泊	発電所2号炉審査資料
資料番号	HTN2-PLM30(冷停)-耐震 改1
提出年月日	令和2年6月9日

泊発電所2号炉 高経年化技術評価 (耐震安全性評価)

補足説明資料

令和2年6月9日 北海道電力株式会社

: 枠囲みの内容は機密情報に属しますので公開できません。

今回提出する範囲

目次

1.	概要	1
2.	基本方針	1
3.	評価対象と評価手法・・・・・	4
3.	.1 評価対象 · · · · · · · · · · · · · · · · · · ·	4
	3.1.1 耐震安全性評価対象機器·····	4
	3.1.2 耐震安全上考慮する必要のある経年劣化事象の抽出・・・・・・・・・・・・	4
3.	.2 評価手法	7
	3.2.1 主な適用規格・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	3.2.2 冷温停止状態が維持されることを前提とした評価における劣化評価期間・・	7
	3.2.3 耐震安全性評価の評価手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.	.3 評価用地震力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
3.	.4 評価用地震動 · · · · · · · · · · · · · · · · · · ·	14
3.	.5 代表の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
4.	代表の耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
4.	.1 耐震安全性評価	19
	4.1.1 低サイクル疲労・・・・・	19
	4.1.2 高サイクル熱疲労・・・・・	20
	4.1.3 中性子照射脆化	20
	4.1.4 熱時効	21
	4.1.5 中性子照射による靭性低下・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	4.1.6 中性子及びγ線照射脆化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	4.1.7 応力腐食割れ・・・・・	22
	4.1.8 摩耗	23
	4.1.9 流れ加速型腐食・・・・・	24
	4.1.10 全面腐食	25
	4.1.11 動的機能維持に係る耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・	26
	4.1.12 照射誘起型応力腐食割れ	28
4.	.2 現状保全	29
4.	.3 総合評価	29
5.	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
5.	.1 審査ガイド適合性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
5.	.2 保守管理に関する方針として策定する事項・・・・・・・・・・・・・・・・・・・・・・・	34

	別紙1.	建設後の耐震補強の実績について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙2.	耐震安全性評価に用いる現行の JEAG4601 以外の値を適用した
		ケースについて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2-1
	別紙3.	冷温停止状態における耐震安全上考慮する必要のある経年劣化事象の
		発生・進展について
	別紙4.	機器・配管に係る、比率で示された耐震安全性評価結果
		(疲労累積係数を除く)について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙5.	主給水管他の伸縮継手の疲労割れに対する耐震安全性評価について・・・・ 5-1
	別紙6.	アンカーサポート取付部(余熱除去系統配管)の疲労割れに対する
		耐震安全性評価について・・・・・ 6-1
	別紙7.	余熱除去系統配管の高サイクル熱疲労割れに対する耐震安全性評価
		について
	別紙8.	原子炉容器の中性子照射脆化に対する耐震安全性評価について・・・・・・ 8-1
_	別紙9.	炉心そうの中性子照射による靭性低下に対する耐震安全性評価について・9-1
	別紙 10.	原子炉容器サポート(サポートブラケット(サポートリブ))の
		中性子及びγ線照射脆化に対する耐震安全性評価について・・・・・・10-1
	別紙 11.	低水質廃液蒸発装置(蒸発器胴板)の応力腐食割れに対する
		耐震安全性評価について・・・・・ 11-1
	別紙 12.	蒸気発生器支持脚(ヒンジ摺動部)の摩耗に対する耐震安全性評価
		について12-1
	別紙 13.	主蒸気系統配管他の内面からの腐食(流れ加速型腐食)に対する
		耐震安全性評価について・・・・・ 13-1
	別紙 14.	ディーゼル機関空気冷却器伝熱管他の内面腐食(流れ加速型腐食)
		に対する耐震安全性評価について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14-1
	別紙 15.	制御用空気だめ他の腐食(全面腐食)に対する耐震安全性評価について 15-1
	別紙 16.	バッフルフォーマボルトの照射誘起型応力腐食割れが抽出されない理由
		について

別紙2

タイトル	」震安全性評価に用いる現行の JEAG4601 以外の値を適用したケースについて									
説明	1. 以下については,現行 JEAG4601 でなく,JEAC4601-2008 に定められた設 計用減衰定数を用いた評価を実施している。									
	(1)鉛直方向の設計用減衰定数 動的鉛直地震動を評価に用いる場合,鉛直方向の設計用減衰定数は JEAC4601-2008 で定められている値を使用している。									
	(2)配管設備関連の評価 動的地震動による評価においては, 定められている値を使用している。 対象配管及び適用した設計用減衰定	(2)配管設備関連の評価 動的地震動による評価においては、設計用減衰定数は JEAC4601-2008 で 定められている値を使用している。 対象配管及び適用した設計用減衰定数を表 2-1 に示す。								
	表 2-1 配管の動的地震動による評価に用いた <mark>設計用</mark> 減衰定数									
	対象配管	設計用減衰定数(%)								
	1次冷却系統配管 2.5~3.0									
	安全注入系統配管 2.0									
	余熱除去系統配管 1.5~3.0									
	化学体積制御系統配管	0.5~3.0								
	蒸気発生器ブローダウン系統配管	2.0~3.0								
	主蒸気系統配管	2.5~3.0								
	主給水系統配管	1.5~3.0								
	なお、「蒸気発生器ブローダウン系統配管」と「主給水系統配管」については、泊1号炉と泊2号炉において JEAC4601-2008 で定める配管区分** が異なるため、評価に用いた設計用減衰定数が相違する。その相違理由の 詳細を表 2-2 に示す。									
	表 2-2 評価に用いた設計用減衰定数の相違理由									
	系統 設計用減衰定数 (%) 相違理由									
	蒸気発生器 ブローダウン系統・1号:0.5~1.5 ・2号:2.0~3.0配管区分の違いによる。 ・1号:配管区分IV(保温材:有/無混在 ・2号:配管区分I(保温材:有/無混在									
	主給水系統 ・1号:1.5 ・1号:配管区分の違いによる。 ・1号:1.5 ・1号:配管区分IV(保温材:有) ・2号:1.5~3.0 ・2号:配管区分I(B系統)及びIV(A系統) (保温材:有)									
	※JEAC4601-2008 で定める配管区分 ・I:スナッバ及び架構レストレイント支持主体の配管系で、支持具(スナッバ又は架構レストレ イント)の数が4個以上のもの									
	 Ⅱ:スナッバ,架構レストレイント,ロッドレス カ及びUボルトを除いた支持具の数が4個U ・Ⅲ:Uボルトを有する配管系で,架構で水平配管 	、トレイント,ハンガ等を有する配管系で,アン 以上であり,配管区分 I に属さないもの の自重を受けるUボルトの数が 4 個以上のもの								
	・Ⅳ:配管区分Ⅰ,Ⅱ及びⅢに属さないもの	以上								

別紙4

タイトル	機器・配管に係る,比率で示された耐震安全性評価結果(疲労累積係数を除く) について
説明	機器・配管に係る,比率で示された耐震安全性評価結果(疲労累積係数を除 く)について,各々の分子と分母の値を単位とともに記載した表を添付-1に 示す。 また,発生応力算出に用いた地震力の種別は以下の通りであり,耐震安全性 評価結果に合わせて添付に示す。
	 ①耐震Sクラス(旧Asクラス及びAクラス) ・基準地震動Ss^{*1}により定まる地震力 ・基準地震動S1(設計用最強地震による地震動)により定まる地震力と Sクラスの設備に適用される静的地震力の大きい方 ②耐震Bクラス ・Bクラスの設備に適用される静的地震力*2 ③耐震Cクラス ・Cクラスの設備に適用される静的地震力
	 *1:発電用原子炉施設に関する耐震設計審査指針(平成18年9月19日)により 策定したSs地震動。 *2:支持構造物の振動と共振のおそれがあるものについては、基準地震動S1によ り定まる地震力の1/2についても考慮する。
	以上

