資料1-1

# 東通原子力発電所 津波の評価について (コメント回答)

# 2022年1月28日 東北電力株式会社



All Rights Reserved. Copyrights ©2022, Tohoku Electric Power Co., Inc.

#### 1

## 審査会合におけるコメント:連動型地震に起因する津波

| No.  | コメント時期                  | コメント内容                                                                                                                                | 説明資料                   |
|------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| S45  | 2016年8月26日<br>第394回審査会合 | 連動型地震に起因する津波が最も影響が大きいことを確認するため,沖合地点の水位時刻<br>歴波形を示すこと。                                                                                 | 第 I 章 第5節              |
| S200 | 2021年7月9日<br>第989回審査会合  | 2021年7月9日<br>5989回審査会合<br>特性化モデル③及び④の想定津波群は、内閣府(2020)の想定津波群の評価結果を上回る<br>ものの、平沼~天ヶ森付近では部分的に内閣府(2020)の想定津波群の津波高さが大きくな<br>る要因について説明すること。 |                        |
| S201 | 2021年7月9日<br>第989回審査会合  | 内閣府(2020)のすべり量等のモデル化の手法に関する考え方の取扱い,並びに特性化モデ<br>ルと内閣府(2020)の津波高を比較することの位置付けについて説明すること。                                                 | 第 I 章 第1節<br>第1. 6. 3項 |



## 審査会合におけるコメント:連動型地震以外に起因する津波

| No. | コメント時期                   | コメント内容                                                                                                                                          | 説明資料                                                                   |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| S37 | 2016年4月28日<br>第358回審査会合  | 海底地すべり地形調査において,日高舟状海盆付近の海底地すべりに関する<br>知見を 加えること。                                                                                                | 第Ⅱ章 第1節<br>第1.4.1項,第1.4.3項,第1.4.4項,<br>第1.4.6項,第1.5項<br>補足説明資料 第Ⅴ章 第3節 |
| S39 | 2016年8月26日<br>第394回審査会合  | 津波地震について, 地震規模の不確かさを考慮する方法と, 土木学会(2002)を<br>参考として波源特性の不確かさを考慮する方法の両方を示した上で, 地震規模<br>の設定について再度説明すること。                                            | 第Ⅰ章 第2節<br>第2.1項,第2.4項,第2.5項,第2.6項,<br>第2.7項<br>補足説明資料 第Ⅲ章 第2節         |
| S40 | 2016年8月26日<br>第394回審査会合  | 千島海溝沿いで発生する津波地震を考慮する必要性について検討すること。                                                                                                              | 第Ⅰ章 第2節<br>第2. 1項, 第2. 3項, 第2. 6項, 第2. 7項<br>補足説明資料 第Ⅲ章 第2節            |
| S41 | 2016年8月26日<br>第394回審査会合  | 海洋プレート内地震の波源位置の不確かさについて,現状,アウターライズ領域<br>での 南北方向の検討を実施しているが,東西方向(海溝軸直交方向)の検討も<br>実施すること。合わせて,起震応力が共通で共役な断層となることも踏まえた検<br>討も実施すること (西落ち傾斜,東落ち傾斜)。 | 第Ⅰ章 第3節<br>第3.6項,第3.7項<br>補足説明資料 第Ⅳ章 第2節                               |
| S42 | 2016年8月26日<br>第394回審査会合  | <br>  海洋プレート内地震の断層上縁深さの設定根拠を説明すること。<br>                                                                                                         | 補足説明資料 第Ⅳ章 第1節                                                         |
| S43 | 2016年8月26日<br>第394回審査会合  | 各断層モデルによる計算結果の比較から、プレート間地震は連動型地震に包含<br>されるため、その位置付けを整理すること。                                                                                     | 補足説明資料 第Ⅱ章                                                             |
| S44 | 2016年8月26日<br>第394回審査会合  | 海域活断層による地殻内地震の選定プロセスを明確にすること。                                                                                                                   | 第 I 章 第4節<br>第4. 2項, 第4. 3項, 第4. 4項                                    |
| S46 | 2016年8月26日<br>第394回審査会合  | 日本海溝海側の海山付近における海底地すべりについて, 最新の知見を収集<br>すること。                                                                                                    | 第Ⅱ章 第1節<br>第1. 4. 1項, 第1. 4. 7項,<br>第1. 5項                             |
| S47 | 2016年8月26日<br>第394回審査会合  | ハワイ諸島付近の海底地すべりについて, 情報を収集し, 発電所に与える影響<br>を検討すること。                                                                                               | 第Ⅱ章 第1節<br>第1. 4. 1項, 第1. 4. 8項,<br>第1. 5項                             |
| S48 | 2016年年8月26日<br>第394回審査会合 | 海底地すべりに起因する津波の評価において抽出した海底地すべりの厚さの算<br>定根拠を資料に明記すること。                                                                                           | 第Ⅱ章 第1節 第1.4.3項<br>補足説明資料 第Ⅴ章 第2節                                      |





#### 基準津波評価フロー

第989回審査会合(R3.7.9) SO :審査会合コメントNo.

資料1-1 p4 一部修正 赤字:申請時からの追加・変更箇所



4



| I | . 地震に起因する津波の評価                                                                     |     |
|---|------------------------------------------------------------------------------------|-----|
|   | 1. 十勝沖・根室沖から岩手県沖北部の連動型地震 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                      | • 6 |
|   | 2. 津波地震 ····································                                       | 264 |
|   | 3. 海洋プレート内地震 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  | 296 |
|   | <ol> <li>4. 海域の活断層による地殻内地震</li> <li>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ol> | 336 |
|   | 5. 地震に起因する津波の評価結果のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                         | 346 |

## Ⅱ. 地震以外に起因する津波の評価

| 1. 地すべり及び斜面崩壊 ・・・・・・・・・・ | •••••• | 354 |
|--------------------------|--------|-----|
| 2. 火山現象 ·····            | •••••  | 410 |
| 3. 地震以外に起因する津波の評価結果のまとめ  |        | 418 |

| Ш. | . 地震に起因する津波と地震以外に起因する津波の組合せの評価                                      | 422 |
|----|---------------------------------------------------------------------|-----|
|    | 1. 基本方針 ••••••••••••••••••••••••••••••••••••                        | 423 |
| :  | 2. 組合せ時間の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                    | 424 |
|    | 3. 地震に起因する津波と地震以外に起因する津波の組合せ評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 428 |



# I. 地震に起因する津波の評価 1. 十勝沖・根室沖から岩手県沖北部の連動型地震



#### I. 地震に起因する津波の評価 1. 十勝沖・根室沖から岩手県沖北部の連動型地震

## 本説明(コメント回答)の概要

| No.  | コメント時期                 | コメント内容                                                                                                  |
|------|------------------------|---------------------------------------------------------------------------------------------------------|
| S200 | 2021年7月9日<br>第989回審査会合 | 特性化モデル③及び④の想定津波群は,内閣府(2020)の想定津波群の評価結果を上回るものの,平沼〜天ヶ森付近<br>では部分的に内閣府(2020)の想定津波群の津波高さが大きくなる要因について説明すること。 |
| S201 | 2021年7月9日<br>第989回審査会合 | 内閣府(2020)のすべり量等のモデル化の手法に関する考え方の取扱い,並びに特性化モデルと内閣府(2020)の津波<br>高を比較することの位置付けについて説明すること。                   |

#### ■平沼~天ヶ森付近の部分的な範囲で内閣府(2020)の想定津波群の津波高さ が大きくなる要因分析 S200

 内閣府(2020)日本海溝(三陸・日高沖)モデルの青森県沖に破壊開始点を 設定したケース,岩手県沖に破壊開始点を設定したケース及び連動型地 震の想定津波群に支配的な基準断層モデル①を対象に,津波の伝播特性 (スナップショット)及び青森県沿岸の津波高(水位時刻歴波形)の比較から 分析する。



■内閣府(2020)のモデル化手法に関する考え方の取扱い等 S201

内閣府(2020)モデルと国内外で発生したM9クラスの地震の平均応力降下量, Murotani et al.(2013)によるM7~9クラスの地震の断層面積と地震モーメント,平均すべり量と地震モーメントの関係を比較し,内閣府(2020)によるすべり量等のモデル化の手法に関する考え方の取り扱い,並びに内閣府(2020)の津波高を比較することの位置付けを整理する。



## 連動型地震に起因する津波の評価の全体概要

第989回審査会合(R3.7.9) 資料1-1 p6 一部修正 S●:審査会合コメントNo. 赤字:申請時からの追加・変更箇所

8

・ 発電所の津波高さに与える影響が最も大きい「十勝沖・根室沖から岩手県沖北部」を想定波源域とし(平成29年8月10日第496回審査会合), 3.11地震から得られた知見等を参考に複数の特性化モデルを 設定し、大すべり域位置の不確かさを考慮(概略パラメータスタディ)したうえで、敷地に最も大きな影響を及ぼすモデルを基準断層モデルに設定した。

基準断層モデルを対象に動的破壊特性の不確かさを考慮(詳細パラメータスタディ)し、各評価地点における最大水位上昇量・下降量の評価を行った。

・ 評価の妥当性を確認するため,想定津波群の包絡線とイベント堆積物,行政機関(内閣府,青森県)による津波評価との比較を行った。



## I. 地震に起因する津波の評価 1. 十勝沖・根室沖から岩手県沖北部の連動型地震

#### 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

- 1.1.1 評価概要
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.3 地震発生履歴に関する検討
- 1.1.4 波源域及び地震規模の評価
- **1.2 想定波源域の設定**
- 1.2.1 設定方針
- 1.2.2 検討対象領域の選定
- 1.2.3 波源モデルの設定
- 1.2.4 津波予測計算
- 1.2.5 まとめ

#### 1.3 特性化モデルの設定

- 1.3.1 3.11地震から得られた知見の整理
- 1.3.2 基本方針(設定フロー)
- 1.3.3 広域の津波特性を考慮した特性化モデル(特性化モデル①)
- 1.3.4 青森県東方沖及び岩手県沖北部の大すべり域の破壊特性を 考慮した特性化モデル(特性化モデル②,③,④)
- 1.3.5 まとめ
- 1.4 基準断層モデルの設定(概略パラメータスタディ)
- 1.4.1 検討方針
- 1.4.2 概略・詳細パラメータスタディ方法の検討
- 1.4.3 概略パラメータスタディ
- 1.4.4 基準断層モデルの設定
- 1.4.5 防波堤の影響検討

- 真の評価 1.5 動的破壊特性の不確かさの考慮(詳細パラメータスタディ)
  - 1.5.1 検討方針
  - 1.5.2 動的破壊特性の不確かさに関する知見の整理
  - 1.5.3 詳細パラメータスタディ
  - 1.5.4 概略・詳細パラメータスタディ方法の妥当性確認
  - 1.6 評価の妥当性確認
  - 1.6.1 検討方針
  - 1.6.2 イベント堆積物との比較
  - 1.6.3 行政機関(内閣府)による津波評価との比較
  - 1.6.4 行政機関(青森県)による津波評価との比較
  - 1.6.5 まとめ



- 1.1.1 評価概要
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.3 地震発生履歴に関する検討
- 1.1.4 波源域及び地震規模の評価



#### 1.1.1 評価概要

敷地前面海域(青森県東方沖及び岩手県沖北部)ではM9クラスの巨大地震が発生した記録が無いことを踏まえ,基準断層モデル設定の事前検討として、国内外のプレート境界で発生している巨大地震に係る知見を収集・整理して、地震の発生機構、並びにテクトニクス的背景の類似性等から、波源域及びすべり量について検討するとともに、津波堆積物調査を踏まえた地震発生履歴に関する検討を実施して、日本海溝沿い、並びに千島海溝沿い(南部)における最新の科学的・技術的知見から想定される波源域及び地震規模を評価した。



✓ 千島海溝沿い(南部):超巨大地震(17世紀型)

| 11

## 1.1.2 波源域及びすべり量に関する検討

1. 1. 2. 1 構造的特徴に関する検討
 1. 1. 2. 2 固着域, すべり量に関する検討
 1. 1. 2. 3 破壊伝播に関する検討
 1. 1. 2. 4 まとめ



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

#### ■日本海溝沿い:3.11地震

 房総沖の相模トラフ周辺では、陸側のプレートの下にフィリピン海プレートが、さらに下方には太平洋プレートが沈み込み、茨城県から千葉県沿岸の南東 方向に向かってフィリピン海プレートの北東端が太平洋プレートに接している(Uchida et al.(2009), Shinohara et al.(2011)他)。

第989回審杳会合(R3.7.9)

資料1-1 p15 再掲

13

- Uchida et al.(2009)は, 地震学的見地から, 太平洋プレートの上盤側をなすプレートの違いによってカップリング率が大きく異なるとし, 房総沖は茨城県沖よりも固着が弱いとしている。
- ・ Shinohara et al. (2011)は、3.11地震の余震分布に関する分析から、フィリピン海プレート北東端の位置と3.11地震の破壊域が一致していることを明らかに するとともに、フィリピン海プレートは、破壊伝播のバリアとして作用する重要な役割を果たす可能性があるとしている。



1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価 1.1.2 波源域及びすべり量に関する検討

- 第989回審査会合(R3.7.9) 資料1-1 p16 再掲 **14**
- 1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

#### ■南米チリ沖①

• 1960年チリ地震(Mw9.5)の発生領域では、津波堆積物調査の結果から、約300年間隔で繰り返し巨大地震が発生しており(宍倉(2013))、 同領域で発生している過去の地震(1737年、1837年)も含めて、各地震の破壊領域の北端は概ね一致している(Rajendran(2013))。



チリ~ベルー沖における地震発生履歴 (Rajendran(2013)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

■南米チリ沖②

• Melnick et al. (2009)は、南米チリ沖で発生している地震発生履歴、テクトニクス的背景及び地震学的見地から、1960年チリ地震の発生領域で 発生する地震の破壊領域について考察している。



Figure 1. Index maps. (a) Major seismotectonic features of the central and south-central Andean forearc. Rupture segment of most recent, major ( $M \geq 8$ ) subduction earthquake [Beck and Ruff, 1989; Comte and Pardo, 1991; Lomniz, 1970, and references therein]. Note that distinct promontories seem to occur systematically at rupture segment boundaries. LOFZ, Liquiñe-Ofqui fault zone. (b) Location of the Arauco peninsula and study area. Major Quaternary faults compiled from references in text. Seismotectonic segments, rupture zones of historical subduction earthquakes, and main tectonic features of the south-central Andean convergent margin. Earthquake ruptures were compiled from *Campos et al.* [2002], *Comte et al.* [1986], *Kelleher* [1972], and *Lomnitz* [2004]. Dashed white line denotes edge of >1.5 km thick sediment fill in the trench. Data on Nazca plate and trench from *Bangs and Cande* [1997] and *Tebbens and Cande* [1997]. Segments of the Chile Rise subducted at 3 and 6 Ma from *Cande and Leslie* [1986].

南米チリ沖におけるテクトニクス的背景と地震発生履歴の対応 (Melnick et al. (2009))



Figure 8. Profile of surface and crustal structure along the Arauco peninsula. Surface profile with maximum topography along swath shown by shaded rectangle in the center of the map. Fault dips are only apparent because of vertical exaggeration. Seismicity and focal mechanisms of the ISSA [Bohm, 2004; Bohm et al., 2002; Bruhn, 2003] and TIPTEQ [Haberland et al., 2006] local networks. Depth of the Tubul and Cañete formations from ENAP boreholes and exposed sections in the field (see Figure 6). Contours in the blue region labeled Nazca plate represent the top of the slab projected from 10 km spaced, parallel lines in the area of the map (2 km contours also shown in the map). Slab geometry from Tassara et al. [2006]. Shallow structures from the northern sector integrated from seismic reflection profiles described by Mehrick et al. [2006a]; southern sector from profile ENAP 28 (Figure 7). Gray focal mechanism from U.S. Geological Survey National Earthquake Information Center catalog (21 May 1990, Mw, 6.3, 5 km depth).

アラウコ半島の地表面並びに地下構造 (Melnick et al.(2009))





1.1.2 波源域及びすべり量に関する検討

1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

■南米チリ沖③

- 1960年チリ地震発生領域付近では、アラウコ半島を境に、バルディビアセグメント(1960年チリ地震の発生領域)、バルパライソセグメントに分かれる。
   バルディビアセグメントにおける陸のプレートではチロエマイクロプレート(前弧スリバー)が形成されており、横ずれ断層に沿って移動し、アラウコ
   地域で部分的に内部へ沈み込んでいる。
- Melnick et al.(2009)は、上記テクトニクス的背景と1960年チリ地震発生領域で発生する地震の境界が一致することから、これが破壊のバリアとして 作用する可能性があるとしている。



Figure 10. Seismotectonic model. Oblique plate convergence and subduction of the Chile Rise leads to decoupling of the Chiloé fore-arc sliver along the Liquiñe-Ofqui fault zone. Margin-parallel northward motion is partly accommodated internally along the sliver and by NNE–SSW shortening in the Arauco region, resulting in doming of the Nahuelbuta ranges and emergence of the Arauco peninsula. As a result of this collision, the entire orogen bends eastward at the Arauco Orocline, which also marks a boundary between deformation styles in the intra-arc and foreland regions. The coincidence between the extent of the Valdivia 1960 rupture segment and the Chiloé fore-arc sliver suggests that here the fore-arc structure controls the extent of megathrust rupture segments.

1960年チリ地震発生領域における地震地体構造モデル (Melnick et al.(2009))



1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価 1.1.2 波源域及びすべり量に関する検討

- 第989回審査会合(R3.7.9) 資料1-1 p19 再揭 **17**
- 1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

#### ■スマトラ島沖①

・ 2004年スマトラ~アンダマン地震(Mw9.1~9.3)の発生領域では、津波堆積物調査の結果から、約500年間隔で繰り返し巨大地震が発生しており、 その破壊領域の南端は概ね一致している(Rajendran(2013))。



Figure 9. (Right) Seismotectonic setting of the Sumatra-Andaman subduction zone showing rupture areas (shaded) of significant earthquakes. (Left) Their spatial and temporal rupture estimates. Faults marked on the overriding plate are EMF, WAF, SFS and ASR (from Natawidjaja<sup>53</sup>). Historical earthquake ruptures are shaded in grey (from refs 18, 53 and 55); the 2004 and 2005 ruptures are in red and yellow respectively (from Chlieh *et al.*<sup>(9)</sup>. EMF, Eastern Margin Fault; WAF, West Andaman Fault, ASR, Andaman Spreading Ridge; SFS, Sumatra Fault System.

> スマトラ島~アンダマン諸島沖における過去の地震発生履歴 (Rajendran(2013))



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

#### 第989回審査会合(R3.7.9) 資料1-1 p20 再掲 **18**

## 1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

#### ■スマトラ島沖②

• Tang et al.(2013)は, 2004年スマトラ~アンダマン地震の発生領域と2005年の地震の発生領域の境界部の地下構造について, P波速度構造に よる分析から, 当該範囲には厚い海洋性地殻が存在し, これが破壊伝播のバリアとして作用する可能性があるとしている。







Figure 4. Cartoon illustrating the segmentation of the 2004–2005 megathrust rupture in the Sumatra subduction zone around Simeulue Island. The accretionary complex removed for simplicity. CRZ: coseismic rupture zone; SP: Sunda plate. Other labels same as in Figures 2 and 3.

2004年と2005年の地震の境界部における 地下構造の模式図 (Tang et al.(2013))

Figure 3. Velocity cross-sections extracted from the velocity model inverted from the first-arrival travel-time tomography (contoured at 4, 6, 7, and 8 km/s). Relocated earthquake locations are plotted within  $\pm 10$  km of Line 1–4 and  $\pm 5$  km of Line 5–6. Thick black lines: top of the backstop; Solid white lines: the TOC constrained by the MCS data; Dashed white lines: unconstrained TOC; Dashed purple lines: possible oceanic Moho interface approximated by the 7.6 km/s velocity contours; Thin red lines: intersection location of velocity cross-sections; 'sim. is.' = Simeulue Island, SB = segment boundary. Other symbols and labels same as in Figure 2.





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

■アラスカ・アリューシャン:島弧会合部のテクトニクス的背景

- アラスカ南部では、太平洋プレートが北米プレートに北〜北西方向に沈み込んでおり(~51mm/年)、会合部ではYakutatマイクロプレートが形成されている(Finzel et al.(2011)他)。
- Finzel et al.(2011)は,深さ50km以上のスラブ内地震の分布から,沈み込んだYakutatマイクロプレートの範囲を推定するとともに,その地震分布から,プレートの沈み込み形状が東から西へフラットに遷移する特徴があるとしている。



Fig. 2. Map of southern Alaska illustrating slab seismicity (>50 km depth; Alaska Earthquake Information Center catalog) and locations of transects shown in Fig. 3. Additional symbols are the same as in Fig. 1. Note the northeastward increase in the gap between slab seismicity and the trench as well as the paucity of seismicity deeper than 50 km along the northeastern edge of the slab.

