、南方への連動型地震については青	定して検討を実施する。一方、南方への連動型地震につ	記載の適正

令和2年8月24日 日本原燃株式会社

11用 戶

|除((ハ)_(1)_②に移動)

補正前	補正後(令和2年8月24日第13次補正までの完本)		
森県海岸津波対策検討会(2012) ⁽³⁵⁾ の結果を参照した。	いては青森県海岸津波対策検討会(2012) ⁽³⁵⁾ の結果を参		
	照する。なお、南方への連動型地震については地震調査	記載の充実	
	委員会(2019) ⁽⁵²⁾ の知見もあるが,敷地前面の三陸沖北	載, コメン	
	部に超大すべり域及び大すべり域を設定した青森県海岸		
	津波対策検討会(2012) ⁽³⁵⁾ の方が敷地への影響は大きい		
	と評価した。		
a. 基本モデル	a. 基本モデル		
	(a) 三陸沖北部のプレート間地震	記載の適正	
三陸沖北部のプレート間地震の波源モデルについて	三陸沖北部のプレート間地震の波源モデルについて		
は,1856年の津波が古記録より推定されていることか	は,1856年の津波が古記録より推定されていること		
ら、同一海域で発生し各地の津波高が数多く観測され	から、同一海域で発生し各地の津波高が数多く観測さ		
ている 1968 年十勝沖地震に伴う津波を対象とすること	れている 1968 年十勝沖地震に伴う津波を対象とする		
とし、前述の既往津波を再現する波源モデルをもと	こととし、前述の既往津波を再現する波源モデルをも		
に,地震規模が既往最大のMw8.4となるようにスケー	とに、地震規模が既往最大のMw8.4となるようにス		
リング則に基づき設定した。添3-へ第 10 図に示す波	ケーリング則に基づき設定した。添3-へ第 10 図に		
源モデルの位置及び諸元に基づき実施した数値シミュ	示す波源モデルの位置及び諸元に基づき実施した数値		
レーションの結果、評価位置における津波高は	シミュレーションの結果,評価位置における津波高は		
T.M.S.L.+1.38mであった。	T.M.S.L.+1.38mであった。		
	(b) 津波地震	記載の適正	
津波地震の波源モデルについては、土木学会	津波地震の波源モデルについては、土木学会		
(2002) ⁽²⁶⁾ で示されている 1896 年明治三陸地震津波の	(2002) ⁽²⁶⁾ で示されている 1896 年明治三陸地震津波		
波源モデル(地震規模は既往最大のMw8.3)を設定し	の波源モデル(地震規模は既往最大のMw8.3)を設		
た。添3-へ第11図に示す波源モデルの位置及び諸元	定した。添3-へ第11図に示す波源モデルの位置及		
に基づき実施した数値シミュレーションの結果,評価	び諸元に基づき実施した数値シミュレーションの結		
位置における津波高はT.M.S.L.+1.28mであっ	果,評価位置における津波高はT.M.S.L.+1.28m		
た。	であった。		

令和2年8月24日 日本原燃株式会社

備考		
寒(地震調査委員会	(2019)	について記
✓ト No. 11)		
E化		
E化		

補正前	補正後(令和2年8月24日第13次補正までの完本)	
	(c) 北方への連動型地震	記載の適正
北方への連動型地震の波源モデルについては、日本	北方への連動型地震の波源モデルについては、日本	
海溝・千島海溝周辺海溝型地震に関する専門調査会	海溝・千島海溝周辺海溝型地震に関する専門調査会	
(2006) ⁽⁴⁹⁾ ,文部科学省測地学分科会(2014) ⁽⁵⁰⁾ 及び	(2006) ⁽⁴⁹⁾ ,文部科学省測地学分科会(2014) ⁽⁵⁰⁾ 及	
地震調査委員会(2017) ⁽⁴⁸⁾ を参考に <mark>設定した</mark> 敷地前面	び地震調査委員会(2017) ⁽⁴⁸⁾ を参考に,敷地前面の	
の三陸沖北部から根室沖までの領域において、内閣府	三陸沖北部から根室沖までの領域を想定波源域として	
(2012) ⁽²⁷⁾ 及び青森県海岸津波対策検討会(2012) ⁽³⁵⁾	設定した。	
の知見も踏まえ、プレート境界浅部のすべり量が大き	波源モデルの設定に当たり、断層面積は地震調査委	
くなるよう配置する等,不均質性を単純化したMw9.04	員会(2004) ⁽⁵¹⁾ 及び地震調査委員会(2012) ⁽¹⁶⁾ を参	
のモデルを設定した。添3-へ第12図に示す波源モデ	考にプレート面形状を設定した上で算定した。波源モ	
ルの位置及び諸元に基づき実施した数値シミュレーシ	デルの平均すべり量については、地震の規模に関する	
ョンの結果,評価位置における津波高はT.M.S.L.	スケーリング則と地震モーメントの定義式から算定	
+2.32mであった。	し、その際の平均応力降下量については内閣府	
	(2012) ⁽²⁷⁾ を参考に 3. 0MPa と設定し,剛性率につ	
	いては土木学会(2016) ⁽⁴⁷⁾ を参考に 5.0×10 ¹⁰ N/m ² と	記載の
	設定した。	設定に
	すべり量の不均質性については、内閣府	
	(2012) ⁽²⁷⁾ を参考に,超大すべり域及び大すべり域	
	のすべり量をそれぞれ平均すべり量の4倍,2倍に,	
	面積をそれぞれ全体面積の5%程度,15%程度(超大	
	すべり域と合わせて 20%程度)となるように設定し	
	た。超大すべり域の位置については、基本的には三陸	
	沖北部及び十勝沖・根室沖の領域にそれぞれ存在する	
	と想定されるが、保守的に敷地前面の三陸沖北部にひ	
	とつにまとめ、内閣府(2012) ⁽²⁷⁾ 及び青森県海岸津	
	波対策検討会(2012) ⁽³⁵⁾ を参考にプレート境界浅部	

令和2年8月24日

日本原燃株式会社

備	考
三化	
充実(北方への	連動型地震の波源
悌る記載を尤実	e, コメント No. 12)