泊2号炉	機器•	・配管の	耐震安全性調	平価結果

機種名	経年劣化事象	機器名	3称	limeli	耐震 重要度	発生 応力 (MPa)	許容値 (MPa)		応力比	評価に用いた地震波 (評価手法)	備考							
熱交換器	伝熱管の内面腐食 (流れ加速型腐食)	原子炉補機冷却水 冷却器	伝熱管	s	S_{s}^{*1}			0.11	一次応力/ 許容応力	Ss (定式化された評価式)	発生応力は, 施栓基準肉 厚より算出							
			配管とパッドの	c	S *1	64	115	0.56	一次応力/ 許容応力	Ss (定式化された評価式)								
		溶接部	5	S_S^{-1}	58	115	0.50	(一次+二次応力)/ 許容応力	Ss (定式化された評価式)									
	佐谷割と	配管サポート(余熱 除去系統配管の アンカーサポート)	パッドとラグの 溶接部	S	S_{S}^{*1}	68	115	0.59	一次応力/ 許容応力	Ss (定式化された評価式)								
あったな	波力刮40					62	99	0.63	(一次+二次応力)/ 許容応力	Ss (定式化された評価式)								
 B B 母管の高サイクル 熱疲労割れ (高低温水合流部) 		ラグとプレートの	0	C *]	61	120	0.51	一次応力/ 許容応力	Ss (定式化された評価式)									
			溶接部	5	5 ₅ .1	$S_S^{r_1}$	$S = S_S^{*1}$	S_{S}^{*1}	SST	$\mathfrak{D}_{\mathrm{S}}^{\mathrm{C}}$	$S_{S}^{\prime \prime}$	SS	56	99	0.57	(一次+二次応力)/ 許容応力	Ss (定式化された評価式)	
	母管の高サイクル	ム劫心士で法司法	余熱除去冷却 器出口配管とバ	6	Ss	68	210	0.32	地震時応力/ 亀裂安定限界応力	Ss (定式化された評価式)								
	 烈波労割れ (高低温水合流部)	余熱际 云 糸統配管	イパス配管の 合流部	5	S_1	66	210	0.31	地震時応力/ 亀裂安定限界応力	S ₁ (定式化された評価式)								

*1:Ss地震力がS1地震力及びSクラスの機器に適用される静的地震力より大きく、Ss地震力による評価応力がS1地震力及びSクラスの機器に適用される静的地震力の許容応力を下回るため、S1地 震力及び静的地震力による評価を省略した。

泊2号炉	機器	 配管の耐震安全性評価結果
••••		

機種名	経年劣化事象	機器名称		-	耐震 重要度	発生 応力 (MPa)	許容値 (MPa)		応力比	評価に用いた地震波 (評価手法)	備考
						297	329	0.90	一次応力/ 許容応力	Ss (スペクトルモーダル解析)	評価手法は、C/V内外の評価の内、評価上厳しいC/V外について記載
		十岁月才休司姓			S_{S}	482	418	1.15	(一次+二次応力)/ 許容応力	Ss (スペクトルモーダル解析)	評価手法は、C/V内外の評価の内、評価上厳しいC/V外について記載
		土烝気糸統配官		5	6	87	168	0.52	一次応力/ 許容応力	S ₁ (スペクトルモーダル解析)	評価手法は, C/V 内外の評価どちらも 同じ
					S_1	143	336	0.43	(一次+二次応力)/ 許容応力	S1 (スペクトルモーダル解析)	評価手法は, C/V 内外の評価どちらも 同じ
					6	205	426	0.48	一次応力/ 許容応力	Ss (スペクトルモーダル解析)	評価手法は、C/V内外の評価の内、評 価上厳しいC/V外について記載
		主給水系統配管	_	S	Ss	382	540	0.71	(一次+二次応力)/ 許容応力	Ss (スペクトルモーダル解析)	評価手法は、C/V内外の評価の内、評価上厳しいC/V外について記載
配管	配管 一 母管の腐食(流れ 加速型腐食)				S_1	109	228	0.48	一次応力/ 許容応力	S1 (スペクトルモーダル解析)	評価手法は, C/V 内外の評価どちらも 同じ
						145	540	0.27	(一次+二次応力)/ 許容応力	S ₁ (スペクトルモーダル解析)	評価手法は, C/V 内外の評価どちらも 同じ
		補助蒸気系統配管 (1 次系)	_	С	静的 地震力	133	179	0.74	一次応力/ 許容応力	静的地震力 (定ピッチスパン法)	
				S		86	329	0.26	一次応力/ 許容応力	Ss (スペクトルモーダル解析)	
		蒸気発生器ブロー			Ss	371	418	0.89	(一次+二次応力)/ 許容応力	Ss (スペクトルモーダル解析)	
		ダウン系統配管	_		S_1	52	209	0.25	一次応力/ 許容応力	S ₁ (スペクトルモーダル解析)	
						217	418	0.52	(一次+二次応力)/ 許容応力	S1 (スペクトルモーダル解析)	

|--|

機種名	経年劣化事象	機器名称		耐震 重要度		発生 応力 (MPa)	許容値 (MPa)		応力比	評価に用いた地震波 (評価手法)	備考
炉内 構造物	摩耗	炉内構造物	炉内計装用 シンブルチューブ	s	S_S^{*1}	4	414	0.01	一次応力/ 許容応力	Ss (スペクトルモーダル解析)	
空調設備	凝縮器伝熱管の 内面腐食 (流れ加速型腐食)	凝縮器(冷凍機)	伝熱管	С	静的 地震力			0.46	一次応力/ 許容応力	静的地震力 (定式化された評価式)	発生応力は,施栓基準肉 厚より算出
	中性子及び γ 線 照射脆化	原子炉容器 サポート	サポートブラケット (サポートリブ)	s	S_1^{*2}	4.9	33.4	0.15	応力拡大係数/ 破壊靱性値	S ₁ (スペクトルモーダル解析)	発生応力及び許容値の単 位は、MPa√m
機械設備	摩耗	蒸気発生器 支持脚	ヒンジ摺動部	S	S_{S}^{*1}	19	180	0.11	一次応力/ 許容応力	Ss (時刻歴解析)	
						206	426	0.48	(一次+二次応力)/ 許容応力	Ss (時刻歴解析)	
		1次冷却材ポンプ 支持脚	ヒンジ摺動部	s	S_{s}^{*1}	9	214	0.04	一次応力/ 許容応力	Ss (時刻歴解析)	
						121	510	0.24	(一次+二次応力)/ 許容応力	Ss (時刻歴解析)	
	制御用空気だめの 腐食(全面腐食)	制御用空気だめ	—	s	S _S *1	56	243	0.23	地震時応力/ 許容応力	Ss (定式化された評価式)	
	被覆管の摩耗	制御棒クラスタ	制御棒被覆管	S	S _s *1			0.33	一次応力/ 許容応力	Ss (時刻歷解析)	地震応答解析には時刻歴 解析を適用しているが、応 力評価に際しては各方向 (水平及び鉛直)における 最も厳しい地震応答解析 の結果を用いている。

*1:Ss地震力がS1地震力及びSクラスの機器に適用される静的地震力より大きく、Ss地震力による評価応力がS1地震力及びSクラスの機器に適用される静的地震力の許容応力を下回るため、S1地 震力及び静的地震力による評価を省略した。

*2:S1地震力による発生応力がSs地震力及びSクラスの機器に適用される静的地震力より大きいことから、発生応力が厳しくなるS1地震力にて評価した。

泊2号炉	機器	・配管の耐震安全性評価結果
• • • • • •	D 2 4 14 14	

機種名	経年劣化事象	機器名	称		耐震 重要度	発生 応力 (MPa)	許容値 (MPa)		応力比	評価に用いた地震波 (評価手法)	備考
LK L 5 =1. /#	ステンレス鋼使用部	何人所由这世现计四	蒸発器胴板	В	$1/2S_{1}$	19	71	0.27	地震時応力/ 亀裂安定限界応力	1/2S ₁ (定式化された評価式)	
機械設備	位の応力腐食割れ	<u> </u>	加熱器伝熱管	В	静的 地震力	5	68	0.07	地震時応力/ 亀裂安定限界応力	静的地震力 (定式化された評価式)	
電源設備	伝熱管の内面の 腐食 (流れ加速型腐食)	空気冷却器 (ディーゼル機関)	伝熱管	s	S_s^{*1}			0.13	一次応力/ 許容応力	Ss (定式化された評価式)	発生応力は, 施栓基準肉 厚より算出

*1:Ss地震力がS1地震力及びSクラスの機器に適用される静的地震力より大きく、Ss地震力による評価応力がS1地震力及びSクラスの機器に適用される静的地震力の許容応力を下回るため、S1地 震力及び静的地震力による評価を省略した。