アラスカ南部における深さ50km以上のスラブ地震の平面分布 (Finzel et al.(2011)に一部加筆)



**Fig. 3.** Cross-sections showing changes in seismicity (within ~50 km of each transect) between eastern, central, and western transects across southern Alaska (Alaska Earthquake Information Center catalog). Locations of transects shown on Fig. 2. Note that seismicity from all depths is shown and transects are aligned parallel with present-day plate motions. DF–Denali fault; TR–Transition fault; see Fig. 1 for additional abbreviations. Default depths of 10 km and 33 km are assigned for events with poorly constrained depths in oceanic and continental areas, respectively.

アラスカ南部における深さ50km以上のスラブ地震の断面分布 (Finzel et al. (2011)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

■アラスカ・アリューシャン:島弧会合部と1964年アラスカ地震の破壊領域(北東端)の関係

• Wech(2016)は、アラスカ南部のテクトニクス的背景、火山の配列、微小地震分布等から島弧会合部の地下構造を推定し、同会合部が1964年アラスカ 地震の破壊領域の端部(北東端)になっていることを示している。



Figure 1. Tectonic setting in south-central Alaska (USA) with volcanoes (red triangles), Wadati-Benioff zone seismicity >30 km depth (black dots), A.D. 1964 rupture patch (Plafker et al., 1994a), subducted Yakutat terrane (Eberhart-Phillips et al., 2006), Wrangell volcanic field (WVF), and observed tectonic tremor activity (green circles). Dashed box refers to map in Figure 2. Velocity vectors are taken from Elliott et al. (2010). Previously proposed slab tear (Fuis et al., 2008) and Wrangell slab (Stephens et al., 1984) are drawn as a light blue triangle and dashed purple lines, respectively.

アラスカ南部のテクトニクス的背景と 1964年アラスカ地震の破壊領域等の関係 (Wech(2016)) 太平洋プレート, Yakutat terrane, 北米プレート等の模式図 (Wech(2016))

第989回審杳会合(R3.7.9)

資料1-1 p22 再掲

20

⇒ ほぼ海洋性のマイクロプレートであるYakutat terrane(テレイン;周囲と地質形成の過程が異なる地殻の層)は部分的に太平洋プレートと結合し、アラスカ・ アリューシャン沈み込み帯の端部で太平洋プレートに乗り上げている(Wech (2016))。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

■アラスカ・アリューシャン:断裂帯と1964年アラスカ地震の破壊領域(南西端)の関係

- Von Huene et al. (2012)は、1964年アラスカ地震の破壊領域の南端部と、Patton-Murray ridge、Aja Fracture Zoneの沈み込み部が一致することから、これら プレート境界面の特徴が破壊のバリアとして作用する可能性があるとしている。
- なお、Patton-Murray ridge, Aia Fracture Zoneの沈み込み部は、既往地震(A.D.1440-1620, A.D.1788<sup>※</sup>)の端部とも一致している(Shennan et al.(2014))。 ※: A.D.1788の地震は1938年の地震の震源域とする知見もあるが(Briggs et al. (2014))、どちらにしても、Patton-Murrav ridge, Aia Fracture Zoneは破壊領域の端部と一致している。

evidence.



Figure 1. Map of the western Gulf of Alaska ocean basin and the Alaska convergent margin. Dashed lines enclose aftershock areas of the 1938, 1946, and 1964 great earthquakes. The Prince William and Kodiak ruptures are separated to emphasize the two main asperities of the 1964 event. The width of the Kodiak margin from the trench to the volcanic arc narrows southwest from the Kenai Peninsula to one-third this width at Sanak Island. The wider subducted plate is ~10 m.v. old beneath the northeastern volcanoes, whereas in the southwest it is only ~3.5 m.v. old. Large arrow indicates convergence vector at 64 mm/vr. S prefix is given to seismic lines and original cruise line numbers. Seismic data of lines 1237 and 1235 were acquired by RV Ewing; seismic data of lines 111, 71, and 63 were acquired by RV Lee. Field data for both is archived at the US Geological Survey in Menlo Park, California, USA. M Is-Middleton Island; K SMT-Kodiak Seamount; C Is-Chirikof Island; T Is-Trinity Islands: SEM Is-Semidi Island: SHU Is-Shumagin Islands: S Is-Sanak Island: AMT-Amatuli Trough; AB-Albatross Bank; PZ-general area of the Pamplona zone.

アラスカのテクトニクス的背景と既往地震の破壊領域の関係 (Von Huene et al. (2012))



第989回審杳会合(R3.7.9)

資料1-1 p23 再掲

21

1964年アラスカ地震の震源域における既往地震の発生領域 (Shennan et al. (2014))

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

#### 第989回審査会合(R3.7.9) 資料1-1 p24 再掲 **22**

## 1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

■アラスカ・アリューシャン:1964年アラスカ地震のアスペリティ分布と島弧会合部のテクトニクス的背景の関係

- Ichinose et al. (2007)は、1964年アラスカ地震による遠地実体波(P波)、津波波形及び水準測量による鉛直変位データを用いたインバージョン解析から、 同地震のすべり量分布を推定し、3つのアスペリティ分布(平均すべり量の2倍の領域)を特定している。
- 3つアスペリティ分布は、ISCカタログに示される地震1日後までのM>4の余震分布に対応するとともに、島弧会合部のアスペリティ(M1)の形状は、太平 洋プレートに乗り上げているYakutat terraneの形状と整合するとしている。



Figure 1. Map of World Wide Standard Seismograph Network (WWSSN) and tide gauge stations used in this analysis of the 1964 Prince William Sound, Alaska, earthquake.

#### インバージョン解析に用いた遠地実体波及び津波波形観測箇所(Ichinose et al. (2007))



Figure 8a. The 1964 PWS Alaska earthquake slip distribution and moment rate function estimated from the inversion of teleseismic, tsunami, and geodetic data. The slip vectors are in the direction of the hanging wall motion relative to the footwall and are scaled to slip. The arrow points to the approximate direction of the Pacific plate relative to the North American plate. Ksm, Kodiak Seamount; SMA, the slope magnetic anomaly. See Figure 8b for schematic sketch of approximate asperity locations.

1964年アラスカ地震のすべり量分布と震源時間関数(Ichinose et al. (2007))



Figure 8b. Schematic sketch of the asperity map for Figure 8a. We identify three asperities M1, M2, and M3. The earthquake ruptured three subduction zone fault segments, the Prince William Sound (PWS), Cook, and Katmai. Rupture did not extend into the Semidi segment. P wave arrivals identified by Wyss and Brune [1967] are labeled (A, B, C, X, Y, and Z). The slip vectors are in the direction of the hanging wall motion relative to the footwall and are scaled to slip. The arrow points to the approximate direction of the Pacific plate relative to the North American plate. Ksm, Kodiak-Bowie Seamount chain; SMA, the approximate location of the slope magnetic anomaly. The subducting slab is contoured at 50 km intervals.

1964年アラスカ地震のアスペリティ分布(Ichinose et al.(2007))



1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価 1.1.2 波源域及びすべり量に関する検討 第989回審査会合(R3.7.9) 資料1-1 p25 再掲 23

## 1.1.2.1 構造的特徴に関する検討:国内外で発生した巨大地震に係る知見収集

#### ■まとめ

- 日本海溝沿い、南米チリ沖、スマトラ島沖及びアラスカ・アリューシャンで発生している巨大地震の破壊領域(破壊の伝播範囲)に関する知見から、
   同一のプレート境界面でも、地下構造に不連続性が認められる場合、それが破壊のバリアとして作用すると考えられる。
- 上記知見を参考に、千島海溝沿いにおけるテクトニクス的背景、並びに地震の発生機構の類似性から、千島海溝沿いの構造的特徴に関する検討 を行う。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

1.1.2.1 構造的特徴に関する検討:千島海溝沿いのテクトニクス的背景

- 日本列島は、主に陸のプレートである北米プレートとユーラシアプレートに位置し(長谷川ほか(2010))、太平洋プレートは東南東の方向から年間約8 cmの速さで千島海溝、日本海溝及び伊豆・小笠原海溝から沈み込んでいる。
- 太平洋プレートは,千島海溝の南半分(Bussol海峡~北海道中央部)で斜めに沈み込んでおり,それに伴い千島前弧スリバーが形成されている (木村(2002), Demets(1992)他)。



図 1 日本列島下に沈み込む太平洋ブレートおよびフィリピン海ブレートの形状 (Nakajima and Hasegawa, 2007; Hirose et al., 2008; Nakajima et al., 2009a; Kita et al. 2010). 太平洋ブレートおよびフィリピン海ブレート上 面の深さをコンターで示す.二本の破線で囲った灰色の領域は太平洋ブレートとフィリピン海ブレートの 接触域.ブレート境界大地震の想定震源域あるいは余震域 (文科省, http://www.jishin.go.jp/main/index.html [Cited 2009/09/09]; Wald and Somervile, 1995; Umino et al., 1990) を水色の楕円で示す.赤三角は第四紀火山, 黒点は深部低周波地震.

日本列島下に沈み込む太平洋プレート及びフィリピン海プレートの形状 (長谷川ほか(2010))



Fig. 6. Bathymetry and nonsubduction earthquakes in the vicinity of the southern Kuril forearc sliver, Epicentral parameters are given in Table 2. All published focal mechanisms for shallow nonthrust earthquakes are shown. Focal mechanisms with solid quadrants are believed to have occurred within the upper plate. Focal mechanisms with graytone quadrants record deformation with a less certain origin. Bathymetric contour intervals are 1000 m. All fault locations are taken from *Le Pichon et al.* [1984] and *Kimura* [1986].

> 千島前弧スリバー (Demets(1992)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.1 構造的特徴に関する検討:千島海溝沿いのテクトニクス的背景

- ・ 千島海溝南西端は、日本海溝との島弧会合部に位置し、その会合部(衝突帯)では、日高山脈が形成されている(日高造山運動)(木村(2002))。
- 日高山脈の地下深部において、千島弧は、下部地殻内で上下に裂けて分離(デラミネーション)し、上部地殻を含めた上半分は日高主衝上断層によって 西側に衝上し、上部マントルを含めた下半分は下降している。また、東北日本弧は、その分離(デラミネーション)した千島弧の中へウェッジ状に突入している (伊藤(2000))。



(伊藤(2000)に一部加筆)

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.1 構造的特徴に関する検討:日本海溝・千島海溝島弧会合部

・ Liu et al.(2013), 文部科学省(2008)は, 地震波トモグラフィによる日本海溝と千島海溝の島弧会合部付近の3次元地殻不均質構造と既往地震発生領域の 関係から, 日高衝突帯における下部地殻の剥落に相当する低速度領域が, 破壊のバリアになる可能性を示唆している。



<u>国内外で発生している巨大地震の破壊領域に関する知見から、日本海溝・千島海溝の島弧会合部は、巨大地震の破壊のバリアとなる地下構造の不連続性</u> を示す構造的特徴と考えられる。

1.1.2 波源域及びすべり量に関する検討

#### 第989回審査会合(R3.7.9) 資料1-1 p29 再掲 27

## 1.1.2.1 構造的特徴に関する検討:納沙布断裂帯

Kasahara et al.(1997)は、南千島沖の領域では、納沙布断裂帯(Nosappu FZ)及び択捉断裂帯(Iturup FZ)と呼ばれる構造線が存在し、これらを境界として、
 地磁気線状配列や正断層系が異なる特徴が確認されるとしている。また、納沙布断裂帯では、その両側で堆積厚さが異なるとともに、地下構造の不連続性が見られることから、この古い海洋プレートの構造が現在の地震活動ブロック構造(Barrier)を支配する要因の1つと考えられるとしている。



国内外で発生している巨大地震の破壊領域に関する知見から、納沙布断裂帯は、巨大地震の破壊のバリアとなる地下構造の不連続性を示す構造的 特徴と考えられる。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

| 第989回審査会合(R3.7.9) |    |
|-------------------|----|
| 資料1-1 p30 再掲      | 28 |

## 1.1.2.1 構造的特徴に関する検討:千島前弧スリバー

- 太平洋プレートは、千島海溝に斜めに沈み込んでおり、それに伴いBussol海峡~十勝沖の範囲において千島前弧スリバーが形成され、背弧側とは別の 剛体運動をしている(Demets(1992)他)。
- ・ 千島前弧スリバーの北端位置は、1963年の地震と2006年の地震の境界に一致する(文部科学省(2012))。





津波波形インハーションにより推定した根室半島沖~中十島沖で 発生した地震のすべり分布 (文部科学省(2012))

<u>国内外で発生している巨大地震の破壊領域に関する知見から、千島前弧スリバー北東端は、巨大地震の破壊のバリアとなる地下構造の不連続性を</u> <u>示す構造的特徴と考えられる。</u>

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.1 構造的特徴に関する検討:まとめ

- 国内外で発生している巨大地震の破壊領域に関する知見,並びに千島海溝沿いのテクトニクス的背景,地震の発生機構の類似性から考えられる 構造的特徴(破壊のバリア)に関する検討結果を左下図に示す。
- ・ なお,千島海溝沿いの構造的特徴のうち,日本海溝・千島海溝島弧会合部〜納沙布断裂帯の領域は,地震調査研究推進本部(2004, 2017a),内閣 府中央防災会議(2006),文部科学省(2013a)が評価している超巨大地震(17世紀型)の波源域(十勝沖〜根室沖)(右下図)と整合的である。





第989回審査会合(R3.7.9)

資料1-1 p31 再掲

29



第989回審査会合(R3.7.9) 資料1-1 p32 再掲 30

1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:M9クラスの巨大地震を発生させる固着域に関する分析

#### ■地震学的,地質学的見地からの検討

地震発生履歴,津波堆積物調査等の知見収集の結果,世界のプレート境界面では複数の領域を震源域とするM9クラスの巨大地震が,百年~
 千年間隔で繰り返し発生している。

| 沈み込み帯               | 日本海溝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | チリ                                                                                                    | カムチャッカ                                                                                                                                                                                                                        | スマトラ                                                                                                      | カスケード                                                                                                                  | アラスカ・<br>アリューシャン                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 地震学的•<br>地質学的<br>見地 | <ul> <li>・過去にM9クラスの巨大地震が発生<br/>(=超巨大地震(東北地方太平洋沖型))。</li> <li>・宮城県沖南部~茨城県沖の領域を<br/>震源として,約600年間隔で繰り返し<br/>発生している。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>・過去にM9クラ<br/>スの巨大地震が<br/>発生<br/>(=1960年)。</li> <li>・約300年間隔で<br/>繰り返し発生して<br/>いる。</li> </ul> | <ul> <li>・過去にM9クラ<br/>スの巨大地震が<br/>発生<br/>(=1952年)。</li> <li>・約100~400年<br/>間隔で繰り返し<br/>発生している。</li> </ul>                                                                                                                     | <ul> <li>・過去にM9クラ<br/>スの巨大地震が<br/>発生<br/>(=2004年)。</li> <li>・約400~500年<br/>間隔で繰り返し<br/>発生している。</li> </ul> | <ul> <li>・過去にM9クラ<br/>スの巨大地震が<br/>発生<br/>(=1700年)。</li> <li>・約500年間隔で<br/>繰り返し発生して<br/>いる。</li> </ul>                  | <ul> <li>・過去にM9クラ<br/>スの巨大地震が<br/>発生<br/>(=1964年)。</li> <li>・約600年~1000<br/>年間隔で繰り返<br/>し発生している。</li> </ul> |
| 震源域                 | 10       142       144       145         67       0       0       0       0         67       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | ·<br>·<br>·<br>· ·<br>·<br>·                                                                          | 60 <sup>°</sup><br>30 <sup>°</sup><br>30 <sup>°</sup><br>30 <sup>°</sup><br>60 <sup>°</sup><br>60 <sup>°</sup><br>60 <sup>°</sup><br>60 <sup>°</sup><br>60 <sup>°</sup><br>60 <sup>°</sup><br>120 <sup>°</sup><br>EDスケードの地震規模 | 2-Kamchatka<br>1964<br>2 2011 Tohoku<br>M 9.0<br>180 <sup>°</sup><br>(佐竹 (2013) に一部加<br>については, Satake et  | Alaska<br>1700カスケード<br>Mws.0前後*<br>1960 Chile<br>1960 Chile<br>M.9.5<br>-120° -60°<br>筆)<br>al.(2003), Witter et al.(2 | 2012)を参考に記載。                                                                                                |



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

#### 1.1.2.2 固着域, すべり量に関する検討:M9クラスの巨大地震を発生させる固着域に関する分析

#### ■測地学的見地からの検討

- 日本海溝沿いで比較的長期にわたって認められる特徴として、宮城県沖のすべり欠損速度が他領域と比較して大きく固着が強い(カップリングが大きい) 傾向にあり、かつM9クラスの巨大地震の震源域と調和的である(地震調査研究推進本部(2012), Ozawa et al.(2011))。
- 西村(2013)は、固着が強いプレート境界と20世紀以降の巨大地震の発生域の関係を整理し、M9クラスの巨大地震は、全てカップリング係数※が中程度以上の特定の地域で発生していることを示している。※:すべり欠損速度をプレート相対運動速度で割ったもの。



以上から、世界のプレート境界面には、数百年間隔で繰り返しM9クラスの巨大地震を発生させる(歪みを蓄積する)特定の固着域が存在する。

第989回審査会合(R3.7.9) 資料1-1 p34 再掲 **32** 

- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

■日本海溝沿い:3.11地震(宮城県沖)①

- (1)3.11地震後の応力状態
- 地震学的・地球物理学的見地から、3.11地震の発生により、それを引き起こした歪みはほぼ解放されたと考えられ(Hasegawa et al.(2012)、 JAMSTEC(2013)他)、超巨大地震(東北地方太平洋沖型)は、その繰り返し間隔から、地震発生の都度歪みを解放する(すべり量に上限をもった)地震と捉えることが可能と考えられる。



第989回審査会合(R3.7.9) 資料1-1 p35 再掲 33

1.1.2 波源域及びすべり量に関する検討

#### 1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

■日本海溝沿い:3.11地震(宮城県沖)②

(2)過去の巨大地震の規模の比較

- ・ 菅原ほか(2011,2013)は、「超巨大地震(東北地方太平洋沖型)」のうち869年の津波と3.11地震津波の仙台平野における浸水域の比較を行い、両者がほと んど重なることを示した。
- 石巻平野においても、869年の津波と3.11地震に伴う津波による津波堆積物の到達限界は、ほぼ同規模であり(澤井ほか(2007, 2008)、行谷ほか(2010)、
   宍倉ほか(2007, 2012))、869年の津波堆積物は、3.11地震に伴う津波と同様、広範囲で確認されている(文部科学省研究開発局ほか(2010))。
- 以上より、869年の地震発生後も3.11地震と同様に、宮城県沖の固着域に蓄積されていた歪みの大きな解放があったものと推定され、超巨大地震(東北地 方太平洋沖型)がその都度歪みを解放し、すべり量に上限をもった地震と捉えることと整合する。



140°56' -140°58' 1/1000 東北沖津波の浸水域 最も内陸で見つかった 貞観津波の堆積物 シミュレーションによる 貞観津波の浸水域 38°14' 貞観当時の海岸線 卣山堀 浸水域の実質的な差 仙台湾 山台東部道路 38°12' km 2 1 仙台平野における869年の津波と3.11地震に伴う津波の浸水域の比較 (菅原ほか(2013))

ションションション

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

#### 1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

■日本海溝沿い:3.11地震(宮城県沖)③

(3)スーパーサイクル

 佐竹(2011a, 2011b)は、3.11地震のすべり量分布と、地震調査研究推進本部(2002)が想定していた固有地震(宮城県沖、三陸沖南部海溝寄り)の平均発 生間隔及びすべり量から、固有地震のすべり残しがプレート間の固着として蓄積され、より長い間隔で超巨大地震として解放されると考えると、宮城県沖や 三陸沖では従来の地震サイクルの上に、より長い周期のサイクル(スーパーサイクル)があるとしている。



#### 日本海溝沿いの各領域における固有地震と3.11地震のすべり量と発生間隔



以上から、日本海溝沿いにおいて約600年間隔で繰り返しM9クラスの巨大地震を発生させる宮城県沖の固着域で蓄積する歪みの量には限度が あり、3.11地震に伴う大きなすべり量は最大規模と評価される。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

#### ■世界①

- (1) 地震学的・地質学的・測地学的見地からの検討
- プレート境界毎にM9クラスの巨大地震の平均発生間隔(A)・既往地震のすべり量(B)の関係と各プレートの沈み込み速度・カップリング係数から算定されるすべり(歪み)の蓄積量(C)を比較した結果,両者には調和的な関係があり,M9クラスの巨大地震を発生させるすべり(歪み)の蓄積量には限度があると考えられる。

【チリにおける分析結果】



第2図 Maullin において観察される津波堆積物とその履歴, Cisternas et al. (2005)<sup>3)</sup>に基づく、

Figure 2, Tsunami deposit observed in Maullin and its history, Based on Cisternas et al. (2005).