補正前	補正後(令和2年8月24日第13次補正までの完本)	
	のすべりが大きくなるよう配置した。大すべり域の位	
	置は超大すべり域を取り囲むように配置した。	
	さらに、上述のとおり設定したモデルに対し、超大	
	すべり域及び大すべり域を考慮した平均応力降下量が	記載の
	約3MPaとなるように地震モーメント(すべり量)	
	の調整を行い, Mw9.04 のモデルを設定した。また,	
	ライズタイムについては 60 秒とした。	
		記載の充実
	に基づき実施した数値シミュレーションの結果,評価	を充実)
	位置における津波高はT.M.S.L.+2.32mであっ	
	た。	
b. 不確かさの考慮に係る評価	b. 不確かさの考慮に係る評価	
三陸沖北部のプレート間地震,津波地震及び北方へ	三陸沖北部のプレート間地震,津波地震及び北方へ	
の連動型地震のうち、評価位置における津波高が最大	の連動型地震のうち、評価位置における津波高が最大	
となる北方への連動型地震について、波源特性、波源	となる北方への連動型地震について、波源特性、波源	
位置及び破壊開始点の不確かさを考慮し評価を実施し	位置及び破壊開始点の不確かさを考慮し評価を実施し	
た。さらに、不確かさの考慮において評価位置におけ	た。さらに、不確かさの考慮において評価位置におけ	
る津波高が最大となるケースと、南方への連動型地震	る津波高が最大となるケースと、南方への連動型地震	
である青森県海岸津波対策検討会(2012) ⁽³⁵⁾ の結果の	である青森県海岸津波対策検討会(2012) ⁽³⁵⁾ の結果の	
比較を行い、津波高の高いケースをプレート間地震に	比較を行い,津波高の高いケースをプレート間地震に	
起因する津波の最大ケースとして評価した。	起因する津波の最大ケースとして評価した。	
波源特性の不確かさについては、すべり量の不確か	波源特性の不確かさについては、すべり量の不確か	
さを考慮したすべり量割増モデル及びすべり分布の不	さを考慮したすべり量割増モデル及びすべり分布の不	
確かさを考慮した海溝側強調モデルを設定した。添3	確かさを考慮した海溝側強調モデルを設定した。 <mark>添3</mark>	記載の充実
-ヘ第 13 図に示す波源モデルの位置及び諸元に基づき	ーへ第13図に示す波源モデルの位置及び諸元に基づき	モデル及び
実施した数値シミュレーションの結果,評価位置にお	実施した数値シミュレーションの結果,評価位置にお	

備考

充実(北方への連動型地震の波源 係る記載を充実,コメントNo.12)

ミ(添 3 ー へ 第 12 図の基本モデルの諸元

ミ(添3-へ第13図のすべり量割り増し 「海溝側強調モデルの諸元を充実」

補正前	補正後(令和2年8月24日第13次補正までの完本)	
ける津波高は, すべり量割増モデルでT.M.S.L.+	ける津波高は, すべり量割増モデルでT.M.S.L.+	
3.01m,海溝側強調モデルでT.M.S.L.+3.00mで	3.01m, 海溝側強調モデルでT.M.S.L.+3.00mで	
あった。	あった。	
波源位置の不確かさについては、すべり量割増モデ	波源位置の不確かさについては、すべり量割増モデ	
ル及び海溝側強調モデルのそれぞれについて、北へ約	ル及び海溝側強調モデルのそれぞれについて、北へ約	
50km 移動させたケース並びに南へ約 50km,約 100km 及	50km 移動させたケース並びに南へ約 50km, 約 100km 及	
び約150km移動させたケースを設定した。数値シミュ	び約150km移動させたケースを設定した。数値シミュ	
レーションを実施した結果,評価位置における津波高	レーションを実施した結果,評価位置における津波高	
が最大となるのは、すべり量割増モデルを南に約 100km	が最大となるのは、すべり量割増モデルを南に約 100km	
移動させたケースで, T.M.S.L.+3.65mであっ	移動させたケースで, T.M.S.L.+3.65mであっ	
た。	た。	
破壊開始点の不確かさについては、波源位置を変動	破壊開始点の不確かさについては、波源位置を変動	
させた検討において評価位置における津波高が最大と	させた検討において評価位置における津波高が最大と	
なるすべり量割増モデルを南に約 100km 移動させたケ	なるすべり量割増モデルを南に約 100km 移動させたケ	
ースについて,内閣府(2012) ⁽²⁷⁾ を参考に複数設定し	ースについて,内閣府(2012) ⁽²⁷⁾ を参考に複数設定し	
た。添3-へ第14図に示す位置で破壊開始点を設定し	た。 <mark>添 3 ー へ 第</mark> 14 図に示す位置で破壊開始点を設定し	記載の充実
数値シミュレーションを実施した結果,評価位置にお	数値シミュレーションを実施した結果,評価位置にお	かさの検討
ける津波高が最大となるのは、破壊開始点として P6	ける津波高が最大となるのは、破壊開始点として P6	
を設定したケースで, T.M.S.L.+4.00mであった	を設定したケースで, T.M.S.L.+4.00mであった	
(添3-~第15図参照)。	(添3-ヘ第15図参照)。	記載の適正
南方への連動型地震については、青森県海岸津波対	南方への連動型地震については、青森県海岸津波対	る標高の表
策検討会(2012) ⁽³⁵⁾ によると、六ヶ所村沿岸に来襲す	策検討会(2012) ⁽³⁵⁾ によると、六ヶ所村沿岸に来襲す	No. 9)
る津波高について,敷地近傍においてはT.M.S.L.	る津波高について,敷地近傍においてはT.M.S.L.	
+10mに達しておらず(添3-〜第16図参照),公表	+10mに達しておらず(<mark>添 3 -~第</mark> 16 図参照),公表	記載の適正
された浸水深分布からも、耐震重要施設等及び常設重	された浸水深分布からも、 <u>耐震重要施設等及び常設重</u>	記を「T.M
大事故等対処施設の設置される敷地に津波は到達して	<u>大事故等対処施設</u> の設置される敷地に津波は到達して	

日本原燃株式会社

備考
実(添3-ヘ第14図の破壊開始点の不確 討モデルの諸元を充実)
E化(添3-へ第15図の津波高と対比す 表記を「T.M.S.L.」に修正, コメント
E化(添3-へ第 16 図の津波高に係る表 I. S. L. 」に修正, コメント No. 9)

