> 廃棄物埋設施設における保安規定審査基準への適合性について

第二種埋設規則第 20 条第 1 項第 14 号 放射性廃棄物の受入れ基準

廃棄体の耐荷重強度に関すること

目 次

1．第二種廃棄物埋設事業に係る廃棄物埋設施設における保安規定の審査基準 第二種埋設規則第 20 条第 1 項第 14 号
2．第二種廃棄物埋設の事業に関する規則 第 8 条第 2 項第 6 号
3．保安規定変更認可申請書で定める廃棄物受入基準案
4． 1 号廃棄体の場合，容器を確認することで担保する根拠
5． 2 号廃棄体の場合，固型化の方法を確認することで担保する根拠

1．第二種廃棄物埋設事業に係る廃棄物埋設施設における保安規定の審査基準 第二種埋設規則第 20 条第 1 項第 14 号

| 第二種廃棄物埋設事業に係る廃棄物埋設施設における保安規定の審査基準 |
| :--- | :--- |
| 第二種埋設規則第 20 条第 1 項第 14 号 放射性廃棄物の受入れの基準 |
| ○廃棄体に係る廃棄物受入基準は，少なくとも以下の事項を含むこと。 |
| 9. 廃棄体の耐荷重強度に関すること |

2．第二種廃棄物埋設の事業に関する規則 第 8 条第 2 項第 6 号

第二種廃棄物埋設の事業に関する規則					
第 8 条 放射性廃棄物等の技術上の基準					
第2項第6号 埋設の終了までの間において受けるおそれのある荷重に耐える強度を有すること。					

3．保安規定変更認可申請書で定める廃棄物受入基準案
別表2 1 号廃棄体に係る廃棄物受入基準と埋設規則の関連付け

確認項目	受入基準	埋設規則条項
1．固型化の方法	（省略）	
（2）容器	埋設の終了までの間に受けるおそれのある荷重（0．5ton の廃棄体を8 段積みで定置する際の荷重）に耐える強度を有 するよう，JISZ1600（1993）に定める金属製容器又はこれと同等以上の強度及び密封性を有するものであること。	第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号

別表2の2 2 号廃棄体に係る廃棄物受入基準と埋設規則の関連付け

確認項目	受入基準	埋設規則条項
1．固型化の方法	放射線障害防止のため，埋設の終了までの間に受けるおそれ のある荷重（1ton の廃棄体を 9 段積みで定置する際の荷重）に耐える強度を有するよう及び廃棄物埋設地に定置する までの間に想定される最大の高さ（ 8 m ）からの落下による衝撃により飛散又は漏えいする放射性物質の量が極めて少な くなるよう，事業許可において廃棄を許可された放射性廃棄物を以下に定める方法により容器に封入し，又は容器に固型化してあること。	第 8 条第 2 項第 2 号第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号
（1）固型化材料	JIS R 5210（1992）若しくは JIS R 5211（1992）に定めるセ メント又はこれらと同等以上の安定性及び圧縮強さを有す るセメントであること。	第8条第2項第2号第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号
（2）容器	JIS Z 1600（1993）に定める金属製容器又はこれと同等以上 の強度及び密封性を有するものであること。	第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号
（3）固型化方法	試験等により均質に練り混ぜられることが確認された固型化設備及び運転条件によってあらかじめ固型化材料若しく は固型化材料及び混和材料が練り混ぜられてあること及び試験等により容器内の放射性廃棄物と一体となるように充 てんできることが確認された方法によって固型化されてあ ること，並びに廃棄物自体の強度が低い廃棄体は，廃棄物と容器との隙間を 30 mm 以上確保してあること。	第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号
（4）有害な空げき	容器内に有害な空げき※が残らないようにすること。 ※上部空げきが体積で 10%（充てん面から容器の蓋の下面 までの長さが約 8 cm ）を超えないこと	第 8 条第 2 項第 6 号第 8 条第 2 項第 7 号