✓ すべり(歪み)の蓄積量(C)
 ①プレートの沈み込み速度:6.3-7.5cm/年(McCaffrey(2008))
 ②カップリング係数:0.82~1.0(地震学的)
 0.96(測地学的) (Scholz and Campos(2012))
 ③すべり(歪み)の蓄積量:①(6.3-7.5cm/年)×385年(1960-1575)
 ×②(=1.0とする)=24~29m

アラスカ・ チリ カムチャッカ スマトラ カスケード 備考 アリューシャン 平均発生間隔 地震学的・地質学的知見から 約300年 約100~400年 約400~500年 約500年 約600~1000年 得られる平均発生間隔 (A) 既往地震の 既往地震:1960年 既往地震:2004年 既往地震:1700年 既往地震:1964年 既往地震:1952年 地震学的・地質学的知見から 最大すべり量 すべり量:25~30m すべり量:11.4m すべり量:23m すべり量:19m すべり量:22m 得られる最大すべり量 (B) ξţ ζÇ ξÇ 調和的な関係がある。 ŹÇ すべり(歪み)の プレートテクトニクス、地震学的・ 385年間で 400年間で 500年間で 500年間で 1000年間で 蓄積量 測地学的知見から得られるすべ 24~29m 14~17m 4~22m 16~19m 13~31m り(歪み)の蓄積量 (C)

(宍倉(2013))
1.1.2 波源域及びすべり量に関する検討

第989回審査会合(R3.7.9) 資料1-1 p38 再掲

1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

### ■世界②

Sl. no.

#### (2) 巨大地震発生領域の時空間分布

Year

・ 世界のM9クラスの巨大地震発生領域は互いに重複せず,各プレート境界面の限定的な領域において数百年間隔で繰り返し発生している。

#### 【環太平洋全域】

Region

> 環太平洋全域におけるプレート境界面で1906年から2012年に発生した M8.5以上の巨大地震の発生領域は互いに重複していない。

Magnitude

| I | チリ | ーペ | ル  | 一沖  |
|---|----|----|----|-----|
|   | 17 |    | 12 | /T. |

セグメント毎に数十年以上の間隔で繰り返し地震が発生しており,1940年 以降発生したM8~9クラスの地震の発生領域は互いに重複していない。 また,M9クラスの巨大地震は、限定的な領域において約300年間隔で繰り 返し発生している(1575年,1960年)。



以上から、世界のM9クラスの巨大地震はそれぞれ限定的な領域で発生しており、各固着域で蓄積する歪みの量は、宮城県沖と同様に限度があると 考えられる。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

1.1.2.2 固着域, すべり量に関する検討:国内外で発生したM9クラスの巨大地震のすべり量に関する分析

### ■まとめ

- ・ 地震学的・地質学的・測地学的知見から、国内外で発生しているM9クラスの巨大地震は、限定的な領域で発生し、各固着域で蓄積する歪み量(すべり量)には限度があると考えられる。
- 上記知見を参考に、青森県東方沖及び岩手県沖北部、千島海溝沿いにおける固着の程度、並びに青森県東方沖及び岩手県沖北部、十勝沖・根室 沖で発生し得る最大すべり量について検討する。



(地震調査研究推進本部(2017a, 2019)に一部加筆) ※:岩手県沖南部,福島県沖・茨城県沖,房総沖の固着域,ならびに低地震活動域に関する検討結果の詳細は,補足説明資料 「I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 1.固着域,すべり量に関する検討」に記載。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:青森県東方沖及び岩手県沖北部

### ■固着度に関する検討

- ・ 青森県東方沖及び岩手県沖北部では、平均発生間隔約97.0年で繰り返しM8クラスの地震が発生している(1677年、1763年、1856年、1968年)(地震調査研
   の推進本部(2019))。
- Yamanaka and Kikuchi(2004), 永井ほか(2001)は、アスペリティ分布の解析から、青森県東方沖及び岩手県沖北部のアスペリティ(右図:AとB)のうち、1968 年の地震と1994年の地震の共通アスペリティ(右図:B)のカップリング率はほぼ100%であるとしている。また、個々のアスペリティが単独で動けばM7クラスの地震(=1994年)を、連動するとM8クラスの地震(=1968年)を引き起こすとしている。
- 地震調査研究推進本部(2012)は、上記知見を引用し、3.11地震が青森県東方沖及び岩手県沖北部の手前で破壊が止まったのは、この領域では過去の大 地震で歪みをほとんど解放してしまったためと考えれば説明可能としている。



ションション

第989回審杳会合(R3.7.9)

資料1-1 p40 再掲

38

1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:青森県東方沖及び岩手県沖北部

### ■すべり量に関する検討:地震学的・測地学的見地

青森県東方沖及び岩手県沖北部で繰り返し発生するM8クラスの地震の平均発生間隔(A)・既往地震のすべり量(B)の関係と、プレートの沈み込み速度・カップリング係数から算定されるすべり(歪み)の蓄積量(C)を比較した結果、両者には調和的な関係がある。

#### 【平均発生間隔(A)】

• 約97.0年

#### 青森県東方沖及び岩手県沖北部の繰り返し発生するプレート 間地震の発生間隔等(地震調査研究推進本部(2019))

表3-2 青森県東方沖及び岩手県沖北部のプレート間巨大地震の発生領域、震源域の形 態、発生間隔等

| 項目                           | 特性                 | 根 拠                            |
|------------------------------|--------------------|--------------------------------|
| (1) 地震の発生領域                  | 図1の当該領域。           | 震源域は、1968年十勝沖地震についてのアス         |
| の目安                          |                    | ペリティモデル (永井・他, 2001)、過去の       |
|                              |                    | ほかの震源モデル、余震分布等を参照して、           |
| <ul><li>(2) 震源域の形態</li></ul> | 陸側のプレートと太平洋プレー     | 総合的に判断した。                      |
|                              | トの境界面。低角逆断層型。      |                                |
| AND AND ADDRESS AND          |                    |                                |
| (3) 震源域                      | 深さは、約60km以浅。       |                                |
|                              |                    |                                |
| (4) 震源断層面にお                  | 約N112° E           | 太平洋ブレートの陸側のブレートに対する相           |
| ける平均的なずれの                    | (陸側のプレートの太平洋プレ     | 対運動方向(DeMets et al. 2010)から推定し |
| 向き                           | ートに対するずれの向き)       | た。                             |
| (5)発生間隔等                     | 平均発生間隔 97.0年       | 1677年・1763年・1856年・1968年に当該領域   |
|                              | (BPT分布モデルを仮定した場    | において発生した、津波被害を伴った地震に           |
|                              | 合におけるばらつきαは0.11)   | ついて、平均発生間隔を算術平均で求めた。           |
|                              | 最新発生時期(1968年5月16日) |                                |
|                              | から2019年1月1日現在までの経  |                                |
|                              | 過時間 約50.6年         |                                |

## 【1968年十勝沖地震のすべり量(B)】 各アスペリティのすべり量(永井ほか(2001))

- アスペリティA:9.3m
- アスペリティB:6.5m<sup>※</sup>



アスペリティ位置 (Yamanaka and Kikuchi(2004))

※:アスペリティBは、1968年十勝沖地震 以外の地震でもすべりを生じることから アスペリティAと比較して、すべり量が小さい。





【すべり(歪み)の蓄積量(C)】

①プレートの沈み込み速度:6.2-8.1cm/年(McCaffrey(2008))

②カップリング係数:1.0(地震学的)(Yamanaka and Kikuchi(2004))

③すべり(歪み)の蓄積量:①(6.2-8.1cm/年)×97年 ×②(=1)=6~8m



1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:青森県東方沖及び岩手県沖北部

• 1968年十勝沖地震に伴うすべり量を上回るすべりが生じる可能性について, 3.11地震時に見られた宮城県沖のすべり様式に関する知見のうちダイナミック オーバーシュート(動的過剰すべり)(Ide et al.(2011)他)の観点から検証した。

### 【ダイナミックオーバーシュート(動的過剰すべり)】

- Ide et al.(2011)は, 3.11地震の地震波の解析に基づき,以下の見解を示している。
- ✓ 3.11地震は、①浅部の比較的静かなすべり、②深部における高周波を放射する破壊の2つの破壊モードからなる。
- ✓ このうち、①のすべりは地震以前に蓄えられていたひずみを解放するだけではなく、さらにすべり過ぎたことが、地震直後に陸側プレート内で正断層地震が 発生したことから推定される。これがダイナミックオーバーシュート(動的過剰すべり)と呼ばれる現象である。
- ✓ 浅部のダイナミックオーバーシュートは、それに先立つ深部のエネルギッシュな破壊により励起された。深部側の破壊が存在しなければ、巨大な津波は発生しなかった。





(Ide et al.(2011))

時間毎の破壊過程の模式図(井出(2011))

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

第989回審杳会合(R3.7.9) 資料1-1 p43 再掲

1.1.2.2 固着域, すべり量に関する検討:青森県東方沖及び岩手県沖北部

■すべり量に関する検討結果の検証:ダイナミックオーバーシュート

- 3.11地震で大きなすべりを生じた要因について、長谷川(2015)は、「①プレート境界最浅部は剛性率が小さい付加体であり、この付加体の幅は宮城県沖が 最も狭いとともに(Tsuru et al.(2002))、②海底地震計による余震分布(Obana et al.(2013)、下図)等から、海溝軸から陸側に少なくとも30~35km程度まで は固着は強くないと考えられる。したがって、宮城県沖の大きなすべりは、本震による断層面での食い違いに伴う弾性的な静的応答のみでなく、その他の 非弾性的な応答や動的応答も含まれたものであることを示唆する。」としている。
- また、文部科学省(2014)は、「3.11地震の際に大きく滑った海溝軸近傍のプレート境界で、本震の前後ともに小地震の活動が見られないことは、そこで 自発的な震源核形成が起こらないことを示唆する。」としている。



Fig. 1. Bathymetric map showing the locations of ocean bottom seismographs (OBSs) used in this study and total slip distribution larger than 10 m of the 2011 Tohoku-Oki earthquake (Yagi and Fukhata, 2011). The star is the initial rupture location of the Tohoku-Oki earthquake (Chu et al., 2011). The open diamonds and the open squares are the location of short-period OBS (SPOBS) and broad-band OBS (BBOBS), respectively, used in this work. The BBOBS with uncorrected clock is indicated by the solid square. The red dashed rectangle indicates the grid-search area for the hypocenter locations. The red solid line is the survey line for the crustal structure (Ito et al., 2005; Kodaira et al., 2012) and the differential topography (Fujiwara et al., 2011). The dotted line indicates the axis of the Japan Trench.

海底地震計の設置位置と3.11地震のすべり分布 (Obana et al.(2013))



Fig. 2. Hypocenters and error ellipsoids of the earthquakes. Earthquakes within the red dotted rectangle on the map were projected onto the P-wave velocity model used for locating earthquakes (Ito et al., 2005). The top of the oceanic crust is indicated by the dotted line on the cross section. Symbols are the same as Fig. 1.

3.11地震の余震分布とP波速度構造の関係 . (Obana et al.(2013))

以上から、3.11地震の大きなすべりは、①付加体の幅、②プレート境界深部の固着の程度と関係していると考えられる。

1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:青森県東方沖及び岩手県沖北部

■すべり量に関する検討結果の検証:①付加体の幅とすべり量の関係

- Kozdon and Dunham(2013)は、3.11地震ではプレート境界浅部でもすべりが発生したことに着目し、地震探査で得られた宮城県沖の地震波速度構造を模した沈み込みプレート境界モデルを用いた2次元動的破壊シミュレーションを実施した。付加体の幅の違いがプレート境界浅部のすべり量に与える影響を検討しており、付加体の幅が小さいほどプレート境界浅部のすべり量が増大する傾向があるとしている。
- Tsuru et al.(2002)は日本海溝の沈み込み帯におけるマルチチャネル反射法地震探査結果から、青森県東方沖及び岩手県沖北部の付加体(P波速度:3~ 4km/s以下の領域)の幅は宮城県沖よりも広いとしている。
- 以上より、青森県東方沖及び岩手県沖北部においてダイナミックオーバーシュートが発生したとしても、そのすべり量は3.11地震のすべり量よりも小さいと考えられる。



**Figure 11.** (a) Influence of horizontal extent *W* of shallow velocity-strengthening region on cumulative slip (plotted every 5 s). Shown for maximum effective normal stress  $\bar{\sigma}_{max} = 40$  MPa and seismogenic depth D = 45 km. (b) Horizontal and (c) vertical seafloor displacement compared with various observations (dashed line). The color version of this figure is available only in the electronic edition.

動的破壊シミュレーションによる付加体の幅と 断層すべり量,水平・上下変位の関係 (Kozdon and Dunham(2013)に一部加筆)

Figure 17. Map view of the low velocity sedimentary units observed on MCS sections in the Japan Trench margin. Small dots represent background seismicity taken from JMA (Japan Meteorological Agency HypoCatalog.

日本海溝沿いにおける付加体(低速度堆積物)の分布 (Tsuru et al.(2002)に一部加筆)



1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域. すべり量に関する検討:青森県東方沖及び岩手県沖北部

■すべり量に関する検討結果の検証:②プレート境界深部の固着の程度

- 地震学的見地から、青森県東方沖及び岩手県沖北部の固着の程度は宮城県沖と比較して小さく、3.11地震と同規模のすべりを発生させる固着域ではないと考 えられるが、定量的に確認するため、スーパーサイクルの概念から算定される歪みの蓄積年数と国内外で発生している巨大地震の平均発生間隔を比較した。
- ・ 青森県東方沖及び岩手県沖北部の各アスペリティ(左下図:A. B)について、プレートの沈み込み速度、すべり量及び平均発生間隔から算定されるすべり欠損 を用いて、3.11地震のすべり量30~50mを生じるために必要な歪みの蓄積年数を算定すると、アスペリティAについてはすべり欠損がほぼ無く、アスペリティBに ついては約2100~3500年と非常に長いことから、約97.0年間隔で繰り返し発生する青森県東方沖及び岩手県沖北部の地震でほぼ歪みを解放する領域と考え られる。
- 以上から、3.11地震と同規模のすべりを生じる可能性は低いと考えられる。

【311地震と同規模のすべりを生じるための歪みの蓄積年数の算定】

| アスペリティ | すべり残り*1<br>S(cm/年) | 3.11地震の<br>すべり量(m) | すべりに必要な<br>歪みの蓄積年数<br>D/S(年) |
|--------|--------------------|--------------------|------------------------------|
| А      | 0                  |                    | —                            |
| В      | 1.4                | 30∼50m             | <u>2140~3570</u>             |

42N 1968M 1994 1931 1989 1960 1968A 1981 1937 1936 アスペリティAのすべり量:9.3m アスペリティBのすべり量:6.5m<sup>※2</sup> 37N 140E 145E ※2:アスペリティBは、1968年十勝沖地震以外の 地震でもすべりを生じることから、アスペリティAと アスペリティ位置 比較して、すべり量が小さい。

(Yamanaka and Kikuchi(2004))

#### ※1:すべり残りの算定

すべり残り(S)=プレートの沈み込み速度 - (すべり量/平均発生間隔)

- ✓ プレートの沈み込み速度:8.1(cm/年) (McCaffrev(2008))
- √ すべり量(永井ほか(2001)): アスペリティA:930cm
  - アスペリティB:650cm
- √ 平均発生間隔:97(年)(地震調査研究 推進本部(2019))

第989回審査会合(R3.7.9) 資料1-1 p45 再掲

43



【国内外で発生している巨大地震の平均発生間隔】



(佐竹(2013)に一部加筆)

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域,すべり量に関する検討:青森県東方沖及び岩手県沖北部

■すべり量に関する検討結果の検証:まとめ

- 1968年十勝沖地震に伴うすべり量を上回るすべりが生じる可能性について、3.11地震時に見られた宮城県沖のすべり様式に関する知見のうちダイ ナミックオーバーシュートの観点から検証した。
- 検討の結果, 1968年十勝沖地震に伴うすべり量を上回るすべりが生じる可能性は低く, 同地震に伴うすべり量を最大規模と評価することが妥当であることを確認した。

| 3.11地震の大きなすべりの要因 | 青森県東方沖及び岩手県沖北部                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------|
| 付加体の幅            | 宮城県沖と比較して付加体の幅が広く,仮に深部のすべりを起因とするダイナミッ<br>クオーバーシュートが発生したとしても,そのすべり量は3.11地震のすべり量より<br>も小さいと考えられる。     |
| プレート境界深部の固着の程度   | 国内外で発生した巨大地震の平均発生間隔から、3.11地震と同規模のすべり<br>(30m~50m)を生じるための歪みは蓄積できない(青森県東方沖及び岩手県沖北<br>部の地震でほぼ歪みは解放する)。 |

#### 検討結果の概要



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

■既往地震の震源域(1)

- ・ 千島海溝沿いでは、ほぼ空白域無くM8クラス以上の地震が発生している(文部科学省(2007))。
- ・ 日本海溝・千島海溝沿い(十勝沖〜択捉島沖)のアスペリティ分布を右下図に示す(内閣府中央防災会議(2006))。



※2:1968Tokachi(=1968年十勝沖地震)の誤記と考えられる。



### 日本海溝・千島海溝沿い(十勝沖~択捉島沖)のアスペリティ分布 (内閣府中央防災会議(2006))



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

■既往地震の震源域(2)

 地震調査研究推進本部(2017a)では、千島海溝沿いのうち十勝沖・根室沖・色丹島沖・択捉島沖の地震について、歴史資料、観測記録、津波堆 積物調査結果を踏まえ、各領域でM8程度のプレート間地震が繰り返し発生し、それらの平均発生間隔を下表のとおり整理している。



千島海溝沿いの評価対象領域(地震調査研究推進本部(2017a))



超巨大地震(17世紀型)の震源域(Ioki and Tanioka(2016))

| 地震の発生領域及び様式   | 平均発生間隔    |
|---------------|-----------|
| 十勝沖           | 80.3年     |
| 根室沖           | 65.1年     |
| 色丹島沖及び択捉島沖    | 35.5年     |
| 超巨大地震(17世紀型)* | 約340~380年 |

千島海溝沿いの地震の平均発生間隔

※:超巨大地震(17世紀型)の発生領域について,地震調査研究推進本部(2017a)では,「根室沖を含む領域で発生した可能性がある」とし,具体的な 発生領域については明記されていないが, Ioki and Tanioka(2016)では,十勝沖~根室沖を超巨大地震(17世紀型)の震源域と推定している。



第989回審査会合(R3.7.9) 資料1-1 p49 再掲

47

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

■固着度に関する検討:地震学的・地質学的見地

- 千島海溝沿いのうち十勝沖から根室沖の領域については、津波堆積物調査から巨大津波が発生していることが確認されており、最新の事例としては17世 紀に発生している。これ以外にも、過去6500年の間に10数回の発生が確認されている。
- ・ 文部科学省(2013a)では、最新の津波堆積物調査結果(調査地点:浦幌、キナシベツ、音別、厚岸、根室、根室海峡沿岸の別海)を踏まえた17世紀に発生した
   た巨大地震の断層モデルの再検討を行い、波源域を十勝沖~根室沖、地震規模をMw8.8と評価している。



(内閣府中央防災会議(2006)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

## ■固着度に関する検討:地震学的見地

- 東北大学(2012)は、小繰り返し地震(相似地震)の活動及びそれから推定されるプレート間地震すべりについて、3.11地震で大きなすべりを生じた 宮城県沖における特徴との類似性から、十勝沖・根室沖で巨大地震が発生する可能性があるとしている。
- また、日本海溝・千島海溝島弧会合部付近の低地震活動(下図:第1図空白域B)は、プレートの折れ曲がりが影響している可能性も考えられるとしている。



第1図. 北海道南東沖の小繰り返し地震グループの分布(丸印). 丸の色はグループの地震の平均の深さを 示す. コンターは Yamanaka and Kikuchi (2004)<sup>の</sup>による M7 以上の地震のすべり量分布. 矩形は第3 図で平均の積算すべりを推定した領域を示す. 黄色楕円は繰り返し地震活動が低い場所.

東北大学(2012)



12) 第2図. 北海道南東沖(左)および東北地方東方沖(右)の繰り返し地震分布(黒丸)およびそれにより推定したプレート間カップリング率(カラー)の比較. カップリング率は 0.3°×0.3°のグリッドごとに、3 つ以上の小繰り返し地震グループが存在する場所について推定した. 緑および黒のコンターはM7以上の地震のすべり量分布(Yamanaka and Kikuchi, 2004<sup>6</sup>); linuma et al., 2012<sup>7</sup>). 関東地方の沖の破線は、フィリピン海プレートの北東限(Uchida et al., 2009<sup>8</sup>).