補正前	補正後(令和2年8月24日第13次補正までの完本)	
いないことが確認できる(添3-ヘ第17図参照)。一	いないことが確認できる(添3-へ第17図参照)。一	
方,北方への連動型地震は,添3-へ第15図に示すと	方,北方への連動型地震は,添3-へ第15図に示すと	
おり、敷地近傍の海岸線上における津波高は	おり、敷地近傍の海岸線上における津波高は	
T.M.S.L.+10m以上であり,北方への連動型地震	T.M.S.L.+10m以上であり,北方への連動型地震	
に起因する津波が南方への連動型地震に起因する津波	に起因する津波が南方への連動型地震に起因する津波	
を上回る結果であった。	を上回る結果であった。	
以上より、プレート間地震に起因する津波につい	以上より、プレート間地震に起因する津波につい	
て、評価位置における津波高が最大となるのは、北方	て、評価位置における津波高が最大となるのは、北方	
への連動型地震のすべり量割増モデルを南に約100km	への連動型地震のすべり量割増モデルを南に約 100km	
移動させ破壊開始点を P6と設定したケースであり,	移動させ破壊開始点をP6と設定したケースであり、	
その津波高は評価位置においてT.M.S.L.+4.00m	その津波高は評価位置においてT.M.S.L.+4.00m	
であった。	であった。	
c. 尾駮沼の固有周期に係る検討	c. 尾駮沼の固有周期に係る検討	
評価位置は尾駮沼の奥に位置していることから、評	評価位置は尾駮沼の奥に位置していることから、評	
価位置における津波高の算出に当たり、尾駮沼の固有	価位置における津波高の算出に当たり、尾駮沼の固有	
周期の影響が数値シミュレーションに反映されている	周期の影響が数値シミュレーションに反映されている	
ことを確認するため、尾駮沼の固有周期に係る検討を	ことを確認するため、尾駮沼の固有周期に係る検討を	
実施した。	実施した。	
尾駮沼の固有周期を確認するため、添3-へ第7図	尾駮沼の固有周期を確認するため、添3-へ第7図	
に示す敷地近傍の計算領域において、周期を変化させ	に示す敷地近傍の計算領域において、周期を変化させ	
た正弦波を入力し、評価位置における水位増幅率を求	た正弦波を入力し、評価位置における水位増幅率を求	
めた結果を添3-ヘ第18図に示す。沖合い位置に対す	めた結果を添3-へ第18図に示す。沖合い位置に対す	
る評価位置の水位増幅率は、15 分程度の周期帯におい	る評価位置の水位増幅率は、15分程度の周期帯におい	
てピークを示し、それ以外の周期帯については減衰し	てピークを示し、それ以外の周期帯については減衰し	
ていることから、尾駮沼の固有周期は15分程度である	ていることから,尾駮沼の固有周期は15分程度である	
と評価した。	と評価した。	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
次に、添3-へ第15図に示すケースの数値シミュレ	次に,添3-へ第15図に示すケースの数値シミュレ	
ーションによる水位変動量時刻歴波形を用いて周波数	ーションによる水位変動量時刻歴波形を用いて周波数	
分析を実施した結果を添3-ヘ第19図に示す。評価位	分析を実施した結果を添3-ヘ第19図に示す。評価位	
置において 15 分程度の周期帯が卓越しており,正弦波	置において 15 分程度の周期帯が卓越しており,正弦波	
入力による検討で評価した尾駮沼の固有周期の影響を	入力による検討で評価した尾駮沼の固有周期の影響を	
捉えていることを確認した。	捉えていることを確認した。	
なお、尾駮沼の固有周期を踏まえ、数値シミュレー	なお、尾駮沼の固有周期を踏まえ、数値シミュレー	
ションで設定している格子間隔の妥当性について検討	ションで設定している格子間隔の妥当性について検討	
した結果,添3-へ第20図に示すとおり,格子間隔が	した結果,添3-へ第20図に示すとおり,格子間隔が	
土木学会(2016) (47) により算定される格子間隔の目安	土木学会(2016) ⁽⁴⁷⁾ により算定される格子間隔の目安	
に対して十分小さいことを確認した。	に対して十分小さいことを確認した。	
以上のことから、評価位置における津波高の結果に	以上のことから、評価位置における津波高の結果に	
は, 数値シミュレーションにより尾駮沼の固有周期の	は、数値シミュレーションにより尾駮沼の固有周期の	
影響が反映されていると評価した。	影響が反映されていると評価した。	
④ 海洋プレート内地震に起因する津波の評価	④ 海洋プレート内地震に起因する津波の評価	
海洋プレート内地震は,地震調査委員会(2012) ⁽¹⁶⁾ で	海洋プレート内地震は,地震調査委員会(2012) ⁽¹⁶⁾ で	
示されている正断層型の地震について検討した。	示されている正断層型の地震について検討した。	
海洋プレート内地震の波源モデルについては、土木学	海洋プレート内地震の波源モデルについては、土木学	
会(2002) ⁽²⁶⁾ で示されている 1933 年昭和三陸地震津波	会(2002) ⁽²⁶⁾ で示されている 1933 年昭和三陸地震津波	
の波源モデルをもとに、地震規模が既往最大のMw8.6と	の波源モデルをもとに、地震規模が既往最大のMw8.6と	
なるようにスケーリング則に基づき設定した。添3-へ	なるようにスケーリング則に基づき設定した。添3-へ	
第21図に示す波源モデルの位置及び諸元に基づき実施し	第21図に示す波源モデルの位置及び諸元に基づき実施し	
た数値シミュレーションの結果,評価位置における津波	た数値シミュレーションの結果,評価位置における津波	
高はT.M.S.L.+1.35mであった。	高はT.M.S.L.+1.35mであった。	
以上を踏まえると,海洋プレート内地震に起因する津	以上を踏まえると、海洋プレート内地震に起因する津	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
波は、プレート間地震に起因する津波を上回るものでは	波は、プレート間地震に起因する津波を上回るものでは	
たい。	ない。	
⑤ 海域の活断層による地殻内地震に起因する津波の評価	⑤ 海域の活断層による地殻内地震に起因する津波の評価	
海域の活断層による地殻内地震に起因する津波の評価	海域の活断層による地殻内地震に起因する津波の評価	
を行うに当たり、添3-へ第22図に示す敷地周辺海域の	を行うに当たり、添3-へ第22図に示す敷地周辺海域の	
活断層について,阿部(1989) ⁽³⁶⁾ の簡易予測式により推	活断層について,阿部(1989) ⁽³⁶⁾ の簡易予測式により推	
定津波高を検討した。	定津波高を検討した。	
簡易予測式による推定津波高を添3-へ第6表に示	簡易予測式による推定津波高を添3-へ第6表に示	
す。海域の活断層による地殻内地震に起因する津波の推	す。海域の活断層による地殻内地震に起因する津波の推	
定津波高は最大でも0.3mであり、プレート間地震に起	定津波高は最大でも0.3mであり、プレート間地震に起	
因する津波と比べて影響は非常に小さい。	因する津波と比べて影響は非常に小さい。	
(2) 地震以外の要因に起因する津波の評価	(2) 地震以外の要因に起因する津波の評価	
① 地すべり等に起因する津波の評価	① 地すべり等に起因する津波の評価	
a. 対象地すべりの選定	a. 対象地すべりの選定	
文献調査によると、敷地周辺における陸上及び海底	文献調査によると、敷地周辺における陸上及び海底	
の地すべり並びに斜面崩壊による歴史津波の記録は知	の地すべり並びに斜面崩壊による歴史津波の記録は知	
られていない。また、陸上地すべりについて、防災科	られていない。また、陸上地すべりについて、防災科	
学技術研究所(2009) ⁽³⁷⁾ 及び防災科学技術研究所	学技術研究所(2009) ⁽³⁷⁾ 及び防災科学技術研究所	
(2013) ⁽³⁸⁾ によると,敷地周辺陸域の海岸付近におい	(2013) ⁽³⁸⁾ によると,敷地周辺陸域の海岸付近におい	
て大規模な地すべり地形は認められない。加えて、海	て大規模な地すべり地形は認められない。加えて、海	
底地すべりについても,徳山ほか(2001) ⁽³⁹⁾ による	底地すべりについても,徳山ほか(2001) ⁽³⁹⁾ による	
と、敷地周辺海域には海底地すべり地形は認められな	と、敷地周辺海域には海底地すべり地形は認められな	
$\langle \cdot \rangle_{o}$	V_{\circ}	
一方、下北半島太平洋側前面海域の大陸棚部付近を	一方,下北半島太平洋側前面海域の大陸棚部付近を	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
対象に海底地形調査を実施した結果、複数の地すべり	対象に海底地形調査を実施した結果、複数の地すべり	
地形が抽出されたことから、抽出された地すべり地形	地形が抽出されたことから、抽出された地すべり地形	
に基づく数値シミュレーションにより敷地への影響を	に基づく数値シミュレーションにより敷地への影響を	
評価した。抽出された海底地すべり地形を添3-へ第	評価した。抽出された海底地すべり地形を添3-へ第	
23 図に示す。	23 図に示す。	
抽出された海底地すべり地形のうち、地すべり地形	抽出された海底地すべり地形のうち、地すべり地形	
の崩壊規模から数値シミュレーションの対象とする地	の崩壊規模から数値シミュレーションの対象とする地	
すべりとしてSLS−2を選定し,地すべり前の海底	すべりとしてSLS-2を選定し,地すべり前の海底	
地形を復元した。海底地すべり地形の断面を添3-へ	地形を復元した。海底地すべり地形の断面を添3-へ	
第 24 図に示す。	第 24 図に示す。	
b. 海底地すべりの数値シミュレーションの手法	b. 海底地すべりの数値シミュレーションの手法	
海底地すべりの数値シミュレーションの手法として	海底地すべりの数値シミュレーションの手法として	
は, 二層流モデル(Maeno and Imamura(2007) ⁽⁴⁰⁾)及	は, 二層流モデル(Maeno and Imamura(2007) ⁽⁴⁰⁾)及	
びKinematic landslideモデル(佐竹・加藤	びKinematic landslide モデル(佐竹・加藤	
(2002) ⁽⁴¹⁾)を用いた。	(2002) ⁽⁴¹⁾) を用いた。	
数値シミュレーションに用いた計算領域とその水深	数値シミュレーションに用いた計算領域とその水深	
及び格子分割を添3-へ第25図に,主な計算条件を添	及び格子分割を添3-へ第25図に,主な計算条件を添	
3-~第7表に示す。	3-~第7表に示す。	
c. 評価結果	c. 評価結果	
数値シミュレーションの結果,評価位置前面におけ	数値シミュレーションの結果,評価位置前面におけ	記載の充実
る津波高は,二層流モデルで0.07m,Kinematic	る津波高は, 二層流モデルで 0.07m, Kinematic	
landslide モデルで 0.20mであり,プレート間地震に	landslide モデルで 0.20mであり,プレート間地震に	
起因する津波と比べて影響は非常に小さい。	起因する津波と比べて影響は非常に小さい。	
② 火山現象に起因する津波の評価	② 火山現象に起因する津波の評価	
文献調査によると,敷地周辺に大きな影響を及ぼし	文献調査によると,敷地周辺に大きな影響を及ぼし	