別紙 5

タイトル	主給水管他の伸縮継手の疲労割れに対する耐震安全性評価について
説明	 泊2号炉の伸縮継手の疲労割れに対する耐震安全性評価のうち、地震時の 疲労累積係数が最も大きい主給水管について評価内容を以下に示す。 なお、泊1号炉の同評価で地震時の疲労累積係数が最大となったのは主蒸 気管であり、この泊1号炉と泊2号炉の差異及び評価内容を添付-1に示 す。また、耐震安全性評価のうち疲労評価に用いた等価繰返し回数を添付- 2に示す。 1. 記号の説明 伸縮継手の疲労評価に用いる記号について、表 5-1 に示す。
	表 5-1 伸縮継手の疲労評価に用いる記号
	記号 単位 定 義
	b mm 継手部の波のピッチの2分の1
	c 一 継手部の層数
	d _P mm 継手部の有効径 営具 (21℃) におけろ ISMF S NC1-2005(2007) 付録材料図表 Part6 表 1 に相定する材料
	E MPa の縦弾性係数
	e mm 継手部の1山当たりの総変位量
	ex mm 軸方向変位による継手部の1山当たりの変位量
	ey mm 軸直角方向変位による継手部の1山当たりの変位量
	h mm 維手部の波の高さ
	L mm 中間の管の長さ
	N - 許容繰返し回数(地震時)
	N _R 一評価繰返し回数(地震時)
	n – 継手部1個の山数の2倍の値(1山の継手にあっては2)
	P MPa 原子炉格納容器最高使用圧力
	t mm 継手部の板の厚さ
	UF - 疲労累積係数(地震時)
	W_N — 維手部1個の山数
	X mm 軸方向地震変位量(表 5-3 及び表 5-4 における X の 2 倍(両振幅))
	Y mm 軸直角万向地震変位量(表 5-3 及び表 5-4 における δ y=√ (Y ² +Z ²)の 2 倍(両振幅))
	0 mm 王仲相重(地震) σ MDa 器生広力
	σ _n MPa 全伸縮量(地震)による応力
	σ _P MPa 最高使用圧力による応力
	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
	・ ・<
	拡大部 図 5-1 仲綋継毛の其木寸注答証
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

	百乙后故의	表 5-2	2 (1/2)	格納容器員 ^{曲縮維美}	す通部の仕 (継手部の	様		继手
格納容器 貫通部	原于炉格和 最高使用 (MPa)	小谷器 1 圧力	転局使用温度 (℃)	伸縮継手 有効径 (mm)	継手部の 波の高さ (mm)	継手部の 波のピッラ 2分の1	り ; チの ; L	継手 板の (m
	Р			d_{p}	h	(mm) b		
主給水管 貫通部	0.255	5	240					
		表 5-2	2 (2/2)	格納容器貫	貫通部の仕	様		
	伸縮継手 1 個の	継手部 の	材料	評価温度に 縦弾性	ニおける 係数	複式伸縮維 (mr	巻手の長る n)	5
格納容器 貫通部	山数	層数		(MPa	1)	中間の管 の長さ	伸縮約 の長	継手 長さ
	W _N	с		E		l	L	L
主給水管 貫通部 (2):	■ 地震時の何 基準地震動 び表 5-4 0	。 申縮継手 動S s 又 こ示す。	SUS304 この変位 はS ₁ を考	E 195, c)00 申縮継手(<u>ℓ</u> 120 の変位を	<u>し</u> 52 それそ	<u>L</u> 20 ぞオ
主給水管 貫通部 (2): 及	● 地震時の値 基準地震動 び表 5-4 (。 申縮継手 動Ss又 こ示す。 表 5-3	SUS304 の変位 はS ₁ を考 伸縮継手の	E 195,0 デ慮した作 9変位(基 地震	000 申縮継手(準地震動 5	ℓ 120 の変位を S_s)	 52 それう	<u>L</u> 20 ぞオ
主給水管 貫通部 (2): 及	w。 地震時の(基準地震 び表 5-4 (格納容	。 申縮継手 動Ss又 こ示す。 表 5-3 器賞通部	SUS304 Eの変位 は S ₁ を考 伸縮継手の X	E 195,0 デ慮した作 9変位(基 地震者 Y	000 申縮継手(準地震動 <u>5</u> 合計変位(n Z	ℓ 120 の変位を S _S) m) $\delta y = \sqrt{(Y^2)}$	L 52 それう	L 20 ぞオ
主給水管 貫通部 (2): 及		。	SUS304 の変位 はS1を考 伸縮継手の X	E 195,0 デ慮した作 9変位(基 地震行 Y	000 申縮継手(準地震動 S 合計変位 (n Z	<u>ℓ</u> 120 の変位を S _S) m) δy=√(Y ²	<u>L</u> 52 それそ	L 20 ぞオ
主給水管 貫通部 (2): 及	 W 地震時の値 基準地震す び表 5-4 (格納容 主給 重i 	。 申縮	SUS304 SUS304 の変位 はS ₁ を考 伸縮継手の 本 単縮継手の	E 195, c 学慮した作 変位(基: 単震行 文位(基:	000 申縮継手(準地震動 S 合計変位(n Z 準地震動 S	ℓ 120 の変位を S_s) m) $\delta y = \sqrt{(Y^2)}$ S_1)	L 52 それう	<u>L</u> 20 ぞオ
主給水管 貫通部 (2): 及	 W 地震時の何 基準地震員 び表 5-4 (格納容) 格納容 (本納容) 	。 申縮	SUS304 SUS304 の変位 はS ₁ を考 伸縮継手の 本 単縮継手の	E 195,0 う変位(基: 改変位(基: 単震行 少変位(基: 少変位(基:	000 申縮継手(準地震動 S 合計変位 (n Z 準地震動 S 合計変位 (n	ℓ 120 の変位を S _S) m) $\delta y = \sqrt{(Y^2}$ S ₁) m)	し 52 それる +Z ²)	<u>L</u> 20 ぞオ
主給水管 貫通部 (2): 及	 W 地震時の何 基準地震員 び表 5-4 (格納容 主給 貫) 	。 。 申縮路SsS s 方示す。 表 表 5-3 器 第 方 通 赤部 表 表 5-4 湯 水管	SUS304 SUS304 の変位 はS ₁ を考 伸縮継手の 工	E 195,0 う変位(基: 改変位(基: 地震者 平 り変位(基: 地震者 平	000 申縮継手(準地震動 S 合計変位(n Z	ℓ 120 の変位を δ_{s}) m) $\delta_{y}=\sqrt{(Y^{2})}$ $\delta_{y}=\sqrt{(Y^{2})}$	L 52 それる +Z ²)	<u>L</u> 20 ぞオ

(3) 疲労累積係数(地震時)の算出
地震時の伸縮継手の変位から発生応力を算出し許容繰返し回数を求
め、評価繰返し回数と許容繰返し回数の比(疲労累積係数)を算出す
る(日本機械学会)「設計・建設規格 2005 年版(2007 年追補版を含
む) JSME S NOT-2005(2007)(以下,「設計・建設規格」という)の
PVE-3800 伸縮維手を参照)。
a. 伸縮維手の変位
(a) 軸方向変位による維手部の1山当たりの変位量

$$e_i = \frac{2}{2\eta_i}$$

(b) 軸直角方向変位による維手部の1山当たりの変位量
 $e_i = \frac{24N}{2\eta_i}$
(c) 維手部の1山当たりの総変位量
 $e = e_i + e_i$
(d) 伸縮維手の全伸縮量(地震)
 $\delta = eW_i$
b. 伸縮維手の応力と許容繰返し回数(設計・建設規格 PVE-3800)
(a) 伸縮維手の応力
全伸縮量(地震)による応力
 $\sigma_{\mu} = \frac{1.50t \delta}{n\sqrt{6t^3}}$
最高使用圧力による応力
 $\sigma_{\mu} = \frac{1.50t \delta}{n\sqrt{6t^3}}$
最高使用正力による応力
 $\sigma_{\mu} = \frac{1.50t \delta}{n\sqrt{6t^3}}$
(b) 許容繰返し回数(地震時)
 $N = \left(\frac{11031}{\sigma}\right)^{3.5}$
(c) 疲労累積係数(地震時)
 $\Pi = \frac{N_i}{N}$

4. 評価結果

(1)地震による疲労評価結果
 基準地震動S_s又はS₁による疲労評価結果をそれぞれ表 5-5 及び
 表 5-6 に示す。

なりり 金中地展到しSによ切灰刀町Щ相木								
格納容器貫通部	発生応力 σ (MPa)	許容繰返し 回数 N	評価繰返し 回数 N _R	疲労累積係数 UF				
主給水管 貫通部	1, 795	575	200	0.348				