東北大学(2012)

#### 【宮城県沖における特徴】

- 特徴①:大すべり域を中心とする広域で高いカップリング率が推定される。
- 特徴②:プレート境界型地震の発生域下限付近まで高カップリング領域が存在。
- 特徴③:プレート境界型地震の発生下限付近でのM7クラスの地震(の繰り返し)が存在。 特徴④:海溝近傍の低地震活動と低繰り返し地震活動。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

### ■ 固着度に関する検討:測地学的見地

 国土地理院(2012)は、1999年9月から2003年8月までと2007年3月から2011年2月までのすべり欠損速度分布から、両期間で、釧路沖の海溝寄りと 根室沖の陸寄りに強い固着領域が推定され、その広がりから巨大地震の潜在的発生可能性を有する地域と言うことができるとしている。





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

1.1.2.2 固着域, すべり量に関する検討:千島海溝沿い

■すべり量に関する検討:地震学的・測地学的見地

・「超巨大地震(17世紀型)」の発生間隔(A)・地震のすべり量(B)の関係と、プレートの沈み込み速度・カップリング係数から算定されるすべり(歪み)の蓄積量(C)を比較した結果、両者には調和的な関係がある。

#### 【発生間隔(A)】

・ 12~13世紀の発生から400~500年

| 上勝地均          | <b></b> の津波 |         | 根室地        | 域の津波        |
|---------------|-------------|---------|------------|-------------|
|               | 発生時期        | 再来間隔    | 発生時期       | ]           |
|               | (cal.B.P.)  | (年)     | (cal.B.P.) |             |
| 津波1           | 17世紀初頭-     |         |            | 一津波1        |
|               |             | 400~500 |            |             |
| 津波2           | 12~13世紀-    |         |            | 一津波2        |
| o the disc    | 0.444.62    | 300~400 |            | 30 th th o  |
| 津波る           | 912110      | 500     |            | 一津波る        |
| 津波4           | 1630-(4世紀?  | )       | 1430+      | 津波4         |
|               |             | (300+)  | ?          | 津波5         |
| 津波5           | AD/BC?      |         | 1930+      | 津波6         |
|               |             | (500+)  | ?          | 津波7,8       |
| 津波6           | 2590        |         | 2440+      | 津波9         |
| ****          | 0070 0000   | 300+    |            | *****       |
| 洋波/           | 2870~2920   | 400+    |            | 洋波10        |
| 津波8           | 3220~3460-  | 400+    | 3340+      | <b>津波1</b>  |
| +100          | OLLO 0100   | 400     | 0010       | 17 112 12   |
| 津波9           | 3690~3720-  |         | 3830+      | 津波13        |
|               |             | 500+    |            |             |
| 聿波10          | 4200+       | 222     | 4300+      | 津波14        |
|               |             | 300~350 |            | sub-sub-car |
| 丰波11          | 4580 —      | 000     | 4700+      | 津波15        |
| <b>非</b> 波12  | 4960+       | 300     | 4020+      | 津波16        |
| <b>千/</b> 次12 | 40001       | 100     | 4000       | /年/以10      |
| 聿波13          | 5000        | 100     | 4980+      | 津波17        |
|               |             | >600    |            |             |
| 聿波14          | 5640+       |         | ?          | 津波18        |
|               |             | 600     |            |             |
| 聿波15          | 6370-       |         |            |             |

(内閣府中央防災会議(2006))



【17世紀初頭の地震のすべり量分布(B)】

(文部科学省(2013a))

## 【すべり(歪み)の蓄積量(C)】

 ①プレートの沈み込み速度:6.9-8.2cm/年(McCaffrey(2008))
 ②カップリング係数:0.59(地震学的)(Scholz and Campos(2012))
 ③すべり(歪み)の蓄積量:①(6.9-8.2cm/年)×400~500年 ×②(=0.59)=<u>16~24m</u>





以上から、十勝沖・根室沖の固着域で蓄積する歪みの量は、国内外で発生しているM9クラスの巨大地震と同様に限度があると考えられ、 「超巨大地震(17世紀型)」のうち17世紀初頭の地震に伴うすべり量は最大規模と評価される。



第989回審査会合(R3.7.9) 資料1-1 p53 再掲

51

- 1.1.2 波源域及びすべり量に関する検討
- 1. 1. 2. 2 固着域, すべり量に関する検討:まとめ
- 国内外で発生しているM9クラスの巨大地震に関する地震学的・地質学的・測地学的知見を参考に検討した青森県東方沖及び岩手県沖北部,千島 海溝沿いにおける固着域,最大すべり量に関する評価結果を以下に示す。



アリューシャン

各領域における固着度に関する検討結果 (地震調査研究推進本部(2017a, 2019)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.3 破壊伝播に関する検討:検討方針

 
 ・ 青森県東方沖及び岩手県沖北部、十勝沖・根室沖の固着域を起点(震源)とする破壊(地震)が、構造的特徴(破壊のバリア)を跨ぎ、隣接するセグメントまで 伝播する可能性について、①断層セグメント間の相互作用に関する検討、②2004年スマトラ~アンダマン地震の発生様式※を踏まえた検討から評価する。
 ※:スマトラ島沖は、千島海溝沿いと同様にほぼ空白域無く既往地震が発生している沈み込み帯であり、2004年スマトラ~アンダマン地震は、スマトラを起点(震源)として隣接する セグメントへ破壊が伝播した巨大地震である。



各領域における固着度に関する検討結果 (地震調査研究推進本部(2017a, 2019)に一部加筆)



第989回審査会合(R3.7.9)

資料1-1 p54 再掲

52

#### Figure 10

Map of the Sunda margin showing approximate regions of coscismic slip and regions where the subduction fault may have been locked prior to 2004. Slip patches are labeled by year of earthquake occurrence. Regions of fault that may have been locked prior to 2004 are compiled from Pravirodirdjo et al. (1997) and McCaffrey (2002). Landward (downdip) locking extent estimates (*thick blue lines*) are from Zachariasen et al. (1999) and Natawidjaja et al. (2007) for the Mentawai Islands region and from Natawidjaja et al. (2004) for the Batu Islands region. Earthquake slip sources: 1847, 1881, and 1947 Andaman from Bilham et al. (2005); 1861, 1906, 1907, and 1914 Sumatran forearc from Newcomb & McCann (1987); 1797 and 1833 from Natawidjaja et al. (2006); 2004 slip from Briggs et al. (2006); 2007 slip from USGS seismological slip models at http://earthquake.usgs.gov/ regional/world/historical.php. Historic slip patches on the Sumatran fault are from Sorensen (2008).

スマトラ島沖における既往地震の発生領域 (McCaffrey(2009))



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

1.1.2.3 破壊伝播に関する検討:断層セグメント間の相互作用に関する検討

 活断層の連動時における断層セグメント間の相互作用に関する知見(遠田(2004))を踏まえると、 歪みを蓄積する量に限度がある青森県東方沖及び 岩手県沖北部、十勝沖・根室沖の固着域を起点(震源)とする破壊(地震)が、既往最大規模の地震よりもさらに応力を高め、構造的特徴(破壊のバリ ア)を跨ぎ、隣接するセグメントまで伝播する(活動を巻き込む)可能性は低いと考えられる。





第989回審杳会合(R3.7.9) 54 資料1-1 p56 再掲

1.1.2 波源域及びすべり量に関する検討

## 1. 1. 2. 3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

### ■2004年スマトラ~アンダマン地震の破壊現象

- ・ 2004年スマトラ~アンダマン地震は、スマトラ島沖を震源としてアンダマン諸島沖へ約1300km破壊が伝播したMw9.1~9.3の巨大地震であり、その メカニズム解は、低角の逆断層地震である(Lav et al.(2005))。
- ・ なお、同地震のすべり分布は、震源となったスマトラが最も大きく、北へ行くにつれて小さくなるものの、震源域全体に亘ってすべりが生じており(Lav et al.(2005), Subarya et al.(2006)), 大きなすべりが生じた領域が限定的であった3.11地震と対照的である。



から検討する。

第989回審査会合(R3.7.9) 資料1-1 p57 再掲 **55** 

- 1.1.2 波源域及びすべり量に関する検討
- 1.1.2.3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

■スマトラ島沖のテクトニクス的背景と破壊領域の端部(南東端)の関係

 2004年スマトラ〜アンダマン地震の震源域は、約500年間隔で繰り返し巨大地震が発生しており、いずれの地震も震源域の南に位置する構造的特徴 (破壊のバリア)を跨ぐ破壊伝播は生じていない。



Figure 9. (Right) Seismotectonic setting of the Sumatra-Andaman subduction zone showing rupture areas (shaded) of significant earthquakes. (Left) Their spatial and temporal rupture estimates. Faults marked on the overriding plate are EMF, WAF, SFS and ASR (from Natawidjaja<sup>51</sup>). Historical earthquake ruptures are shaded in grey (from refs 18, 53 and 55); the 2004 and 2005 ruptures are in red and yellow respectively (from Chlieh *et al.*<sup>61</sup>). EMF, Eastern Margin Fault, WAF, West Andaman Fault, ASR, Andaman Spreading Ridge; SFS, Sumatra Fault System.

スマトラ島~アンダマン諸島沖における過去の地震発生履歴 (Rajendran(2013))



Figure 4. Cartoon illustrating the segmentation of the 2004–2005 megathrust rupture in the Sumatra subduction zone around Simeulue Island. The accretionary complex removed for simplicity. CRZ: coseismic rupture zone; SP: Sunda plate. Other labels same as in Figures 2 and 3.

2004年と2005年の地震の境界部における地下構造の模式図 (Tang et al.(2013))



1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価 1.1.2 波源域及びすべり量に関する検討

- 第989回審査会合(R3.7.9) 資料1-1 p58 再掲 **56**
- 1.1.2.3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

■スマトラ島沖のテクトニクス的背景と破壊伝播方向の関係

 スマトラ島~アンダマン諸島沖は、インド・オーストラリアプレートがユーラシアプレートに斜めに沈み込むことにより、スマトラマイクロプレート、ビルママ イクロプレートが形成されており、2004年スマトラ~アンダマン地震の破壊の伝播方向は、前弧スリバーの運動方向と一致している(McCaffrey(2009)、 Lay et al.(2005))。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

1.1.2.3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

■千島海溝沿いのテクトニクス的背景からの検討

- 日本海溝・千島海溝の島弧会合部は、巨大地震の破壊のバリアとなる地下構造の不連続性を示す構造的特徴を有する。
- また、十勝沖・根室沖の固着域(超巨大地震(17世紀型)の発生領域)は、千島前弧スリバーの運動方向の末端に位置し、前弧スリバーの運動方向への破壊伝播の可能性は低いと考えられる。





2004年スマトラーアンダマン地震の破壊様式と日本海溝・千島海溝のテクトニクス的背景の比較から、十勝沖・根室沖の固着域を起点(震源)とする破壊が、 構造境界(破壊のバリア)を跨ぐ可能性は低いと考えられる。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1. 1. 2. 3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

#### ■巨大地震の破壊様式の分類からの検討①

Koyama et al.(2012),小山ほか(2012)は、3.11地震のほか、世界でM9クラスの巨大地震が発生している各海域の地震活動(セグメンテーション)、メカニズム解、破壊パターン、テクトニクス的背景等から、以下に示すとおり各巨大地震の破壊様式を分類している。

#### 【地震活動(セグメンテーション)】

#### ①along-dip double segmentation(ダブルセグメント)

- 島弧沿いに並んだ活発な地震活動と海溝沿いの不活発な地震活動帯が海溝軸に並行に二重に存在し、主要な破壊(大きなすべり)は海溝軸直交方向に進行する地震活動を示す。
- 海溝から島弧まで幅が広く、震源域を取り囲むような領域で、大きな地震前に地震活動が活発化する。
- 3.11地震, 1964年アラスカ·アリューシャン地震, 1952年カムチャッカ地震がこのタイプに分類される(詳細は, 次頁に示す)。

#### <u>②along-strike single segmentation(シングルセグメント)</u>

- プレート境界の浅部が強く固着し、海溝に沿って破壊が広がる地震活動を示す。
- ・ 地震活動域の幅が狭く、巨大地震が発生する前に震源域全体が鎮静化するseismic gap(地震空白域)が顕著に現れる。
- 2004年スマトラ〜アンダマン地震,1960年チリ地震,2010年チリ地震がこのタイプに分類される(詳細は,次頁に示す)。



Fig. 1. Seismic activity in Japan and its vicinity. a: Seismic segmentation used in the official earthquake forecasting<sup>4</sup> of the Evaluation of Major Subduction Zone Earthquakes by the Headquarters for Earthquake Research Promotion. The historically largest earthquake in each segment is indicated. by: Epicenters of earthquakes (yellow symbols classified by magnitude) from 1950 to 2010 with magnitudes given by Japan Meteorological Agency equal to, or larger than, 6.0 and focal depths equal to, or shallower than, 60 km. Trenches and troughs near Japan are illustrated by red curves. The 2011 Tohoku-oki megathrust earthquake ruptured the area circled by the solid ellipse, where along-dip double segmentation (ADDS) is obvious. Along-strike single segmentation (ASSS) can be found in the Nankai Trough, where little recent seismic activity has been observed. Such regions are often called seismic gaps. <sup>4</sup>http://www.j-shis.bosai.go.jp/map??lang=en (2010).

日本周辺の地震活動(Koyama et al.(2012))



Fig. 2. Seismic activity along the Chilean subduction zone. We notice sparse seismicity prior to the 1960 and 2010 great earthquakes (seismic gap) and a narrow seismically active area along the subduction zone. These are typical characteristics of ASSS. Epicenters relocated by Engdahl *et al.* (1998) are used from 1900 to 1972. From 1973 to July 2011, the USGS NEIC database<sup>5</sup> has been analyzed. <sup>5</sup>http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic.global.php.

チリの沈み込み帯における地震活動(Koyama et al.(2012))

第989回審杳会合(R3.7.9)

資料1-1 p60 再掲

第989回審査会合(R3.7.9) 資料1-1 p61 再掲 59

1.1.2 波源域及びすべり量に関する検討

## 1.1.2.3 破壊伝播に関する検討:2004年スマトラ~アンダマン地震の発生様式を踏まえた検討

### ■巨大地震の破壊様式の分類からの検討②

 ✓ Koyama et al.(2012)は、国内外の巨大地震を、①プレートの沈み込みの角度(Subduction)、②陸側プレートの特徴(Collision)、③地震活動 (Segmentation)の3つの指標を用いて分類している。

①Subduction:斜め衝突か正面衝突か ②Collision:上盤プレートが大陸か島弧・大陸の縁海か ③Segmentation:シングルセグメントかダブルセグメントか(詳細は前頁参照)

- ✓ 3つの指標から、世界の巨大地震を(1)1960年チリ型、(2)1964年アラスカ型、(3)2004年スマトラ型、(4)2011年東北沖型に分類している。
- ✓ 発生が懸念されている千島海溝沿いの地震は(右図Hokkaido), 2004年スマトラ型と同じく縁海を有する島弧(Margin)に対して斜め沈み込み帯 (Oblique)であるという特徴を有するが,破壊現象に大きな影響を及ぼす地震活動(Segmentation)は異なるとしている。

| Event           | <b>Overriding</b> Plate | Segmentation | Remarks               |
|-----------------|-------------------------|--------------|-----------------------|
| 2004 Sumatra*   | Continental Margin      | Single       | Oblique               |
| 1957 Andreanof  | Continental Margin      | Single       | Oblique               |
| 1960 Rat Island | Continental Margin      | Single       | Oblique               |
| 1060 Chile      | Continent               | Single       | Cordilleran Orogeny   |
| 2010 Chile      | Continent               | Single       | Cordilleran Orogeny   |
| 1964 Alaska     | Continent               | Double       | Cordilleran Orogeny   |
| 1952 Kamchatka  | Continental Margin      | Double       | Cordilleran Orogeny   |
| 2011 Tohoku-oki | Continental Margin      | Double       | Pacific-type Orogeny8 |

#### 世界で発生した巨大地震の比較(Koyama et al.(2012)に一部加筆)

\*Boldface indicates a typical end-member characterized by the category of single/double segmentation, orthogonal/oblique subduction and type of overriding plate/orogeny. <sup>7</sup>: Uyeda (1982); <sup>8</sup>: Maruyama (1997).



Fig. 7. Variability of megathrust earthquakes in terms of seismic segmentation (along-strike single segmentation, ASSS or along-dip double segmentation, ADDS), subduction zone geometry (orthogonal or oblique) and collision with continental plate or continental margin. Typical end-members of great earthquakes are plotted by solid circles with their year of occurrences. Possible future large earthquakes in Hokkaido and Nankai Trough (Fig. 1(b)) and the Cascade subduction zone are indicated by stars.

巨大地震の破壊様式の分類(Koyama et al.(2012) に一部加筆)

以上から、十勝沖・根室沖の固着域を起点(震源)とする破壊(地震)は、スマトラを起点として隣接するセグメントへ破壊が伝播した2004年スマトラ ~アンダマン地震とは破壊様式が異なると考えられる。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.2 波源域及びすべり量に関する検討

## 1.1.2.3 破壊伝播に関する検討:まとめ

①断層セグメント間の相互作用に関する検討、②2004年スマトラ〜アンダマン地震の発生様式を踏まえた検討から、青森県東方沖及び岩手県沖北部、十勝沖・根室沖の固着域を起点(震源)とする破壊(地震)が、構造的特徴(破壊のバリア)を跨ぎ、隣接するセグメントまで伝播する可能性は低いと評価する。



破壊伝播に関する検討結果 (地震調査研究推進本部(2017a, 2019)に一部加筆)



1.1.2 波源域及びすべり量に関する検討

1.1.2.4 まとめ

| ・各検討結果(整理表)を以下に示す。 |                        |                                                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                        |                                                              | :(参考)低地震沽虰项                                         |                                                                                          |
|--------------------|------------------------|-------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|
| 構造的特徴に関する検討        |                        |                                                                   |   | 固着域                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,すべり量に関する検討          | 破                                                                      | 壊伝播に                                                         | 関する検討                                               |                                                                                          |
|                    | 地震本部の<br>領域区分          | テクトニクス的<br>背景                                                     |   | 構造的特徴                                                                                                                                                                                                                                                                                                                                                                                                                                             | 固着<br>度 <sup>※</sup> | すべり量                                                                   | 破均                                                           | 瀤伝播<br>範囲                                           | 内容                                                                                       |
|                    |                        | 陸側のプレートの下に,<br>太平洋プレートが沈み<br>込む。                                  | 1 | ① <u>千島前弧スリバーの北東端</u> <ul> <li>・千島前弧スリバーの形成により、</li> <li>・千島前弧スリバーの形成により、</li> </ul>                                                                                                                                                                                                                                                                                                                                                              | —                    | _                                                                      |                                                              |                                                     |                                                                                          |
|                    | 択捉島沖                   |                                                                   |   | <ul> <li>・1963年の地震と2006年の地</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | 中                    | _                                                                      |                                                              |                                                     |                                                                                          |
| 千島<br>海溝           | 色丹島沖                   | 千島前弧スリバーが                                                         | 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 中                    | —                                                                      |                                                              |                                                     |                                                                                          |
|                    | 根室沖                    | 形成されている。                                                          |   | <ul> <li>②<u>納沙布断裂帯</u></li> <li>・納沙布断裂帯の両側で堆積厚<br/>さが異なり,地下構造の不連続<br/>性を有する。これが地震活動ブ<br/>ロック構造(Barrier)を支配する<br/>要因の1つと考えられる<br/>(Kasahara et al.(1997))。</li> <li>③<u>日本海溝・千島海溝島弧会合部</u></li> <li>・日高衝突帯の下部地殻の剥落<br/>に相当する低速度領域が破壊<br/>のバリアになる可能性がある<br/>(Liu et al.(2013),文部科学省<br/>(2008))。</li> <li>④<u>フィリピン海プレート北東端</u></li> <li>・テクトニクス的背景(地下構造<br/>の不連続性)が破壊のバリアと<br/>して作用する重要な役割を果た<br/>す可能性がある(Shinohara et<br/>al.(2011))。</li> </ul> | 大                    | 地震学的・地質学的・測地学的<br>見地から、17世紀の地震のす<br>べり量は最大規模と評価。                       |                                                              | 超巨大<br>地震(17<br>世紀型)<br>の波源                         | <ul> <li>蓄積する歪みの量には限度があり、既往地震よりもさらに応力を高めることはできない。</li> <li>スマトラ島沖で発生している巨ないは、</li> </ul> |
|                    | 十勝沖                    |                                                                   | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                        | $\downarrow \downarrow$                                      | √域                                                  | 大地震の破壊様式との類似性<br>はない。                                                                    |
|                    | 青森県東方<br>沖及び岩手<br>県沖北部 | 日本海溝・千島海溝<br>島弧会合部(下部地<br>殻の剥落)                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 中                    | 地震学的・測地学的見地,並び<br>に3.11地震時の宮城県沖のす<br>べり様式との比較から,1968年<br>十勝沖地震のすべり量は最大 |                                                              | 青森県<br>東方治<br>及び県沖<br>北部の                           | 蓄積する歪みの量には限度<br>があり, 既往地震よりもさらに<br>応力を高めることはできない。                                        |
|                    |                        |                                                                   | 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 規模と評価。               | 規模と評価。                                                                 | $\bigtriangledown$                                           | 地震の<br>波源域                                          |                                                                                          |
|                    | 岩手県沖<br>南部             | 陸側のプレートの下                                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 小                    | _                                                                      | <ul> <li>超巨大地<br/>震(東北<br/>地方太平<br/>洋沖型)<br/>の波源域</li> </ul> | プレート境界深部の低地震活動域<br>が, 隣接する領域からの破壊伝播<br>を防ぐ。         |                                                                                          |
| 日本<br>海溝           | 宮城県沖                   | に,太平洋プレート<br>が沈み込む。                                               | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                    | 地震学的・地質学的・測地学的<br>見地から、3.11地震のすべり量<br>は最大規模と評価。                        |                                                              | 蓄積する歪みの量には限度<br>があり, 3.11地震よりもさらに<br>応力を高めることはできない。 |                                                                                          |
|                    | 福島県沖~<br>茨城県沖          |                                                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 小                    | —                                                                      | $\bigvee$                                                    |                                                     |                                                                                          |
|                    | 房総沖                    | 陸側のプレートの下に,<br>フィリピン海プレートが<br>沈み込み, さらに下方<br>に, 太平洋プレートが<br>沈み込む。 |   | <ul> <li>(参考)⑤<u>低地震活動域</u></li> <li>非地震性のすべりにより歪み<br/>が解放される低地震活動域が<br/>存在する(Ye et al.(2012))。</li> </ul>                                                                                                                                                                                                                                                                                                                                        | 小                    | _                                                                      |                                                              |                                                     | フィリピン海プレートの北東端が,<br>隣接する領域からの破壊の<br>バリアとなる。                                              |

