(参考12) 甲地軽石の分析結果

〔B-3孔の顕微鏡観察による構成粒子判定〕

R1.10.25 資料1 p312 再掲

		(腐植)	(腐植) ·	(腐植)	火山灰質 シルト	甲地軽石 主部	(-	- 腐植 ·	—)
取深度 単位	: m	8.39	8.44	8.54	8.6	8.65	8.99	9.02	9.12
	火山ガラス	1	5	11	47	119	9	26	1
	長石	124	146	131	102	108	69	85	22
甲地軽石に	斜方輝石	12	15	17	8	7	2	11	1
古まれる本 皙的 (初生	単斜輝石	1	2	0	3	7	0	0	0
的な)な粒	不透明鉱物	0	3	3	2	2	0	3	0
子	新鮮で 角ばった 火山岩片	6	2	6	11	3	4	5	2
	石英	2	0	0	0	0	0	2	22
	ホルンフ゛レント゛	20	58	34	28	2	1	5	1
甲地軽石の 噴火に直接	その他鉱物 及び円摩さ れた鉱物	0	0	0	0	0	0	0	0
田来しない 異質粒子	円摩された 岩片	120	15	29	15	10	25	50	242
	風化粒	14	54	69	84	42	190	113	9
	生物由来 粒子	0	0	0	0	0	0	0	0
	·計	300	300	300	300	300	300	300	300

甲地軽石(主部):8.65mでは火山ガラ スに富み,斜方輝石及び単斜輝石 を含む。

- 火山灰質シルト層:8.60mでは、火山 ガラスの含有量が主部に対して減少 し、甲地軽石には本質的に含まれな いホルンブレンドを含有する。
- 甲地軽石(主部)を含めた試料全体 にわたって、円摩された岩片や風化 粒が連続的に含まれていることから、 甲地軽石起源と異なる粒子が常に 供給されていたと考えられる。

(参考12) 甲地軽石の分析結果 〔B-3孔のXRD分析結果〕

8.4 8.54 8.64 <th< th=""><th>(参考12) 甲地軽石の分析結果 〔 B−3孔の火山灰分析<u>結</u>果〕</th><th>R1.10.25 資料1 p314 再掲</th></th<>	(参考12) 甲地軽石の分析結果 〔 B−3孔の火山灰分析 <u>結</u> 果〕	R1.10.25 資料1 p314 再掲
田田・新井 (2011) 田地軽石 「四 「の 「	8,44 8,54 8,60 8,75 甲地曜石(主部) WL:300 WL:300 WV:2500 スライス厚:0.5mm <t< td=""><td>【岩片等】 火山岩片・スコリア 2月等 ないの1回数</td></t<>	【岩片等】 火山岩片・スコリア 2月等 ないの1回数
With UNITING 20150 150 150 150 150 150 150 150 150 150		
8 0 50 100 150 120<	深度 (m) 柱状図 試料名称 テフラ名 鉱物構成 (300 粒子中) (個数) 鉱物構成 (岩片等を除いた割合) (例) 狭山ガラス 特記事項 火山ガラス (nd) 斜方輝石 (γ) 2	ホルンブレンド (n2)
3.20 KP-1 3.2m 甲地軽石 約方輝石、単斜輝石 約方揮石、単斜輝石 10 第方東石、単斜輝石 約方揮石、単斜輝石 (含本な) 10 第方東石、単斜輝石 約方揮石、単斜輝石 (含本な) 10 第方東石、東斜輝石 (含本な) 10 第5 (含本な) 10 第5 (含本な) 10 第5 (3本な) 10 10 (3本な) 10 10 (3本な) 10 10 (3本な) 10 10 (3 + 4 + 3) 10 10 10 (3 + 4 + 3) 10 10 10 (3 + 4 + 3) 10 10 10 10 (3 + 4 + 3) 10 10 10 10 10 (3 + 4 + 3) 10 10 10 10 10 10 10 10 10	B-3_8.44 ホルンブレンド多い B-3_8.54 B-3_8.60	1.670 1.680 1.690
320 KP-1_3.2m 甲地軽石 約方輝石>単斜輝石 約方輝石>単斜輝石 町田・新井 (2011) 甲地軽石 約方輝石, 単斜輝石 約方輝石, 単斜輝石 10 「「「」」」」 「「」」」」 第方揮石, 単斜輝石 ● ● 10 「「」」」」 「「」」」」 ● ● ● ● ● 10 「「」」」」 「」」」」 ● <t< td=""><td>B-3_8.75 甲地軽石</td><td>(含有なし)</td></t<>	B-3_8.75 甲地軽石	(含有なし)
10 <	3.20 KP-1_3.2m 甲地軽石 斜方輝石>単斜輝石 町田・新井 (2011) 甲地軽石 4	(含有なレ)
	10 150	所率および主成 と概ね一致する。 .60m): ないホルンブレ 屈折率は幅が広 立子も含むと考え り、甲地軽石とは を含む。

(参考12) 甲地軽石の分析結果 〔N2-2'孔及びKP-3のコア観	R1.10.25 資料1 現 察結果〕
N2-2' (掘削深度: 0.00~5.00m, 孔口標高: 54.99m) 0 0 1 0 2 0 3 0 4 0 7 0 7 0 8 0 8 0 8 0 8 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 12 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 17 0 18 0 18 0 18 0 19 0 10 0	m) KP-3 (掘削深度: 0.00~6.00m, 孔口標高: 55.25m) ・ ・ ・ <t< td=""></t<>
m E. L. G. L. 図 名 相 調 次位 4 54.35 0.74 次 次 次 ※	R R<

 砂 ジルト 砂 灰 灰 灰 灰

(参考12) 甲地軽石の分析結果

[KP-3孔の顕微鏡観察による構成粒子判定]

KP-3孔 深度2.73m~2.98m

KP-3孔 深度3.45m~3.60m

KP-3孔 深度3.58m~3.72m

- 顕微鏡観察によるKP-3孔深度2.75m 及び3.70m(軽石を除く)における構成 粒子の詳細観察の結果,いずれも円 摩された岩片が多く,堆積性の砂層と 考えられる。
- 深度3.70mの構成粒子には火山ガラ ス等火砕物起源の粒子が上位層と比 べて多い。これは、前述の火山ガラス の主成分化学組成分析結果を踏まえ ると、甲地軽石を起源とした粒子が大 部分を占めると考えられる。

• 甲地軽石: 層厚10cm

(深度3.60m~3.70m)

- ▶ 深度7.50~7.66mは粘土化した軽石(CT画像上では低CT値(黒色):甲地軽石)からなる。
- ▶ 深度7.76~7.80mは細粒火山灰(Aテフラ)からなる。
- ▶ 深度7.90~8.01mは粘土化した火山灰(Bテフラ)からなる。
- ▶ 甲地軽石とAテフラ、AテフラとBテフラの間はシルト混り砂(CT画像ではCT値の高い粒子)からなり、3つの降下火砕物は連続しない。

N	7-4	1孔	,											KP	-4						
標	標	深	柱		地 質	€	٤		最測	試料採耳	x 標]	標	楞	[深	村		地 質		色	
尺	高	度	状	地層	層			記事	終 孔 月 内 七	試料名/	2 尺				度	- 状	t	也層			記事
m	E. L. +m	G. L. —m	X	名	相	Ē	周		水位	採取深度	m		m	E. L	. G. L	. 🛛	「月	著 名 相		調	
	60. 78	0. 25	~~~	表: •	E 礫混りシ	12ト 茶	:褐	0.00~0.25m ・表土からなる。 0.25~8.01m					-					注 1) 砕石	=	灰	0.00~0.40m ダ10、50mmのTたてからたて
1			<pre> </pre> <	•	□ <i>−1</i>	. *	渴	 主に褐色のロームと、 褐色~暗褐色の砂からなる。 3.06~3.27m 復巻色の粘土化した粗粒火山灰 を挟む(オレンジテフラ)。 ホルンブレンドを多く含み、 斜方輝石を少量含む。 7.44~7.50m 広声色の風化した水山広葉シルト 					1	55.	01 1 5		ノール	火 砂 山 灰		褐	 ・ 住10~50mmの好石からなる。 0.40~1.53m ・褐色の砂からなる。 ・ 1.05~1.53mはシルト分含む。 1.53~1.75m ・褐色のシルト混り砂からなる。 ・ 径2mm程度の細礫を含む。
2_			\sim	1				・7.50~7.66m 粘土化した褐色の軽石を挟む			2			- 53.	69 1.7	5		シルト 温	り砂	褐	1.75~2.18m ・灰黄色のシルトからなる。
-			\sim					(甲地軽石)。 ・7.66~7.76m 明褐色のシルト混り砂からなる。					2	- 53.	26 2.1	8		^{m)} シル	۲	黄灰	・2.05~2.13mにブロック状の砂を含む。 2.18~2.21m
3	57.97	3.06	\sim		NO Phylor			 ・7.76~7.80m 細粒火山灰を挟む(Aテフラ)。 ・7.80~7.90m 明褐色のシルト混り砂からなる。 ・7.90~8.01m 薬しく粘土化した火山灰を挟む。 			3			- 53 - 52 - 52 - 52	23 1 2.3 96 2.3 98 2.4	00 00 00 00 00 00 00 00 00 00 00 00 00	θ	× <u>山次員</u> 軽石 シルト 細粒火 		明褐 黄灰 明黄语	・灰白色の風化した火山灰質シルトからなる。 2.21~2.38m
-	57.76	3. 27	\sim	۱ _.	租租火山	灰 更	192	(日テフラ)。			-		3	- <u>52.</u> -	/ <u>8 2.0</u> 68 2.7		<u> </u>	細粒火	山灰	赤褐	 ・径2~15mmの明褐色の軽石(甲地軽石)からた ・軽石の形状は水平方向に引き延ばされてい
4			\sim	山灰層	□ <i>−⊥</i>	× *	8	8.01~10.00m ・褐色のシルト混り砂からなる。			4			52.	05 3.3	, //		シルト: 高 砂	混り	黄灰	2.38~3.39m ・黄灰色のシルト混り砂からなる。
5	50.00	4.10		(In	1)	暗~	褐褐				5		4	50.	44 5.0	0	·再上世利月 (H	2 受 工 佳 5 5 5 5 5 5 5 5 5 5 5 5 5		灰	 2.66~2.76mに赤褐色の火山灰を挟む(Bテ) 3.39~5.00m ・灰色の砂からなる。
7											- 7										
8	53.59 53.53 53.27 53.27 53.23 53.13 53.02	7.44 7.50 7.66 7.66 7.80 7.80 7.80 7.80	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		火山灰質シ 軽石 シルト混 細粒火山 細粒火山	ルドレンでの一日の一日の日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	白眉褐褐褐				- 8										
9				高位段丘堆積層	シル 混りる	j ti	8				- 9										
10	51 03	10.00	2.	: (H5	»)						10										

_

〔N7-4孔及びKP-4孔のコア観察結果〕

(参考12) 甲地軽石の分析結果

Г

R1.10.25 資料1 p321 再揭

標

尺

m

1

2

3

4

試料採取

試料名/

KP-4_2. 3/2. 3m

KP-4_2. 74/2. 74m/

(火)

実施内容: 構成粒子の定量 TARDATES

採取深度

最終 孔内水 位

7/25朝 0.40m

(参考12) 甲地軽石の分析結果 〔 KP-4孔の顕微鏡観察による構成粒子判定およびXRD分析結果〕

▶ 顕微鏡観察によるKP-4孔深度2.45m及び2.61mにおける構成粒子の詳細観察の結果,いずれも円摩された岩片が多く、火山ガラスは含まれない。

▶ 顕微鏡観察結果及びXRD分析(不定方位)結果から,砂層に含まれる鉱物は石英と長石類を主体とする。

▶ 甲地軽石とAテフラ, AテフラとBテフラの間には堆積性の砂層が存在しており, これら降下火砕物は連続しない。

p322 再掲

R1.10.25 資料1

2

3

4

標	標	深	柱	t	也質	色		最 測	試料採取	標
尺 m	高 E. L. +m	度 G.L. 一m	状図	地層名	層相	詞	記事	終孔内水位	試料名/ 採取深度	尺 m
6. 7. 8. 9.	49.08 48.68 47.99 47.74 47.33	5.91 6.31 7.00 7.25 7.66 8.63		高位段丘堆積層(H5)	シルト 酸質 ジルト 酸質 ジルレト 酸素 シルレト 酸素 ジルレト 酸素 ジルレト 酸素 シルレト 酸素 シルレト 酸素 シルレト シリン シーン シン シーン	褐灰 黑褐 灰黄 黑褐 灰白	 3. 76~8.63m ・ 腐植質シルトからなり、炭質物を含む。 ・ 5.91m シルトからなる。 ・ 5.91~6.31m 砂混り腐植質シルトからなる。 ・ 6.31~7.00m 砂質シルトからなる。 ・ 7.00~7.25m シルト混り砂からなる。 ・ 7.05~7.66m 腐植質シルトからなる。 ・ 7.66~8.63m 砂混り腐植質シルトからなる。 8.63~10.28m ・ シルト混り砂からなる。 ・ 粗粒~極粗粒砂を主体とし、径4mm程度(最大 12mm)の細碟を含む。 ・ 塊状無層理である。 			