令和2年8月24日

日本原燃株式会社

備考 実

補正前	補正後(令和2年8月24日第13次補正までの完本)		
た、火山現象による歴史津波の記録は知られていないこ	た、火山現象による歴史津波の記録は知られていないこ		
とから、火山現象に起因する津波については、影響は極	とから、火山現象に起因する津波については、影響は極		
めて小さいと評価した。	めて小さいと評価した。		
(3) まとめ	(3) まとめ		
既往知見を踏まえた津波の評価として、地震及び地震	既往知見を踏まえた津波の評価として、地震及び地震		
以外の要因に起因する津波について評価を行った結果,	以外の要因に起因する津波について評価を行った結果,		
評価位置における津波高が最大となるのは、プレート間	評価位置における津波高が最大となるのは、プレート間		
地震に起因する津波のうち、北方への連動型地震のすべ	地震に起因する津波のうち、北方への連動型地震のすべ		
り量割増モデルを南に約 100km 移動させ破壊開始点を P	り量割増モデルを南に約 100km 移動させ破壊開始点を P		
6と設定したケースであり、想定される津波の規模観は	6と設定したケースであり、想定される津波の規模観は		
評価位置においてT.M.S.L.+4.00m程度であった。	評価位置においてT.M.S.L.+4.00m程度であった。		
	なお、地震以外の要因に起因する津波の影響は非常に小	記載の充実	
	さいことから、地震に起因する津波との重畳を考慮した		
	としても想定される津波の規模観への影響はない。		
(ニ) 施設の安全性評価	(ニ) 施設の安全性評価		
(1) 評価概要	(1) 評価概要		
既往知見を踏まえた津波の評価の結果,津波の規模観	既往知見を踏まえた津波の評価の結果,津波の規模観		
は評価位置においてT.M.S.L.+4.00m程度と把握で	は評価位置においてT.M.S.L.+4.00m程度と把握で		
きた。そこで、耐震重要施設等及び常設重大事故等対処	きた。そこで、 <u>耐震重要施設等及び常設重大事故等対処</u>		
施設の設置される敷地に津波が到達する可能性がないこ	<u>施設</u> の設置される敷地に津波が到達する可能性がないこ		
とを確認するため, すべり量が既往知見を大きく上回る	とを確認するため、すべり量が既往知見を大きく上回る		
波源モデルによる検討を実施した。	波源モデルによる検討を実施した。		
なお、本評価においては、防波堤を考慮せずに検討を	なお、本評価においては、防波堤を考慮せずに検討を		
実施した。	実施した。		