- :構造境界(破壊のバリア) \_\_\_\_\_(参考)低地震活動域

61

第989回審査会合(R3.7.9) 資料1-1 p63 再掲

※:M9クラスの巨大地震を発生させる宮城県沖の固着の強さに対する度合い(大小)。

# 1.1.3 地震発生履歴に関する検討

- 1.1.3.1 文献調査
- 1.1.3.2 津波堆積物調査
- 1.1.3.3 イベント堆積物の層厚に関する考察
- 1.1.3.4 まとめ





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.1 文献調査:近地津波(日本海溝沿い)
- 既往津波のうち、津波の大きさ、波源からの伝播距離及び津波被害の大きさから、下北半島に影響を及ぼしたと考えられる津波として、日本海溝沿いで発生した以下の7つの津波が抽出される。









1.1.3 地震発生履歴に関する検討

## 1.1.3.1 文献調査:近地津波(日本海溝沿い)

・ 既往津波高,相田(1977)による数値シミュレーションによる200m等深線上の波高の比較から,敷地周辺に最も影響を及ぼしたと考えられる津波は, 1856年の津波と評価される。





1.1.3 地震発生履歴に関する検討

1.1.3.1 文献調査:近地津波(千島海溝沿い)

・ 千島海溝沿いで発生したM8クラス以上の既往津波による敷地周辺の津波高さは全て4m以下である。



※1:文部科学省(2012)で示されている超巨大地震(17世紀型)の 地震の断層モデルを基に記載。 ※2:1968Tokachi(=1968年十勝沖地震)の誤記と考えられる。

|                 | 既往地震  |           | 净次方大         | 供来                                                     |
|-----------------|-------|-----------|--------------|--------------------------------------------------------|
| 発生場所            | 発生年   | 地震規模      | 洋波向ぐ         | 11用 行                                                  |
| 青森県東方沖          | 1968年 | M7.9      | 泊(六ヶ所村):2.5m | 宇佐美ほか(2013)                                            |
| 十勝沖             | 1952年 | M8.2      | 八戸:2m        | 宇佐美ほか(2013)                                            |
| 根室沖             | 1973年 | M7.4      | 花咲(根室市):2.8m | 宇佐美ほか(2013)                                            |
| 十勝沖·根室沖         | 17世紀  | Mw8.6~8.8 | 東通村:4m以下     | 地震規模:中央防災会議(2005),<br>文部科学省(2012)<br>津波高さ:中央防災会議(2005) |
| 北海道東方沖          | 1969年 | M7.8      | 八戸 : 109cm   | 宇佐美ほか(2013)                                            |
| 択捉島沖            | 1958年 | M8.1      | 花咲(根室市):81cm | 宇佐美ほか(2013)                                            |
| 択捉島沖            | 1963年 | M8.1      | 八戸 : 130cm   | 宇佐美ほか(2013)                                            |
| ウルップ島沖          | 1918年 | M8.2      | 函館:50cm      | 渡辺(1998)                                               |
| シムシル島沖          | 2006年 | M8.1      | 八戸:17cm      | 地震規模:文部科学省(2007)<br>津波高さ:気象庁(2007)                     |
| カムチャッカ<br>半島南東沖 | 1952年 | Mw9.0     | 函館:0.5~1.5m  | 地震規模:宇佐美ほか(2013)<br>津波高さ:渡辺(1998)                      |

#### 千島海溝沿いで発生した既往津波の津波高さ

以上から、日本海溝沿いで発生する津波と比較して、千島海溝沿いで発生する津波が発電所の津波高さに与える影響は小さい。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

## 1.1.3.1 文献調査:遠地津波

- ・ 過去に世界で発生したM9クラスの巨大地震のうち三陸沿岸に最も影響を及ぼした遠地津波は,1960年チリ地震に伴う津波であり,敷地周辺に おける津波高さは,白糠(東通村)で,T.P.+2mが記録されている(渡辺(1998))。
- 以上より、遠地津波で最大と考えられる1960年チリ地震に伴う津波における敷地への影響は、既往最大の近地津波である1856年の津波の津波 高さを上回るものではないと評価される。



三陸沿岸に影響を及ぼしたM9クラスの巨大地震に伴う津波高さの比較



以上から、日本海溝沿いで発生する津波と比較して、遠地津波が発電所の津波高さに与える影響は小さい。



第989回審査会合(R3.7.9)

資料1-1 p68 再掲

66

1.1.3 地震発生履歴に関する検討

- 1.1.3.1 文献調査:まとめ
- 日本海溝沿い・千島海溝沿いで発生した既往津波,遠地津波に関する文献調査の結果,敷地周辺に最も影響を及ぼした津波は、日本海溝沿いの津波であり、敷地周辺に最も影響を及ぼした津波を1856年の津波と評価した。



青森県東方沖から房総沖で発生した津波の推定波源域 (地震調査研究推進本部(2012)に一部加筆)



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:検討方針
- 津波堆積物から,過去の津波の規模(波源域,すべり量),発生時期,発生間隔等の情報を得ることができ、日本海溝沿いでは869年の地震,千島海溝沿いでは超巨大地震(17世紀型)等が推定されている。
- 歴史記録よりも過去にM9クラスの巨大地震による津波が青森県北部太平洋沿岸に襲来した可能性を検討するため、津波堆積物調査に関する文献調査を 実施するとともに、文献調査結果を踏まえた津波堆積物調査を追加実施した。

【津波堆積物から得られる情報】

| 津波堆積物      | 得られる情報         |
|------------|----------------|
| 沿岸方向の広がり   | 波源域(断層面)の長さの推定 |
| 陸域方向の距離,層厚 | すべり量,津波の周期の推定  |
| 層序         | 平均発生間隔の推定      |

## 【津波堆積物から推定された日本海溝・千島海溝沿いで発生した巨大地震】



及び3.11地震と869年の地震の断層面の比較(菅原(2014))

(文部科学省測地学分科会(2013b))

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:文献調査

### ■M9クラスの巨大地震の発生可能性を指摘する知見①

• Minoura et al. (2013), Tanigawa et al. (2014)は、東通村周辺で津波堆積物調査を実施し、認められた津波堆積物の堆積年代、標高、沿岸からの距離等から、 1611年の津波、超巨大地震(17世紀型)、もしくはこれまで確認されていない巨大地震の発生可能性を指摘している。

【青森県東通村で実施された津波堆積物調査位置(Minoura et al.(2013)に一部加筆)】





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調查:文献調查

■M9クラスの巨大地震の発生可能性を指摘する知見②

- ・ Minoura et al. (2013)は、東通村猿ヶ森で確認された津波堆積物の特徴から、以下の津波の可能性を指摘している。
  - ✓ 千島海溝沿いで発生している超巨大地震(17世紀型)のうち, 12~13世紀に発生した津波の可能性がある。
  - ✓ 岡村・行谷(2011)は、1611年の津波は千島海溝沿いで発生していた可能性があると評価していることを踏まえると(Mw8.9)、1611年の津波による堆積物の可能性もある。
  - ✓ 内陸1.4km,標高20mの位置に存在することを踏まえれば、上記の地震規模を上回る地震(~Mw9.0)かもしれない。
- Tanigawa et al. (2014)は、東通村小田野沢で確認された津波堆積物の特徴から、Minoura et al. (2013)と同様にとても大きな津波の可能性を指摘している。



**Fig. 1** Distribution of hypocenters of major tsunami-genic historical earthquakes in the forearc–backarc regions of northern Tohoku and Hokkaido. Estimated hypocenters of the AD 869 Jogan earthquake (7) and the AD 1611 Keichou earthquake (6) are referred from Watanabe (1998), Minoura et al. (2001), and Okamura and Namegaya (2011). *1* 2011 Tohoku-Oki earthquake, *2* 1993 Southwest-off Hokkaido earthquake, *3* 1983 Japan Sea earthquake, *4* 1933 Showa-Sanriku earthquake, *5* 1896 Meiji-Sanriku earthquake. 8 Keicho earthquake tsunami deposits (Minoura and Nakaya 1991; Okamura and Namegaya 2011), *9* historical records of the Keicho earthquake tsunami (Okamura and Namegaya 2011)

日本海溝・千島海溝沿いで発生した主な既往津波※(Minoura et al.(2013))

※:1611年の津波の波源域について, Minoura et al.(2013)は、岡村・行谷(2011)を引用し千島海溝沿い に設定しているが, Tanigawa et al.(2014)は日本海溝沿いに設定している。

超巨大地震(17世紀型)地震の発生履歴(内閣府中央防災会議(2006))

| 十勝地地 | 或の津波        |                    | 根室地域の津波              |                                         |
|------|-------------|--------------------|----------------------|-----------------------------------------|
|      | 発生時期        | 再来間隔               | 発生時期                 | -                                       |
|      | (cal.B.P.)  | (年)                | (cal.B.P.)           | - T · · · · · · · · · · · · · · · · · · |
| 津波1  | 17世紀初頭-     |                    | 津波1                  | Tanigawa et al. (2014)か<br>推定している津波     |
| 津波2  | 12~13世紀-    | -40012-300         | 津波2                  | Minoura et al.(2013)が                   |
| 津波3  | 9世紀 ——      | 300~400            | 津波3                  | 推定している津波                                |
| 津波4  | 1630-(4世紀?  | 500<br>)<br>(300+) | 1430+ 津波4            |                                         |
| 津波5  | AD/BC?      | (500+)             | 1930+ 津波6<br>2 津波7 8 | 3                                       |
| 津波6  | 2590        | 200+               | 2440+ 津波9            |                                         |
| 津波7  | 2870~2920   | 400+               | 津波10                 |                                         |
| 津波8  | 3220~3460 - | 400+               |                      |                                         |
| 津波9  | 3690~3720-  | 5004               | 3830+ 津波13           |                                         |
| 津波10 | 4200+       | +000               | ——4300+ 津波14         |                                         |
| 津波11 | 4580 —      | 300~350            | ———4700+ 津波15        |                                         |
| 津波12 | 4860+       | 300                | ——— 4930+ 津波16       |                                         |
| 津波13 | 5000        | 100                | 4980+ 津波17           |                                         |
| 津波14 | 5640+       | >600               | ? 津波18               |                                         |
| 津波15 | 6370-       | 600                |                      |                                         |
|      |             |                    |                      |                                         |



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:文献調査

#### ■東诵村猿ヶ森・Minoura et al (2013)①

- Minoura et al.(2013)は、東通村猿ヶ森の内陸1.4kmに位置する形成時期14~17世紀の砂丘の下に、珪藻化石分析や、砂層の堆積構造等から津波堆積物 と考えられる2枚の砂層を確認したとしている。
- なお、同堆積物の広域的な分布範囲に関する記載は無い。



of fossil trees

(this study)

T-1

AD 1027-1154

in paleosols (P1 & P2) and dunes (P3)

(Okamoto et al., 2000)

and nuclear-related facilities, b Geological map of the Holocene in the study area exhibiting the distribution of Dune I (6-4 ka), Dune II (2-1 ka), Dune III (fourteenth-seventeenth century), and Dune IV (after nineteenth century) deposits, Dune I and II deposits are mostly found in the northern part of the study area, whereas Dune III ranges throughout. The distribution of the dune units is referred to Chigama et al. (1998) and Okamoto et al. (2000). c East-west cross-sectional view of the dunes along the square in (b). The geological profile of each paleosol is mainly based on data of Chigama et al. (1998) and Okamoto et al. (2000). Underlying Dune III, the paleosol intercalating the B-Tm tephra spreads toward the coast and the foot of the hills forming a gently undulating slope. Vertical axis altitude (m) above the mean sea level

(Minoura et al.(2013))

Fig. 3 Vertical sequence of paleosols, laminated and massive sand layers, and sand dunes (Dune III) at the study site (Fig. 2b, c). The massive sand overlies the laminated sand with large erosional structures, but erosive action did not escalate to the soil horizon. Small mud chips are contained in sand at the basal part of the laminated sand, showing bottom surface erosion by flows that deposited the laminated sand. A panoramic view of the outcrop is shown on the right. The longitudinal direction of an embedded fallen fossil tree trunk is N15°-20°W, which is mostly perpendicular to the general trend of the slope (Fig. 2c)

東通村猿ヶ森におけるイベント堆積物(Minoura et al.(2013))

P-1 : AD 880-1000



71
### 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:文献調査

#### 第989回審査会合(R3.7.9) 資料1-1 p74 再掲



<sup>■</sup>東通村猿ヶ森: Minoura et al.(2013)②

- Minoura et al. (2013)が指摘する津波堆積物の広域的な分布,標高,海岸線からの距離を確認するため, 当社と東京電力との共同調査(一部を除く),並びに産業技術総合研究所等の調査結果と比較した。
- ・ 上記を踏まえ、東通村猿ヶ森周辺を対象に追加調査を実施し、Minoura et al. (2013)が指摘する堆積年代、 堆積学的特徴が類似するイベント堆積物を確認した。また、その標高について、Minoura et al. (2013)は20m としているが、水準測量の結果11mであることを確認した(詳細はp.90に記載)。

A.D.900-1000(白頭山苫小牧火山灰層(町田・新井(2003))以降に下北半島太平洋沿岸で堆積したイベント堆積物

|            | 調査場所             | 年代                   | 標高       | 海岸から<br>の距離 | 備考<br>(実施箇所)                              |
|------------|------------------|----------------------|----------|-------------|-------------------------------------------|
| 1          | 東通村 尻屋崎          | %1                   | %1       | %1          | 共同調査<br>(一部当社単独)                          |
| 2          | 東通村 猿ヶ森          | A.D.1269-1460        | 20m      | 1.4km       | Minoura et al. (2013)                     |
| 0          | 東通村 大沼           | A.D.1710-1948        | 記載なし(湖底) | 約1.2km(図読)  | Minoura et al. (1994)                     |
| 2          | 東通村 猿ヶ森          | A.D.1215-1410        | 11m      | 約1.4km      | 当社(今回実施,詳細は後述)                            |
| 3          | 東通村 小田野沢         | A.D.1480-1770        | 5~6m     | 約1km        | ・Tanigawa et al.(2014)<br>・産総研津波堆積物データベース |
| 3          | 東通村 小田野沢         | A.D.1500-1950        | 3~4m     | 約1.1km      | 共同調査                                      |
| 4          | 東通村<br>東京電力東通発電所 |                      | %1       | %1          | 共同調査                                      |
| 5          | 東通村<br>東北電力東通発電所 | A.D.1420-1630        | 7.7m     | 約180m       | 共同調査<br>(一部当社単独)                          |
| 6          | 六ヶ所村 尾駮老部川       | *1                   | *1       | *1          | 共同調査                                      |
| 6          | 六ヶ所村 尾駮老部川       | 記載なし                 | 記載なし     | 記載なし        | ・谷川ほか(2013)<br>・産総研津波堆積物データベース            |
| $\bigcirc$ | 六ヶ所村 尾駮沼         | 約400年前               | 記載なし     | 記載なし        | 鎌田ほか(2015)                                |
| 8          | 六ヶ所村 尾駮発茶沢       | *1                   | *1       | *1          | 共同調査                                      |
|            | 六ヶ所村 平沼          | *1                   | *1       | *1          | 共同調査                                      |
| 9          | 六ケ所村 平沼          | *1                   | *1       | *1          | 谷川(2017)                                  |
| 10         | 三沢市 織笠           | Modern <sup>%2</sup> | 9m(図読)   | 約1.7km(図読)  | ・谷川ほか(2014)<br>・産総研津波堆積物データベース            |
| 1          | 三沢市 六川目          |                      | *1       |             | 共同調査                                      |

※1:認められない。 ※2:耕作などの人為的な擾乱により、成因は特定できない。



## 1.1.3.2 津波堆積物調查:文献調查

■東通村小田野沢: Tanigawa et al. (2014)と当社・東京電力による調査結果の比較

 各調査で確認された最上位の津波堆積物の堆積年代,海岸線(現在) からの距離,基底標高等は整合していることを確認した。







73

第989回審杳会合(R3.7.9)

Figure 3. (A) Cross-section of the study area along the transect shown in Fig. 1C. Circles numbered 1–58 correspond to the radiocarbon ages listed in Table 2. Elevations are relative to mean sea level in Tokyo Bay (Tokyo Peil: T.P.). Photographs of S1 in core N1 (B) and core N6 (C). This figure is available in colour online at wileyonlinelibrary.com.