標	標	深	柱	t	也 質	色		最測	試料採取	標
尺 m	高 E. L. +m	度 G.L. 一M	状図	地層名	層 相	調	記事	終 孔 内 水 位	試料名/ 採取深度	尺 m
	44.71	10. 28	/	(H5)	シルト混り砂	灰白	8. 63~10. 28m			E
11_	43.51	11. 48			シルト 混り砂	灰黄	 ・ 租粒~極粗粒砂を主体とし、径4mm程度(最大 12mm)の細礫を含む。 ・塊状無層理である。 10.28~11.48m ・シルト混り砂からなる(六ヶ所層)。 ・中粒~粗粒砂を主体とし、径2mm程度の細礫を 			- 11
12	41.42	13. 57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	六ヶ所層 (R)	礫 混り砂	黄褐	少量含む。 11.48~13.57m ・極粗粒砂を主体とし、径4mm程度(最大12mm) の亜角蝶や軽石を含む。 13.57~15.00m ・細粒砂を主体とし、細粒砂サイズの軽石を 多く含む。 ・13.94~14.55mlご暗褐色の炭化物を挟む。			12
14_ 15	39.99	15.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		軽石混り 砂	灰黄				14

R1.10.25

(参考12) 甲地軽石の分析結果 〔 B-W孔のXRD分析結果〕 R1.10.25 資料1 p325 再掲

(参考12) 甲地軽石の分析結果 〔 帯磁率測定結果(KP-1孔, B-3孔)〕

資料1 p326 再掲

R1.10.25

(参考12) 甲地軽石の分析結果 〔 帯磁率測定結果(KP-4孔, N7-4孔)〕

1.00

1.50

2.00

3.00

コア

写真 表示

範囲

3.50

4.00

E

溪原

328

2019年7月再撮影

 ∞ R1.10.25 資料1 p327 再揭 (参考12) 甲地軽石の分析結果 〔 帯磁率測定結果(KP-3孔, N2-2'孔)〕

(参考12) 甲地軽石の分析結果 〔帯磁率測定結果(B-W孔)〕

(参考13) 十和田中掫テフラの火山から敷地にかけての堆積状況 〔十和田中掫テフラの火山灰分析結果〕

R1.10.25 資料1 p331 再掲

- 層序及び層相から対比した中掫軽石を火山灰分析により確認した。十和田近傍と火山ガラス及び斜方輝石の屈折率が概ね一致することから、中掫軽石と判断した。
- 敷地に近い地点では屈折率の幅が広くなり、ホルンブレンドを含む。給源から離れ層厚が薄くなるに従い、周囲の地層(主に黒ボク)からの二次的な混入が多くなるためであると考えられる。

(参考13) 十和田中掫テフラの火山から敷地にかけての堆積状況 〔敷地に最も近い位置で十和田中掫テフラを確認した目ノ越海岸の露頭〕

火山 灰分析	T結果									
地域	対比テ	フラ(堆積物)		鉱物組合せ	1	火山 . 500	1ガラス(1.510	の屈折率 1.52	度 0 1.	53
	白頭山苫小4 (細粒火山灰	枚 テ フ ラ (B−Tm) ミ) ※To−a の混入あり	【火山ガラス】軽石型 > パブルウォール型	【有色鉱物】斜方輝石>単斜輝石>ホルンブレンド				_		F
B10 账订ttb	+和田 a テ : (細粒軽石)	フラ (To-a) ※B-Tmの混入あり	【火山ガラス】軽石型 > パブルウォール型	【有色鉱物】斜方輝石>単斜輝石>ホルンプレンド		_	-	_		ļ
目ノ越海岸	中 掫 軽 石 (細粒火山灰	返:軽石質砂伴う)	【火山ガラス】軽石型>低発泡型	【有色鉱物】斜方輝石>半斜輝石						
	濁川テフラ (細粒軽石)	(Ng)	【火山ガラス】(微細で不明)	【有色鉱物】ホルンブレンド>単斜輝石. 燐灰石. 黒雲母						
敷地周辺に5 考えられる5 (町田・新井,	分布すると 完新世テフラ 2011 より)	白頭山苫小牧 (B-Tm) 十和田 a (To-a) 十和田中掫 (To-Cu) 濁川 (Ng)	【火山ガラス】軽石型>バブルウォール型 【火山ガラス】軽石型>バブルウォール型 【火山ガラス】軽石型 【火山ガラス】軽石型	【有色鉱物】単斜輝石 ※アルカリ長石含む 【有色鉱物】斜方輝石>単斜輝石 ※温曜石含む 【有色鉱物】斜方輝石>単斜輝石 【有色鉱物】が小球石>単斜輝石						
									20	-

町田・新井(2011)をもとに当社が作成

敷地に最も近い位置で中掫軽石を確認した目ノ越海岸では、中掫軽石の他に、十和田aテフラ及び白頭山苫小牧テフラが認められるが、中掫軽石が最も 厚く、層厚は約5cm、粒径は約2mm以下である。

R1.10.25 資料1

p332 再掲

(参考13) 十和田中掫テフラの火山から敷地にかけての堆積状況 〔十和田中掫テフラの分布に着目した調査〕

中掫軽石について, 十和田から敷地の北東方向に地 質調査を実施した結果, 町田・新井(2011)及び Hayakawa(1985)が示す等層厚線と概ね一致する結 果を得た。

想定噴火規模		パラメータ	単位	値	設定根拠等					
		噴出物量	kg	4.01 × 10 ¹²	Hayakawa(1985)のTo-Cuの見かけの噴出量:6.68km ³ , 堆積物密度:600kg/m ³ に基づいて設定					
		噴煙柱高度	m	25,000	同程度の規模の噴火(VEI:5)の一般値(Newhall and Self,1982による)に基づいて設定					
	噴煙柱分割高さ		m	125	萬年(2013)より設定					
		最大	mm	1.02 × 10 ³	Tephra2推奨值					
		最小	mm	9.77 × 10 ⁻⁴	Tephra2推奨值					
	粒径 	平均	mm	4.42×10 ⁻²	同規模の噴火(Mt. St.Helens 1980年噴火:VEI=5)の事例に基づいて設定					
		標準偏差	mm	1.25 × 10 ⁻¹	同規模の噴火(Mt. St.Helens 1980年噴火:VEI=5)の事例に基づいて設定					
十和田中掫 (To-Cu)	岩片密度		t/m³	2.6	Tephra2推奨值					
	軽石粒子密度		t/m³	1.0	Tephra2推奨值					
		渦拡散係数	m²/s	0.04	萬年(2013)より設定					
		拡散係数	m²/s	10,000	萬年(2013)より設定					
	Fall	Time Threshold	s	3600	萬年(2013)より設定					
		X座標(UTM:54N)	m	491,603	十和田湖(山湖の山心付近)のUTM座標					
	給 源	Y座標(UTM:54N)	m	4,477,037						
		標高		400	0 十和田湖(中湖の中心付近)の湖面標高					

(参考14) 十和田中掫テフラの降灰シミュレーション 〔気象データ〕

- ▶ 気象庁では、1日2回(9時、21時)ラジオゾンデを 用いて、地上から高度約30km間での大気の状態 を観測している。
- 身地に最も近い秋田地方気象台の観測記録をシ ミュレーション解析に用いた。

使用する気象データ

- 月別平年値による解析及び噴煙柱高さの不確かさの検討には、気象庁 による1981~2010年の平年値を用いた。
- これに対し,風の不確かさの検討においては、より長い期間のデータ※ (1973~2013年)により検討を行った。

※ワイオミング大学のDepartment of Atmospheric ScienceのHPより 秋田地方気象台の高層気象観測データをダウンロード(2014年1月24日)。 その際, 1973年~2013年までの観測記録を月ごとにダウンロードし, 記録されている9時・21時の全日時の風データを用いた。

ワイオミング大学HP(http://weather.uwyo.edu/upperair/sounding.html)

ラジオゾンデによる高層気象観測実施官署(気象庁HPより当社が作成)

解析フロー

000

R1.10.25

資料1

p335 再揭

(参考14) 十和田中掫テフラの降灰シミュレーション 〔月別平年値の特徴〕

R1.10.25 資料1 p336 再掲

- ▶ 季節的な偏西風の変動の影響を考慮し、気象庁による高層気象観測データの月別平年値(1981~2010年の風向・風速)を用いた。
 ▶ 風向は、各月とも2km~18kmでは西風が卓越する。18km以上では、月によるばらつきがあり、6月~9月では東風が卓越する。
- ▶ 風速は、ジェット気流の影響で各月とも高度12km付近が最も大きい。また夏季に小さく、冬季に大きい傾向があり、8月が最も小さい。

気象庁 http://www.data.jma.go.jp/o bd/stats/etrn/upper/による。

(参考14) 十和田中掫テフラの降灰シミュレーション 〔月別平年値:9時〕	R1.10.25 資料1 p337 再掲
 十和田中掫テフラ相当の噴火について月別平年値の風を用いた降下火砕物シミュレーションの結果(9時)を示す。 風向がほぼ真西で安定する10月~4月には火山灰の堆積方向が敷地より南方を向き,敷地における火山灰厚さは、0.003cmと評価。 敷地における火山灰厚さはジェット気流が弱まる5月~9月に厚くなる傾向があり,最大となる8月の火山灰厚さは0.2 	ほぼ0cm~ 0cmと評価。

(参考14) 十和田中掫テフラの降灰シミュレーション 〔月別平年値:21時〕

R1.10.25 資料1 p338 再掲

- ▶ 十和田中掫テフラ相当の噴火について月別平年値の風を用いた降下火砕物シミュレーションの結果(21時)を示す。
- ▶ 風向がほぼ真西で安定する10月~4月には火山灰の堆積方向が敷地より南方を向き,敷地における火山灰厚さは、ほぼ0cm~ 0.0035cmと評価。
- ▶ 敷地における火山灰厚さはジェット気流が弱まる5月~9月に厚くなる傾向があり、最大となる8月の堆積層厚は0.47cmと評価。

風条件:月別平年値(21時) (1981~2010年)

(参考14) 十和田中掫テフラの降灰シミュレーション 〔不確かさの検討<噴煙柱高さ>〕

342

 ∞

(参考14) 十和田中掫テフラの降灰シミュレーション 〔不確かさの検討<風向>〕

敷地(211.98°) 35 35 風向の不確かさを考慮し, 敷地方向の風を作成して 30 30 検討した結果,敷地におけ 25 25 る火山灰厚さは35cm。 高度(km) (mx) 型値 15 20 ※8月の観測値のうち高度2km~18kmにお 15 ける風向の平均値が抽出範囲内 〔敷地(211.98°)を中心とし、16方位の1方 10 位分の角度:±11.25°〕に入る風を抽出し, 10 その高度別平均値を用いて解析 5 5 41'30'N NA 0 0 敷地から十和田の 0 60 120 180 240 300 360 50 100 150 0 方向:211.98° 風向(°) 風速(m/s) 41'00'N 敗地 8月の観測値(全データ) 8月の観測値(敷地方向の風) 8月の平年値 敷地方向の風(合成風) • ۲ 40"30'N 十和田 本ケ 敷地 (中湖) 敷地 4.7 $\times 10^{-1}$ cm 3.5×10^{1} cm 6方位の1方位分の角度:22.5 $(2.8 \times 10^{\circ} \text{kg/m}^2)$ $(2.1 \times 10^{2} \text{kg/m}^{2})$ 40'00'N 秋田地方気象台 41°00' 41'00' 39'30'N 140'00'E 140'30'E 141'00'E 141'30'E 142'00'E 凡例 ~1cm (~ 6ka/m²) 敷地方向 1~2cm (6~12kg/m²) 2~5cm (12~30kg/m²) の風へ 5~10cm (30~60kg/m2) 10~25cm (60~150kg/m2) 40°30' 40'30' 25~50cm (150~300kg/m²) 50~100cm (300~600kg/m²) 100~200cm (600~1200kg/m2) 200cm ~ (1200~kg/m²) 141°00' 141°30' 141'00 141'30' ※堆積物密度を 600kg/m³ とした場合 8月(21時)の平年値の風 敷地方向の風(合成風) (1981~2010年) (1973~2013年)