令和2年8月24日

日本原燃株式会社

	備	考	
実			

補正前	補正後(令和2年8月24日第13次補正までの完本)	
(2) 波源モデルの設定	(2) 波源モデルの設定	
すべり量が既往知見を大きく上回る波源モデルの設定	すべり量が既往知見を大きく上回る波源モデルの設定	
に当たっては、国内外の巨大地震のすべり量に関する文	に当たり,国内外の巨大地震のすべり量に関する文献調	記載の適正
献調査を実施した。	査を実施した(添3-へ第8表参照)。	記載の充実
内閣府(2012) ⁽²⁷⁾ ,杉野ほか(2014) ⁽⁴²⁾ 等 ^{(43)~(46)} によ	内閣府(2012) ⁽²⁷⁾ ,杉野ほか(2014) ⁽⁴²⁾ 等 ^{(43)~(46)} によ	モデルに係
る文献調査の結果,既往の巨大地震及び将来予測のモデ	る文献調査の結果,既往の巨大地震及び将来予測のモデ	
ルにおける最大すべり量については,内閣府(2012) ⁽²⁷⁾	ルにおける最大すべり量については,内閣府(2012) ⁽²⁷⁾	
の最大のモデルで 60~70m程度であった。	の最大のモデルで 60~70m程度であった。そこで,本評	
そこで、本評価においては、すべり量が既往知見を大	価においては、すべり量が既往知見を大きく上回る波源	
きく上回る波源モデルとして、既往知見を踏まえた津波	モデルとして、既往知見を踏まえた津波の評価において	
の評価において津波高が最も高いケースの波源モデル	津波高が最も高いケースの波源モデル(添3-へ第14図	
(添3-へ第14図参照)の各領域のすべり量を3倍にし	参照)の各領域のすべり量を3倍にしたモデル(以下,	
たモデル(以下,「すべり量3倍モデル」という。)を	「すべり量3倍モデル」という。)を設定した。その結	記載の充実
設定した。既往知見とすべり量3倍モデルのすべり量を	果,超大すべり域のすべり量は31.19mから93.56mとな	
比較した結果を添3-へ第8表に、すべり量3倍モデル	り,内閣府(2012) ⁽²⁷⁾ の最大すべり量60~70m程度に対	
の波源モデルの位置及び諸元を添3-へ第26図に示す。	し大きく上回る設定となっている(添3-へ第8表参	
	照)。	
	また、既往の巨大地震及び将来予測のモデルにおける	記載の充実
	すべり分布を見ると、超大すべり域のようなすべりの大	を追加)
	きな領域は波源域全体には分布しておらず、全体の一部	
	の領域のみに分布している。そこで、本評価において	
	は、すべり量が既往知見を大きく上回るもう一つの波源	
	モデルとして、波源域全体を超大すべり域としたモデル	
	(以下,「全域超大すべり域モデル」という。)を設定	
	した。その結果, 平均すべり量は 8.40mから 31.19mと	
	なり、既往の巨大地震及び将来予測のモデルの平均すべ	

日本原燃株式会社

備考
E化
実(添3-へ第8表に全域超大すべり域
矣
実(全域超大すべり域モデルに係る記載

		1
補正前	補正後(令和2年8月24日第13次補正までの完本)	
	り量に対し大きく上回る設定となっている(添3-へ第	
	8 表参照)。	
	「すべり量3倍モデル」及び「全域超大すべり域モデ	
	ル」の波源モデルの位置及び諸元を添3-へ第26図に示	記載の充実
	す。	倍モデルの
		モデルの位
(3) 評価結果	(3) 評価結果	
すべり量3倍モデルによる検討結果を添3-へ第27図	すべり量が既往知見を大きく上回る「すべり量3倍モ	記載の適正
に示す。すべり量が既往知見を大きく上回る波源モデル	デル」及び「全域超大すべり域モデル」による検討の結	対比する標
による検討の結果,津波は,到達可能性について検討す	果, 添3-~第27図に示すとおり, 津波は, 到達可能性	ントNo.9),
る敷地高さとして保守的に設定した標高 40mには到達し	について検討する敷地高さとして保守的に設定した標高	を追加、ま
ていないことから, 耐震重要施設等及び常設重大事故等	40mには到達していないことから, <u>耐震重要施設等及び</u>	
対処施設の設置される敷地に到達する可能性はない。ま	<u>常設重大事故等対処施設</u> の設置される敷地に到達する可	
た、津波が再処理施設の海洋放出管を経路として耐震重	能性はない。また,津波が <u>再処理施設の</u> 海洋放出管を経	
要施設等及び常設重大事故等対処施設の設置される敷地	路として <u>耐震重要施設等及び常設重大事故等対処施設</u> の	
に到達する可能性もない。	設置される敷地に到達する可能性もない。	

€(添3-へ第26図においてすべり量3)諸元を充実、全域超大すべり域の波源 2置及び諸元の追加)

E化(添3-へ第27図において津波高と 、
高の表記を「T.M.S.L.」に修正(コメ) 全域超大すべり域モデルの検討結果 ミた、施設配置の最新化)