4． 1 号廃棄体の場合，容器を確認することで担保する根拠
埋設が終了するまでの間において受けるおそれのある荷重は，廃棄体を俵積み方式に より定置した場合に最上段の廃棄体定置完了後に最下段の廃棄体が受ける荷重が最大荷重であるため，その最大荷重を想定した容器による試験により，耐えられる強度と密封性を有することが確認されている。

したがって，試験に使用した容器と同等以上の強度および密封性を有する容器で製作 された廃棄体については，容器を確認することにより荷重に耐えられる強度が担保され る。

容器のみによる試験について

1．廃棄体に要求される耐埋設荷重
埋設された場合において受けるおそれのある荷重については次のように考えら れる。

廃棄体の重量を 0.5 ton（ 1 号廃葉体重量上限）として， 8 段俵積み時の最下段 の廃棄体に対する最大荷重は，吊り具負荷を考慮して6．25ton である。

したがって，廃棄体は6．25ton 以上の強度を有することが必要である。
2．強度（耐埋設荷重）担保の考え方
廃棄体の耐荷重強度は固化体の強度ではなく，容器の強度により担保されること が考えられる。

現状の埋設形態では，廃棄体はJIS Z 1600 に定められている容器またはこれと同等以上の強度および密封性を有するものを使用している。
本容器の強度について確認し，十分な強度を有していることにより耐埋設荷重強度を担保する。

3．試験方法
試験は門型架構中の支持架台にドラム缶（JIS Z 1600 H級 2 輪体 ボルト式 バンド）を乗せ，俵積みを模擬した加圧治具を介して油圧ジャッキで負荷した。試験装置の概要を図－1に示す

4．試験結果
図－2 の変位曲線から明らかなように，荷重に対する容器変位量の増加傾向は少 なくとも8tonまではほぼ直線的であり，安定した耐荷重性を示している。

8 ton における変位量も 36 mm と極めて小さな値となっている。
したがって，容器は約 8ton の耐荷重強度を有すると判断できる。

容器のみの試験の結果により，6．25ton 以上の耐荷重強度を満足することが確認され ていることから，1号廃棄体は容器の確認をすることにより必要な耐荷重強度を有する と判断できる。

5． 2 号廃棄体の場合，固型化の方法を確認することで担保する根拠
埋設が終了するまでの間において受けるおそれのある荷重は，廃葉体を俵積み方式に より定置した場合に最上段の廃棄体定置完了後に最下段の廃棄体が受ける荷重が最大荷重であるため，その最大荷重を想定し容器，固型化材料および製作方法の組合せによる試験により，耐えられる強度と密封性を有することが確認されている。

したがって，試験に使用した模擬廃重体と同様に製作された廃棄体については，固型化の方法を確認することにより荷重に耐えられる強度が担保される。

容器，固型化材料および製作方法の組合せによる試験について
1．廃棄体に要求される耐埋設荷重
埋設された場合において受けるおそれのある荷重については次のように考えられ る。

廃棄体重量を 1 ton（ 2 号廃棄体重量上限）として， 9 段俵積み時の最下段の廃棄体 に対する最大荷重は，吊り具負荷を考慮して 12 ton となる。

したがって，廃棄体は12ton 以上の強度を有することが必要である。
2．強度（耐埋設荷重）担保の考え方
廃棄体の耐荷重強度は固化体の強度ではなく，容器の強度により担保されること が考えられる。

現状の埋設形態では，廃棄体はJIS Z 1600 に定められている容器またはこれと同等以上の強度および密封性を有するものを使用している。

2 号廃棄体では，容器のみで強度を担保することはできず，容器と固型化材料等を含めた廃棄体全体で耐埋設荷重強度を担保することとする。

3．試験方法
試験装置は，加圧フレーム，廃棄体を模擬した下部加力治具，上部加力治具，載荷 のための油圧ジャッキ，荷重を測定するロードセルから構成されている。

試験装置の概要を図－3に示す
1． 25 ton から 15 ton まで約 0.5 ton 単位で増加させた荷重をかけ，その変位量を測定した。

各段階の保持時間は5分間とし，各段階で変位が安定したのを確認してから次の段階へ移行した。

4．試験用廃棄体
試験で用いた容器の肉厚は 0.8 mm であり， M 級容器（肉厚 1.2 mm ）を保守的に模擬 し，廃棄物の強度および固型化材料等の硬化後強度が保守的な条件として，以下の模擬廃棄体を製作した。