(参考14) 十和田中掫テフラの降灰シミュレーション

(参考) [当社使用のTephra2と産総研のHP上のTephra2の解析結果の比較]

当社が独自に「Tephra2」のバグを修正して解析した結果に対し、参考として、国立研究開発法人産業技術総合研究所(以下、 産総研)が今回のバグを修正し、HP上で公開しているTephra2においても同様の条件で解析を行った。

検討	湏目	当社使用の Tephra2の 解析結果	(参考) 産総研のHP 上のTephra2 の解析結果 [※]			検討項目		当社使用の Tephra2の 解析結果	(参考) 産総研のHP 上のTephra2 の解析結果 [※]
	1月	< 0.01 cm	< 0.01 cm				1月	< 0.01 cm	< 0.01 cm
	2月	< 0.01 cm	< 0.01 cm				2月	< 0.01 cm	< 0.01 cm
	3月	< 0.01 cm	< 0.01 cm				3月	< 0.01 cm	< 0.01 cm
	4月	< 0.01 cm	< 0.01 cm				4月	< 0.01 cm	< 0.01 cm
	5月	0.010 cm	0.01 cm				5月	0.018 cm	0.01 cm
平年値	6月	0.14 cm	0.09 cm	•	2	平年値	6月	0.23 cm	0.13 cm
の (9時)	7月	0.15 cm	0.11 cm	o	(の風 21時)	7月	0.22 cm	0.16 cm
(- /	8月	0.20 cm	0.17 cm	o		- /	8月	0.47 cm	0.33 cm
	9月	0.075 cm	0.06 cm	o			9月	0.15 cm	0.09 cm
	10月	< 0.01 cm	< 0.01 cm	o			10月	< 0.01 cm	< 0.01 cm
	11月	< 0.01 cm	< 0.01 cm	e e			11月	< 0.01 cm	< 0.01 cm
	12月	< 0.01 cm	< 0.01 cm	o			12月 < 0.01 cm		< 0.01 cm
国立研究開発	去人 産業技	術総合研究所がHP(G-EVER火山災害予測	・ 川支援シス		①唐师サウナ	25km+5km	0.25 cm	0.18 cm
ーム)にて公開 (<u>http://volcar</u>	ム)にて公開しているTephra2(産総研によりバグ 修正済)による確認結果 <u>http://volcano.g-ever1.org/vhazard/HazardAssessment/</u>)					①唄煌杜高さ	25km-5km	0.87 cm	0.67 cm
					不確かさ の検討		平均+1σ	0.088 cm	0.04 cm
					の検討	1) (2)風速	平均一1σ	1.6 cm	1.57 cm
						③風向	敷地方向の風	35 cm	35.4 cm

- ▶ 当社が独自に「Tephra2」のバグを修正して解析した結果と、 産総研が今回のバグを修正しHP上で公開している「Tephra2」で解析した結果 は、概ね一致した。
- ▶ 層厚が最大となる③風向の不確かさ(敷地方向の風)を考慮した結果(35cm)は、参考として実施した産総研HP上の「Tephra2」による解析結 果(35.4cm)とほぼ同値となった。

 ∞ R1.10.25 資料1 p345 再揭

X 🗉

(参考15) Tephra2のバグ修正に伴う設計層厚の変更 解析コード「Tephra2」のバグの概要と修正箇所

◆ バグの概要

給源直上から放出される火山灰の粒子の落下速度は、粒子が落下する慣性力と大気の粘性力の比から求まる粒子の レイノルズ数に応じて、以下に示す原理式を用いて算出している。今回、この原理式に基づく解析コードの一部にバグが確認された。

◆ 粒子の落下速度(V_t)の原理式

$$R_e = rac{d
ho_a V_t}{\mu}$$
:粒子レイノルズ数 g :重力加速度 d :粒径 ho_p :粒子密度 ho_a :大気密度 μ :大気の粘性

 ◆ 当社使用の「Tephra2」の解析コードの入手先 南フロリダ大学HPより2014年1月8日にダウンロード (萬年(2013)において,「Tephra2」の解説がなされており,その中でダウンロード先として紹介されている。) http://www.cas.usf.edu/~cconnor/vg@usf/tephra.html/

◆ 原理式に基づく解析コードの修正箇所

〇 バグ修正前(従前の結果に使用した解析コード) バグ >temp1 = GRAV_SQRD_x_4 * part_density * part_density / AIR_VISCOSITY_x_225 * rho; >vti = ashdiam * pow(temp1, ONE_THIRD);

○ バグ修正後(再解析結果に使用した解析コード)
temp1 = GRAV_SQRD_x_4 * part_density * part_density / AIR_VISCOSITY_x_225 / rho;
vti = ashdiam * pow(temp1, ONE_THIRD);

R1.10.25 資料1

p346 再掲

Tephra2のバグ修正に伴う設計層厚の変更 (参考15) バグの修正に伴う計算上の影響①

 ∞ R1.10.25 資料1 p347 再掲

・計算にあたり、粒径及び高度により、バグの影響	吉西		·				レイノルズ数	by					
を受けるものと受けないものがある。	局度 ()	粒径(Φ)	5	4	3	2	1	0	-1	-2	-3	-4	-5
$= 2 \lambda + 1 $	(m)	粒径(m)	3.1E-05	6.3E-05	1.3E-04	2.5E-04	5.0E-04	1.0E-03	2.0E-03	4.0E-03	8.0E-03	1.6E-02	3.2E-02
$ $ - full, ν - ν A γ		粒子密度(kg/m3)	2.2E+03	2.0E+03	1.8E+03	1.6E+03	1.4E+03	1.2E+03	1.0E+03	1.0E+03	1.0E+03	1.0E+03	1.0E+03
条件の場合の.計算式のみにバグがあったため	40,000		-	_	-	_	-	12.84	45.48	181.91	_	_	_
T t Z	39,000		-	_	-	-	-	13.93	49.33	197.32	_	-	-
୯୬୦୦	38,000		-	-	-	_	-	15.11	53.51	214.03	—	—	_
・右に、レイノルズ数が 6 ≦ Re < 500 に含ま	37,000		-	-	-	—	-	16.39	58.04	232.16	_	—	-
わ バグの影響を受ける冬州を示す	36,000		-	-	-	-	-	17.77	62.95	<u>251.82</u>	_	-	_
	35,000		-	-	-	-	-	19.28	68.29	273.15	-	—	_
(黄色着色部の粒径及び高度がバグの影響を受	34,000		-	_		-	-	20.91	74.07	296.28	-	-	
(+22)	33,000		-	_		_	6.28	22.68	80.34	<u>321.37</u>	-	-	
	32,000		-		10	-	6.82	24.60	87.15	348.59	-	-	
	31,000		-	_ R€	e < 6	-	7.39	26.69	94.53	378.12	-	-	
	30,000		-	_		-	8.02	28.95	102.54	410.14	-	-	
	29,000		-	_		-	8.70	31.40	111.22	444.88	-	-	
□ 粒子の洛ト速度(Vt)の計算式	28,000		-				9.44	34.06	120.64	482.56	-	_	
	27,000		_	_	_	_	10.24	36.94	130.86	-	-	_	
$-\frac{12}{3}$	26,000		_	-	-	-	12.04	40.07	152.06	-	-	-	
$u = \frac{ga^2(\rho_p - \rho_a)}{R} \leq 6$	25,000		_	_	_		12.04	43.40	167.00	_	_		
$v_t = \frac{18\mu}{18\mu}$ $R_e < 0$	24,000		_	_			14.17	47.13	101.14		_	_	
10µ	22,000		_	_			14.17	55.47	106.49		_	_	
$r_{1} 2 r_{2} $ $2 r_{1}^{1/2}$	21,000		_	_	_	_	16.67	60.17	213.12	_	_	_	
$ 4g^2d^3(\rho_p - \rho_a)^2 ^{73} \le p \le 500$	20,000		_	_	_	_	18.08	65.26	231.17	_	_	_	
$V_t = \frac{22510}{22510}$ $0 = R_e < 300$	19,000		_	_	_	_	19.61	70 79	250 75	_	_	_	
$[225\mu Pa]$	18,000		_	_	_	_	21.27	76.79	271.98	_	_	_	
	17.000		_	_	-	6.31	23.08	83,29	295.02	_	-	-	
$[2 1 a d(a a)]^{1/2}$	16.000		-	_	-	6.84	25.03	90.34	320.00	_	-	-	_
$V = \left[\frac{5.1ga(\rho_p - \rho_a)}{500}\right]^{-2} 500 \le R_a$	15,000		-	_	-	7.42	27.15	97.99	347.10	_	_	_	_
$v_t = \rho_a$	14,000		-	_	-	8.05	29.45	106.29	376.49	-	-	-	_
	13,000		-	-	-	8.73	31.94	115.29	408.37	-	—	—	_
	12,000		-	-	-	9.47	34.65	125.05	442.95	—	_	—	-
No. 199	11,000		-	-	-	10.27	37.58	135.64	480.45		I	l	-
$D = d\rho_a V_t$	10,000		-	-	-	11.14	40.76	147.13	-			Ц	
$R_e = -\frac{1}{1}$: 12 × 12 × 12 × 12 × 12 × 12 × 12 × 12	9,000		-	-	-	12.08	44.22	159.58	-	-		L L	_
<i>P</i>	8,000		_	-	-	13.11	47.96	173.09	-	F	$Re \geq 1$	500 🏨	
q :重力加速度 d:粒径 ρ_n :粒子密度 ρ_a :大気密度 u:大気の粘性	7,000		-	-	-	14.22	52.02	187.75	-	' '			
d recommender a state provide	6,000		-	-	-	15.42	56.42	203.64	-			H	
	5,000			-	-	16.73	61.20	220.88	-				
	4,000			-	-	18.14	66.38	239.57	-	-	-	-	
	3,000		-	-	-	19.68	/2.00	259.85	-	-	-	-	
	2,000			_	- 6.06	21.34	/8.09	205.60	_	_	_	_	
	1,000				0.20	23.15	01.07	305.09			_		
	0		—	-	0.79	20.11	91.87	331.05	—	-	-	—	-

(参考15)

) Tephra2のバグ修正に伴う設計層厚の変更 バグの修正に伴う計算上の影響②

R1.10.25 資料1 p348 再掲

(参考15) Tephra2のバグ修正に伴う設計層厚の変更 バグの修正に伴う計算上の影響③

______R1.10.25 資料1 p349 再掲

以下に、当社のバグ修正前後の解析結果の代表例を示す。 ◆平年値の風(8月 21時)

▶ 平年値の風は,解析前後ともにバグの影響を受ける粒径(2Φ~-1Φ)を殆ど含まないため,その影響は小さい。

(参考15) Tephra2のバグ修正に伴う設計層厚の変更 バグの修正に伴う計算上の影響④ R1.10.25 資料1 p350 再掲

 敷地方向に分布の主軸が向く風向の不確かさケース(敷地方向の風)については、バグの影響を受ける粒径(20~-10)を多く 含み、修正前に比べ修正後において、大きい粒径が減少し小さい粒径が増加し、結果的に層厚が30cmから35cmとなった。
 これは、バグ修正前に敷地に落下していた大きな粒径がバグ修正後は敷地より手前に落下し、これ以上に、これまで敷地より遠方に飛んでいた小さな粒径がより多く敷地に落下することにより、層厚が増加したものと推察される。

(参考15) Tephra2のバグ修正に伴う設計層厚の変更 従前の結果と再解析結果の一覧

R1.10.25 資料1 p351 再掲

当社使用のTephra2の解析結果について、従前の結果とバグを修正した再解析結果を整理した。 参考として、産総研が今回のバグを修正し、HP上で公開しているTephra2においても同様の条件で解析を行った。