補正前	補正後(令和2年8月24日第13次補正までの完本)	
(ホ) 参考文献一覧	(ホ) 参考文献一覧	
(1) 宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律	(1) 宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律	
子. 日本被害地震総覧 599-2012. 東京大学出版会,	子. 日本被害地震総覧 599-2012. 東京大学出版会,	
2013.	2013.	
(2) 渡辺偉夫. 日本被害津波総覧 [第2版]. 東京大学出	(2) 渡辺偉夫. 日本被害津波総覧 [第2版]. 東京大学出	
版会, 1998.	版会, 1998.	
(3) 気象庁. "各種データ・資料".	(3) 気象庁. "各種データ・資料".	
気象庁ホームページ.	気象庁ホームページ.	
http://www.jma.go.jp/jma/menu/menureport.html,	http://www.jma.go.jp/jma/menu/menureport.html,	
(参照 2014-08-18).	(参照 2014-08-18).	
(4) 国立天文台編. 平成 26 年 理科年表 机上版 第87	(4) 国立天文台編. 平成 26 年 理科年表 机上版 第 87	
冊. 丸善出版, 2014.	冊. 丸善出版, 2014.	
(5) 羽鳥徳太郎. "三陸沖歴史津波の規模の再検討". 津	(5) 羽鳥徳太郎. "三陸沖歴史津波の規模の再検討". 津	
波工学研究報告. 東北大学災害科学国際研究所(津波工	波工学研究報告. 東北大学災害科学国際研究所(津波工	
学研究分野),2000,第17号.	学研究分野),2000,第17号.	
(6) 中央気象台. 昭和八年三月三日三陸沖強震及津波報	(6) 中央気象台. 昭和八年三月三日三陸沖強震及津波報	
告. 験震時報, 1933, 第7巻, 2号別刷.	告. 験震時報, 1933, 第7巻, 2号別刷.	
(7) 伊木常誠. "三陸地方津浪実況取調報告". 震災予防	(7) 伊木常誠. "三陸地方津浪実況取調報告". 震災予防	
調査会報告, 1897, 第 11 号.	調査会報告, 1897, 第 11 号.	
(8) 松尾春雄. "三陸津浪調查報告". 内務省土木試験所	(8) 松尾春雄."三陸津浪調查報告".内務省土木試験所	
報告, 1933, 第 24 号.	報告, 1933, 第 24 号.	
(9) 松尾春雄. "三陸津浪調查報告(追加)". 内務省土	(9) 松尾春雄. "三陸津浪調査報告(追加)". 内務省土	
木試験所報告, 1934, 第 27 号.	木試験所報告, 1934, 第 27 号.	
(10) 地震研究所. "昭和8年3月3日三陸地方津浪に関す	(10) 地震研究所. "昭和8年3月3日三陸地方津浪に関す	
る論文及報告".東京帝国大学地震研究所彙報, 1934,	る論文及報告".東京帝国大学地震研究所彙報, 1934,	
別冊第1号.	別冊第1号.	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)
(11) 岸力. "1968年十勝沖地震調査報告 津波-北海道東	(11) 岸力. "1968年十勝沖地震調査報告 津波-北海道東
北沿岸-". 1968 年十勝沖地震調査報告, 1968 年十勝	北沿岸-". 1968年十勝沖地震調査報告, 1968年十勝
沖地震調査委員会編, 1969.	沖地震調査委員会編, 1969.
(12) 東北大学大学院工学研究科附属災害制御研究センタ	(12) 東北大学大学院工学研究科附属災害制御研究センタ
一. "第2編 調查報告". 津波工学研究報告, 東北大	一. "第2編 調查報告". 津波工学研究報告, 東北大
学災害科学国際研究所(津波工学研究分野),2004,第	学災害科学国際研究所(津波工学研究分野), 2004, 第
21 号.	21 号.
(13) 東北地方太平洋沖地震津波合同調査グループ. "調査	(13) 東北地方太平洋沖地震津波合同調査グループ. "調査
情報". 東北地方太平洋沖地震津波情報.	情報". 東北地方太平洋沖地震津波情報.
http://www.coastal.jp/ttjt/, (参照 2014-09-01).	http://www.coastal.jp/ttjt/,(参照 2014-09-01).
(14) チリ津波合同調査班. "津波の高さの測定方法および	(14) チリ津波合同調査班. "津波の高さの測定方法および
基準並に最高波来襲時刻について". 1960年5月24日	基準並に最高波来襲時刻について". 1960年5月24日
チリ地震津波に関する論文及び報告.東京大学地震研究	チリ地震津波に関する論文及び報告.東京大学地震研究
所, 1961.	所, 1961.
(15) 気象庁. "第2章 各地の踏査および調査報告".昭	(15) 気象庁. "第2章 各地の踏査および調査報告".昭
和 35 年 5 月 24 日チリ地震津波調査報告.気象庁技術報	和 35 年 5 月 24 日チリ地震津波調査報告.気象庁技術報
告, 1961, 第8号.	告,1961,第8号.
(16) 地震調査研究推進本部地震調査委員会. 三陸沖から房	(16) 地震調査研究推進本部地震調査委員会. 三陸沖から房
総沖にかけての地震活動の長期評価(第二版)につい	総沖にかけての地震活動の長期評価(第二版)につい
て. 地震調査研究推進本部, 2012.	て. 地震調査研究推進本部, 2012.
(17) 相田勇. "三陸沖の古い津波のシミュレーション".	(17) 相田勇. "三陸沖の古い津波のシミュレーション".
東京大学地震研究所彙報, 1977, 第 52 号.	東京大学地震研究所彙報, 1977, 第 52 号.
(18) 今村文彦, 高橋重雄, 藤間功司, 富田孝史, 有川太	(18) 今村文彦, 高橋重雄, 藤間功司, 富田孝史, 有川太
郎. "2010 年チリ地震津波の被害調査報告". 土木学会	郎. "2010 年チリ地震津波の被害調査報告". 土木学会
附属土木図書館ホームページ 震災報告デジタルアーカ	附属土木図書館ホームページ 震災報告デジタルアーカ
イブ.	イブ.

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)
http://www.jsce.or.jp/library/eq_repo/Vol3/13/Chil	http://www.jsce.or.jp/library/eq_repo/Vol3/13/Chil
e.html, (参照 2014-09-01).	e.html, (参照 2014-09-01).
(19) 都司嘉宣, 大年邦雄, 中野晋, 西村裕一, 藤間功司,	(19) 都司嘉宣, 大年邦雄, 中野晋, 西村裕一, 藤間功司,
今村文彦, 柿沼太郎, 中村有吾, 今井健太郎, 後藤和	今村文彦, 柿沼太郎, 中村有吾, 今井健太郎, 後藤和
久,行谷佑一,鈴木進吾,城下英行,松﨑義孝. "2010	久,行谷佑一,鈴木進吾,城下英行,松﨑義孝. "2010
年チリ中部地震による日本での津波被害に関する広域現	年チリ中部地震による日本での津波被害に関する広域現
地調查". 土木学会論文集B2(海岸工学), 2010,	地調查". 土木学会論文集 B 2 (海岸工学), 2010,
Vol.66, No. 1.	Vol.66, No. 1.
(20) 都司嘉宣,上田和枝,佐竹健治. "日本で記録された	(20) 都司嘉宣,上田和枝,佐竹健治. "日本で記録された
1700年1月(元禄十二年十二月)北米巨大地震による津	1700 年 1 月(元禄十二年十二月)北米巨大地震による津
波". 地震, 1998, 第2輯, 第51巻.	波". 地震, 1998, 第2輯, 第51巻.
(21) 河田恵昭,小池信昭,嘉戸重仁,井上雅夫. "わが国	(21) 河田恵昭,小池信昭,嘉戸重仁,井上雅夫. "わが国
沿岸部における遠地津波の伝播特性について".海洋工	沿岸部における遠地津波の伝播特性について".海洋工
学論文集, 1998, 第 45 巻.	学論文集, 1998, 第45巻.
(22) 後藤智明,小川由信.Leap-frog 法を用いた津波の数	(22) 後藤智明,小川由信. Leap-frog 法を用いた津波の数
值計算法. 東北大学工学部土木工学科, 1982.	值計算法. 東北大学工学部土木工学科, 1982.
(23) 小谷美佐, 今村文彦, 首籐伸夫. "GISを利用した	(23) 小谷美佐, 今村文彦, 首籐伸夫. "GISを利用した
津波遡上計算と被害推定法".海岸工学論文集, 1998,	津波遡上計算と被害推定法".海岸工学論文集, 1998,
第 45 巻.	第 45 卷.
(24) 本間仁. "低溢流堰堤の流量係数". 土木学会誌,	(24) 本間仁. "低溢流堰堤の流量係数". 土木学会誌,
1940, 第 26 巻.	1940, 第 26 巻.
(25) L.Mansinha; D.E.Smylie. "The displacement	(25) L.Mansinha; D.E.Smylie. "The displacement
fields of inclined faults". Bulletin of the	fields of inclined faults". Bulletin of the
seismological Society of America, 1971, Vol.61,	seismological Society of America, 1971, Vol.61,
No. 5.	No. 5.
(26) 土木学会原子力土木委員会津波評価部会. 原子力発電	(26) 土木学会原子力土木委員会津波評価部会. 原子力発電