Tanigawa et al.(2014)の調査結果



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:文献調査

#### ■まとめ

- ・ 文献調査の結果, Minoura et al.(2013), Tanigawa et al.(2014)は、東通村周辺で津波堆積物調査を実施し、認められた津波堆積物の堆積年代、
   標高,沿岸からの距離等から,1611年の津波,超巨大地震(17世紀型),もしくはこれまで確認されていない巨大地震の発生可能性を指摘している。
- Tanigawa et al. (2014)による調査結果は、当社と東京電力との共同調査結果と整合するが、Minoura et al. (2013)が指摘する東通村猿ヶ森のイベント 堆積物の特徴を有するイベント堆積物は広域で認められていない。
- ・ 以上から、東通村猿ヶ森周辺を対象に津波堆積物調査を実施し、Minoura et al. (2013)が指摘するイベント堆積物の広がりを把握するとともに、その 調査結果を踏まえ、過去にM9クラスの巨大地震による津波が襲来した可能性を検討した。



そう、ちから。

資料1-1 p76 再掲

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:検討フロー
- 東通村猿ヶ森周辺において津波堆積物調査を実施し,認められたイベント堆積物※1の成因分析を実施した。
- 調査範囲,検討フローを以下に示す。

※1:ここでいうイベント堆積物は, Minoura et al.(2013)が指摘する猿ヶ森川のイベント堆積物と類似した層位, 層相等を有する砂層とした。







- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調查:地表地質踏查

#### ■地表地質踏査結果の概要

- 猿ヶ森川で確認されたイベント堆積物と類似する堆積学的特徴を有する砂層<sup>※1</sup>の広域的な分布状況を把握するため、津波の遡上可能性がある河川、 沢沿いを対象に地表地質踏査を実施した。
- ・ 踏査の結果、タテ沼付近(露頭No.26a, 26e, 27a)、猿ヶ森川(露頭No.30c, 30d)、材木沢(露頭No.32a)、大川(露頭No.35b)で認められたものの、踏査範囲の北部では認められず、その分布範囲は限定的であることを確認した。
  - ※1:平行葉理砂層,または塊状砂層と類似する特徴を有し,砂丘堆積物(形成時期:14-17世紀相当)の下に位置する砂層(完新統に挟在する砂層)。





第989回審杳会合(R3.7.9)

資料1-1 p78 再掲

76

踏査範囲(南部)※3

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

---:地表地質踏査範囲 🔘:完新統(砂丘堆積物)

1.1.3.2 津波堆積物調査:地表地質踏查

#### ■タテ沼付近(路線No.26)①

凡例※

——:踏査対象路線

- 露頭No.26a, 26eで, 平行葉理砂層または塊状砂層の層相を 有するイベント堆積物を確認したが,露頭No.26b, 26c及び露 頭No.26dでは認められない。
- 露頭No.26eの上流側の露頭No.26f, 26g, 26hでは, 段丘堆積 物(更新統)の上位に、平行葉理砂層、塊状砂層及び砂丘堆 積物が無いことを確認した。

○:完新統(平行葉理砂層/塊状砂層相当層)









| X |         |
|---|---------|
|   | And the |
|   | - AREAL |
|   |         |
|   |         |





第989回審査会合(R3.7.9) 資料1-1 p79 再掲

77

※:各地質区分は、完新統(平行葉理砂層/塊状砂層相当層)を除き、最上位の地質を示す。

○:崖錐堆積物 ●:完新統(古土壤) ●:更新統(ローム) :更新統(段丘堆積物) :新第三系(猿ヶ森層) ●:先新第三系(尻屋層群)



露頭位置図



### 1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調査:地表地質踏查

■タテ沼付近(路線No.26)② ・ 地表地質踏査,詳細地質観察(後述)により得られた地質区分,地層の層位関係,地層の厚さ(高さ)等の情報 を基に,現河床,並びに現河床形成前(=砂丘堆積物の堆積時)における地質分布を推定した地質断面図を NW← 以下に示す。



→SE

第989回審査会合(R3.7.9)

資料1-1 p80 再掲

第989回審査会合(R3.7.9) 資料1-1 p81 再掲 79

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:地表地質踏查

■タテ沼付近(路線No.27)①

- 露頭No.27aで,平行葉理砂層または塊状砂層の層相を有するイベント堆積物を確認したが,上流側の露頭No.27b, 27cでは認められない。
- また, 露頭No.27bでは, 古土壌(完新統)相当の粘土及び腐植質粘土の上位に, 平行葉理砂層または塊状砂層の層相を有するイベント堆積物が無く, 砂丘堆積物が直接被覆していることを確認した。



- ----: :地表地質踏査範囲

   :完新統(砂丘堆積物)
   :完新統(平行葉理砂層/塊状砂層相当層)
   :元.P.+10m等高線
   :完新統(上記以外の砂層)
   :崖錐堆積物
   :完新統(古土壤)
   :更新統(ローム)
   :更新統(段丘堆積物)
   :新第三系(猿ヶ森層)
   :先新第三系(尻屋層群)
- ※:各地質区分は、完新統(平行葉理砂層/塊状砂層相当層)を除き、最上位の地質を示す。









露頭状況写真





### 1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調查:地表地質踏查

#### ■タテ沼付近(路線No.27)②



河川に沿うAA'断面における地質断面図

第989回審査会合(R3.7.9) 資料1-1 p82 再掲

### 1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調查:地表地質踏查

#### ■猿ヶ森川(路線No.30)①

- 露頭No.30dで, Minoura et al. (2013)が指摘しているとおり, 平行葉理砂層及び塊状砂層を確認するとともに,下流側の 露頭No.30cにおいても,塊状砂層の層相に類似する砂層が 認められた。なお,その下流側には認められない。
- 露頭No.30dの上流側の露頭No.30gでは、段丘堆積物(更新統)及び古土壌(完新統)の上位に、平行葉理砂層または塊状 砂層の層相を有するイベント堆積物が無く、砂丘堆積物が 直接被覆していることを確認した。













30d:Minoura et al.(2013)が指摘する露頭



資料1-1 p83 再掲

81

露頭位置図

### 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:地表地質踏查

 地表地質踏査,詳細地質観察(後述)により得られた地質区分,地層の層位関係,地層の厚さ(高さ)等の情報 ■猿ヶ森川(路線No.30)② を基に、現河床、並びに現河床形成前(=砂丘堆積物の堆積時)における地質分布を推定した地質断面図を 以下に示す。 W←



82

→E

第989回審査会合(R3.7.9)

資料1-1 p84 再掲

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調查:地表地質踏查

#### ■材木沢(路線No.32)①

- 露頭No.32aで, 平行葉理砂層または塊状砂層の層相を有する イベント堆積物を確認した。
- ・ 上記砂層は、約120m下流側まで連続し、上流側では層厚を減 じて、No.32bでは挟在しないことを確認した。







露頭状況写真



露頭位置図



第989回審査会合(R3.7.9) 資料1-1 p85 再掲 83

### 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調查:地表地質踏查

■材木沢(路線No.32)②・ 地表地質踏査,詳細地質観察(後述)により得られた地質区分,地層の層位関係,地層の厚さ(高さ)等の情報 を基に,現河床,並びに現河床形成前(=砂丘堆積物の堆積時)における地質分布を推定した地質断面図を 以下に示す。



第989回審杳会合(R3.7.9)

資料1-1 p86 再掲

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:地表地質踏查

#### ■大川(路線No.35)①

- 露頭No.35bで、平行葉理砂層または塊状砂層の層相を有する イベント堆積物を確認した。
- 左岸側の露頭No.35bで確認された平行葉理砂層または塊状 砂層は下流側に連続するが、右岸側の露頭No.35aでは認め られない。
- 露頭No.35bの上流側の露頭No.35dでは、古土壌(完新統)相 当の粘土が確認されるが、その上位に、平行葉理砂層、塊状 砂層及び砂丘堆積物が無いことを確認した。

#### 凡例※

- ---:地表地質踏査範囲 ○:完新統(砂丘堆積物)
- ----: : 踏査対象路線 (平行葉理砂層/塊状砂層相当層)
- -----: T.P.+10m等高線 〇:完新統(上記以外の砂層)
  - ○:崖錐堆積物 :完新統(古土壤) ●:更新統(ローム)
  - :更新統(段丘堆積物)
  - :新第三系(猿ヶ森層)
  - ●:先新第三系(尻屋層群)

※:各地質区分は,完新統(平行葉理砂層/塊状砂層相当層)を除き,最上位の地質を示す。













露頭状況写真



#### 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調查:地表地質踏查

■大川(路線No.35)② ・ 地表地質踏査,詳細地質観察(後述)により得られた地質区分,地層の層位関係,地層の厚さ(高さ)等の情報を基に,現河床,並びに現河床形成前(=砂丘堆積物の堆積時)における地質分布を推定した地質断面図を以下に示す。



→ESE

第989回審杳会合(R3.7.9)

資料1-1 p88 再掲

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:詳細地質観察

#### ■詳細地質観察結果の概要

- 地表地質踏査の結果,平行葉理砂層及び塊状砂層を確認した猿ヶ森川(露頭No.30d)のほか,同イベント堆積物の層相を有するタテ沼付近(露頭No.26e, 27a),材木沢(露頭No.32a),大川(露頭No.35b)を対象に,堆積学的特徴を把握するため詳細地質観察を実施するとともに,水準測量結果(4級水準測量) から各イベント堆積物の基底標高を確認した。
- 調査の結果,各イベント堆積物は流水により形成された堆積物の特徴を有することを確認した。詳細地質観察結果の概要を下表に,各露頭の詳細を次頁 以降に示す。



イベント堆積物の 海岸 位置 露頭No. 基底標高 からの イベント堆積物の堆積学的特徴 (T.P.) 距離 斜交葉理が認められ、葉理に沿う腐植質シル 約+7.6m<sup>※2</sup> トの薄層(一部レンズ状)が挟在し、流水によ 26e 約1.3km り形成された堆積物の特徴を有する。 タテ沼 付䜣 大小の斜交葉理及び平行葉理が認められ. 27a 約+11.8m 約1.1km 凝灰質シルトの薄層(一部レンズ状)が挟在し、 流水により形成された堆積物の特徴を有する。 30d 平行葉理砂層は、低角度傾斜の斜交葉理及 (塊状砂層) び平行葉理が認められ、 塊状砂層は腐植質 約+11.0m<sup>※2</sup> 約1.4km 猿ヶ森川 シルトの薄層が途切れて挟在し、各層とも流 30d 水により形成された堆積物の特徴を有する。 (平行葉理 砂層) 斜交葉理及び平行葉理が認められ. レンズ状 材木沢 約+7.6m 約1.2km を呈するシルトの薄層が挟在し、流水により 32a 形成された堆積物の特徴を有する。 斜交葉理(一部カレントリップル)及び平行葉 理が認められ、下位層の有機質粘土を取り込 約1.2km 約+6.8m 大川 35b んだ偽礫を含み、流水により形成された堆積 物の特徴を有する。

※2:イベント堆積物の基底標高を確認することは出来なかったことから,確認できた下限標高を記載。

<sup>10、45、5から。</sup> **東北電力** 

調査位置※1

※1:本図は、地理院タイル(標高タイル)を加工して作成。

詳細地質観察結果(概要)

#### 1.1.3 地震発生履歴に関する検討

# 1.1.3.2 津波堆積物調査:詳細地質観察

#### ■タテ沼付近(露頭No.26e)

・下位より, 腐植質シルトまたは粘土層, 中粒砂層, シルト混じり腐植質粘土層からなる。

・中粒砂層は、斜交葉理が認められ、葉理に沿う腐植質シルトの薄層(一部レンズ状)が挟在し、流水により形成された堆積物の特徴を有する。 ・中粒砂層の地層境界は、上位層側、下位層側ともに明瞭であり、下位層を侵食した後に堆積した可能性がある。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:詳細地質観察

#### ■タテ沼付近(露頭No.27a)

- 下位より、細粒砂層、細粒~中粒砂層、凝灰質シルト層、明黄色~明褐色中粒砂層、火山灰質シルト層、明灰色中粒砂層(砂丘堆積物)からなる。
- 明黄色~明褐色中粒砂層は、大小の斜交葉理及び平行葉理が認められ、凝灰質シルトの薄層(一部レンズ状)が挟在し、流水により形成された堆積物の特徴を有 する。
- 明黄色~明褐色中粒砂層の地層境界は、上位層側はやや明瞭であるが、下位層側は明瞭であり、下位層を侵食した後に堆積した可能性がある。



第989回審杳会合(R3.7.9)

資料1-1 p91 再掲



1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:詳細地質観察

#### ■材木沢(露頭No.32a)

- 下位より, 腐植混じりシルト~粘土層, 腐植質シルト層, 中粒砂層, 腐植混じり粘土及び火山灰質粘土層, 粘土層, 腐植混じり粘土層(表土)からなる。
- 中粒砂層は、斜交葉理及び平行葉理が認められ、レンズ状を呈するシルトの薄層が挟在し、流水により形成された堆積物の特徴を有する。
- 中粒砂層の地層境界は、上位層側、下位層側ともに明瞭であり、下位層を侵食した後に堆積した可能性がある。





|            | イベント堆積物 |
|------------|---------|
| 基底標高(T.P.) | 約+7.6m  |
| 海岸からの距離    | 約1.2km  |



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

第989回審査会合(R3.7.9) 資料1-1 p94 再揭 **92** 

## 1.1.3.2 津波堆積物調查:詳細地質観察

■大川(露頭No.35b)

- 下位より,有機質粘土層,粘土層,有機質粘土層,有機質粘土/粘土互層,火山灰層,粘土層,有機質粘土層,中粒砂層,粘土層,中粒砂混じり粘土層(表土)からなる。
- ・ 中粒砂層は、斜交葉理(カレントリップル)及び平行葉理が認められ、下位層の有機質粘土を取り込んだ偽礫を含み、流水により形成された堆積物の特徴を有する。
- 中粒砂層の地層境界は、上位層側、下位層側ともに明瞭であり、下位層を侵食した後に堆積した可能性がある。



93

1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調査:堆積年代

イベント堆積物の堆積年代を把握するために、放射性炭素年代測定を実施した。測定結果を下表に示す。

 タテ沼付近(露頭No.26e), 材木沢(露頭No.32a), 大川(露頭No.35b)で認められたイベント堆積物の堆積年代は整合性が見られるが, 猿ヶ森川(露頭 No.30d), 並びにタテ沼付近(露頭No.27a)で認められたイベント堆積物は堆積年代が異なることを確認した。

| 位置       | 露頭No.            | 試料名    | Post1950 | AD1                                          | 500 AD               | 1000 | AD | 500 AD ← 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) → BC                                | BC500  |
|----------|------------------|--------|----------|----------------------------------------------|----------------------|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|
|          | 26e <sup>%</sup> |        |          | 1655                                         |                      |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
|          |                  | 炭26e-1 | -++ 1111 | <b>→                                    </b> |                      |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
| タテ沼付近    |                  | 炭26e-2 |          | 1 640                                        | <b> </b> 1450        |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
|          | 27a              |        |          |                                              |                      |      |    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                    |        |
|          |                  | 炭27a-2 |          |                                              |                      |      |    | <b>⊢−−</b> ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H                                     |        |
|          | 30d              |        |          |                                              | 14 <u>10 12</u> 15   |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
| 猿ヶ森川     |                  | 炭30d-1 |          |                                              | 1280 1215            |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
|          |                  | 炭30d-4 |          |                                              | 1410 1290            |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
|          |                  | 炭30d-5 |          |                                              | 1385 <b>H H</b> 1275 |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |
| ++ -+ 20 | 30.0             |        |          | 1660                                         | 1435                 |      |    | 凡 例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |        |
| 17 17 11 | JZd              | 炭32a-1 |          | 1610                                         | 1435                 |      |    | ■■■■ :イベント堆積                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 堆積物の堆積年代                              |        |
|          |                  | 炭32a-2 |          | 1660                                         | 1500                 |      |    | 堆積物の<br>歴年代と 層                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 国上・直下から採取し<br>「14日日本をまた」<br>「14日本をまた」 | した試料の  |
| <b>-</b> | 0.51             |        |          |                                              | <mark>14</mark> 45   |      |    | □<br>→ · · と<br>本<br>本<br>・<br>と<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>に<br>た<br>た<br>に<br>た<br>た<br>に<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>こ<br>こ<br>こ<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>た<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ<br>こ | 年代(2σ(±1σ))                           | ŢŢŢ    |
| へ川       | 300              | 炭35b-3 |          | 1630 <b> 1</b>                               | <b>1</b> 1 445       |      |    | ₽=т:火山灰(白頭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 〔山苫小牧, AD900-                         | -1000) |
|          |                  | 炭35b-4 | -414     | <b>I ├──1</b> 1680                           |                      | B-Tm |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |

※:イベント堆積物の上位層より採取した試料(炭26e-2)が,イベント堆積物の下位層より採取した試料(炭26e-1)より古い堆積年代を示していることから,下位層より採取した 試料(炭26e-1)の年代を採用した。



1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調查:堆積環境・供給源(珪藻化石分析)

・イベント堆積物の堆積環境を把握するために、珪藻化石分析を実施した。分析結果(概要)を下表に示す。

 分析の結果,猿ヶ森川(露頭No.30d),大川(露頭No.35b)のイベント堆積物は,海水の影響を受けた可能性があるものの,タテ沼付近(露頭No.26e),材木 沢(露頭No.32a)のイベント堆積物は、淡水生種のみであり、海水の影響を受けた可能性は低いことを確認した。

各珪藻化石分析結果の詳細を次頁に示す。



調査位置※ ※:本図は、地理院タイル(標高タイル)を加工して作成。

| 位置    | No. | 珪藻化石                              | 考察                                |
|-------|-----|-----------------------------------|-----------------------------------|
| タテ沼付近 | 26e | 淡水生種のみ                            | 陸域の湿地の環境下にあり,海水<br>の影響を受けた可能性は低い。 |
|       | 27a | 検出されず                             | —                                 |
| 猿ヶ森川  | 30d | 海水~汽水生種, 汽水生<br>種及び淡水~汽水生種を<br>含む | 海水の影響を受けた可能性があ<br>る。              |
| 材木沢   | 32a | 淡水生種のみ                            | 陸域の湿地の環境下にあり,海水<br>の影響を受けた可能性は低い。 |
| 大川    | 35b | 汽水生種及び淡水~汽水<br>生種を含む              | 陸域の湿地の環境下にあり,海水<br>の影響を受けた可能性がある。 |

は 古 ル テ ハ 托 妹 田 / 畑 西 )



### 1.1.3 地震発生履歴に関する検討

# 1.1.3.2 津波堆積物調查:堆積環境・供給源(珪藻化石分析)

#### ■珪藻化石分析結果



海水-汽水-淡水生種産出事・各種産出事・完形殻産出率は全体基数、淡水生種の生態性の比率は淡水生種の合計を基数として百分率で算出した。 いずれも100個体以上検出された試料について示す。なお、●は1%未満、+は100個体未満の試料について検出した種類を示す。

#### 環境指標種

A-75月前端基 A-75月指揮種 B:內海指標種 C1:海洋藻場指標種 C2:汽水藻場指標種 D1:海水砂質干洞指標種 D2:汽水砂質干渦指標種 E1:海水泥質干渦指標種 E2:汽水泥質干濕指標種 F:淡水底在規醇(以上は小杉,1988) G:淡水浮遊生種醇 H:河口浮滋性種群 J:近流(年)川指標種 K:ゆ~下流性河川指標種 L:最下流性河川指標種群 M:湖沼浮滋性種 N:湖沼沼泥湿地指標種 0:沼沢湿地付着生種 P:高層湿原指種種群 0:陸城指標種群(以上は安藤,1990) S:好汚激性種 U:広湖の性種(以上はAsai & Natanabe,1995) R1:燈娃珪藤(RA:A程,R6:B器+伊藤 蝦肉,1991) イベント堆積物



第989回審査会合(R3.7.9) 資料1-1 p97 再掲

96

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調查:堆積環境・供給源(粒度組成分析)

- イベント堆積物の供給源を把握するために、粒度組成分析を実施した。なお、指標試料は、段丘堆積物、砂丘砂、古土壌から採取した。
- ・ 分析の結果,各地点ともに砂丘堆積物の特徴に類似していることを確認した。分析結果を以下に示す。
- ・ また, 猿ヶ森川(露頭No.30d), 材木沢(露頭No.32a), 大川(露頭No.35b)のイベント堆積物を対象に, 地層の厚さ方向の連続サンプリングを実施し, 粒度組成分析を実施した結果, 級化構造(上方細粒化または上方粗粒化)を有することを確認した。分析結果の詳細を次頁に示す。



※:本図は, 地理院タイル(標高タイル)を加工して作成。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調查:堆積環境・供給源(粒度組成分析)

#### ■粒度組成分析:堆積学的特徴の把握

- 藤原ほか(2003)を参考に、中央粒径、標準偏差及び細粒分含有率の垂直 変化の特徴を整理した。
- 猿ヶ森川(露頭No.30d)については、上方に中央粒径が大きくなる傾向があり、時間とともに流水の規模と砂の運搬能力が増大したことが示唆される。
- 一方, 材木沢(露頭No.32a), 大川(露頭No.35b)については, 上方に中央 粒径が小さくなるとともに淘汰が悪くなる傾向があり, 時間とともに流水の 規模と砂の運搬能力が減衰したことが示唆される。



調査位置※
※:本図は、地理院タイル(標高タイル)を加工して作成。



1.1.3 地震発生履歴に関する検討

1.1.3.2 津波堆積物調查:堆積環境・供給源(鉱物組成分析)

イベント堆積物の供給源を把握するために、鉱物組成分析を実施した。なお、指標試料は、段丘堆積物、砂丘砂、古土壌から採取した。

各地点ともに、砂丘堆積物の特徴に類似していることを確認した。分析結果を以下に示す。



調査位置※

材木沢

32b 32a

350356

大川

※:本図は、地理院タイル(標高タイル)を加工して作成。



100%

より、そう、ちから。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調查:追加調查結果

- 東通村猿ヶ森周辺を対象に津波堆積物調査を実施した結果,津波起因の可能性が高い,もしくは津波起因の可能性があるイベント堆積物が認められたものの,各イベント堆積物の堆積年代,並びに堆積環境(珪藻化石)は異なることを確認した。
- 3.11地震津波による津波堆積物は広域に亘って確認されていることを踏まえると<sup>※1</sup>, 今回認められたイベント堆積物の成因は, M9クラスの巨大地震に伴う津 波ではなく, M8クラスの地震に伴う津波, 地震以外に起因する津波, もしくは洪水等津波以外の可能性がある。

※1:3.11地震に伴う津波による津波堆積物の分布範囲等に関する知見を整理した。整理結果の詳細は、補足説明資料「I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因 する津波の評価 2.3.11地震に伴う津波による津波堆積物」に記載。

| 調査地点              |              |                                                                          | イベント堆積       | 物                   | イベント堆                            | 植物の分析結果                     |               |                |
|-------------------|--------------|--------------------------------------------------------------------------|--------------|---------------------|----------------------------------|-----------------------------|---------------|----------------|
|                   |              | イベント堆積物の<br>基底標高 <sup>※2</sup><br>(T.P.)                                 | 海岸線から<br>の距離 | 堆積年代<br>(年)         | 堆積学的特徴                           | 海水生種または<br>海水~汽水生種<br>の珪藻化石 | 粒度•鉱物<br>組成   | イベント堆積物<br>の評価 |
| <b>タ</b> テ沼<br>付近 | 露頭<br>No.26e | e 約7.6m <sup>※3</sup> 約1.3km A.D.1650年頃より後 O<br><sub>斜交葉理発達,下面境界が明</sub> |              | 〇<br>斜交葉理発達,下面境界が明瞭 | ×<br>淡水生種のみ                      | △<br>砂丘堆積物に類似               |               |                |
|                   | 露頭<br>No.27a | 約11.8m                                                                   | 約1.1km       | A.D.50年頃            | 〇<br>斜交葉理(一部平行葉理)が存在,<br>下面境界が明瞭 | /                           | △<br>砂丘堆積物に類似 | •              |
| 猿ヶ森川              | 露頭<br>No.30d | 約11.0m <sup>※3</sup>                                                     | 約1.4km       | A.D.1300年頃          | 〇<br>斜交葉理,平行葉理が存在,<br>下面境界がやや明瞭  | 〇<br>海水~汽水生種                | ▲<br>砂丘堆積物に類似 | •              |
| 材木沢               | 露頭<br>No.32a | 約7.6m                                                                    | 約1.2km       | A.D.1500年頃          | 〇<br>斜交葉理,平行葉理が存在<br>下面境界が明瞭     | ×<br>淡水生種のみ                 | △<br>砂丘堆積物に類似 | •              |
| 大川                | 露頭<br>No.35b | 約6.8m                                                                    | 約1.2km       | A.D.1450年頃より後       | 〇<br>斜交葉理が存在, 偽礫を含む,<br>下面境界が明瞭  | △<br>汽水生種                   | ム<br>砂丘堆積物に類似 |                |