┢카	百日	当社使用の 解析	Tephra2の 結果	(参考) 産総研のHP		按封西日		当社使用の 解析	Tephra2の 結果	(参考) 産総研のHP	
伊討	見口	従前の結果	再解析結果	上のTephra2 の解析結果 [※]		快討項日		従前の結果	再解析結果	上のTephra2 の解析結果 [※]	
	1月	< 0.01 cm	< 0.01 cm	< 0.01 cm			1月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	2月	< 0.01 cm	< 0.01 cm	< 0.01 cm			2月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	3月	< 0.01 cm	< 0.01 cm	< 0.01 cm			3月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	4月	< 0.01 cm	< 0.01 cm	< 0.01 cm			4月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	5月	0.010 cm	0.010 cm	0.01 cm			5月	0.018 cm	0.018 cm	0.01 cm	
平年値 6月		0.14 cm	0.14 cm	0.09 cm	3	平年値	6月	0.23 cm	0.23 cm	0.13 cm	
の風 (9時) 7月 8月	7月	0.15cm	0.15 cm	0.11 cm	(の風 21時)	7月	0.22 cm	0.22 cm	0.16 cm	
	8月	0.22 cm	0.20 cm	0.17 cm		- ,	8月	0.47 cm	0.47 cm	0.33 cm	
	9月	0.075 cm	0.075 cm	0.06 cm			9月	0.15 cm	0.15 cm	0.09 cm	
	10月	< 0.01 cm	< 0.01 cm	< 0.01 cm			10月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	11月	< 0.01 cm	< 0.01 cm	< 0.01 cm			11月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
	12月	< 0.01 cm	< 0.01 cm	< 0.01 cm			12月	< 0.01 cm	< 0.01 cm	< 0.01 cm	
※ 国立研究	究開発法人 Tenhra2(産	産総研がHP(G-EVE 総研によりバグ 修正	R火山災害予測支援 溶ルニトス確認結果	システム)にて公開		①唐师サウナ	25km+5km	0.28 cm	0.25 cm	0.18 cm	
(<u>http:/</u>	/volcano.g-	ever1.org/vhazard/h	lazardAssessment/)		│①唄煌杜高∂	25km-5km	0.87 cm	0.87 cm	0.67 cm	
					不確かさ の検討		平均+1σ	0.088 cm	0.088 cm	0.04 cm	
							平均一1σ	1.8 cm	1.6 cm	1.57 cm	
						③風向	敷地方向の風	30 cm	35 cm	35.4 cm	
	日毎の亚	年値の風の場合	▶ 百般析結果	ト従前の解析結果		な化け目られたい		の検討のうち	<u> 届厚が最大と</u> た		

不確かさ(敷地方向の風)を考慮した場合,再解析結果が従前の解析結果(30cm)を上回る35cmとなった。

▶ 参考として, 産総研が今回のバグを修正し, HP上で公開しているTephra2においても同様の条件で解析を行った結果は, 概ね一致した。

(参考15)

Tephra2のバグ修正に伴う設計層厚の変更 当社使用のTephra2と産総研のHP上でのTephra2の解析条件の差異

当社使用のTephra2の解析条件

(解析コードは南フロリダ大学のHPよりダウンロード)

想定噴火規模		パ	ラメータ	単位	值
		噴出物量		kg	4.01 × 10 ¹²
	噴煙柱高度			m	25,000
	COL STEPS			-	200
			最大	mm	2 ¹⁰
	粒径		最小	mm	2 ⁻¹⁰
			平均	mm	2 ^{-4.5}
			標準偏差	mm	2 ^{-3.0}
十和田中掫 (To-Cu)	岩片密度			t/m ³	2.6
	軽石粒子密度			t/m ³	1.0
	渦拡散係数			m²/s	0.04
	拡散係数			m²/s	10,000
	Fall Time Threshold			S	3600
		>	<座標(UTM:54N)	m	491,603
	給 源	Y座標(UTM:54N)		m	4,477,037
		標高		m	400

(参考)

想

産総研のHP上でのTephra2の解析条件

(解析コードはMannen(2014)による改良版)

想定噴火規模		パラメータ	単位	值	
		噴出物量	kg	4.01 × 10 ¹²	
	Ŋ	寶煙柱高度	m	25,000	
	С	OL STEPS	_	200	
		最大	mm 2 ¹⁰		
		最小	mm	2 ⁻¹⁰	
	粒径	平均	mm	2 ^{-4.5}	
		標準偏差	mm	2 - ^{3.0}	
十和田中掫 (To-Cu)	岩片密度		t/m³	2.6	
	軽石粒子密度		t/m³	1.0	
	渦拡散係数		m²/s	0.04	
	拡散係数		m²/s	10,000	
	Fall 1	Time Threshold	s	3600	
		X座標(UTM:54N)	m	491,604.4	
	給源	Y座標(UTM:54N)	m	4,477,032.4	
		標高	m	401	

緯度経度の数値を 手入力できず, 地図 上でクリックして座標 を指定するため、全 同じ座標とならない

標高データ:

数値地図 50mを 解析用に500mメッシュに変換。

標高データ:

数值地図 100m

(参考15)

Tephra2のバグ修正に伴う設計層厚の変更 当社使用のTephra2と産総研のHP上でのTephra2の解析結果の分布図

R1.10.25 資料1 p353 再掲

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 十和田火山災害想定影響範囲図①

R1.10.25 資料1 p355 再掲

- ・青森県,秋田県,十和田市,鹿角市及び小坂町が共同で設置した十和田火山防災協議会(以下,「協議会」という。)は、十和田において想定 される火山事象の状況に応じた警戒避難体制の整備を行うことを目的として、2018 年1月24 日に十和田火山災害想定影響範囲図を示した。
 ・十和田火山災害想定影響範囲図は、過去11,000年間の噴火を元に大・中・小規模の噴火を想定して、噴火規模ごとに火山事象(降下火砕物、 火砕流・火砕サージ,大きな噴石及び火山泥流)の想定影響範囲を示している。なお、巨大噴火は想定していない。
 ・降下火砕物については、中・小規模の噴火の影響範囲には当社敷地は含まれていないが、大規模噴火の影響範囲では含まれ、 30~100cmの等層厚線のほぼ中央に位置している。
- ・一方,降下火砕物を除く火砕流等の火山事象については、大規模噴火の影響範囲でも、当社敷地は含まれていない。

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 十和田火山災害想定影響範囲図② R1.10.25 資料1 p356 再掲

・協議会の大規模噴火の降下火砕物の影響範囲図で用いられている想定噴火は、当社と同じ十和田中掫テフラ(<u>6.68km³</u>)である。 ・協議会は実績の風〔過去6年間(<u>1992~1994年, 2014~2016年)</u>の<u>毎日9時の高層気象観測データ</u>〕を用いて、<u>全2192ケース</u>の解析を実施し、それらを重ね 合わせて、解析メッシュごとの層厚の最大値をマッピングしている。 ・また、風は風向・風速が刻々と変動するが、降下火砕物が全て降下するまで継続するという解析条件である。 ・その結果、過去の降下火砕物の実績よりも厚く・広い範囲を、降下火砕物の影響範囲として想定している。

の解析結果を重ね合わせた最大値のマップ

火砕物の影響範囲図に十和田中地, 南部蛭石 大湯1軽石の等層厚線を重ね合わせた図 (参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 当社の降下火砕物シミュレーション(月別平年値の21時の結果)

- ▶ 十和田中掫テフラ相当の噴火について月別平年値の風を用いた降下火砕物シミュレーションの結果(21時)を示す。
- ▶ 風向がほぼ真西で安定する10月~4月には火山灰の堆積方向が敷地より南方を向き,敷地における火山灰厚さは、ほぼ0cm~ 0.0035cmと評価。
- ▶ 敷地における火山灰厚さはジェット気流が弱まる5月~9月に厚くなる傾向があり,最大となる8月の堆積層厚は0.47cmと評価。

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 当社の降下火砕物シミュレーション(不確かさの検討<噴煙柱高さ>)

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 当社の降下火砕物シミュレーション(不確かさの検討く風速>) 本資料 p342 再掲 JNFL ▶ 風速の不確かさを考慮し、平均風速に対して、 風速:-1 σ 風谏:+1σ ±1σとした場合について検討した。 30 ▲気象庁:8月平年値 9時 ▶ 敷地の火山灰厚さは、風速が小さいほど厚く ■気象庁:8月平年値_21時 25●平均風速:8月 なるものの, -1 σとした場合でも, 1.6cm。 高度(km) 20 15 25 50 75 風速(m/s) 基本ケース -1σ 41°30' $+1\sigma$ 41''30' 41 '30' 敷地 敷 地 敷地 4.7 \times 10⁻¹cm $1.6 \times 10^{\circ}$ cm 8.8×10^{-2} cm $(2.8 \times 10^{\circ} \text{kg/m}^2)$ $(5.3 \times 10^{-1} \text{kg/m}^2)$ $(9.5 \times 10^{\circ} \text{kg/m}^2)$ 41°00' 凡例 41'00' 41'00' ~1cm (~ 6kg/m²) 1~2cm (6~12kg/m2) 2~5cm (12~30kg/m²) 5~10cm (30~60kg/m2) 10~25cm (60~150kg/m2) 25~50cm (150~300kg/m2) 50~100cm (300~600kg/m2) 40°30' 40''30' 40"30" 100~200cm (600~1200kg/m²) $200 \text{ cm} \sim (1200 \sim \text{kg/m}^2)$ ※堆積物密度を 600kg/m³ とした場合 141'00' 141'30' 141°00' 141°30' 141'00' 141-30' 平均風速に対し-1σの風速 8月の平年値の風 平均風速に対し+1σの風速 (1973~2013年) (1981~2010年) (1973~2013年)

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 当社の降下火砕物シミュレーション(不確かさの検討<風向>)

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について 火山防災マップ作成指針と全国の火山のハザードマップのうち降灰想定

R1.10.25 資料1 p364 再掲

火山防災マップ作成指針について

- ▶「火山防災マップ作成指針」(内閣府ほか, 2013)は、「住民や一時滞在者等の円滑な避難に資することを目的に、防災基本計画に基づく火山防災体制の在り方 や最近の火山学的知見を踏まえ、地方公共団体の防災担当者等が火山防災協議会における検討を通じて、火山防災マップを作成する際に必要となる事項につ いて取りまとめたものである。」とされている。
- 本指針では、大規模噴火での降下火砕物の検討方法について次のように示している。

 「成層圏に達する噴煙柱を形成するほど大規模な噴火の場合、粒径や風の影響を反映して計算できるシミュレーションプログラムを選ぶ。」
 「風向・風速は、気象庁ホームページの気象庁統計情報にある過去の気象データ検索(高層)で紹介されている月平均値を使うと良い。」
- ▶ なお、この「火山防災マップ作成指針」(内閣府ほか、2013)が推奨する月平均値の風は、気象観測統計指針(気象庁、2018)において「その時々の気象や天候を 評価する基準」として示されている月別平年値の風に相当する。

全国の火山のハザードマップのうち降灰想定

2015年に改正された活動火山対策特別措置法に基づき都道府県及び市町村に火山防災協議会の設置が義務付けられた全国の49火山※のハザードマップにおける降灰想定をHP上で確認した。その結果,十和田の降灰想定のように噴煙柱が成層圏に達するような大規模な噴火の事例で,日々の実績の風を用いて検討された降灰想定のハザードマップは認められなかった。(2018年4月10日時点)