表 5-5 基準地震動 Ssによる疲労評価結果

表 5-6 基準地震動 S1による疲労評価結果

格納容器貫通部	発生応力 σ (MPa)	許容繰返し 回数 N	評価繰返し 回数 N _R	疲労累積係数 UF
主給水管 貫通部	1,485	1, 117	300	0. 269

(2)運転実績回数^{*1}に基づく疲労累積係数との組合せによる評価結果 運転実績回数に基づく疲労累積係数と,基準地震動S_s又はS₁を考 慮して算出した結果をそれぞれ表 5-7 及び表 5-8 に示す。

表 5-7 基準地震動 Ssと運転実績回数に基づく

疲労累積係数との組合せによる評価結果							
	運転実績回数	地震動による	스리				
格納容器貫通部	に基づく	疲労累積係数	(新宏は1以下)				
	疲労累積係数	(基準地震動 S _s)	(計谷恒1以下)				
主給水管 貫通部	0. 427	0.348	0. 775				

表 5-8 基準地震動 S₁と運転実績回数に基づく

疲労累積係数との組合せによる評価結果

格納容器貫通部	運転実績回数 に基づく 疲労累積係数	地震動による 疲労累積係数 (基準地震動S ₁)	合計 (許容値1以下)
主給水管 貫通部	0. 427	0.269	0.696

*1:過渡実績を踏まえ,運転開始後60年後までの運転過渡を想定した疲労累積係数

以上より, 主給水管の伸縮継手の疲労割れに対する耐震安全性に問題は ない。

以 上

伸縮継手の疲労割れに対する耐震安全性評価について

1. 泊1号炉と泊2号炉の差異について

泊1号炉と泊2号炉では配管レイアウト及び貫通部位置の違いにより評価結果に差異が生じている。そのため、伸縮継手の疲労割れに対する耐震安全性評価において、地震時の疲労累積係数が最大となる機器が泊1号炉(主蒸気管)と泊2号炉(主給水管)で 相違する。

主蒸気管を例として、泊1号炉と泊2号炉の配管レイアウトの概略図を図 5-1-1 に示す。

図 5-1-1 (1/3) 主蒸気管のレイアウト概略図

図 5-1-1 (2/3) 主蒸気管のレイアウト概略図

図 5-1-1 (3/3) 主蒸気管のレイアウト概略図

添付−1 (4/9)

2. 評価内容

主蒸気管の伸縮継手の疲労割れに対する評価について評価内容を以下に示す。

2.1 記号の説明

伸縮継手の疲労評価に用いる記号について、表 5-1-1 に示す。

記号	単位	定義
b	mm	継手部の波のピッチの2分の1
с		継手部の層数
d _P	mm	継手部の有効径
Е	MPa	常温(21℃)における JSME S NC1-2005(2007)付録材料図表 Part6 表 1 に規定する材料の縦弾性係数
е	mm	継手部の1山当たりの総変位量
ex	mm	軸方向変位による継手部の1山当たりの変位量
ey	mm	軸直角方向変位による継手部の1山当たりの変位量
h	mm	継手部の波の高さ
L	mm	継手部の有効長さ
l	mm	中間の管の長さ
N	-	許容繰返し回数(地震時)
N _R	_	評価繰返し回数(地震時)
n	-	継手部1個の山数の2倍の値(1山の継手にあっては2)
Р	MPa	原子炉格納容器最高使用圧力
t	mm	継手部の板の厚さ
UF	_	疲労累積係数 (地震時)
W _N	I	継手部1個の山数
Х	mm	軸方向地震変位量 (表 5-1-3 及び表 5-1-4 における X の 2 倍(両振幅))
		軸直角方向地震変位量(表 5-1-3 及び表 5-1-4 における δ y=√ (Y ² +Z ²)
Ŷ	mm	の2倍(両振幅))
δ	mm	全伸縮量 (地震)
σ	MPa	発生応力
σ	MPa	全伸縮量(地震)による応力
σp	MPa	最高使用圧力による応力

表 5-1-1 伸縮継手の疲労評価に用いる記号

伸縮継手の基本寸法箇所を図 5-1-2 に示す。

図 5-1-2 伸縮継手の基本寸法箇所

2.2 評価部位

図 5-1-3 に主蒸気管の伸縮継手の模式図を示す。

図 5-1-3 伸縮継手模式図

評価部位は、図 5-1-4 に示す伸縮継手の頂部とする。

図 5-1-4 伸縮継手の評価部位

2.3 評価内容

(1) 格納容器貫通部の仕様 格納容器貫通部の仕様について表 5-1-2 に示す。

	<u>秋</u> 01	L 2 (1/2) 1 ⁴	印的在的貝	通时0711	*	
	原子炉格納容器 最高使用圧力	最高使用温度 (℃)	伸縮継手 有効径	継手部の 波の高さ	継手部の 波のピッチの	継手部の 板の厚さ
格納容器 貫通部	(MPa)		(mm)	(mm)	2分の1 (mm)	(mm)
	Р		d_{p}	h	b	t
主蒸気管 貫通部	0. 255	291				

表 5-1-2(1/2) 格納容器貫通部の仕様

表 5-1-2 (2/2) 格納容器貫通部の仕様

支金的星	伸縮継手 1 個の	継手部 の	材料	評価温度における 縦弾性係数	複式伸縮継 (mm	手の長さ n)
貫通部	山数	層数		(MPa)	中間の管の長さ	伸縮継手 の長さ
	WN	С		E	l	L
主蒸気管 貫通部			SUS304	195, 000	110	610

(2) 地震時の伸縮継手の変位

基準地震動S_s又はS₁を考慮した伸縮継手の変位をそれぞれ表 5-1-3 及び表 5-1-4 に示す。

- & 0 I 0 中加松丁ツ友臣 (坐午地展到05)	表 5-1-3	伸縮継手の変位	(基準地震動 S _s)
-------------------------------	---------	---------	-------------------------

拉纳它吧世圣神	地震合計変位 (mm)					
格納谷恭貝通部	Х	Y	Z	$\delta y = \sqrt{(Y^2+Z^2)}$		
主蒸気管 貫通部						

枚幼尔史書通如	地震合計変位(mm)				
格納谷恭貝通部	Х	Y	Z	$\delta y = \sqrt{(Y^2 + Z^2)}$	
主蒸気管 貫通部					

注:表 5-1-3,表 5-1-4 に示す座標系は,格納容器半径方向を X 方向,鉛直方向を Z 方向とする 右手直交座標系であり,表 5-1-1 に示す X,Y とは異なるものである。 (3) 疲労累積係数(地震時)の算出

地震時の伸縮継手の変位から発生応力を算出し許容繰返し回数を求め,評価繰返し 回数と許容繰返し回数の比(疲労累積係数)を算出する(日本機械学会 「設計・ 建設規格 2005 年版(2007 年追補版を含む)JSME S NC1-2005(2007)」(以下,「設計・ 建設規格」という)の PVE-3800 伸縮継手を参照)。

- a. 伸縮継手の変位
 - (a)軸方向変位による継手部の1山当たりの変位量

$$e_x = \frac{X}{2W_N}$$

(b)軸直角方向変位による継手部の1山当たりの変位量

$$e_{y} = \frac{3d_{P}Y}{2W_{N}\left\{L + \ell\left(\frac{\ell}{L} + 1\right)\right\}}$$

(c)継手部の1山当たりの総変位量

$$e = e_x + e_y$$

(d)伸縮継手の全伸縮量(地震)

 $\delta = eW_N$

- b. 伸縮継手の応力と許容繰返し回数(設計・建設規格 PVE-3800)
 - (a)伸縮継手の応力

全伸縮量(地震)による応力

$$\sigma_{\rm D} = \frac{1.5 {\rm Et} \, \delta}{n \sqrt{{\rm bh}^3}}$$

最高使用圧力による応力

$$\sigma_{P} = \frac{Ph^{2}}{2t^{2}c}$$

発生応力

$$\sigma = \sigma_{\rm D} + \sigma_{\rm P}$$

(b)許容繰返し回数(地震時)

$$N = \left(\frac{11031}{\sigma}\right)^{3.5}$$

(c)疲労累積係数(地震時)

$$UF = \frac{N_R}{N}$$

2.4 評価結果

(1) 地震による疲労評価結果

基準地震動 S_s又は S₁による疲労評価結果をそれぞれ表 5-1-5 及び表 5-1-6 に示す。

格納容器貫通部	発生応力 σ (MPa)	許容繰返し 回数 N	評価繰返し 回数 N _R	疲労累積係数 UF
主蒸気管 貫通部	1,562	936	200	0.214