模擬廃棄体仕様		
容器	JIS Z 1600	1 種 0.8 mm 厚
製作 方法	廃棄物種類	強度の低い廃棄物（非圧縮） 塩ビホース，ケーブル，プラスチック片，ゴム片 （保守的な廃棄物として模擬した。）
	内張層	無し
	収納方法	人為的に廃棄物を緻密に収納した。 （固型化時の浮上防止対策は実施）
	上部空隙	11%（標準的な製作方法で定める 10% を保守的に模擬）
固 型 化材料	硬化後強度 $300 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}$ （JIS A 1108 に準拠し，28日間養生したサンプル 6 体の平均）標準的な製作方法で要求する最低限の強度	

5．試験結果
最終荷重である 15 ton を載荷しても模擬廃棄体は破壊せず，強度は保たれており，最終変位量は平均で 5.2 mm であった。また容器の破損は認められないため，容器の密封性も損なわれていない。

荷重と変位量の関係を図－4に示す。

容器，固型化材料および製作方法の組合せによる試験の結果により， 12 ton 以上の耐荷重強度を満足することが確認されていることから，2 号廃棄体は固型化の方法を確認す ることにより必要な耐荷重強度を有すると判断できる。

以上

図－1 1号廃棄体 試験装置の概要

図－2 1号廃棄体 試験結果

図－3 2号廃棄体 試験装置の概要

荷重に対する変位晎（䈭案物を荷重部位に人为的に授触させない揚合）

図－4 2号廃棄体 試験結果

模擬充てん固化体による載荷試験結果について（平成11年5月）北海道電力株式会社，東北電力株式会社，東京電力株式会社，中部電力株式会社，北陸電力株式会社，関西電力株式会社，中国電力株式会社，四国電力株式会社，九州電力株式会社，日本原子力発電株式会社

廃棄物埋設施設の設計の基本的考え方

目 次

1．廃棄物埋設施設の設計の考え方 1
（1）地下水面下への設置 1
（2）移行抑制機能の設計 1
（3）漏出防止機能の設計 3
2． 3 号廃棄物埋設地の基本的考え方 6
（1）設置位置 6
（2）設置深度 6
（3）埋設設備の大型化 7
（4）点検管及び点検路方式の選定 8
（5）耐埋設荷重強度 8
（6）セメント系充填材の厚さ 13
3．第四紀層との隔離を安定的に確保する考え方 14
（1）地下水の流れの一般的な知見 14
（2）覆土の構成 14
（3）覆土の機能維持 14
（4）覆土の不均質性に対する考え方 17

第1表 各廃棄物埋設地の埋設設備表面積及び廃棄物埋設地面積

	埋設設備表面積	廃棄物埋設地面積
3 号	約 $49,000 \mathrm{~m}^{2}$	約 $34,000 \mathrm{~m}^{2}$
1 号	約 $70,000 \mathrm{~m}^{2}$	約 $40,000 \mathrm{~m}^{2}$
2 号	約 $58,000 \mathrm{~m}^{2}$	約 $41,000 \mathrm{~m}^{2}$

（4）点検管及び点検路方式の選定
排水•監視設備に要求される排水管からの排水の回収作業に対して適切な方式を選定する。

3 号廃棄物埋設地については，排水管位置が各埋設設備の中央に集約されること から，合理的に各埋設設備に独立した点検管方式を採用し，1号及び 2 号廃棄物埋設地については，排水管位置が多いことから，立坑を 2 箇所として，排水管位置を つなぐように点検路方式を採用する。各排水•監視設備の排水管位置図を第3図に示す。