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について

+和田火山防災協議会の解析条件に係る考察:+和田火山防災協議会と当社の解析条件の比較

R1.10.25 資料1 p365 再掲

パラメータ		+和田火山防災協議会の解析条件 ※			当社の解析条件	+和田火山防災協議 会と当社の解析条件			
単位 値		値	設定根拠等	値	設定根拠等	を比較した結果。 表中で赤字で示す			
想定噴火		十和田中掫軽石			堅石	•平均粒径			
噴出物量		kg	4. 01×10^{12}	Hayakawa (1985) の To-Cu の見かけの噴出量:6.68km3, 堆積物密度:600kg/m3 に基づき設定		Hayakawa(1985)の To-Cu の見かけの噴出量: 6.68km ³ , 堆積物密度: 600kg/m ³ に基づき設定	・粒径の標準偏差 ・岩片密度		
噴煙柱高度		m	25,000 Hayakawa (1985) の To-Cu の最大粒径分布をもとに Carey&Sparks (1986)の噴煙柱高度-風速の関係から設定		25,000	同程度の規模の噴火(VEI:5)の一般値 (Newhall and Self, 1982による)に基づき設定	●・噴煙柱分割数 ●・拾源の緯度経度		
最大 mm 1/2 ⁻¹⁰		$1/2^{-10}$	Tephra2 推奨值	1/2 ⁻¹⁰ Tephra2 推奨値					
些汉	最小	mm	$1/2^{10}$	Tephra2 推奨值	$1/2^{10}$	Tephra2 推奨値	の細七タルジョナフ		
心住	平均	mm	$1/2^{3.0}$	Hayakawa (1985) (3~4phi 程度)をもとに感度分析により設定	1/24.5	Tephra2 推奨値(VEI=5:St. Helens 1980)に基づき設定	の解析余件が異なる。		
	標準偏差	mm	1/2 ⁵ Hayakawa (1985) (±2σに-5 が入る)をもとに感度分析により設定 1/2 ³ Tephra2 推奨値 (VEI=5 : St. Helens 1980)に基づき設定						
岩片密度 t/m		t/m^3	1.0	軽石と同じ値を設定(Tephra2 では粒径により軽石と岩片の比率が 仮定されているため軽石主体であることを考慮して設定)	2.6	Tephra2 推奨値			
軽石	石粒子密度	t/m^3	1.0	一般値	1.0 Tephra2 推奨値				
渦	渦拡散係数 m		0.04	萬年(2013)に基づき設定	0.04	萬年 (2013) に基づき設定			
书	拡散係数		10,000	萬年(2013)に基づき設定	10,000	萬年 (2013) に基づき設定			
Fall T	Fall Time Threshold		3,600	萬年 (2013) に基づき設定	3,600 萬年 (2013) に基づき設定				
噴煙柱分割数			250	萬年(2013)に基づき設定 (噴煙柱高度/放出間隔が 100 程度)	200	萬年 (2013) に基づき設定			
	X (東経)	m	491, 160						
給源	Y (北緯)	m	4, 477, 330	恋た八日範囲の中心(中間)の 01M 座標	4, 477, 037	和田御(牛御の牛心竹匠)の 01m 座標			
	標高	m	400	想定火口範囲の中心(中湖)の湖面標高	400	十和田湖(中湖の中心付近)の湖面標高			
風	 解析に 解析に 用いた風 秋田地方気象台の1988 年~2016 年の高層気象データ(9 時)のうち、 直近3年間(2014-2016 年)と長期欠測のある1988-1991 年を除く古い 期間3年間(1992-1994 年)の日別観測データ 		ワイオミング 層気象観測	"大学のHP上の1973~2013年のうち8月の秋田地方気象台の高 データ(21時)を用いて,敷地方向の風を抽出・平均して作成					
標高 メッシュサイズ データ		火口近傍(口近傍(陸域)を 2km、近海域を 4km、遠海域を 8km メッシュに設定。		国土地理院の数値地図 50m を			
		10		標高値は0		解析用に 500m メッシュに変換			
解析コード(Tephra2)の ダウンロード先		南フロリダ大学 HP 上よりダウンロード			南フロリダ大学 HP 上よりダウンロード				

※十和田火山防災協議会の解析条件は、青森県より情報提供頂いたものである。

R1.10.25 資料1 p366 再掲

- ▶ 十和田火山防災協議会と当社の解析条件の違いのうち,風以外の解析条件についてパラメータスタディを実施。

> パラメータスタディの結果, 粒径及び岩片密度の解析条件を変えると, 敷地での層厚が変化するが, いずれのケースで

も、当社の解析条件での結果である層厚35cmを下回ることを確認した。

▶ また, 噴煙柱分割数, 給源の緯度経度は, 層厚に影響を与えないことを確認した。

パラメータ		十和田火山防災	当社の解析条件	パラメータスタディ						
		協議会の解析条件		(当社の条件をベースに、協議会の風以外の条件で解析)						
単位		単位	値	值	ケース① (粒径を協議会)	ケース② (岩片密度を協議会)	ケース③ (噴煙柱分割数 を協議会)	ケース④ (給源の緯度経度 を協議会)	ケース⑤ (風以外の全ての 条件を協議会)	
当社敷地での層厚			—	35cm	33.3cm	28.3cm	35cm	35cm	28.3 c m	
	最大	mm	$1/2^{-10}$	$1/2^{-10}$	原燃と協議会					
粒径	最小	mm	$1/2^{10}$	$1/2^{10}$	同じ					
	平均	mm	$1/2^{3.0}$	$1/2^{4.5}$	協議会	原燃	原燃	原燃	協議会	
					$1/2^{3.0}$	$1/2^{4.5}$	$1/2^{4.5}$	$1/2^{4.5}$	$1/2^{3.0}$	
	標準	mm	mm $\underline{1/2^5}$	1/2 ³	協議会	原燃	原燃	原燃	協議会	
	偏差				$1/2^{5}$	$1/2^{3}$	1/23	$1/2^{3}$	$1/2^{5}$	
岩片密度		t/m^3	<u>1.0</u>	2. 6	原燃	協議会	原燃	原燃	協議会	
					2.6	1.0	2.6	2.6	1.0	
噴煙柱分割数		250		200	原燃	原燃	協議会	原燃	協議会	
			200	200	200	200	250	200	250	
給源 -	X(東経)	〔経) m	<u>491, 160</u>	491, 603	原燃	原燃	原燃	協議会	協議会	
					491, 603	491, 603	491, 603	491, 160	491, 160	
	Y (北緯)		4 477 220	4 477 097	原燃	原燃	原燃	協議会	協議会	
		111	<u>4,411,000</u>	4, 477, 007	4, 477, 037	4, 477, 037	4, 477, 037	4, 477, 330	4, 477, 330	

※赤字の下線箇所は、青森県より情報提供頂いたものである。

- ▶ 解析条件を全て協議会と同じとし、風の条件についても、協議会の実績の風〔過去6年間(1992~1994 <u>年、2014~2016年</u>)の毎日9時の高層気象観測データ〕を用いて、全2192ケースの解析を実施した。
- ▶ 解析の結果,敷地での最大層厚は48.3cmであり,2015年4月17日9時の風データによるものである。
- ▶「原子力発電所の火山影響評価ガイド」によれば、今回の想定噴火である、十和田中掫テフラのような VEI5規模の噴火の場合、噴火継続時間は約24時間である。
- ▶ 一方,最大層厚が算出された2015年4月17日9時の前後では風向・風速が変化しており、12時間前及び 12時間後の風データを用いた解析による敷地での層厚は、1cm未満である。

※赤字の下線箇所は、青森県より情報提供頂いたものである。

R1.10.25 資料1 p368 再掲

(参考16) 十和田火山防災協議会の降灰想定等の評価への影響について

+和田火山防災協議会の解析条件に係る考察:敷地での層厚が最大となる日時とその前後の天気図

▶ 十和田火山防災協議会の解析条件で、2192ケースの実績の風〔過去6年間(1992~1994年、2014~2016年)の 毎日9時の高層気象観測データ〕を用いて、敷地における層厚を算出した。

▶ 敷地の層厚が36cmを超えるのは2192ケースのうち12ケースであった。

2192ケースの実績の風を用いた解析結果の 敷地での層厚と頻度の関係(ヒストグラム)

R1.10.25 資料1 p370 再掲

■降下火砕物

- ▶ 当社は、降下火砕物の設計層厚を定めるにあたり、降下火砕物シミュレーションによる不確かさの検討として、噴煙柱高さ、風速及び風向の不確かさによる影響を検討した結果、風向の不確かさケース(敷地方向の風)が最大で層厚35cmである。(設計層厚は36cm)。
- ▶ 解析に用いた風は、内閣府等が策定した「火山防災マップ作成指針」(内閣府ほか、2013)が推奨している月平均値の風や、気象観測統計指針(気象庁、2005)において「その時々の気象や天候を評価する基準」として示されている月別平年値の風と同様に、実績の風を平均して作成したものである。
- ▶ また, 十和田の後カルデラ期の最大規模の降下火砕物である十和田中掫テフラを対象とした再現性解析の結果, 降下火砕物の実績層厚を平均的な風を用いた解析で再現可能であることから, 当社の平均的な風を用いた不確かさケース等の解析は妥当である。
- ▶ 以上のことから、当社の降灰想定は現実的に想定しうる中で最大限の不確実性を考慮し、十分な保守性をもたせた層厚であると考えられる。
- ▶ 一方, 十和田火山防災協議会の警戒避難体制の整備を目的とした降下火砕物の層厚想定は, 当社と同じ十和田中掫テ フラを大規模噴火の想定噴火としているが, 実績の風(<u>毎日9時の高層気象観測データ</u>)を用いており, その風が降下火砕 物が全て降下するまで継続するという条件で実施し, 実績層厚よりも厚く・広い範囲を, 降下火砕物の影響範囲として想定 している。
- ▶ また、「火山防災マップ作成指針」(内閣府ほか、2013)によるとシミュレーションに用いる風向・風速は月平均値を使うと良いとされており、加えて、十和田中掫テフラのようなVEI5規模の噴火の場合、「原子力発電所の火山影響評価ガイド」によると噴火継続時間は約24時間とされていることから、一時的な風である実績の風(毎日9時の高層気象観測データ)が、 十和田中掫テフラの噴火継続時間中、当社敷地方向に吹き続けることは考えがたい。
- ■降下火砕物を除く火砕流等の火山事象
- ▶ 降下火砕物を除く火砕流等の火山事象については、十和田火山防災協議会の想定影響範囲に当社敷地は含まれない。

※赤字の下線箇所は、青森県より情報提供頂いたものである。

以上のことから,降下火砕物については、当社は現実的に想定しうる中で最大限の不確実性を考慮しており、 当社の降灰想定は妥当であるため、十和田火山防災協議会の層厚想定は施設の設計には用いない。 また,降下火砕物を除く火砕流等の火山事象については、協議会の想定でも施設への影響は無い。

参考文献(1)

- 1. 中野 俊・西来邦章・宝田晋治・星住英夫・石塚吉浩・伊藤順一・川辺禎久・及川輝樹・古川竜太・下司信夫・石塚 治・山元孝広・岸本清行編 (2013):日本の火山(第3版)概要及び付表,200万の1地質編集図,no.11,独立行政法人 産業技術総合研究所 地質調査総合センター.
- 2. 西来邦章・伊藤順一・上野龍之編(2012):第四紀火山岩体・貫入岩体データベース,地質調査総合センター速報,no.60,独立行政法人産業技術 総合研究所 地質調査総合センター.
- 3. 西来邦章・伊藤順一・上野龍之・内藤一樹・塚本 斉編(2014):第四紀噴火・貫入活動データーベースVer.1.00, 独立行政法人産業技術総合研 究所.
- 4. 産業技術総合研究所地質調査総合センター編(2017):1万年噴火イベントデータ集(ver.2.3), 産総研地質調査総合センター.
- 5. 気象庁編(2013):日本活火山総覧(第4版).
- 6. 第四紀火山カタログ委員会編(1999):日本の第四紀火山カタログ.
- 7. 山元孝広(2015):日本の主要第四紀火山の積算マグマ噴出量階段図,地質調査総合センター研究資料集,613,産総研地質調査総合センター. 8. 町田 洋・新井房夫(2011):新編火山灰アトラス〔日本列島とその周辺〕,東京大学出版会,336p.
- 9. 海上保安庁海洋情報部:海域火山データベース.
- 10. Matsubara, M. and Obara, K. (2011): The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate, Earth, Planets and Space, 63, pp.663–667.
- 11. Matsubara, M., Sato, H., Uehira, K., Mochizuki, M. and Kanazawa, T. (2017): Three-dimensional seismic velocity structure beneath Japanese Islands and surroundings based on NIED seismic networks using both inland and offshore events, Journal of Disaster Research, 12, pp.844-857.
- 12. Matsubara, M., Sato, H., Uehira, K., Mochizuki, M., Kanazawa, T., Takahashi, N., Suzuki K. and Kamiya, S. (2019): Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data, Seismic Waves - Probing Earth System, IntechOpen, pp.1-19.
- 13. 高田倫義・中川光弘(2016):南西北海道, 横津火山群の地質と岩石:150万年間の活動様式とマグマ化学組成の時間変遷, 日本地質学会第 123年学術大会講演要旨, R3-O-2.
- 14. 工藤 崇(2018):十和田湖周辺地域における前期~中期更新世火山活動史,地質調査研究報告, 69, pp.165-200.
- 15. 雁澤好博・紀藤典夫・柳井清治・貞方 昇(2005):北海道駒ケ岳の最初期テフラの発見と初期噴火活動史の検討,地質学雑誌, 111, pp.581-589.
- 16. 新エネルギー·産業技術総合開発機構(NEDO)(1988): No.13-南茅部地域-, 地熱開発促進調査報告書, 1170p.
- 17. 宝田晋治(1991):岩屑流の流動・堆積機構-田代岳火山起源の岩瀬川岩屑流の研究-,火山,36,pp.11-23.
- 18. 宝田晋治・村岡洋文(2004):八甲田山地域の地質. 地域地質研究報告(5万分の1地質図幅), 産総研地質調査総合センター, 86p.
- 19. 吉本充宏·宝田晋治·高橋 良(2007):北海道駒ヶ岳火山の噴火履歴, 地質学雑誌, 113, pp.81-92.
- 20. 鈴木 守・長谷川 潔・三谷勝利(1969):5万分の1地質図幅「東海」及び説明書, 北海道開発庁, 33p.
- 21. 国府谷盛明・松井公平・小林武彦(1967):5万分の1地質図幅説明書「鹿部」及び説明書,北海道開発庁, 30p.
- 22. Miura, D., Arai, K., Toshida, K., Ochiai, T., Tanaka, M. and lida, T. (2013): Eruption history, conduit migration, and steady discharge of magma for the past 50, 000 yr at Esan volcanic complex, northern Japan, Geological Society of America Bulletin, published online on 7 June 2013 as doi:10.1130/B30732.1.