表 5-1-5 基準地震動 Ssによる疲労評価結果

表 5-1-6 基準地震動 S₁による疲労評価結果

格納容器貫通部	発生応力 σ (MPa)	許容繰返し 回数 N	評価繰返し 回数 N _R	疲労累積係数 UF
主蒸気管 貫通部	1,266	1,954	300	0. 154

(2) 運転実績回数^{*1}に基づく疲労累積係数との組合せによる評価結果 運転実績回数に基づく疲労累積係数と、基準地震動S_s又はS₁を考慮して算出し た結果をそれぞれ表 5-1-7 及び表 5-1-8 に示す。

表 5-1-7 基準地震動 Ss と運転実績回数に基づく

疲労累積係数との組合せによる評価結果

格納容器貫通部	運転実績回数 に基づく 疲労累積係数	地震動による 疲労累積係数 (基準地震動 S _s)	合計 (許容値1以下)
主蒸気管 貫通部	0. 030	0.214	0.244

表 5-1-8 基準地震動 S₁と運転実績回数に基づく

疲労累積係数	との組合せによ	る評価結果

格納容器貫通部	運転実績回数 に基づく 疲労累積係数	地震動による 疲労累積係数 (基準地震動S ₁)	合計 (許容値1以下)
主蒸気管 貫通部	0.030	0.154	0.184

*1:過渡実績を踏まえ、運転開始後60年後までの運転過渡を想定した疲労累積係数

以上より、主蒸気管の伸縮継手の疲労割れに対する耐震安全性に問題はない。

耐震安全性評価のうち疲労評価に用いた等価繰返し回数について

S_s地震時及びS₁地震時の疲労累積係数算出に用いた等価繰返し回数について表 5-2-1 に示す。なお、泊2号炉の耐震安全性評価のうち、地震時の疲労累積係数算出においては、 すべて表 5-2-1 と同じ等価繰返し回数を用いている。

地震動	等価繰返し回数
S _s 地震動	200 回
S ₁ 地震動	300 回

表 5-2-1 疲労評価に用いた等価繰返し回数

以 上

別紙7

タイトル	余熱除去系統配管の高サイ	イクル熱症	友労割れに対する耐震安全性評価に	こついて
説明	 評価仕様 余熱除去系統配管の高サ 配管の技術評価書(2.2.35) はなく、今後も機能の維持 象ではないと評価している。 受け、第13回定期検査時(転開始後60年時点において ることとし、日本電気協会 3-1998)」を準用し、1gp 震発生時の亀裂の安定性を ーを添付一1に示す。 解析モデル 発生応力の算出に用いた す。 	イクル熱源 夏(1)) に は可能です 。 しかした 2007~200 疲万子力多 か を評価した こ 3次元に	を労割れ(高低温水合流型)に対する こて,高サイクル熱疲労割れの発生の ちり,高経年化対策上着目すべき経年 ながら,当該部は複雑な流況による 8年度)に実施した当該合流部の取替 責されることから,耐震安全性評価を 巻電所配管破損防護設計技術指針(いを生じる周方向貫通亀裂を想定し こ。具体的な亀裂安定性評価方法及 まりモデル解析のモデル図を添付-	「 評 可 劣 過 後 実 あ た 4 5 5 5 5 5 5 5 5 5 5 5 5 5
	3. 入力条件			
	(1) 判定応力の算出①判定応力の算出条件			
	項目	単位	評価対象配管 余熱除去冷却器出口配管と バイパスラインの合流部	
	配管口径	mm	216.3	
	配管肉厚	mm	8.2	
	配管材料	_	SUS304TP	
	最高使用温度	°C	200	
	最高使用圧力	MPa	4.5	
	縦弾性係数(×105)	MPa	1.83	
	Sy	MPa	144	
	Su	MPa	402	
	Sm	MPa	129	
	σf	MPa	273	

(2) 亀 袋 形 状	、及い刊正応力の	ノ昇山				
臨界流量	開口面積	亀裂長さ	亀裂角	度 半	削定応力]
Gc	А	2c	2 θ		Pf	
(gpm/mm ²)) (mm^2)	(mm)	(度)		(MPa)	
					210	
<判定応力 Pf=Pm+ Pm : Pr : Pb' : β : σf : θ : Sy : Su : Sm : (2)発生応力 3次元は	の算出> Pb' 内圧によって発 設計内圧応力 (=2, [π-θ-(Pm/ 流動応力(=) (貫設計引座力) 設計引振強さ 設計引応力強さ の算出 :りモデルにて算	生する膜応力 of (2sinβ- of) π]/2 Sy+Su)/2)	J (=Pr) -sinθ) /	π))を表7	-1に示す。]
		表7-1 発	生応力			
	Pm	表7-1 発	生応力 Pb		F	2a
地震力	Pm 内圧	表7-1 発: 自重	生応力 Pb 熱	地震	F 発生応	Pa 力(合計
地震力	Pm 内圧 (MPa)	表7-1 発 自重 (MPa)	生応力 Pb 熱 (MPa)	地震 (MPa)	F 発生応; (M	Pa 力(合計 [Pa)
地震力 S _s 地震時	Pm 内圧 (MPa) 29.7	表7-1 発 自重 (MPa) 4.1	生応力 Pb 熱 (MPa) 27.7	地震 (MPa) 5.8	F 発生応; (M	Pa 力(合計 IPa) 38
地震力 S _s 地震時 S ₁ 地震時	Pm 内圧 (MPa) 29.7 29.7	表7-1 発 自重 (MPa) 4.1 4.1	生応力 Pb 熱 (MPa) 27.7 27.7	地震 (MPa) 5.8 3.9	F 発生応: (M	Pa 力(合き IPa) 58 56
 地震力 S_s地震時 S₁地震時 S₁地震時 4. 評価結果 S_s地震時, 余熱除去系 流部(高低温 震時に発生す ことから, 雨 	Pm 内圧 (MPa) 29.7 29.7 法配管のうち、 水合流部)につる応力は、判定 委会全性評価」	表7-1 発 自重 (MPa) 4.1 4.1 の 亀裂安定性 余熱除去冷 ついて,高サ 定応力(亀裂 と問題ない。	生応力 Pb 熱 (MPa) 27.7 27.7 27.7 注評価結果 中 イクル熱 安定限界)	地震 (MPa) 5.8 3.9 ※を表7-2 を表でといれ 応力)を	I 発生応; (M (M <	Pa 力(合計 Pa) 58 56 ・インの 、ても, 、とはな
地震力 <u>Ss地震時</u> <u>S</u> 1地震時 4. 評価結果 Ss地震時 余熱除去系 流部(高低温 震時に発生す ことから,所 表	Pm 内圧 (MPa) 29.7 29.7 29.7 法配管のうち, 太合流部)につる応力は,判定 る応力は,判定 実会全性評価」 7-2 余熱除去系	表7-1 発 自重 (MPa) 4.1 4.1 4.1 の 亀裂安定性 余熱除 高サ 定応力(亀裂 と問題ない。 系統配管の高 一 の 高安全性	生応力 Pb 熱 (MPa) 27.7 27.7 27.7 27.7 27.7 4 たが な定限界 サイクル素	地震 (MPa) 5.8 3.9 :を表7-2 を表7-2 に な力)を 熟 が の た の の の の の の の の の の の の の の の の の	I 発生応; (M (M <	Pa 力(合計 Pa) 58 56 ・インの ことはな
地震力 <u>Ss地震時</u> <u>S</u> 1地震時 4. 評価結果 Ss地震時 余熱除去系 流部(高低温 震時に発生す ことから,耐 表 地震力	Pm 内圧 (MPa) 29.7 29.7 次びS ₁ 地震時(法配管のうち, 法命流部)につる応力は、判定 る応力は、判定 大合流部)につる応力は、判定 そ生応力 発生応力	表7-1 発 自重 (MPa) 4.1 4.1 の 亀裂安定性 余熱除 高サ 定応力(亀裂 と問題ない。 系統配管の高 一 下 名	生応力 Pb 熱 (MPa) 27.7 27.7 第一番出ル 深田器ク定 ケノクル 東 中 評価に か の の の の の の の の の の の の の	地震 (MPa) 5.8 3.9 :を表7-2 を表7-2 にかりました。 旅店力)を 熟慮労割 Pf	I 発生応; (M (M <	Pa 力(合計 IPa) 58 56 ・インの くても、 5 上 Pf
地震力 <u>Ss地震時</u> <u>S</u> 1地震時 1 . 評価結果 Ss動除去系 流部に発生す ことから,耐 表 地震力 <u>Ss地</u> 震時	Pm 内圧 (MPa) 29.7 29.7 29.7 29.7 29.7 次のいていたいです。 添配管のうち、 水合流部)についた。 る応力は、判定 次全性評価」 7-2 余熱除去到 発生応力 (MPa) 68	表7-1 発 自重 (MPa) 4.1 4.1 4.1 の 亀裂安定性 余数除 高サ と問題ない。 系統配管の高 Pa	生応力 Pb 熱 (MPa) 27.7 27.7 27.7 第一番出口 イクル 線 サイクル 泉 サイクル 泉 サイクル 泉 1 (MPa) 27.7	地震 (MPa) 5.8 3.9 ※を表でついて、 を表できまれ なののので、 たいので、 たて、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 たいので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、	F 発生応; (M (M <	Pa D(合計) D(合計) C(C) C(C) C(C) D(C) D(C) C(C) C(C) D(C)
地震力 <u>Ss地震時</u> <u>S1地震時</u> 三日 三日 三日 三日 三日 三日 三日 三日 三日 三日	Pm 内圧 (MPa) 29.7 29.7 29.7 次のいち」地震時(法統配管のうち, 法統配管のうち, 法水合流部)につる応力は、判定 る応力は、判定 そ生陸評価」 7-2 余熱除去到 発生応力 (MPa) 68 66	表7-1 発 自重 (MPa) 4.1 4.1 の 亀裂安定性 余熱で,高サ E応力(亀裂 上問題ない。 系統配管の高 耐震安全性 Pa	生応力 Pb 熱 (MPa) 27.7 27.7 27.7 注評価結出ロ イクル熱 安定限界 サイクル素 判定応力 (MPa) 210 210	地震 (MPa) 5.8 3.9 そ表でとり なた た の が り を わ り を わ り を わ り を わ り の の ろ の の の の の の の の の の の の の の の の	Image: Fill 発生応; (M (Pa 力(合計 Pa) 5 5 7 ても、 た とはた 5 上 Pf 2 1