(イベント堆積物の分析結果の凡例)
 ○:津波起因の可能性が高い △:津波起因の可能性がある
 ×:津波起因の可能性が低い /:化石産出せず

(イベント堆積物の評価の凡例)
 ●:津波起因の可能性が高い ▲:津波起因の可能性がある
 ×:津波起因の可能性が低い —:評価に適する堆積物が分布しない等評価できない

※2:イベント堆積物の分布範囲は必ずしも浸水範囲とは一致しない。

※3:イベント堆積物の基底標高を確認することは出来なかったことから、確認できた下限標高を記載。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
  - 1.1.3.2 津波堆積物調查:成因分析

#### ■検討方針

- 認められたイベント堆積物の成因について、後藤ほか(2017)を参考に、計算に基づく水理学的特徴から検討した。
- 津波を成因とする可能性検討のため、地震に起因する津波として千島海溝沿いの津波及び日本海溝沿いの津波、地震以外に起因する津波として 海底地すべりに起因する津波を対象に数値シミュレーションを実施した。
- ・ 津波以外の成因に係る検討として、下北半島で発生した洪水の範囲・年代との比較を行った。



れぞれ上位に分類されるための十分条件と必要条件。

津波堆積物の認定フロー (後藤ほか(2017))



第989回審杳会合(R3.7.9)

資料1-1 p102 再掲

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:成因分析

■地震に起因する津波:千島海溝沿い

- 千島海溝沿いで発生する津波が青森県北部太平洋岸に及ぼす影響を把握するため,保守的設定の観点から,構造的特徴(破壊のバリア)を跨ぐ 地震を想定して数値シミュレーションを実施した。
- 千島海溝沿いで発生する津波は、その走向及び襟裳岬の影響もあり、東通村沿岸の津波高さは5m以下であることを確認した。



以上から、千島海溝沿いで発生する巨大地震に伴う津波を成因とする可能性は低いと考えられる。



200 km

- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調查:成因分析

### ■地震に起因する津波:日本海溝沿い①

- 既往津波のうち発電所の津波高さに与えた影響が最も大きい1856年の津波の再現モデル(Mw8.35)を基本に、地震規模の不確かさとしてMw8.6 (+0.2相当), 走向の不確かさ(基準±10°)を考慮した数値シミュレーションを実施した。
- 検討対象領域の空間格子間隔は5mとした。

#### 【検討波源】



| Ő      | 断層上縁深さ | d ( |
|--------|--------|-----|
|        | 傾斜角    | δ   |
|        | すべり角   | λ   |
|        | すべり量   | D   |
| 基準±10° |        |     |

波源位置

| 断層パラメー         | -タ    | 1856年 | 検討モデル |  |  |  |  |
|----------------|-------|-------|-------|--|--|--|--|
| モーメントマク゛ニチュート゛ | Mw    | 8.35  | 8.6   |  |  |  |  |
| 長さ             | L(km) | 120   | 160   |  |  |  |  |
| 幅              | W(km) | 70    | 93    |  |  |  |  |
| 走向             | θ(°)  | 205   | 205   |  |  |  |  |
| 断層上縁深さ         | d(km) | 26    | 26    |  |  |  |  |
| 傾斜角            | δ(°)  | 20    | 20    |  |  |  |  |
| すべり角           | λ(°)  | 90    | 90    |  |  |  |  |
| すべり量           | D(m)  | 10.0  | 13.35 |  |  |  |  |



(空間格子間隔:5m)

【検討対象領域】

より、そう、ちから。



主な断層パラメータ

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:成因分析

#### ■地震に起因する津波:日本海溝沿い②

・ 検討対象領域には猿ヶ森砂丘が広く分布するとともに(千釜ほか(1998), Minoura et al.(2013)他), 汀線位置について, Tanigawa et al.(2014)は, 東通村小 田野沢で確認したイベント堆積物の堆積年代と砂丘<sup>※</sup>の形成時期の関係から, AD1480-1770の汀線位置は, 現在から200m内陸にあったとしている。また, 小 池(1974)は, 発行年のもっとも古い地形図と最新の地形図の比較から, 過去70年間で50mの海岸前進が見られるとしている。 ※:論文中では, 浜堤列と記載。

・ 以上から, 今回確認したイベント堆積物が堆積した当時の地形と現在の地形は異なるものの, 本検討では現在の地形を用いて数値シミュレーションを実施 した。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:成因分析
- ■地震に起因する津波:日本海溝沿い③
  - 数値シミュレーションの結果,タテ沼付近,材木沢及び大川で認められたイベント堆積物まで概ね遡上することを確認した※。
  - ※:解析に用いた地形データは現状の地形であり,猿ヶ森川のイベント堆積物が堆積した以降に形成された砂丘も考慮していることから,猿ヶ森川のイベント堆積物まで遡上して いない。



以上から、青森県東方沖及び岩手県沖北部で繰り返し発生するM8クラスの津波を成因とする可能性があると考えられる。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:成因分析

■地震以外に起因する津波:海底地すべり

- 下北半島太平洋側大陸棚が含まれる範囲で地形判読により確認された海底地すべり地形のうち、東通村猿ヶ森周辺に影響を及ぼすと考えられる海底地すべり(SLS-2)を対象に数値シミュレーションを実施した。
- ・ 検討の結果, 東通村猿ヶ森周辺における津波高さは3m未満であることを確認した。





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
- 1.1.3.2 津波堆積物調査:成因分析

#### ■津波以外の成因:田名部平野一帯の洪水

• 東通村には、かつて大津波があったとする下北半島特有の伝承が残されており、この地の伝承は、大津波により集落が移動した、海岸の地形が大きく変化した、あるいはヒバの森林が砂に埋もれたといった話として伝えられている(千釜ほか(1998))。

第989回審査会合(R3.7.9)

資料1-1 p108 再掲

- ・ 上記のうち1578年, 1630年, 1635年の津波により集落が災害を受けた伝承があるが, 千釜ほか(1998)は, 郷土史関連の文献を整理し, 津波ではなく, 田名 部平野一帯の洪水ととらえるのが妥当であるとしている。
- 材木沢,大川で認められたイベント堆積物の堆積年代は,上記洪水の発生時期と整合している。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討
  - 1.1.3.2 津波堆積物調査:成因分析

#### ■まとめ

- ・ 認められたイベント堆積物の成因について,後藤ほか(2017)を参考に,計算に基づく水理学的特徴から検討した。
- 検討の結果、イベント堆積物の成因を断定することは困難であるが、津波の場合、青森県東方沖及び岩手県沖北部で繰り返し発生するM8クラスの 地震に伴う津波の可能性がある。
- 津波以外の場合,田名部平野一帯の洪水を成因とする可能性がある。

|                 | 要因                            | 検討結果                                          | 評価      | <ul><li>(評価の凡例)</li><li>●:可能性は高い</li></ul> |  |  |  |  |
|-----------------|-------------------------------|-----------------------------------------------|---------|--------------------------------------------|--|--|--|--|
| 地震に起因する         | 千島海溝沿いの津波                     | 東通村猿ヶ森周辺における沿岸の津波高さは<br>5m以下。                 | ×       | ▲:可能性がある<br>×:可能性は低い                       |  |  |  |  |
| 津波              | 日本海溝沿い(青森県東方沖<br>及び岩手県沖北部)の津波 | 確認されたイベント堆積物を概ね説明できる。                         | <b></b> |                                            |  |  |  |  |
| 地震以外に起因<br>する津波 | 下北半島太平洋側大陸棚<br>の海底地すべり        | ┃<br>■東通通村猿ヶ森周辺における津波高さは3m未満。                 | ×       |                                            |  |  |  |  |
| 上記以外            | 田名部平野一帯の洪水                    | 洪水の発生時期は, 材木沢, 大川で認められたイ<br>ベント堆積物の堆積年代と整合する。 |         |                                            |  |  |  |  |

成因分析のまとめ


1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

#### 1.1.3 地震発生履歴に関する検討

## 1.1.3.2 津波堆積物調査:まとめ

- 歴史記録よりも過去にM9クラスの巨大地震による津波が青森県北部太平洋沿岸に襲来した可能性を検討するため、津波堆積物調査に関する文献調査を 実施するとともに、文献調査結果を踏まえた津波堆積物調査を追加実施した。
- ・ 文献調査の結果, Minoura et al.(2013), Tanigawa et al.(2014)は, 東通村周辺で津波堆積物調査を実施し, 認められた津波堆積物の堆積年代, 標高, 沿岸 からの距離等から, 1611年の津波, 超巨大地震(17世紀型), もしくはこれまで確認されていない巨大地震の発生可能性を指摘している。
- 追加調査の結果, Minoura et al. (2013)の指摘するイベント堆積物は分布は限定的であり、3.11地震による津波堆積物のように、広域では確認できなかった
- 上記知見を踏まえ、東通村周辺の津波堆積物で認められたイベント堆積物の成因について、計算に基づく水理学的特徴から検討した結果、成因を断定することは困難であるが、津波の場合、青森県東方沖及び岩手県沖北部で繰り返し発生しているM8クラスの地震に伴う津波の可能性が考えられ、津波以外の場合、田名部平野一帯の洪水の可能性が考えられる。





| Ref. no. in Fig. 2 | Date*                  | Name             | Magnitude* | Epicentre*<br>(°N, °E) | Tsunami height (m)<br>along the Pacific<br>coast of Aomori <sup>+</sup> | Tsunami-affected<br>area in historical document* |
|--------------------|------------------------|------------------|------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------|
| Historical earthqu | akes (recorded in hist | orical documents | )          |                        |                                                                         |                                                  |
| N/A                | 12 December 1454       | Kyotoku          | N.D.       | N.D.                   | N.D.                                                                    | Somewhere in Aomori, Iwate,<br>Miyagi, Fukushima |
| 1                  | 2 December 1611        | Keicho           | 8.1        | 39, 144                | N.D.                                                                    | Hokkaido, Aomori, Iwate, Miyagi,<br>Fukushima    |
| 2                  | 13 April 1677          | Empo             | 7.9        | 41, 143                | N.D.                                                                    | Aomori, Iwate, Miyagi, Fukushima                 |
| 3                  | 29 January 1763        | Horeki           | 7.7        | 41, 142.5              | N.D.                                                                    | Aomori, Iwate                                    |
| 4                  | 23 August 1856         | Ansei            | 7.7        | 41, 142.3              | N.D.                                                                    | Hokaido, Aomori, Iwate, Miyagi                   |
| Recent earthquak   | es (recorded by moder  | n seismic observ | ation)     |                        |                                                                         |                                                  |
| 5                  | 15 June 1896           | Meiji-Sanriku    | 8.2        | 39.5, 144              | S: 3                                                                    | N/A                                              |
| 6                  | 3 March 1933           | Showa-Sanriku    | 8.1        | 39.23, 144.52          | N: 1-3, S: 3-5                                                          | N/A                                              |
| 7                  | 4 March 1952           | Tokachi-oki      | 8.2        | 41.8, 144.13           | S: 2                                                                    | N/A                                              |
| N/A                | 26 May 1960            | Chile            | 9.5        | -38.17, -72.57         | N: 1-2, S: 1-5                                                          | N/A                                              |
| 8                  | 16 May 1968            | Tokachi-oki      | 7.9        | 40.73, 143.58          | N: 1-3, S: 1-5                                                          | N/A                                              |
| 9                  | 4 October 1994         | Shikotan-oki     | 8.2        | 43.37, 147.68          | N: 1, S: 1-2                                                            | N/A                                              |
| 10                 | 26 September 2003      | Tokachi-oki      | 8.0        | 41.78, 144.08          | N: 1-2.5                                                                | N/A                                              |

第989回審杳会合(R3.7.9)

資料1-1 p110 再掲

108

\*Based on Utsu (2004). <sup>1</sup>Tsunami heights (run-up or inundation heights) are based on the committee for field investigation of the Chilean tsunami of 1960 (1961), the 1968 Tokachi-oki earthquake investigation committee (1969), Watanabe (1998) and Tanioka *et al.* (2004). <sup>4</sup>Based on Tsuji and Ueda (1995), Watanabe (1998) and Namegaya and Yata (2014). We list five historical tsunamis for which damages in Aomori was documented, and seven recent tsunamis for which run-up heights of >1 m were recorded. Abbreviations: N, northern Pacific coast of Aomori; S, southern Pacific coast of Aomori; NAD, no data; N/A, not applicable.

主な既往津波の波源域 (Tanigawa et al.(2014))

Figure 2. Estimated epicentres of historical and recent earthquakes. The numbered stars correspond to the numbers of the earthquakes listed in Table 1. The solid and open stars represent historical and recent earthquakes, respectively. The triangle (shown in red in the online graphic) represents Komaga-take volcano (its eruption in AD 1640 caused a tsunami).

AD1453-2003に青森県太平洋沿岸付近で発生した既往地震の震源(Tanigawa et al. (2014))

以上から、過去にM9クラスの巨大地震による津波が青森県北部太平洋岸に襲来した可能性は低いと評価する。



#### 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

#### 1.1.3 地震発生履歴に関する検討

## 1.1.3.3 イベント堆積物の層厚に関する考察

• 青森県北部太平洋沿岸で観察された分布最高標高のイベント堆積物及びその層厚を下表に示す。

・ 各調査地点で確認されたイベント堆積物の層厚は概ね6cm以下であったが, 猿ヶ森周辺においてのみ層厚20cmを上回るイベント堆積物が確認されたことから, その要因について考察する。

|                                         | -==-          |        | イベント堆積物 <sup>※1</sup> |                      |                       |               |  |  |
|-----------------------------------------|---------------|--------|-----------------------|----------------------|-----------------------|---------------|--|--|
|                                         | <b>詗重</b> 地点  |        | 有無                    | 基底標高(T.P.)           | 層厚                    | 推定年代(年)       |  |  |
| <b>猿ヶ森周辺</b>                            | 尻屋崎           |        | 有                     | 約8.1m                | 6cm                   | A.D.190年頃     |  |  |
| 口小田野沢                                   |               | タテ沼付近① | 有                     | 約7.6m <sup>※2</sup>  | 52cm <sup>※2, 3</sup> | A.D.1650年頃より後 |  |  |
| □ 東京電力敷地内                               |               | タテ沼付近② | 有                     | 約11.8m               | 84cm                  | A.D.50年頃      |  |  |
| (A測線·B測線·                               | ↓ 猿ヶ森<br>■ 周辺 | 猿ヶ森川   | 有                     | 約11.0m <sup>※2</sup> | 66cm <sup>※2</sup>    | A.D.1300年頃    |  |  |
| C測線·D測線)                                |               | 材木沢    | 有                     | 約7.6m                | 37cm                  | A.D.1550年頃    |  |  |
|                                         |               | 大川     | 有                     | 約6.8m                | 24cm                  | A.D.1450年頃より後 |  |  |
| 尾駮老部川                                   | 小田野沢          |        | 有                     | 約4m                  | 4cm                   | A.D.1700年頃    |  |  |
| 尾駮発茶沢                                   | 東京電力敷地内       |        | 有                     | 約7.4m                | 3cm                   | A.D.1400年頃    |  |  |
|                                         |               | A測線    | 有                     | 約6.1m                | 5cm                   | B.C.500年頃     |  |  |
|                                         | 東北電力          | B測線    | 人工改変                  | /                    | /                     | /             |  |  |
| 日川六川目                                   | 敷地内           | C測線    | 有                     | 約8.6m                | 2cm                   | B.C.750年頃     |  |  |
|                                         |               | D測線    | 有                     | 約8.4m                | 3.5cm                 | B.C.2800年頃    |  |  |
|                                         | 尾駮老部川         |        | 有                     | 約1.9m                | 9cm                   | B.C.2000年頃    |  |  |
| この地図は、国土地理院長の承認を<br>鼻て 教値地図200000(地図画像) | 尾駮発茶沢         |        | 有                     | 約6.2m                | 3cm                   | B.C.2950年頃    |  |  |
| 2.26情複,第5号)                             | 平沼            |        | 有                     | 約1.6m                | 1cm以下                 | A.D.550年頃     |  |  |
|                                         | 六川目           |        | 有                     | 約2.5m                | 2cm                   | B.C.4700年頃以前  |  |  |

#### 調査位置図

※1:各イベント堆積物の詳細は、補足説明資料「I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波の評価 3.津波堆積物調査」に記載

※2:地形条件から、イベント堆積物の基底標高が確認できなかったため、確認可能な範囲での下限標高・最大層厚を記載 ※3:イベント堆積物中に腐植質シルト層等が挟在し、複数のイベントにより形成された可能性が否定できないが、明確な区別が困難 だったことから、確認可能な範囲での最大層厚を記載

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

1.1.3.3 イベント堆積物の層厚に関する考察:知見の整理

- 津波堆積物の層厚は、巨視的に見ると海側から内陸に向けて薄層化する傾向にあるが、局所的な地形に着目すると凹部で厚く、凸部で薄くなる傾向がある(西村(2009))。
- 石村ほか(2015)は、3.11地震を含む、過去に複数回、津波の襲来が記録されている岩手県小谷鳥において、ハンディジオスライサーにより高密度に津波 堆積物調査を実施し、局所的な標高の高まり(畔)を境に、上段側では層厚が薄く、下段側では厚くなる傾向を報告している。



ション、そう、ちから。

- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

1.1.3.3 イベント堆積物の層厚に関する考察:知見の整理

- Yoshii et al.(2017)は、津波堆積物の形成プロセスの解明するため、大型水路を用いた移動床実験を行い、陸上津波堆積物の供給源のほとんどが陸上であり、海域からの供給は極めて少ないことを示している。
- また, 3.11地震を対象とした堆積物調査においても、津波堆積物の主な供給源は、砂浜や砂丘で侵食された砂であったと報告されている(後藤・箕浦 (2012)ほか)。



**Fig. 1.** (a) Plan view and (b) section view of the experimental model. The inset in (b) shows a magnified portion of the section view. The x-axis is defined in the landward direction from the entrance of the channels and the z-axis is defined in the vertical direction from the water surface. The sand bed is set in the dotted area.

(a) Onshore deposits (b) Offshore deposits



Fig. 11. Source of (a) onshore deposits and (b) offshore deposits. The offshore and nearshore regions were defined as x = 0-38.0 and 38.0-41.0 m, respectively, to avoid the area affected by the water leakage.