参考文献2)

- 23. 梅田浩司(1992): 下北半島, むつ燧岳火山の地質と岩石記載, 岩鉱, 87, pp.420-429.
- 24. 富樫茂子(1977):恐山火山の岩石学的研究,岩石鉱物鉱床会誌, 73, pp.45-60.
- 25. リサイクル燃料貯蔵株式会社(2007):リサイクル燃料備蓄センター使用済燃料貯蔵事業許可申請書, 平成19年3月, (平成21年4月 一部補正, 平成21年6 月一部補正, 平成21年8 月一部補正, 平成21年12月一部補正, 平成22年4月一部補正).
- 26. 佐々木 実・小川 洋・斎藤憲二・梅田浩司(1996):岩木火山の形成史,日本火山学会講演予稿集, P17, pp.165.
- 27. 工藤 崇·宝田晋治·佐々木 実(2004):東北日本,北八甲田火山群の地質と火山発達史,地質学雑誌,110, pp.271-289.
- 28. 村岡洋文·高倉伸一(1988):10 万分の1八甲田地熱地域地質図説明書,特殊地質図,通商産業省 工業技術院 地質調査所,21,27p.
- 29. 村岡洋文・山口 靖・長谷紘和(1991):八甲田地熱地域で見出されたカルデラ群, 地質調査所報告, 275, pp.97-111.
- 30. 大沢 穠・三村弘二・広島俊男・中島和敏(1993):20万分の1地質図幅 青森,第2版,通商産業省 工業技術院 地質調査所.
- 31. 青森県史編さん自然部会(2001):青森県史 自然編 地学. 青森県,625p.
- 32. 長森英明・宝田晋治・吾妻 崇(2013):青森西部地域の地質,地域地質研究報告(5万分の1地質図幅),産総研地質調査総合センター, 67p.
- 33. 中川久夫·中馬教允·石田琢二·松山 力·七崎 修·生出慶司·大池昭二·高橋 一(1972):十和田火山発達史概要,東北大學理學部地質學古 生物學教室研究邦文報告,73,pp.7-18.
- 34. 土井宣夫(1993):盛岡市付近に分布する十和田-大不動・ハ戸火砕流堆積物の産状,日本地質学会東北支部会報,22,pp.8-9.
- 35. 大沢 穠・須田芳朗(1978):20万分の1地質図幅 弘前および深浦,工業技術院 地質調査所.
- 36. 工藤 崇・内野隆之・濱崎聡志(2019):十和田湖地域の地質,地域地質研究報告(5万分の1地質図幅),産業技術総合研究所地質調査総合 センター, 192p.
- 37. 大場 司(1991):秋田焼山火山の地質学的・岩石学的研究-1.山体形成史-. 岩鉱, 86, pp.305-322.
- 38. 筒井正明・伊藤英之・秋田県鹿角建設事務所(2002):秋田焼山起源のテフラ及びその噴火年代,日本火山学会講演予稿集, P49, pp.173.
- 39. 須藤 茂(1987): 仙岩地熱地域の珪長質大規模火砕流堆積物-玉川溶結凝灰岩と古玉川溶結凝灰岩-. 地質調査所報告, 266, pp.77-142.
- 40. 仙岩地熱地域地質編集グループ(1985): 10万分の1 仙岩地熱地域地質図説明書, 特殊地質図, 通商産業省 工業技術院 地質調査所, 21-2, 23p.
- 41. 伊藤順一・土井宣夫(2005):岩手火山地質図. 1:25,000火山地質図, 13, 産業技術総合研究所地質調査総合センター.
- 42. 須藤 茂·石井武政(1987): 雫石地域の地質. 地域地質研究報告(5万分の1図幅), 地質調査所, 142p.
- 43. Hayakawa, Y. (1985): Pyroclastic Geology of Towada Volcano, Bull. Earthq. Res. Inst., Univ. Tokyo, 60, pp.507-592.
- 44. Yamamoto, T., Kudo, T. and Isizuka, O. (2018): Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan, Earth, Planets and Space, 70:65.
- 45. 鎌田耕太郎・秦 光男・久保和也・坂本 亨(1991):20万分の1地質図幅 八戸,工業技術院 地質調査所.
- 46. 工藤 崇・小林 淳・山元孝広・岡島靖司・水上啓治(2011):十和田火山における噴火活動様式の時代変遷と長期的予測,日本第四紀学会講 演要旨集,41,pp.82-83.
- 47. 工藤 崇(2010):十和田火山, 御倉山溶岩ドームの形成時期と噴火推移, 火山, 55, pp.89-107.
- 48. 工藤 崇・小林 淳(2013):十和田火山, 先カルデラ期~カルデラ形成期テフラの放射年代測定, 地質調査研究報告, 64, pp.305-311.

参考文献③

- 49. 大池昭二・中川久夫(1979): 三戸地域広域農業開発基本調査 地形並びに表層地質調査報告書, 東北農政局計画部 1978年度 地質調査報告書, 103p.
- 50. 大和伸友(1989):五戸川流域の地形面, 駒澤大学大学院地理学研究, 19, pp.1-18.
- 51. 工藤 崇(2005):十和田地域の地質,地域地質研究報告(5万分の1地質図幅),独立行政法人 産業技術総合研究所 地質調査総合セン ター,79p.
- 52. 近藤玲介・塚本すみ子・工藤 崇・遠藤邦彦・小林 淳・坂本竜彦(2012):レス堆積物のplRIR年代測定による十和田火山周辺におけるテフラ 降下年代の推定,日本第四紀学会講演要旨集,42,pp.250-251.
- 53. 大和伸友(1988):テフロクロノロジーによる高館面段丘化期の認定とテフラ中の斜交関係, 駒澤大学大学院地理学研究, 18, pp.3-15.
- 54. 兼岡一郎・井田善明(1997):火山とマグマ,東京大学出版会.
- 55. Chiba, M. (1966): Genesis of magmas producing pumice flow and fall deposits of Towada caldera, Japan, Bull. Vol, 29, pp.545-558
- 56. 谷口宏充(1972): 十和田火山の岩石学的研究, 岩石鉱物鉱床学会誌, 67, pp.128-138.
- 57. Hunter, A. G. and Blake, S. (1995): Petrogenetic Evolution of a Transitional Tholeiitic—Calc-alkaline Series: Towada Volcano, Japan, Journal of Petrology, 36, pp.1579-1605.
- 58. 工藤 崇・植木岳雪・宝田晋治・佐々木寿・佐々木実(2006):八甲田カルデラ南東地域に分布する鮮新世末期~中期更新世火砕流堆積物の 層序と給源カルデラ. 地学雑誌,115,pp.1-25.
- 59. 高橋正樹(2008):破局噴火-秒読みに入った人類壊滅の日,祥伝社新書, 248p.
- 60. Tatsumi, Y. and Suzuki-Kamata, S. (2014): Cause and risk of catastrophic eruptions in the Japanese Archipelago, Proceedings of Japan Academy, 90, pp.347-352.
- 61. 高橋正樹(1995):大規模珪長質火山活動と地殻歪速度,火山,40, pp.33-42.
- 62. 十和田火山防災協議会 監(2018):十和田火山災害想定影響範囲図,青森県防災危機管理課·秋田県総合防災課·鹿角市総務課·小坂町総務課 発行,平成30年1月24日作成(修正済),15p.
- 63. 下司信夫(2016):大規模火砕噴火と陥没カルデラ:その噴火準備と噴火過程,火山, 61, pp.101-118.
- 64. Nakajima, J., Matsuzawa, T., Hasegawa, A. and Zhao, D.(2001b): Three-dimensional structure of Vp, Vs and Vp/Vs and beneath northeastern Japan: Implications for arc magmatism and fluids, Journal of Geophysical Research, 106, pp.21,843–21,857.
- 65. 相澤広記(2016):火山電磁気観測の進展,火山, 61, pp.345-365.
- 66. 相澤広記(2017):火山の比抵抗構造研究の進展と課題,日本火山学会2017年度秋季大会講演予稿集,A1-03.
- 67. 後藤忠徳・三ケ田 均(2008):電磁気法探査(EM法探査)技術の現状と展望一地震探査との統合型解析に向けて一, 地学雑誌, 117, pp.997 - 1010.
- 68. 中島淳一(2016): プレートの沈み込みと島弧マグマ活動,火山, 61, pp.23-36.
- 69. 浅森浩一・梅田浩司(2005):地下深部のマグマ・高温流体等の地球物理学的調査技術—鬼首・鳴子火山地域および紀伊半島南部地域への適応—,原子カバックエンド研究,11,pp.147-155.
- 70. 西村太志・井口正人(2006):日本の火山性地震と微動,京都大学学術出版会.
- 71. 青木陽介(2016):火山における地殻変動研究の最近の発展,火山, 61, pp.311-344.

参考文献④

- 72. 中島淳一(2017):東北地方の火山周辺の地震波速度・減衰構造:地設構造と低周波地震・S波反射面との関係,東京大学地震研究所彙報, 92, pp.49-62.
- 73. 下鶴大輔・荒牧重雄・井田喜明・中田節也 編(2008):火山の事典(第2版),朝倉書店,575p.
- 74. Nakajima, J., Matsuzawa, T., Hasegawa, A., Zhao D. (2001a): Seismic imaging of arc magma and fluids under the central part of northeastern Japan, Tectonophysics, 341, pp.1-17.
- 75. Yamamoto, K., Kosuga, M., Hirasawa, T. (1981): A Theoretical Method for Determination of Effective Elastic Constants of Isotropic Composites, Sci. Rep. Tohoku Univ, 28, pp.47-67.
- 76. Ogawa, Y. (1987): Preliminary interpretation on detailed magnetovariational profilings in the Northern Tohoku district, Journal of geomagnetism and geoelectricity, 39, pp.559-569.
- 77. Kanda and Ogawa (2014): Three-dimensional electromagnetic imaging of fluids and melts beneath the NE japan arc revisted by using geomagnetic transfer funciton data, Earth, Planets and Space, 66, doi:10.1186-1880-5981-66-39.
- 78. 上嶋 誠(2009): MT法による電気伝導度構造研究の現状, 地震 第2輯, 61, pp.S225-S238.
- 79. 内田利弘・Yoonho Song・Tae Jong Lee・Seong Kon Lee・Seong Keun Lim(2008):済州島におけるMT法調査 超長距離リモートリファレン スの適用, 地質ニュース, 644, pp.44 53.
- 80. 気象庁(2014):十和田の火山活動解説資料(平成26年1月)
- 81. 国土地理院(2018a):平成30年5月の地殻変動. 国土地理院. 国土地理院ホームページ.
- 82. 国土地理院(2018b):特集·平成23年(2011年)東北地方太平洋沖地震から7年,平成30年3月8日.
- 83. 安藤 忍(2013): SAR干渉解析による全国の火山の地殻変動監視と検出された火山性地殻変動. 気象研究所技術報告, 69, pp.65-88.
- 84. 気象庁(2015): 第131回火山噴火予知連絡相資料, 平成27年2月24日.
- 85. 気象庁(2019a): 十和田, 第143 回火山噴火予知連絡会資料(その4の2)東北地方, 平成31 年2月27 日, pp. 25-32.
- 86. 広井 良美・宮本 毅・田中 倫久(2015): 十和田火山平安噴火(噴火エピソードA)の噴出物及び噴火推移の再検討,火山, 60-2, pp.187-209.
- 87. Umeda, K., Ban, M., Hayashi, S. and Kusano, T. (2013): Tectonic shortening and coeval volcanism during the Quaternary, Northeast Japan arc, J. Earth Syst. Sci., 122, pp. 137–147.
- 88. 八甲田火山防災協議会(2014):火山災害予想区域図(数値シュミレーション計算 結果),第5回八甲田山火山防災協議会,平成26年3月26日, 14p.
- 89. 桑原拓一郎(2004):青森県東部上北平野における海成段丘構成物の層序と相対的海面変化,地質学雑誌,110, pp.93-102.
- 90. 桑原拓一郎・檀原 徹・山下 透(2007):青森県,上北平野北部に分布する袋町1~9テフラの記載岩石学的特徴,第四紀研究,46, p.63-66
- 91.小川康雄(1991):八甲田火山群の深部比抵抗構造に関する考察,地質調査所報告,275,pp.83-95.
- 92. 気象庁(2019b): 八甲田山の火山活動解説資料(令和元年10月7日).
- 93. 気象庁(2019c):火山の状況に関する解説情報:八甲田山(令和元年10月8日).
- 94. 国土地理院(2014):八甲田周辺の地殻変動, 第128回 火山噴火予知連絡会資料(平成26年2月25日), 八甲田周辺の地殻変動, pp.23
- 95. 気象庁(2014): 八甲田山の火山活動解説資料(平成26年6月)
- 96. 鈴木 啓・森下 遊・雨貝知美・唐沢正夫(2010):干渉SARを活用した効率的な地盤沈下監視の実施へ向けた取り組み. 平成22年度国土交通 省国土技術研究会,自由課題イノベーション部門, 2.