地震時の亀裂安定性評価方法

漏えい量

亀裂安定性評価に用いる亀裂開口面積及び判定応力を求めるにあたって,通常の 点検パトロールや漏えい検知設備等で,検知可能な漏えい量として 1gpm を想定する。

② 評価部位の決定

亀裂安定性評価の対象は,流況が複雑で疲労が蓄積する可能性がある部位(複雑 流況部)を耐震上厳しい部位として選定し,これらの部位について亀裂を想定した 安定性評価を実施する。

- ③ 亀裂評価における(Gc-Dh)の算出(計算例として⑥の交点での計算結果を記載) 配管の周方向にスリット状亀裂を想定して以下の要領で、最初に漏えい量Q、臨 界流量Gc、負荷荷重Pr(設計内圧応力)^{*1}を与えて亀裂半角度θを求める。
 - ※1:負荷荷重は,通常運転時の発生応力(内圧,自重,熱の合計応力)が0.5Sm を超えないことから Pr を用いる。
 - a. 亀裂角度を求めるための開口面積をAINとする。
 ・AIN≒Q/Gc
 - b. 次式のAtotal>AINとなるまで0°→θを増加させて下式のパラメータ計算 を実施し、最大のθを亀裂半角度とする。
 <開口面積>(曲げ0による開口面積としている) Atotal = At+Ab

At =
$$\frac{\sigma t}{E} (\pi R^2) I_t(\theta)$$

Ab = $\frac{\sigma b}{E} (\pi R^2) I_b(\theta)$

なお, 亀裂先端の塑性域を考慮し, 亀裂の半角度は θ に代えて θ_{eff} を次式 で求める。

$$\theta_{\text{eff}} = \theta + \frac{(\text{Kt+Kb})^2}{2 \pi \text{R} \sigma \text{f}^2}$$

<記号説明> At:軸力が作用した時の亀裂開口面積 Ab:曲げモーメントが作用した時の亀裂開口面積 σt:軸力による公称応力 σb:曲げモーメントによる公称応力 R:配管平均半径 E:縦弾性係数 It(θ), Ib(θ):無次元量 θ:亀裂半角度 Kt:軸力による応力拡大係数 Kb:曲げモーメントによる応力拡大係数 σf:流動応力

c. 水力学的直径(Dh)

亀裂長さは次式による。また、DhはAtotalを亀裂長さで除したもの。

$$2c=(D-t)\frac{\theta \pi}{180}$$

Dh= $\frac{Atotal}{c}$
<記号説明>
D: 管外径

t:板厚

④ Gc-Dh 曲線

前項の a. から c. を, Gc を変えてパラメータ計算を繰り返すことにより Gc-Dh 曲線が求められる。

⑤ Henry の臨界流モデルによる Gc-Dh 曲線

Henry のサブクール水モデル(図 7-1-1 参照)を用いて,配管の内外圧力差,流体性状等から,臨界流量 Gc (gpm/mm²)と水力学的直径 Dh (mm)の関係曲線を求める。

計算パラメータとしては,漏えい流体の条件(温度,圧力,流体性状等),外部の 状態(外圧の有無),漏えい流路状態(表面粗さ,流路形状)等を考慮する。

臨界流量 Gc は下式により求める。

$$Gc^{2} = \begin{bmatrix} \frac{xv_{g}}{\gamma P} - (v_{g} - v_{\ell 0})\frac{dx}{dP} \end{bmatrix}_{exit}^{-1} \qquad \left(\frac{dx}{dP}\right)_{exit} = N\frac{dx_{E}}{dP}$$

<記号説明>

x:クオリティ(x_E:熱平衡時のクオリティ) v:比容積(m³/kg) P:圧力(Pa) γ:断熱係数 (添字・・・g:気相, l:液相, l₀:入口液相条件)

図 7-1-1 亀裂内の流れ (サブクール水)

⑥ 臨界流量 (Gc-Dh) の決定

上記④と⑤のGc-Dh曲線は別々の観点から求められたものであり,図7-1-2の通り2本の曲線が描け,交点のGc,Dhは両方の条件を満足する。

この時のGc-Dhの亀裂角度,開口面積を,亀裂安定性評価に用いる判定応力の算出に 使用する。

図 7-1-2 Gc-Dh 曲線

⑦ 判定応力の算出(計算例として⑥の交点での計算結果を記載)

判定応力Pfは「実断面応力基準」によって算出する。この基準は,配管周方向にスリ ット状開口を想定し,断面のリガメント(開口部以外)の応力が一様な流動応力σfに 達した時に破壊が進行すると仮定したものである。従って発生応力が流動応力以下であ れば, 亀裂があっても安定していると考えられる。

Pf = Pm+Pb'

= Pm+2 σ f (2sin β -sin θ)/ π

<記号説明>

Pm:内圧によって発生する膜応力(=Pr)
(通常運転時の発生応力(内圧,自重,熱の合計応力)が0.5Smを超えないことからPrを用いる。)
Pb':曲げ応力(=2σf(2sinβ-sinθ)/π)
β = [π-θ-(Pm/σf)π]/2
σf:流動応力(=(Sy + Su) / 2)
θ:貫通亀裂半角度
Sy:設計降伏点
Su:設計引張強さ
Sm:設計応力強さ

⑧ 発生応力(計算例として, Ss地震時の計算結果を記載)

発生応力Paを求める時の作用荷重は日本電気協会「原子力発電所配管破損防護設計 技術指針 JEAG4613-1998」より次のとおり。

a. 考慮すべき運転状態は、Ⅰ、Ⅱ、Ⅲ及びⅠ+S_s,S₁地震とするが、実質的には
 Ⅰ、Ⅱ+S_s,S₁地震が最も厳しいことから、Ⅰ、Ⅱ+S_s,S₁地震の評価を実施する。

(JEAG4613-1998はS₁で評価するが、本評価はSs,S₁地震で評価を実施する。)

b. 評価荷重は一次応力で実施するが,安全側に二次応力である熱膨張応力を含 める。

Pa = Pm+Pb

<記号説明>

Pm: 配管の設計条件における計算値を採用(内圧応力)

- Pb:曲げ応力(自重応力+熱膨張応力+地震応力*の合計応力,ただしねじり応力は除く) *:地震慣性応力(片振幅)
- 注:発生応力は流動応力となることから応力係数は考慮しない。
- ⑨ 評価

前項までの算出結果を基に以下を評価する。

- Pf > Pa: 漏えい
- Pf ≦ Pa:破断

-7-7-

泊2号炉 余熱除去系統配管の高サイクル熱疲労割れ 評価対象配管(解析モデル図) (1/2)