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)
所の津波評価技術.土木学会,2002.	所の津波評価技術.土木学会,2002.
(27) 内閣府. "南海トラフの巨大地震モデル検討会(第二	(27) 内閣府. "南海トラフの巨大地震モデル検討会(第二
次報告)津波断層モデル編ー津波断層モデルと津波高・	次報告)津波断層モデル編ー津波断層モデルと津波高・
浸水域等について-". 内閣府ホームページ.	浸水域等について-". 内閣府ホームページ.
http://www.bousai.go.jp/jishin/nankai/model/index.	http://www.bousai.go.jp/jishin/nankai/model/index.
html, (参照 2015-12-02).	html, (参照 2015-12-02).
(28) 日本水路協会.日本近海 30 秒グリッド水深データ第	(28) 日本水路協会.日本近海 30 秒グリッド水深データ第
二版 M1406-M1508. Ver2.0.0, 海洋情報研究センタ	二版 M1406-M1508. Ver2.0.0, 海洋情報研究センタ
∽, 2011-08-04, (CD-ROM) .	∽, 2011-08-04, (CD-ROM) .
(29) 日本水路協会. 海底地形デジタルデータM7000 シリー	(29) 日本水路協会. 海底地形デジタルデータM7000 シリー
ズ M7009(Ver.2.0), M7010(Ver.2.0). 海洋情報	ズ M7009(Ver.2.0), M7010(Ver.2.0). 海洋情報
研究センター, 2008, (CD-ROM).	研究センター, 2008, (CD-ROM).
(30) 日本水路協会. 海底地形デジタルデータM7000 シリー	(30) 日本水路協会. 海底地形デジタルデータM7000 シリー
ズ M7006(Ver.2.1). 海洋情報研究センター,	ズ M7006 (Ver.2.1). 海洋情報研究センター,
2009, (CD-ROM) .	2009, (CD-ROM) .
(31) 日本水路協会. 海底地形デジタルデータM7000 シリー	(31) 日本水路協会. 海底地形デジタルデータM7000 シリー
ズ M7004 (Ver.2.2) , M7005 (Ver.2.2) , M7007	ズ M7004 (Ver.2.2) , M7005 (Ver.2.2) , M7007
(Ver.2.1). 海洋情報研究センター, 2012, (CD-	(Ver.2.1). 海洋情報研究センター, 2012, (CD-
ROM) .	ROM) .
(32) 海上保安庁. "東北沖海底地形データセット". 海上	(32) 海上保安庁. "東北沖海底地形データセット". 海上
保安庁海洋情報部, (入手 2014-09-18).	保安庁海洋情報部, (入手 2014-09-18).
(33) IHO・IOC. "大洋水深総図". General	(33) IHO・IOC."大洋水深総図". General
Bathymetric Chart of the Oceans ホームページ.	Bathymetric Chart of the Oceans ホームページ.
http://www.gebco.net/ , (入手 2014-09-25) .	http://www.gebco.net/ , (入手 2014-09-25).
(34) 国土地理院. "基盤地図 10mメッシュ(標高)". 基	(34) 国土地理院. "基盤地図 10mメッシュ(標高)". 基
盤地図情報ダウンロードサービス. 国土地理院ホームペ	盤地図情報ダウンロードサービス. 国土地理院ホームペ

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
ージ. https://fgd.gsi.go.jp/download/, (入手	ージ. https://fgd.gsi.go.jp/download/, (入手	
2014-09-25) .	2014-09-25) .	
(35) 青森県海岸津波対策検討会. "第4回青森県海岸津波	(35) 青森県海岸津波対策検討会. "第4回青森県海岸津波	
対策検討会資料". 青森県庁県土整備部河川砂防課. 青	対策検討会資料". 青森県庁県土整備部河川砂防課. 青	
森県庁ホームページ.	森県庁ホームページ.	
http://www.pref.aomori.lg.jp/kotsu/build/tunami-	http://www.pref.aomori.lg.jp/kotsu/build/tunami-	
kentokai.html, (参照 2014-09-01).	kentokai.html, (参照 2014-09-01).	
(36) 阿部勝征. "地震と津波のマグニチュードに基づく津	(36) 阿部勝征. "地震と津波のマグニチュードに基づく津	
波高の予測".東京大学地震研究所彙報, 1989,	波高の予測".東京大学地震研究所彙報, 1989,	
Vol. 64.	Vol. 64.	
(37) 防災科学技術研究所.地すべり地形分布図第42集	(37) 防災科学技術研究所.地すべり地形分布図第42集	
「野辺地・八戸」. 防災科学技術研究所研究資料,	「野辺地・八戸」. 防災科学技術研究所研究資料,	
2009, 第 329 号.	2009, 第 329 号.	
(38) 防災科学技術研究所.地すべり地形分布図第54集	(38) 防災科学技術研究所.地すべり地形分布図第54集	
「浦河・広尾」. 防災科学技術研究所研究資料, 2013,	「浦河・広尾」. 防災科学技術研究所研究資料, 2013,	
第 382 号.	第 382 号.	
(39) 徳山英一,本座栄一,木村政昭,倉本真一,芦寿一	(39) 徳山英一,本座栄一,木村政昭, 倉本真一, 芦寿一	
郎,岡村行信,荒戸裕之,伊藤康人,徐垣,日野亮太,	郎, 岡村行信, 荒戸裕之, 伊藤康人, 徐垣, 日野亮太,	
野原壯,阿部寛信,坂井眞一,向山建二郎. "日本周辺	野原壯,阿部寬信,坂井眞一,向山建二郎. "日本周辺	
海域中新世末期以降の構造発達史".海洋調査技術,	海域中新世末期以降の構造発達史".海洋調査技術,	
2001, vol.13, No. 1.	2001, vol.13, No. 1.	
(40) Fukashi Maeno;Fumihiko Imamura. "Numerical	(40) Fukashi Maeno;Fumihiko Imamura. "Numerical	
investigations of tsunamis generated by	investigations of tsunamis generated by	
pyroclastic flows from the Kikai caldera,	pyroclastic flows from the Kikai caldera,	
Japan". Geophysical Research Letters, AGU	Japan". Geophysical Research Letters, AGU	
Publications, 2007, Vol.34, L23303.	Publications, 2007, Vol.34, L23303.	