参考文献5)

- 97. 気象庁(2019d):八甲田山, 第143 回火山噴火予知連絡会資料(その4の2)東北地方, 平成31 年2月27 日, pp. 11-22.
- 98. 久保寺章(1991):火山噴火のしくみと予知, 古今書院, 200p.
- 99. 木村久夫・宮原伐折羅・宮川康平(2013):GNSS連続観測システム(GEONET)捉えた海溝型巨大地震に伴う予効変動の時間変化,国土地理院 時報,124集,pp.47-55.
- 100. 早川由紀夫(1983): 十和田中掫テフラ層の分布, 粒度組成, 年代, 火山第2集, 28, pp. 263-273.
- 101. 日本原燃(株)(2015):第82回核燃料施設等の新規制基準適合性に係る審査会合資料1-1,原子力規制委員会,第82回核燃料施設等の新規制 基準適合性に係る審査会合,168p.
- 102. 東北地方第四紀研究グループ(1969):東北地方における第四紀海水準変化,地団研専報, 15, pp.37-83.
- 103. S.L. Wellington and H.J. Vinegar (1987): X-ray computerized tomography, Journal of Petroleum Technology, 39, pp.885-898.
- 104. 岩森暁如・高木秀雄・朝日信孝・杉森辰次・中田英二・野原慎太郎・上田圭一(2018):医療用X線CTを活用した断層破砕帯の最新活動部認定手法,日本地球惑星科学連合2018年大会予稿集,SSS08-P34.
- 105. Tabito Matsu'ura, Junko Komatsubara, Changjiang Wu (2019): Accurate determination of the Pleistocene uplift rate of the NE Japan forearc from the buried MIS 5e marine terrace shoreline angle, Quaternary Science Reviews, 212, pp.45-68.
- 106. 古川竜太・中川光弘(2010): 樽前火山地質図, 地質調査総合センター, 火山地質図15, 1sheet.
- 107. 山縣耕太郎(2000):支笏火山40ka噴火の規模に関する検討,上越教育大学研究紀要, 19, pp.445-460.
- 108. 古川竜太・中川光弘(2009):後支笏カルデラ,風不死火山の爆発的噴火活動と年代,日本火山学会講演予稿集,A41.
- 109. 古川竜太・中川光弘・古堅千絵(2006): 樽前火山先史時代の噴火活動, 月刊地球, 28, pp.320-307.
- 110. 中川光弘(1998):3.恵庭火山 札幌からいちばん近い活火山をたずねて, フィールドガイド北海道の火山, 62-75p
- 111. 土井繁雄(1957):5万分の1地質図幅「樽雨山」及び同説明書, 北海道開発庁, pp.1-57.
- 112. 曽屋龍典·勝井義雄·新井田清信·堺 幾久子·東宮昭彦(2007):有珠火山地質図(第2版), 地質調査総合センター, 火山地質図2, 1sheet.
- 113. 中川光弘・松本亜希子・田近 淳・広瀬 亘・大津 直(2005):有珠火山の噴火史の再検討:寛文噴火(1663年)と明和噴火(1769年)に挟まれた 17世紀末の先明和噴火の発見,火山,50, pp.39-52.
- 114. Nagaoka, S.(1988):The Late Quaternary Tephra Layers from the Caldera Volcanoes in and around Kagoshima Bay, Southern Kyushu, Japan, Geographical Reports of Tokyo Metropolitan University, 23, pp.49–122.
- 115. 三好雅也・長谷中利昭・佐野貴司(2005): 阿蘇カルデラ形成後に活動した多様なマグマとそれらの成因関係について, 火山, 50, pp.269-268.
- 116. 工藤 崇·奥野 充·中村俊夫(2003):北八甲田火山群における最近6000年間の噴火活動史,地質学雑誌, 109, 3, pp. 151-165.
- 117. 須藤 茂·猪股隆行·佐々木 寿·向山 栄(2007):わが国の降下火山灰データベース. 地質調査研究報告, 58, pp.261-321.
- 118. 吉本充宏·宇井忠英(1998):北海道駒ヶ岳火山1640年の山体崩壊.火山,43, pp.137-148.
- 119. 萬年一剛(2013), 降下火山灰シミュレーションコードTephra2の理論と現状-第四紀学での利用を視野に, 第四紀研究, 52, pp.173-187
- 120. CG Newhall and S Self(1982): The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, Journal of Geophysical Research: Oceans, 87, pp.1231-1238
- 121. 宇井忠英 編(1997):火山噴火と災害,東京大学出版会編, 219p.
- 122. 地学団体研究会·新版地学事典編集委員会 編(2007):新版地学事典, 平凡社, 1468p.
- 123. 小尾亮・藤沢康弘・厚井高志・池田暁彦・堤宏徳・山本陽子(2019):降灰後の土石流発生に関わる火山灰特性(軽石の堆積密度)について 2019年度砂防学会研究発表会概要集, P-178.

参考文献⑥

- 124. 新エネルギー・産業技術総合開発機構(NEDO)(1990):No.19 八雲地域, 地熱開発促進調査報告書, 44, pp.833-840p.
- 125. 沢村孝之助・秦 光男(1981):相沼地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所,34p.
- 126. 松下勝秀・鈴木 守・高橋功二(1973):5万分の1地質図幅「濁川」及び説明書, 北海道立地下資源調査所, 28p.
- 127. 柳井清治・鴈澤好博・古森康晴(1992):最終氷期末期に噴出した濁川テフラの層序と分布,地質学雑誌, 98, pp.125-136.
- 128. 黒墨秀行・土井宣夫(2003):濁川カルデラの内部構造,火山,48, pp.259-274
- 129. 吉本充宏・宮坂瑞穂・高橋 良・中川光弘・吉田邦夫(2008):北海道駒ヶ岳火山, 先歴史時代噴火活動の再検討. 地質学雑誌, 114, pp.336 - 347.
- 130. 古川竜太・吉本充宏・山縣耕太郎・和田恵治・宇井忠英(1997):北海道駒ヶ岳火山は1694年に噴火したか? ー北海道における17~18世紀 の噴火年代の再検討一,火山,42,pp.269-279.
- 131. 勝井義雄・鈴木健夫・曽屋龍典・吉久康樹(1989):北海道駒ケ岳火山地質図,地質調査所,火山地質図5, 1sheet.
- 132. 広瀬 亘・岩崎深雪・中川光弘(2000):北海道中央部~西部の新第三紀火成活動の変遷:K-Ar年代,火山活動様式および全岩化学組成か ら見た東北日本弧北端の島弧火成活動の変遷,地質学雑誌,106,2,pp.120-135.
- 133. 三谷勝利・鈴木 守・松下勝秀・国府谷盛明(1966):5万分の1地質図幅「大沼公園」及び同説明書,北海道立地下資源調査所,46p.
- 134. 庄谷幸夫·高橋功二(1967):5万分の1地質図幅説明書 尾札部, 北海道開発庁, 20p.
- 135. 恵山火山防災協議会(2001):恵山火山防災ハンドブック, 恵山火山防災協議会.
- 136. 荒井健一(1998):恵山火山の噴火史と火山災害評価-特に最近1万年間の活動に基づいて-,北海道大学大学院地学研究科修士論文, 71p.
- 137. 安藤重幸(1974): 恵山火山の地質と岩石, 岩石鉱物鉱床学会誌, 69, pp.302-312.
- 138. 山縣耕太郎・町田 洋・新井房夫(1989): 銭亀-女那川テフラ: 津軽海峡函館沖から噴出した後期更新世テフラ, 地理学評論, 62, pp.195-207
- 139. 雁澤好博(1992): 西南北海道渡島半島の新第三系層序と古地理, 地質学論集, 37, pp.11-23.
- 140. 三谷勝利・小山内 熙・松下勝秀・鈴木 守(1965):5万分の1地質図幅「函館」および同説明書, 北海道地下資源調査所, 32p.
- 141. 山口昇一(1977): 渡島福島地域の地質, 地域地質研究報告(5万分の1図幅), 地質調査所, 28p.
- 142. 山口昇一(1978):知内地域の地質,地域地質研究報告(5万分の1図幅),地質調査所,55p.
- 143. 小杉安由美・中川光弘・清野寛子(2013):西南北海道, 更新世渡島小島火山の地質と岩石学的特徴, 地質学雑誌, 119, pp.743-758.
- 144. 吉井守正(1966):5万分の1地質図幅説明書 渡島小島, 通商産業省 工業技術院 地質調査所, 13p.
- 145. 梅田浩司・檀原 徹(2008):フィッション・トラック年代によるむつ燧岳の活動年代の再検討, 岩石鉱物学, 37, pp.131-136.
- 146. 梅田浩司·古澤明(2004): RIPLによるテフラ降灰層準の認定と最新噴火活動の推定, 月刊地球, 26, pp.395-400.
- 147. 梅田浩司・古澤 明(2003):テフラ層序からみた東北日本, むつ燧岳火山の活動史, 地球惑星科学関連学会合同大会予稿集(CD-ROM), (G017-P001).
- 148. 伴 雅雄・大場与志男・石川賢一・高岡宣雄(1992):青麻-恐火山列,陸奥燧岳,恐山,七時雨および青麻火山のK-Ar年代-東北日本弧第四 紀火山の帯状配列の成立時期-,岩鉱,87,pp.39-49.
- 149. 戸田成太郎・大場 司・小林 淳・林 信太郎(2011): 下北半島中部に分布する大畑層の地質, 日本鉱物科学会2011年度年会合同学術大会 講演要旨集(セクションC), pp.37.

参考文献⑦

- 150. 資源エネルギー庁(1993):広域地質構造調査報告書--渡島・下北地域--(平成3年度), 広域地質構造調査報告書, pp. 434.
- 151. 上村不二雄・斎藤正次(1957):5万分の1地質図幅「大畑」及び説明書, 地質調査所, 33p.
- 152. 青森県(1998):青森県地質図.
- 153. 上村不二雄(1975):陸奥川内地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所,47p.
- 154. 安住亜友美·梅田浩司·柴 正敏·佐々木実·佐藤大紀(2019):下北半島, 於法岳火山の岩石記載とK-Ar年代, 火山, 64, pp.169-174.
- 155. 小林 淳・水上啓治(2012):恐山火山外輪山の年代と火山活動史-小目名沢石英安山岩の恐山火山の活動史上の位置づけに着目して-,第 四紀学会講演予稿集, GO-06, pp.14-15.
- 156. 佐々木 実(2001):岩木火山の最新期活動, 高噴火ポテンシャル火山における噴火の規模・噴出様式に関する研究. 東京大学地震研究所特 定共同研究B報告書(平成11~13年度)課題番号:1999-B-1, 2000-B-1, 2001-B-1, 22-27
- 157. 斎藤 光・鈴木毅彦(2004):中期更新世以降のテフラ層序に基づく岩木火山の噴火史. 日本第四紀学会講演要旨集, 34, 32-33
- 158. 井村隆介(1995):岩木火山の噴火史. 日本地質学会102年大会要旨, pp.245.
- 159. 三村弘二・金谷 弘(2001):東北日本,岩木火山北東麓の流れ山のK-Ar年代と岩木火山の火山体形成およびその崩壊時期.火山,46, pp.17-20.
- 160. 大條裕一・佐々木 実(2002):田代岳火山および太良駒ヶ岳火山の地質と岩石,日本火山学会講演予稿集, P47, pp.171.
- 161. 角 清愛・大沢 穠・平山次郎(1962):5万分の1地質図幅説明書太良鉱山,通商産業省工業技術院地質調査所,51p.
- 162. 阿部泰久·山元正継(1990):秋田県北部田代岳火山の岩石,日本地質学会第97年学術大会講演要旨, pp.409-409.
- 163. 近藤 梓・山元正継・大場 司・安井光大・緒方武幸(2010):東北日本弧北部,碇ヶ関カルデラに分布する火山岩類の層序とK-Ar年代,日本 地質学会第117年学術大会講演要旨, O-179.
- 164. 八島隆一(1990):東北日本弧における鮮新世火山岩のK-Ar年代:阿闍羅山安山岩,青ノ木森安山岩,七ツ森デイサイト,笹森山安山岩,地 球科学,44,3, pp.150-153.
- 165. 新エネルギー・産業技術総合開発機構(NEDO)(1985):昭和59年度全国地熱資源総合調査(第2次)火山性熱水対流系地域タイプ3(八甲田 地域)調査,火山岩分布年代調査報告書,45p.
- 166. 村岡洋文·長谷紘和(1990):黒石地域の地質. 地域地質研究報告(5万分の1地質図幅), 地質調査所, 124p.
- 167. 西村 健・柴 正敏・佐々木 実・藤原大佑(2001):青森県弘前市周辺に分布する鮮新統三ッ森安山岩の岩石化学的研究, 弘前大学理工学部 研究報告, 3, pp.93-102.
- 168. 村岡洋文(1986):沖浦カルデラの形成年代, 地質調査所月報, 37, 1, pp.33-42.
- 169. 新エネルギー·産業技術総合開発機構(NEDO)(1983):地熱開発促進調査報告書, No.5 沖浦地域, 586p.
- 170. 野澤暁史(2001):八甲田地熱地域, 沖浦カルデラの内部構造と形成過程, 地質学雑誌, 107, 7, pp.413-431.
- 171. 工藤 崇·奥野 充·大場 司·北出優樹·中村俊夫(2000):北八甲田火山群,地獄沼起源の噴火堆積物 —噴火様式·規模·年代—,火山, 45, 6, pp. 315-322.
- 172. 工藤 崇・檀原 徹・山下 透・植木岳雪・佐藤大介(2011):八甲田カルデラ起源火砕流堆積物の層序の再検討,日本第四紀学会講演要旨 集,41,pp.144-145.