泊2号炉 余熱除去系統配管の高サイクル熱疲労割れ 評価対象配管(解析モデル図) (2/2)

別紙10

タイトル	原子炉容器サポート(サポートブラケット(サポートリブ))の 中性子及びγ線照射脆化に対する耐震安全性評価について
説明	原子炉容器サポート(サポートブラケット(サポートリブ))の中性子及び γ線照射脆化に対する評価についての評価内容を以下に示す。
	 サポートリブに発生するせん断応力値の算出 サポートリブに発生するせん断応力値σは、原子炉容器支持構造物に作用 する接線方向の最大荷重Tと鉛直方向の最大荷重Nを基に算出した。(詳細は 添付-1のとおり)
	せん断応力値 $\sigma = 15$ MPa (S ₁ 地震時)
	2. 想定欠陥 本評価では,評価対象であるサポートリブを,想定欠陥を含めモデル化した。(詳細は添付-2のとおり)
	 応力拡大係数の算出 応力拡大係数KをRaju-Newmanの算出式を用いて算出する。
	$K = F \sigma \sqrt{\frac{\pi a/1000}{Q}}$
	$\mathbf{F} = \left\{ \mathbf{M}_1 + \mathbf{M}_2 \times \left(\begin{array}{c} \frac{\mathbf{a}}{\mathbf{t}} \end{array} \right)^2 + \mathbf{M}_3 \times \left(\begin{array}{c} \frac{\mathbf{a}}{\mathbf{t}} \end{array} \right)^4 \right\} \times \mathbf{g} \times \mathbf{f}_{\phi} \times \mathbf{f}_{w}$
	$Q = 1+1.464 \times \left(\frac{a}{c}\right)^{1.65}$
	$M_1 = 1.13 - 0.09 \times \left(\begin{array}{c} a \\ c \end{array} \right)$
	$M_2 = -0.54 + \frac{0.89}{0.2 + \frac{a}{c}}$
	$M_3 = 0.5 - \frac{1}{0.65 + \frac{a}{c}} + 14 \times \left(1 - \frac{a}{c}\right)^{24}$
	$f_{\phi} = \left\{ \left(\frac{a}{c} \right)^2 \cos^2 \phi + \sin^2 \phi \right\}^{\frac{1}{4}}$
	$g=1+\left\{ 0.1+0.35\times \left(\frac{a}{t} \right)^2 \right\}\times \left(1-\sin \phi \right)^2$
	$f_{w} = \left\{ \sec \left(-\pi c \frac{\sqrt{\frac{a}{t}}}{2b} \right) \right\}^{\frac{1}{2}}$

<記号説明> a:想定亀裂深さ(=15(mm)) b:平板の幅の半長(=1000(mm)) c:表面長さの半長(=45(mm)) t:平板の厚さ(=60(mm)) φ:亀裂前縁の位置を示す角度(=π/2) F:応力拡大係数の補正係数(=1.169) Q:表面亀裂の形状補正係数(=1.239) M₁, M₂, M₃:数式項の置き換え記号(M₁=1.1, M₂=1.129, M₃=-0.516) f_φ:内部亀裂を表面亀裂に変換する際の補正係数(=1) g:解の定式化のための係数(=1) f_w:有限板幅に関する補正係数(=1)

なお,高経年化技術評価では,NUREG-1509「Radiation Effects on Reactor Pressure Vessel Supports」の評価手法に従い,応力拡大係数Kに安全率√2を 乗じた値を評価に用いている。

$$\sqrt{2}$$
K=1.169×15× $\sqrt{\frac{\pi \times \frac{15}{1000}}{1.239}}$ × $\sqrt{2}$
=4.9 (MPa \sqrt{m})

また、破壊靭性値について、本評価はせん断応力に対する評価であり、許容値としてはモード II (せん断)における破壊靭性値 K_{IIR} を使用することが最適であるが、試験法が確立していないこと等により値がないため、安全側と考えられるモード I (引張)での破壊靭性値 K_{IR} を代用して評価している。許容値 K_{IR} (=33.4 $MPa\sqrt{m}$)の算出過程については添付-3に示す。

4. 評価結果

評価結果を表10-1に示す。応力拡大係数は破壊靭性値を超えることはない ため、原子炉容器サポート(サポートブラケット(サポートリブ))の中性 子及びy線照射脆化は、耐震安全性評価上問題ない。

表10-1 原子炉容器サポート(サポートブラケット(サポートリブ))の

中性子及びγ線照射脆化に対する耐震安全性評価結果

上

応力拡大係数 K _I (=√2 K) (MPa√m)	破壞靱性値K _{IR} (MPa√m)	K _I ∕K _{IR}
4.9	33.4	0.15

原子炉容器サポート(サポートブラケット(サポートリブ)) に発生する せん断応力σの算出について

1. 原子炉容器支持構造物に作用する荷重

原子炉容器支持構造物に作用する荷重方向図を図10-1-1に,荷重を表10-1-1に示 す。

表10-1-1 原子炉容器支持構造物に作用する一次+二次応力評価用荷重

1	<u>````</u>	<u> </u>	11			1 3	T)
- (E,	\mathbf{N}	r i	•	zΝ	
<u>۱</u>	-	P*1	<u> </u>	L		NT.	•

	S s地	也震時	S ₁ 地震時		
	接線方向荷重	鉛直方向荷重	接線方向荷重	鉛直方向荷重	
	Т	Ν	Т	Ν	
自重	—	-1,038	—	-1, 038	
熱膨張荷重	—	-1, 483	—	-1, 483	
地震荷重	±3,928	-1, 737	±3, 132	-2, 690	
最大荷重	$\pm 3,928$	-4, 258	±3, 132	-5, 211	

(注1) 鉛直方向荷重において負符号(-)は、鉛直下向きを示す。

(注2) Nの最大荷重は、自重と熱膨張荷重と地震荷重を加算したものである。

(注3) S_s地震時は建屋-ループ連成モデルの時刻歴解析, S₁地震動はスペ クトルモーダル解析を用いて地震荷重を算出している。

- 2. 応力の算出
 - 2.1 原子炉容器支持構造物の応力計算

原子炉容器支持構造物の構造及び評価箇所を図10-1-2に示す。評価対象とするサポ ートリブの①及び②部におけるせん断応力を算出する。

(単位:mm)

図 10-1-2 原子炉容器支持構造物の構造及び評価箇所

(1) サポートシュに作用する荷重

サポートシュには図10-1-3に示すとおり荷重が作用する。

図10-1-3 サポートシュに作用する荷重

図10-1-3よりサポートリブからの反力R_{N1}, R_{N2}を次式より求める。

$$\begin{split} & \textbf{R}_{\text{N1}} + \textbf{R}_{\text{N2}} = \textbf{N} \\ & \textbf{R}_{\text{N1}} \cdot \textbf{L}_2 = \textbf{T} \cdot \textbf{L}_1 + \textbf{R}_{\text{N2}} \cdot \textbf{L}_2 \end{split}$$

なお, N, Tについては表10-1-1に, L₁, L₂については表10-1-2に示す。

(2) サポートリブに作用する荷重

原子炉容器支持構造物を図10-1-4のようにモデル化し、サポートリブに作用する荷重 を求める。

図10-1-4 サポートリブに作用する荷重

P_{n1}, P_{n2}, P_{n3}, P_{n4}, P_{s1}, P_{s2}, P_{s3}, P_{s4}, はサポートシュより受ける荷重である。

ここでは,条件の厳しいt60,t30のサポートリブについて評価するが,サポートシュは剛体であり,サポートリブとは溶接による一体構造であることから,次式が成立する。

$$P_{n1}+P_{s2}=\frac{T}{2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$$

$$P_{s1}+P_{n2}=R_{N1} \cdot \cdot \cdot \cdot \cdot \cdot (i)$$

サポートリブ(①部)のせん断による変位

$$D_{\mathrm{s}1} \hspace{-1mm}=\hspace{-1mm} \frac{1}{G} \hspace{-1mm} \times \hspace{-1mm} \frac{P_{\mathrm{s}1}}{A_{\mathrm{s}1}} \hspace{-1mm} \times \hspace{-1mm} L_4$$

サポートリブ(②部)のせん断による変位
$$D_{s2} = \frac{1}{G} \times \frac{P_{s2}}{A_{s2}} \times L_3$$