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)
(41) 佐竹健治,加藤幸弘. "1741 年寛保津波は渡島大島の	(41) 佐竹健治,加藤幸弘. "1741年寛保津波は渡島大島の
山体崩壊によって生じた". 号外 海洋, 海洋出版株式	山体崩壊によって生じた". 号外 海洋,海洋出版株式
会社, 2002, 号外 28.	会社, 2002, 号外 28.
(42) 杉野英治,岩渕洋子,橋本紀彦,松末和之,蛯澤勝	(42) 杉野英治,岩渕洋子,橋本紀彦,松末和之,蛯澤勝
三, 亀田弘行, 今村文彦. "プレート間地震による津波	三,亀田弘行,今村文彦. "プレート間地震による津波
の特性化波源モデルの提案". 日本地震工学会論文集,	の特性化波源モデルの提案".日本地震工学会論文集,
2014, 第14巻, 第5号.	2014, 第14巻, 第5号.
(43) Jean M.Johnson; Kenji Satake. "Asperity	(43) Jean M.Johnson; Kenji Satake. "Asperity
Distribution of the 1952 Great Kamchatka	Distribution of the 1952 Great Kamchatka
Earthquake and its Relation to Future Earthquake	Earthquake and its Relation to Future Earthquake
Potential in Kamchatka". Pure and Applied	Potential in Kamchatka". Pure and Applied
Geophysics, 1999, 154.	Geophysics, 1999, 154.
(44) Yushiro Fujii; Kenji Satake. "Slip Distribution	(44) Yushiro Fujii; Kenji Satake. "Slip Distribution
and Seismic Moment of the 2010 and 1960 Chilean	and Seismic Moment of the 2010 and 1960 Chilean
Earthquakes Inferred from Tsunami Waveforms and	Earthquakes Inferred from Tsunami Waveforms and
Coastal Geodetic Data". Pure and Applied	Coastal Geodetic Data". Pure and Applied
Geophysics, 2012, 170.	Geophysics, 2012, 170.
(45) Jean M.Johnson; Kenji Satake; Sanford	(45) Jean M. Johnson; Kenji Satake; Sanford
R.Holdahl; Jeanne Sauber. "The 1964 Prince	R.Holdahl; Jeanne Sauber. "The 1964 Prince
William Sound earthquake:Joint inversion of	William Sound earthquake:Joint inversion of
tsunami and geodetic data". Journal of	tsunami and geodetic data". Journal of
Geophysical Reserch, 1996, vol.101, No.B1.	Geophysical Reserch, 1996, vol.101, No.B1.
(46) Yuichiro Tanioka; Yudhicara; Tomohiro Kususose;	(46) Yuichiro Tanioka; Yudhicara; Tomohiro Kususose;
S.Kathiroli;Yuichi Nishimura;Sin-Iti Iwasaki;	S.Kathiroli;Yuichi Nishimura;Sin-Iti Iwasaki;
Kenji Satake. "Rupture process of the 2004 great	Kenji Satake. "Rupture process of the 2004 great
Sumatra-Andaman earthquake estimated from tsunami	Sumatra-Andaman earthquake estimated from tsunami

令和2年8月24日

日本原燃株式会社

補正前	補正後(令和2年8月24日第13次補正までの完本)	
waveforms". Earth Planets Space, 2006, 58.	waveforms". Earth Planets Space, 2006, 58.	
(47) 土木学会原子力土木委員会津波評価小委員会. 原子力	(47) 土木学会原子力土木委員会津波評価小委員会. 原子力	
発電所の津波評価技術 2016. 土木学会, 2016.	発電所の津波評価技術 2016. 土木学会, 2016.	
(48) 地震調査研究推進本部地震調査委員会.千島海溝沿い	(48) 地震調査研究推進本部地震調査委員会.千島海溝沿い	
の地震活動の長期評価(第三版). 地震調査研究推進本	の地震活動の長期評価(第三版). 地震調査研究推進本	
部, 2017.	部, 2017.	
(49) 日本海溝・千島海溝周辺海溝型地震に関する専門調査	(49) 日本海溝・千島海溝周辺海溝型地震に関する専門調査	
会. 日本海溝・千島海溝周辺海溝型地震に関する専門調	会. 日本海溝・千島海溝周辺海溝型地震に関する専門調	
査会報告について. 内閣府中央防災会議, 2006.	查会報告. 内閣府中央防災会議, 2006.	記載の適正
(50) 文部科学省測地学分科会.北海道周辺の超巨大地震の	(50) 文部科学省測地学分科会.北海道周辺の超巨大地震の	
発生サイクル及び震源過程の解明・プレート運動の解明	発生サイクル及び震源過程の解明・プレート運動の解明	
による衝突帯モデルの構築. 「地震及び火山噴火予知の	による衝突帯モデルの構築. 「地震及び火山噴火予知の	
ための観測研究計画」平成 25 年度年次報告(機関	ための観測研究計画」平成 25 年度年次報告(機関	
別), 2014, 課題番号 1002.	別), 2014, 課題番号 1002.	
	(51) 地震調査研究推進本部地震調査委員会.千島海溝沿い	文献の追加
	の地震活動の長期評価(第二版)について、地震調査研	
	究推進本部, 2004.	
	(52) 地震調査研究推進本部地震調査委員会.日本海溝沿い	文献の追加
	の地震活動の長期評価. 地震調査研究推進本部, 2019.	

-	1
1	٠

令和2年8月24日

日本原燃株式会社

5.化		備	考
H 1 1			
5.化			
5.1匕 1 1			
1 1 1			
21			
1			
1			
	三化		
]			
	Π		
]	P		
]			
	П		