参考文献⑧

- 173. 新エネルギー・産業技術総合開発機構(NEDO)(1987):全国地熱資源総合調査(2次)火山性熱水対流系地域タイプ③,八甲田地域火山地 質図 1:50,000・八甲田地域地熱地質編図 1:100,000及び同説明書,77p.
- 174. 工藤 崇(2016):十和田火山, 先カルデラ期溶岩のK-Ar 年代, 地質調査研究報告, 67, pp.209-215.
- 175. 安井光大・山元正継(2000):東北日本弧, 稲庭岳地域の火山層序とK-Ar年代--著しくK2Oに乏しいマグマの活動時期--. 岩鉱, 29, 74-84.
- 176. 中嶋聖子・首藤賢治・加々美寛雄・大木淳一・板谷徹丸(1995):東北日本弧,後期中新世〜鮮新世火山岩の島弧横断方向における化学組 成および同位体組成変化. 地質学論集,44,197-226
- 177. 八島隆一・大竹二男・長橋良隆(2001):東北地方における後期中新世-鮮新世火山岩のK-Ar年代.地球科学, 55, 253-257
- 178. 石川賢一・吉田武義・北川嘉彦・青木謙一郎・大上和良(1985):東北本州弧, 岩手県七時雨火山の地球化学的研究. 核理研研究報告, 18, 2, pp.366-378.
- 179. 照井一明(2006):東北日本弧, 七時雨火山の地質と層序. 日本地質学会第113年学術大会講演要旨, pp.120.
- 180. 大口健志・大上和良・尾田太良(1986):第2巻-その3-島弧横断ルートNo. 15(大葛温泉-田山-浄法寺-二戸・久慈).新生代東北本州弧地質資料集, p13
- 181. 上村不二雄・須藤 茂・金原啓司・茂野 博・駒沢正夫・須田芳朗・菊池恒夫(1985):10万分の1仙岩地熱地域地質図説明書 特殊地質図. 地質調査所, 21-1, 23p. 147.
- 182. 資源エネルギー庁(1985):広域調査報告書-八甲田地域-, pp. 121.
- 183. 須藤 茂(1986):秋田焼山火山の地下構造. 日本火山学会講演予稿集, pp.91.
- 184. 内海 茂·宇都浩三·柴田 賢(1990):K-Ar年代測定結果-3 -地質調査所未公表資料-. 地質調査所月報, 41, pp.567-575.
- 185. 大場 司・梅田浩司(1999):八幡平火山群の地質とマグマ組成の時間一空間変化. 岩石鉱物鉱床学雑誌, 94, pp.187-202.
- 186. 大場 司·林 信太郎·梅田浩司(2003):岩手県松川地熱地域北方に分布する火山岩のK-Ar年代.火山,48,4, pp.367-374.
- 187. 須藤 茂(1992):5万分の1仙岩地域中心部地熱地質図説明書,特殊地質図(21-5). 地質調査所, 73p.
- 188. 和知 剛・千葉達朗・岡田智幸・土井宣夫・越谷 信・林信太郎・熊井修一(2002):八幡平火山起源の完新世テフラ.地球惑星科学関連学会 合同大会予稿集, V032-P005.
- 189. 須藤 茂・板谷 徹丸・向山 栄(1989):森吉山火山噴出物の年代と古地磁気(演旨). 日本地質学会第96年学術大会講演要旨, 527pp.
- 190. 中川光弘(1983):森吉火山の地質と岩石,岩石鉱物鉱床学会誌, 78, 197-210
- 191. 須藤 茂(1987):秋田県,田沢湖周辺の火山岩の年代.日本火山学会講演予稿集,48pp.
- 192. 須藤 茂(1982):玉川溶結凝灰岩及び周辺の類似岩のK-Ar年代,日本地熱学会誌,4,3,159-170.
- 193. 小嶋智子・山崎晴雄(2013):仙岩火山地域南西部における大規模珪長質火砕流堆積物の分布の再検討. 日本火山学会講演予稿集, 131.
- 194. 斉藤徳美・土井宣夫・菊地真司・吉田桂治(2005):1998年岩手山噴火危機対応の記録. 国土交通省東北地域整備局岩手河川国道事務所・ 岩手県, 525p.
- 195. 中川光弘(1987):東北日本, 岩手火山群の形成史. 岩石鉱物鉱床学会誌, 82, pp.132-150.
- 196. 須藤 茂·宇都浩三·内海 茂(1990):仙岩地熱地域南部,乳頭·高倉火山群噴出物のK-Ar年代. 地質調査所月報, 41, 7, pp.395-404.

197. 伊藤順一・住田達哉(2011):岩手火山における約10万年間のマグマ噴出率. 日本鉱物科学会2011年年会学術大会講演要旨集, T3-07.

198. 須藤 茂·板谷徹丸·向山 栄(1990):松川·葛根田地域の火山活動史と地熱の熱源,日本地熱学会誌,12,1,pp.63-78.

参考文献(9)

- 199. 高岡宣雄・今田 正・大場与志男・今野幸一・飯田美穂・須藤 弘・半沢恵二・南館 有(1988):百万年より若い火山岩のK-Ar年代測定. 文部 省科学研究費補助金総合研究, pp.1-43.
- 200. 須藤 茂(1985):仙岩地熱地域南部の鮮新世ー更新世火山活動についてー安山岩火山の古地磁気とK-Ar年代. 地質調査所月報, 36.9, pp.513-533.
- 201. 中谷咲子・長谷川健・藤縄明彦・照井肇子(2013):東北日本, 仙岩地熱地域南部, 高倉火山の山体形成史とマグマ供給系. 地質学雑誌, 119, pp.457-473.
- 202. 新エネルギー・産業技術総合開発機構(NEDO)(1991):平成2年度全国地熱資源総合調査(第3次)広域熱水流動系調査. 秋田駒地区地 熱調査成果図集, 119p.
- 203. 和知 剛・土井宣夫・越谷 信(1997):秋田駒ヶ岳のテフラ層序と噴火活動.火山, 42, pp.17-34.
- 204. 小坂丈予·平林順一(1971): V.秋田駒ヶ岳1970-71年の噴火現象. 1.噴石活動と溶岩流出. 火山, 16, pp.122-134.
- 205. 藤縄明彦・巌嵜正幸・本田恭子・長尾明美・和知 剛・林 信太郎(2004):秋田駒ヶ岳火山,後カルデラ活動期における噴火史-火山体構成 噴出物と降下テフラ層の対比-.火山,49,pp.333-354.
- 206. 須藤 茂(1984):秋田県荷葉岳火山の古地磁気とK-Ar年代. 火山, 2, 29, 2, pp.112-114.
- 207. 小針博通(1974):秋田県荷葉岳火山の岩石,岩石鉱物鉱床学会誌, 69, pp.1-8.
- 208. 須藤 茂(1987):秋田県,田沢湖周辺の火山岩の年代,火山学会講演予稿集,2,48.
- 209. 新エネルギー・産業技術総合開発機構(NEDO)(2001):秋田駒地域火山地質図(1:50,000). 秋田駒地域地熱地質原図(1:100,000)説明書 210. 大沢 穠・角 清愛(1958):5万分の1地質図幅「田沢湖」及び説明書.
- 211. 新エネルギー・産業技術総合開発機構(NEDO)(1981):平成2年度全国地熱資源総合調査(第3次)広域熱水流動系調査,秋田駒地区地熱 調査成果図集,119p
- 212. 鹿野和彦・大口健志(2004): 八幡平西方, 玉川溶結凝灰岩中に見出された給源不明の火山砕屑堆積物.火山, 49, 5, 283-297
- 213. 鹿野和彦・大口健志・林 信太郎・矢内桂三(2007): 田沢湖カルデラとその噴出物(演旨). 日本地質学会第114年学術大会講演要旨, 70-70
- 214. 鹿野和彦・石塚 治・大口健志・狐崎長琅(2008):田沢湖カルデラに辰子堆溶岩ドームが噴出した時期.日本火山学会講演予稿集,18-18
- 215. Kudo, T., Sasaki, M., Uchiya ma, Y., Nozawa, A., Sasaki, H., Tokizawa, T. and Takarada, S. (2007): Petrological variation of large volume felsic magmas from Hakkoda- Towada caldera cluster: Implications for the origin of high-K felsic magmas in the Northeast Japan Arc. Island Arc, 16, pp.133–155.
- 216. 核燃料サイクル開発機構(1999):わが国における高レベル放射性廃棄物地層処分の技術的信頼性—地層処分研究開発第2次取りまとめ—, 分冊1,わが国の地質環境
- 217. 電気事業分科会(2014):コスト等検討小委員会, 資源エネルギー庁.
- 218. 田中和夫(2003):青森県地震観測システム地震観測結果報告(平成15年度),青森県.
- 219. 田中和夫(2004):青森県地震観測システム 地震観測結果報告(平成16年度),青森県.
- 220. 田中和夫(2005):青森県地震観測システム 地震観測結果報告(平成17年度),青森県.

221. 大谷佳子・渡邉和俊・小菅正裕・田中和夫(2002):十和田湖周辺域における浅部地震活動,弘前大学理工学部研究報告,4, pp.57-67. 222. 宇津徳治(2001):地震学(第3版),共立出版,392p.

参考文献(10)

- 223. Wiemer and Wyss(2000): Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seism. Soc. Am. 90, 859–869.
- 224. 気象庁(2014):八甲田山の火山活動解説資料(平成26年8月)
- 225. 鶴見 實(2011):青森市大字荒川字南荒川山国有林火山性ガス調査報告書
- 226. 気象庁(1997):平成9年12月 地震·火山月報(防災編)
- 227. 平林順一(1997):八甲田山麓の火山ガス災害, 地熱, 233p.
- 228. 仙台管区気象台(1995):東北地域火山機動観測実施報告 八甲田山·八幡平(平成6年7月~10月実施), 14, pp.77
- 229. 仙台管区気象台(1989):東北地域火山機動観測実施報告 八甲田山(昭和63年8月~9月実施), 8, pp.32
- 230. 仙台管区気象台(1990):鳴子·恐山 東北地域火山活動機動観測実施報告(平成元年8月~9月実施), 9, 60p.
- 231. 気象庁観測部(1981):恐山·御嶽山火山機動観測実施報告(昭和54年10月~55年3月), 16, 20p.
- 232. Mannen, K. (2014) : Particle segregation of an eruption plume as revealed by a comprehensive analysis of tephra dispersal: Theory and application, Journal of Volcanology and Geothermal Research, 284, pp.61-78.
- 233. 内閣府(防災担当)・消防庁・国土交通省水管理・国土保全局砂防部・気象庁(2013):火山防災マップ作成指針
- 234. 気象庁(2018):気象観測統計指針
- 235. 八丈島火山防災協議会(2017):東京都防災HP
- 236. S. CareyR. S. J. Sparks (1986) : Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bulletin of Volcanology, 48, pp.109-125.