サポートリブ (③部) の圧縮による変位 $D_{c3}=\frac{1}{E}\times\frac{P_{n1}}{A_{c3}}\times L_4$

サポートリブ(④部)の圧縮による変位
$$D_{c4} = \frac{1}{E} \times \frac{P_{n2}}{A_{c4}} \times L_3$$

圧縮による変位とせん断による変位の連続条件から

$$\frac{1}{E} \times \frac{P_{n1}}{A_{c3}} \times L_4 = \frac{1}{G} \times \frac{P_{s2}}{A_{s2}} \times L_3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (iii)$$

(i), (ii), (iii) 及び (iv) 式よりP_{s1}及びP_{s2}は次式より求められる。

$$P_{n1} = \frac{\frac{1}{2}}{1 + \frac{L_4}{E \times A_{c3}} \times \frac{G \times A_{s2}}{L_3}}$$

$$P_{n2} = \frac{R_{N1}}{1 + \frac{L_3}{E \times A_{c4}} \times \frac{G \times A_{s1}}{L_4}}$$

$$\begin{split} P_{s1} &= \frac{L_3}{E \times A_{c4}} \times \frac{G \times A_{s1}}{L_4} \times P_{n2} \\ P_{s2} &= \frac{L_4}{E \times A_{c3}} \times \frac{G \times A_{s2}}{L_3} \times P_{n1} \end{split}$$

P_{s1}: サポートリブ(①部)に作用するせん断荷重(kN)
P_{s2}: サポートリブ(②部)に作用するせん断荷重(kN)
P_{n1}: サポートリブ(③部)に作用する圧縮荷重(kN)
P_{n2}: サポートリブ(④部)に作用する圧縮荷重(kN)
A_{s1}: 荷重P_{s1}を受けるサポートリブ(①部)のせん断に対する断面積(mm²)
A_{s2}: 荷重P_{s2}を受けるサポートリブ(③部)の圧縮に対する断面積(mm²)
A_{c3}: 荷重P_{n1}を受けるサポートリブ(③部)の圧縮に対する断面積(mm²)
A_{c4}: 荷重P_{n2}を受けるサポートリブ(④部)の圧縮に対する断面積(mm²)

なお, Tについては表10-1-1に, E, G, L₃, L₄, A_{s1}, A_{s2}, A_{c3}, A_{c4}については表10-1-2 に示す。

2.2 原子炉容器支持構造物各部の応力計算方法

2.1項で求めた荷重より、サポートリブに発生する応力を算出する。

- (1)サポートリブ
 - a. せん断応力(①部)

$$\tau_{1} = \frac{P_{s1}}{A_{s1}}$$

b. せん断応力(②部)

$$\tau_2 = \frac{P_{s2}}{A_{s2}}$$

- 3. 応力の計算結果
 - 3.1 計算条件

原子炉容器支持構造物の応力計算条件を表10-1-2に示す。

表10-1-2 原子炉容器支持構造物の応力計算条件

名 称	記号	単位	数値
荷重作用点までの距離	L_1	mm	184.75
荷重作用点までの距離	L_2	mm	432.5
部材の長さ	L_3	mm	350
部材の長さ	L_4	mm	280
サポートリブ(①部)のせん断に対する断面積	$A_{\rm s1}$	mm^2	115,000
サポートリブ(②部)のせん断に対する断面積	A_{s2}	mm^2	83, 400
サポートリブ(③部)の圧縮に対する断面積	$A_{\rm c3}$	mm^2	73, 200
サポートリブ(④部)の圧縮に対する断面積	$A_{\rm c4}$	mm^2	49,800
サポートリブの縦弾性係数 (注1)	Е	MPa	197,000
サポートリブの横弾性係数 (注2)	G	MPa	75, 800
サポートリブの材質	_	_	SM50B

(注1) サポートリブの最高使用温度におけるJSME S NC1付録材料図表part6に規定する縦弾性 係数。

(注2) サポートリブの最高使用温度におけるJSME S NC1付録材料図表part6に規定する縦弾性 係数から求めた横弾性係数。

3.2 計算結果

2. 項で示した計算方法により求めた原子炉容器支持構造物の応力計算結果を、表 10-1-3に示す。せん断応力が最も大きいS₁地震時のサポートリブ(①部)のせん断応力 ($\sigma = \tau_1 = 15$ MPa)を評価に使用する。

表10-1-3	夏子炉容器支持構造物の	の応力計算結果
---------	-------------	---------

(単位:MPa)

如壮々	취묘	地震時せん断応力		
即竹石	記万	Ss地震時	S_1 地震時	
サポートリブ (①部)	$ au_{-1}$	14	15	
サポートリブ (②部)	τ2	7	5	

想定欠陥について

本評価では、評価対象であるサポートリブを、想定欠陥を含め図 10-2-1 のとおりモデル 化し、せん断応力の生じる図 10-2-2 中①及び②の位置を評価対象とした。想定欠陥のモデ ル図を図 10-2-1 に、評価対象箇所を図 10-2-2 にそれぞれ示す。

図 10-2-1 想定欠陥のモデル図

図 10-2-2 評価対象箇所

K_{IR}の算出根拠・過程について

K_{IR}については、図10-3-1に示すフローに基づき算出する。

図10-3-1 K_{IR}の算定フロー

詳細については、以下のとおりである。

1. 吸収エネルギー曲線

国内PWRプラントの建設時のミルシートを基に、製作した供試材を用いた、引張試験,落重試験、シャルピー衝撃試験、破壊靭性試験結果から求めた吸収エネルギー 遷移曲線を図10-3-2に示す。

図10-3-2 リブ材(SM50B鋼)の吸収エネルギー遷移曲線 [出典:電力共同研究「原子炉容器支持構造物の照射脆化に関する研究」1999年度]

2. 初期関連温度(T_{NDT})の推定

図10-3-2の曲線(以下,遷移曲線A)と、国内外データ・文献データ等の吸収エネ ルギー遷移曲線(以下,遷移曲線B)を使い、「JSME 設計・建設規格 付録材料図 表 Part5表3」及び「JEAC4206 原子力発電所用機器に対する破壊靭性の確認試験 方法」から求めた吸収エネルギー値(リブ材:41J)を満足する温度T_iにおける吸収 エネルギーC_V(T_i)A及びC_V(T_i)Bと、推定T_{NDT}A及び推定T_{NDT}Bの関係をプロットし、 初期関連温度(T_{NDT})を推定する。

【評価結果】 -52℃

初期関連温度(T_{NDT})の推定の流れを,図10-3-3に示す。

図10-3-3 シャルピー吸収エネルギーCv(T_i)と推定T_{NDT}の関係

3. 中性子照射量の算定及び脆化量ΔT_{NDT}の推定

中性子照射量については、米国オークリッジ国立研究所で開発改良された「二次 元輸送解析コード "DORT"」を用いて算定する。

【評価結果】 0.0056 dpa

この値を基に図10-3-4に示す、NUREG-1509「ORNLのHFIR炉のサーベイランスデー タ及び米国シッピングポート(Shippingport)炉の材料試験データ等の上限を包絡 する曲線」を基にした脆化予測曲線を用いてラジアルリブの脆化度(脆化量推定量 (ΔT_{NDT}))を推定する。

【評価結果】 T_{NDT}:67.9℃ ΔT_{NDT}:119.9℃

図10-3-4 RVサポートの脆化予測曲線

[出典:NUREG-1509 "Radiation Effects on Reactor Pressure Vessel Supports" R. E. Johnson, R. E. Lipinski NRC 1996 P14]

4. 破壊靭性値K_{1R}の推定

ASME Section Ⅲ Appendix Gに記載されている下式により算出する。

 $K_{IR} = 29.43 + 1.344 exp (0.0261 (T - T_{NDT} + 88.9)) \times 1$

KıR:破壞靭性値 (MPa√m)

T:最低使用温度(21℃)

T_{NDT}: 関連温度(℃) (初期T_{NDT}推定値+脆化量推定値(ΔT_{NDT}))

【評価結果】K_{IR}: 33.4MPa√m

80 60 40

20 -100

-80 -60 -40 -20

※1 K_{1R}はASME2007年度版改正時にK_{1C} (=36.5+22.783exp(0.036(T-T_{NDT})))へ変 更されているが、図10-3-5のとおりK_{IR}<K_{IC}となりK_{IR}の方が保守的となる ことから、K_{IR}を使用している。

以上

160

180 200

RT

0 20 40

図10-3-5 K_{IR}とK_{IC}の比較

60 80

(*T-RT_{NDT}*), °F KIC (ASME Sec. Ⅲ Appendices 2007年版より抜粋)

100 120 140