第 3 図 排水•監視設備の排水管位置図
（5）耐埋設荷重強度
漏出防止機能に対する設計については，埋設設備内への定置及び充塡が完了する までに廃棄体から放射性廃棄物が漏出しないことが前提となっている。

廃棄体が埋設時に生じる荷重に耐える強度（以下「耐埋設荷重強度」という。） を有することを確認する。

ここでは，3号の10段積みを例に説明する。
（i）俵積みによる荷重作用方向
廃棄体の自重は，俵積みで定置することにより，下部及び側部方向へ作用する。廃棄体間に作用する荷重の角度 θ を第 4 図に示す。

$$
\begin{aligned}
\theta & =\tan ^{-1}(496.0 /(623.5 / 2)) \\
& =57.8^{\circ}
\end{aligned}
$$

第4図 廃棄体間に作用する荷重の角度

廃棄体重量 $W=1 \mathrm{t} /$ 本のとき，角度 θ で作用する廃棄体荷重の分力 N を以下に示 す。

$$
\begin{aligned}
N & =W /(2 \cdot \sin \theta) \\
& =0.591 \mathrm{t}
\end{aligned}
$$

10 段積みした場合の廃棄体自重の分力分布を第5図に示す。

第 5 図 廃棄体自重分力分布図（10段積みの場合）
（ii）廃棄体への最大荷重
廃棄体に作用する最大鉛直荷重を算出し，廃棄体が荷重に耐える強度を有する ことを確認する。
a．廃棄体の自重による荷重
第5図より廃棄体の自重が最大となる箇所を選定し，その荷重 $R F$ を以下に示す。

$$
\begin{aligned}
R F= & 2 \times 10 N \cdot \sin \theta+W \\
& =11 \mathrm{t}
\end{aligned}
$$

b．上載荷重（1号，2号及び～3号共通）
廃棄体へ作用する荷重として，最上段の廃棄体に対する上載荷重を16tとす る。

最上段の廃棄体 8 本に均等に作用するとし， $2 t /$ 本とする。

以上の 2 つの荷重の合計 13 t が，廃棄体に作用する最大の鉛直荷重となる。

同様に 1 号及び 2 号についても算出し，その結果を第 2 表に示す。

第 2 表 各埋設設備における廃棄体に作用する最大の鉛直荷重

| 対象埋設設備 | 廃棄体荷重 W
 $(\mathrm{t} /$ 本 $)$ | 定置段数 |
| :---: | :---: | :---: | :---: | | 最大鉛直荷重 |
| :---: |
| (t) |

（iii）耐埋設荷重強度
模擬廃棄体への載荷試験結果から，廃棄体の耐埋設荷重強度を設定する。載荷試験結果を第3表に示す。

第3表 模擬廃棄体への載荷試験結果

	均質•均一固化体＊${ }^{1}$	充塡固化体 $*^{2}$
対象埋設設備	1 号	2号及び， 3 号
模擬廃棄体条件	空ドラム缶 （JIS Z 1600 H 級 （肉厚 1.6 mm ））	－薄肉容器（肉厚 0.8 mm ，形状は JIS Z 1600 1 種のドラム缶と同じ） －強度の低い廃棄物を内張り層なしで密収納 －低強度モルタルと同様の材料及び配合の固型化材料を使用 - 上部空隙が 11% となるように充塤 - 28日間養生
耐埋設荷重強度	8 t	15 t

＊1：日本原燃株式会社（1992）：ドラム午耐荷重試験概要
＊2：北海道電力株式会社他（1999）：模擬充填固化体による載荷試験結果について

上記（i ）～（iii）より，廃棄体に対して想定される最大荷重に対し，廃棄体の耐埋設荷重強度が高いことから，埋設する廃棄体は埋設荷重に耐える強度を持って いると評価する。