移動床実験装置(左)及び陸域・海域の津波堆積物の供給源(右)(Yoshii et al.(2017))



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.3 地震発生履歴に関する検討

1.1.3.3 イベント堆積物の層厚に関する考察:調査地点の特徴

- ・ 調査地点は、小川・沢沿いという局所的な凹部に位置している。
- 猿ヶ森周辺には、海岸線とほぼ平行に形成されている段丘地形と比高35mに及ぶ大規模な砂丘が分布しており、段丘地形は最終間氷期以降に段階的に 形成されたことが報告されている(千釜ほか(1998))。



<u>以上より、猿ヶ森周辺のイベント堆積物が他地点と比較し厚かった原因として、①調査地点が厚層化しやすい局所的な凹部に位置していること、②堆積物の</u> 供給源が豊富な条件下にあったことが考えられる。



1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

第989回審査会合(R3.7.9) 資料1-1 p115 再揭 **113** 

1.1.3 地震発生履歴に関する検討

## 1.1.3.4 まとめ

#### ■既往津波に関する文献調査

日本海溝沿い・千島海溝沿いで発生した既往津波,遠地津波に関する文献調査の結果,発電所に影響を及ぼした津波は、日本海溝沿いの津波であり、敷地周辺に最も影響を及ぼした津波は、1856年の津波と評価した。

#### ■津波堆積物調査

- 歴史記録よりも過去にM9クラスの巨大地震による津波が青森県北部太平洋沿岸に襲来した可能性を検討するため、津波堆積物調査に関する文献調査を実施するとともに、文献調査結果を踏まえ青森県東通村周辺を対象に津波堆積物調査を追加実施した。
- ・ 追加調査で認められたイベント堆積物の成因について,計算に基づく水理学的特徴を踏まえた検討から,過去にM9クラスの巨大地震による津波 が青森県北部太平洋岸に襲来した可能性は低いと評価した。
- なお、猿ヶ森周辺のイベント堆積物が他地点と比較し厚かった原因として、①調査地点が厚層化しやすい凹部に位置していること、②堆積物の供給源が豊富な条件下にあったことが考えられる。



## 1.1.4 波源域及び地震規模の評価

- 1.1.4.1 波源域及び地震規模の評価
- 1.1.4.2 波源域及び地震規模の評価の妥当性確認
- 1.1.4.3 まとめ



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.4 波源域及び地震規模の評価
- 1.1.4.1 波源域及び地震規模の評価
- 敷地前面海域(青森県東方沖及び岩手県沖北部)では、M9クラスの巨大地震が発生した記録が無いことを踏まえ、①3.11地震、世界のプレート境界で発生している巨大地震に係る知見を収集・整理して、地震の発生機構、テクトニクス的背景等の類似性等から波源域及びすべり量について検討するとともに、②津波 堆積物調査を踏まえた地震発生履歴に関する検討を実施した。
- 各検討結果の概要を以下に示す。

【①波源域及びすべり量に関する検討結果】

構造的特徴,固着域,破壊伝播に関する検討から,青森県東方沖及び岩手県沖北部,十勝沖・根室沖の固着域を起点(震源)とする破壊(地震)が,構造的特徴(破壊のバリア)を跨ぎ,隣接するセグメントまで伝播する可能性は低いと評価。



【②地震発生履歴に関する検討結果】

> 文献調査の結果から,敷地周辺に影響を及ぼす津波は 日本海溝沿いの津波であり,津波堆積物調査及び数値解析 結果から,過去にM9クラスの巨大地震による津波が青森県 北部太平洋沿岸に襲来した可能性は低いと評価。

第989回審査会合(R3.7.9)

資料1-1 p117 再掲

115



Figure 2. Estimated epicentres of historical and recent earthquakes. The numbered stars correspond to the numbers of the earthquakes listed in Table 1. The solid and open stars represent historical and recent earthquakes, respectively. The triangle (shown in red in the online graphic) represents Komaga-take volcano (its eruption in AD 1640 caused a tsunami).

AD1453-2003に青森県太平洋沿岸付近で発生した 既往地震の震源(Tanigawa et al.(2014))

以上から、日本海溝沿い、千島海溝沿いにおいて、既往地震の地震規模を大きく上回る規模の地震が発生する可能性は低いと評価する。

#### 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価

#### 1.1.4 波源域及び地震規模の評価

第989回審査会合(R3.7.9) 116 資料1-1 p118 再掲

波源域及び地震規模の評価の妥当性確認:検討方針 1.1.4.2

・ 最新の知見から想定される波源域及び地震規模の評価の妥当性を確認するため、既往津波で発電所の津波高さに与えた影響が最も大きい1856年の津波 の再現モデル(Mw8.35)を基本に、 地震規模、 並びに走向の不確かさを考慮した数値シミュレーションを実施し、 青森県北部太平洋沿岸で認められたイベント 堆積物(基底標高)の再現性を確認する。

| □尻屋崎∮                                   | 調査地点          |        | イベント堆積物※1 |                      |               |  |  |
|-----------------------------------------|---------------|--------|-----------|----------------------|---------------|--|--|
|                                         |               |        | 有無        | 基底標高(T.P.)           | 堆積年代(年)       |  |  |
| 猿ヶ森周辺 尻屋崎                               |               | 有      | 約8.1m     | A.D.190年頃            |               |  |  |
| 口小田野沢                                   |               | タテ沼付近① | 有         | 約7.6m <sup>※2</sup>  | A.D.1650年頃より後 |  |  |
| □ 東京電力敷地内                               |               | タテ沼付近② | 有         | 約11.8m               | A.D.50年頃      |  |  |
| (A測線・B測線・                               | 猿ヶ森  <br>  周辺 | 猿ヶ森川   | 有         | 約11.0m <sup>※2</sup> | A.D.1300年頃    |  |  |
| ·····································   |               | 材木沢    | 有         | 約7.6m                | A.D.1550年頃    |  |  |
| 北村                                      |               | 大川     | 有         | 約6.8m                | A.D.1450年頃より後 |  |  |
| 尾駮老部川                                   | 小田野沢          |        | 有         | 約4m                  | A.D.1700年頃    |  |  |
| ■ 尾駮発茶沢                                 | 東京電力敷地内       |        | 有         | 約7.4m                | A.D.1400年頃    |  |  |
|                                         |               | A測線    | 有         | 約6.1m                | B.C.500年頃     |  |  |
|                                         | <br>  東北電力    | B測線    | 人工改変      | /                    | /             |  |  |
|                                         | 敷地内           | C測線    | 有         | 約8.6m                | B.C.750年頃     |  |  |
|                                         |               | D測線    | 有         | 約8.4m                | B.C.2800年頃    |  |  |
|                                         | 尾駮老部川         |        | 有         | 約1.9m                | B.C.2000年頃    |  |  |
| この地図は,国土地理院長の承認を<br>得て,数値地図200000(地図画像) | 尾駮発茶沢         |        | 有         | 約6.2m                | B.C.2950年頃    |  |  |
| を複製したものである。(承認番号<br>平26情複, 第5号)         | 平沼            |        | 有         | 約1.6m                | A.D.550年頃     |  |  |
|                                         | 六川目           |        | 有         | 約2.5m                | B.C.4700年頃以前  |  |  |

比較対象するイベント堆積物

調査位置凶

※1:各イベント堆積物の詳細は、補足説明資料「Ⅰ.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因する津波 の評価 3. 津波堆積物調査」に記載。

※2:イベント堆積物の基底標高を確認することは出来なかったことから、確認できた下限標高を記載。



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.4 波源域及び地震規模の評価

1.1.4.2 波源域及び地震規模の評価の妥当性確認:検討モデル

・ 既往津波で発電所の津波高さに与えた影響が最も大きい1856年の津波の再現モデル(Mw8.35)を基本に, 地震規模, 並びに走向の不確かさを考慮 した検討モデルを以下のとおり設定した。





| 断層パラメー         | -タ    | 1856年の津波<br>(再現モデル) | 不確かさ<br>ケース① | 不確かさ<br>ケース② |
|----------------|-------|---------------------|--------------|--------------|
| モーメントマク゛ニチュート゛ | Mw    | 8.35                | 8.5          | 8.6          |
| 長さ             | L(km) | 120                 | 143          | 160          |
| 幅              | W(km) | 70                  | 83           | 93           |
| 走向             | θ(°)  | 205                 | 205          | 205          |
| 断層上縁深さ         | d(km) | 26                  | 26           | 26           |
| 傾斜角            | δ(°)  | 20                  | 20           | 20           |
| すべり角           | λ(°)  | 90                  | 90           | 90           |
| すべり量           | D(m)  | 10.0                | 11.90        | 13.35        |

主な断層パラメータ





- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.4 波源域及び地震規模の評価

1.1.4.2 波源域及び地震規模の評価の妥当性確認:再現性の確認結果

相田(1977)による既往津波高と数値シミュレーションにより計算された津波高との比から求める幾何平均値K及びばらつきを表す指標 κを用いて、イベント堆積物の基底標高の再現性を確認した。

・ 土木学会(2016)では、再現性の目安を「0.95<K<1.05、 κ <1.45」としている。

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_{i} \quad , \quad \log \kappa = \left[ \frac{1}{n} \left\{ \sum_{i=1}^{n} (\log K_{i})^{2} - n(\log K)^{2} \right\} \right]^{\frac{1}{2}} \quad , \quad K_{i} = R_{i}/H_{i}$$

ここで、

n:地点数,  $R_i: i$ 番目の地点での観測値(痕跡高),  $H_i: i$ 番目の地点での数値シミュレーション結果

■再現性の確認結果

- ✓ イベント堆積物全ての地点(15地点,確認範囲①),並びに基底標高が低い尾駮老部川,平沼,六川目を除く地点(12地点,確認範囲②)に対する 再現性の確認結果を下表に示す。
- ✓ 本検討から、1856年の津波の再現モデル、並びに地震規模・走向の不確かさを考慮した検討モデルで、イベント堆積物(基底標高)を再現できる ことを確認した。

|                                    | 確認範囲① |      |    | 確認範囲② |      |     |  |
|------------------------------------|-------|------|----|-------|------|-----|--|
|                                    | к     | к    | n  | к     | к    | n   |  |
| 1856年の津波<br>(Mw8.35, 再現モデル)        | 0.91  | 1.84 |    | 1.20  | 1.32 |     |  |
| 不確かさケース①<br>(Mw8.5, 走向:基準, 基準±10°) | 0.72  | 1.86 | 15 | 0.95  | 1.35 | 12* |  |
| 不確かさケース②<br>(Mw8.6, 走向:基準, 基準±10°) | 0.64  | 1.87 |    | 0.85  | 1.34 |     |  |

※:尾駮老部川, 平沼, 六川目を除く12地点



- 1.1 最新の科学的・技術的知見を踏まえた波源域及び地震規模の評価
- 1.1.4 波源域及び地震規模の評価

## 1.1.4.3 まとめ

以上から、最新の科学的・技術的知見から想定される日本海溝沿い、千島海溝沿い(南部)における最大規模の波源域及び地震規模を以下のとおり評価した。

■日本海溝沿い,千島海溝沿い(南部)で発生する地震規模と波源域の評価結果



(地震調査研究推進本部(2017a, 2019)に一部加筆)



第989回審査会合(R3.7.9)

資料1-1 p122 再掲

120

121

# 余白



- 1.2.1 設定方針
- 1.2.2 検討対象領域の選定
- 1.2.3 波源モデルの設定
- 1.2.4 津波予測計算
- 1.2.5 まとめ



#### 第989回審査会合(R3.7.9) 資料1-1 p125 再掲 **123**

#### **1.2 想定波源域の設定**

1.2.1 設定方針

#### ■保守的設定①:想定波源域の設定

- 基準断層モデルの保守性を確保する観点から、最新の科学的・技術的知見から想定される波源域及び地震規模を上回る地震を考慮する。具体的には、 構造境界(破壊のバリア)の破壊伝播を1つ考慮した(=2連動)連動型地震を想定する。
- 基準断層モデルの想定波源域は、発電所の津波高さに与える影響が最も大きい領域を確認した上で設定する。具体的には、十勝沖・根室沖から岩手県沖北部の連動型地震に追加して、千島海溝沿いで発生する津波、超巨大地震(東北地方太平洋沖型)に伴う津波の影響を確認する。

#### ■保守的設定②:大すべり域・超大すべり域の設定

 国内外で発生している巨大地震の地震学的・地質学的・測地学的知見等から、青森県東方沖及び岩手県沖北部で発生し得る最大すべり量は1968年十勝 沖地震に伴うすべり量と考えられるが、保守的設定の観点から、3.11地震における宮城県沖のすべり量と同規模のすべり量を考慮する。



## 1.2.2 検討対象領域の選定:十勝沖・根室沖から千島前弧スリバー北東端

・ 千島海溝沿いでは、ほぼ空白域無く既往地震が発生し、各セグメントにアスペリティが分布しているとともに、地震調査研究推進本部(2017a)では「現時点で解明されている知見の中で最大の地震は17世紀の地震(Mw8.8)であるが、北方領土における津波堆積物の分布が不明瞭であり、規模がより大きくなる可能性がある。」としていることを踏まえ、保守的設定の観点から、過去に発生した記録はないものの、納沙布断裂帯の破壊伝播を考慮した十勝沖・根室沖から千島前弧スリバー北東端を波源域とする連動型地震を想定した。





| 第989回審査会合(R3.7.9) |     |
|-------------------|-----|
| 資料1-1 p127 再掲     | 125 |

## 1.2.2 検討対象領域の選定:十勝沖・根室沖から岩手県沖北部

 日本海溝・千島海溝島弧会合部は、アラスカ・アリューシャン島弧会合部と同様に、破壊のバリアとして作用すると考えられるが、敷地前面の青森県 東方沖及び岩手県沖北部のすべりは発電所の津波高さに与える影響が大きいことを踏まえ、保守的設定の観点から、島弧会合部の破壊伝播を考慮し、十勝沖・根室沖から岩手県沖北部を波源域とする連動型地震を想定した。



Figure 4. Schematic along-strike cross section of potential configuration of Pacific plate, Yakutat terrane, North America plate, and Wrangell slab. Intraslab seismicity is limited to Pacific plate. Tremor occurs at the Yakutat–North America interface. Wrangell slab is an obliquely subducting extension of the Yakutat microplate causing Wrangell volcanism.

アラスカ・アリューシャン島弧会合部のテクトニクス的背景 (Wech(2016))



1.2.2 検討対象領域の選定:超巨大地震(東北地方太平洋沖型)

• 超巨大地震(東北地方太平洋沖型)が発電所の津波高さに与える影響を確認するため、検討対象領域として選定した。

 なお、本検討は各波源域が発電所の津波高さに与える影響を確認するものであることを踏まえ、検討に用いる波源モデルは、3.11地震に伴う津波の 広域の痕跡高を良好に再現する特性化モデルとした。



検討対象領域 (地震調査研究推進本部(2017a, 2019)に一部加筆)



## 1.2.3 波源モデルの設定:大すべり域・超大すべり域の設定

#### ■大すべり域・超大すべり域の面積, すべり量

- 各検討対象領域の波源モデルは、発電所の津波高さに与える影響を比較するため、広域の津波特性を考慮できる杉野ほか(2014)の知見を踏ま えて設定した。
  - ▶ 大すべり域:津波断層の平均すべり量の1.4倍,全体面積の40%程度(超大すべり域を含む)
  - > 超大すべり域:津波断層の平均すべり量の3倍,全体面積の15%程度



杉野ほか(2014)によるMw8.9以上の規模の地震の 大すべり域・超大すべり域の設定方法

| 衣2 | 東北地震洋波の特性化波源モナルの各諸元 |  |  |  |  |  |  |  |
|----|---------------------|--|--|--|--|--|--|--|
|    | 1. Mr. 102 on Mile  |  |  |  |  |  |  |  |

| 領域 波源全体 |        | 小断層の数 | 面積(km²) | すべり量(m)  | チュードMw |
|---------|--------|-------|---------|----------|--------|
|         |        | 5147  | 134593  | 10.4(平均) | 9.1    |
|         | 超大すべり域 | 792   | 20189   | 31.2     | -      |
| 内訳      | 大すべり域  | 1312  | 33648   | 14.6     |        |
|         | 背景すべり域 | 3043  | 80756   | 3.5      | 2.72   |



図8 東北地震津波の再現用波源モデル(左)と特性化波源モデル(右)



3.11地震に伴う津波の痕跡高と杉野ほか(2014)による計算津波高の比較

| 第989回審査会合(R3.7.9) |     |
|-------------------|-----|
| 資料1-1 p130 再掲     | 128 |

## 1.2.3 波源モデルの設定:大すべり域・超大すべり域の設定

#### ■大すべり域・超大すべり域の位置①

 
 ・ 十勝沖・根室沖から千島前弧スリバー北東端,並びに十勝沖・根室沖から岩手県沖北部の連動型地震で考慮する大すべり域・超大すべり域は,複数のセグメントの連動破壊が見られた2004年スマトラ〜アンダマン地震のすべり分布及び活断層の連動時における断層セグメント間の相互作用に 関する知見を参考として,セグメント毎に設定した。



#### 第989回審査会合(R3.7.9) 資料1-1 p131 再掲 **129**

## 1.2.3 波源モデルの設定:大すべり域・超大すべり域の設定

#### ■大すべり域・超大すべり域の位置②

- - > 青森県東方沖及び岩手県沖北部:アスペリティ分布,並びに1968年十勝沖地震の震央位置を参考に設定。
  - > 十勝沖・根室沖:アスペリティ分布,17世紀の地震のすべり量分布及びすべり欠損分布を参考に設定。
  - ▶ 根室沖から千島前弧スリバー北東端:発電所に与える影響が大きくなるように,根室沖側(納沙布断裂帯側)に移動させて設定。



第989回審査会合(R3.7.9) 資料1-1 p132 再掲 **130** 

## 1.2.3 波源モデルの設定:まとめ(1)

- ・ 設定した各波源モデルのすべり量分布,断層パラメータを以下に示す。
- なお、十勝沖・根室沖から千島前弧スリバー北東端の連動型地震、十勝沖・根室沖から岩手県沖北部の連動型地震において、セグメント毎に設定した大すべり域・超大すべり域の面積は、各セグメントの面積を基に設定した。詳細を次頁に示す。



|             |                            | 十勝沖・根室沖から千島前弧スリバー<br>北東端の連動型地震                                                                                        | 十勝沖・根室沖から岩手県沖北部の<br>連動型地震        | 超巨大地震(東北地方太平洋沖型)                  |  |
|-------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|--|
| ŧ-,         | メントマク゛ニチュート゛(Mw)           | 9.21                                                                                                                  | 9.05                             | 9.13                              |  |
| 断層          | 層面積(S)                     | 157,100 (km <sup>2</sup> )                                                                                            | 110,472 (km²)                    | 129,034 (km <sup>2</sup> )        |  |
| 平均          | 匀応力降下量(⊿σ)                 | 3.19(MPa)                                                                                                             | 3.17(MPa)                        | 3.26(MPa)                         |  |
| 地震モーメント(Mo) |                            | 8.15 × 10 <sup>22</sup> (Nm) 4.77 × 10 <sup>22</sup> (Nm)                                                             |                                  | 6.21 × 10 <sup>22</sup> (Nm)      |  |
| 平均          | 匀すべり量                      | 10.38(m)                                                                                                              | 8.64(m)                          | 9.63(m)                           |  |
| 4           | 背景領域(0.33D)<br>(面積及び面積比率)  | 3.33 (m)<br>(92,651 (km²), 59.0%)                                                                                     | 2.70(m)<br>(64,419(km²), 58.3%)  | 3.02 (m)<br>(72,841 (km²), 56.5%) |  |
| ダベリ         | 大すべり域(1.4D)<br>(面積及び面積比率)* | 14.12(m)<br>(38,911(km²), 24.8%)                                                                                      | 11.46(m)<br>(26,783(km²), 24.3%) | 12.80(m)<br>(35,497(km²), 27.5%)  |  |
| 重           | 超大すべり域(3D)<br>(面積及び面積比率)   | 域(3D)         30.26 (m)         24.56 (m)           面積比率)         (25,538 (km²), 16.2%)         (19,271 (km²), 17.4%) |                                  | 27.43(m)<br>(20,696(km²), 16.0%)  |  |
| 破均          | 衷形態                        | 同時破壊                                                                                                                  | 同時破壞                             | 同時破壞                              |  |
| 51          | イズタイム                      | 60(s)                                                                                                                 | 60(s)                            | 60(s)                             |  |

※:超大すべり域を含まない面積及び面積比率

1.2.3 波源モデルの設定:まとめ(2)

|                 | +勝沖・根室沖から千島前弧スリバー北東端の連動型地震 |                                          |                                 |                                         | ł                 | −勝沖・根室沖から岩手県          | 沖北部の連動型地震                    |
|-----------------|----------------------------|------------------------------------------|---------------------------------|-----------------------------------------|-------------------|-----------------------|------------------------------|
| -Ŧ              | メントマク゛ニチュート゛(Μぃ            | (Mw) 9.21 モーメントマグニチュート <sup>*</sup> (Mw) |                                 |                                         |                   | 9.05                  |                              |
| 平               | 均応力降下量(2                   | σ)                                       | 3.19(MPa)                       | 平                                       | 均応力降下量(⊿          | σ)                    | 3.17(MPa)                    |
| 地               | 雲モーメント(Mo)                 |                                          | 8.15 × 10 <sup>22</sup> (Nm)    | 地                                       | 震モーメント(Mo)        |                       | 4.77 × 10 <sup>22</sup> (Nm) |
| 平               | 均すべり量                      |                                          | 10.38(m)                        | 平                                       | 均すべり量             |                       | 8.64(m)                      |
|                 | 面積(S)                      |                                          | 157,100 (km²)                   |                                         | 面積(S)             |                       | 110,472 (km²)                |
|                 | * 8 46 14                  | すべり量                                     | 3.33(m)                         |                                         |                   | すべり量                  | 2.70(m)                      |
| 断               | 育贡領域                       | 面積及び面積比率                                 | 92,651 (km²), 59.0%             | 断                                       | 背 <b>贲</b> 領域<br> | 面積及び面積比率              | 64,419(km²), 58.3%           |
| 層面              |                            | すべり量                                     | 14.12(m)                        | 層面                                      |                   | すべり量                  | 11.46(m)                     |
| 全<br>  体        | 大すべり域                      | 面積及び面積比率※                                | 38,911(km²), 24.8%              | 全体                                      | 大すべり域             | 面積及び面積比率 <sup>※</sup> | 26,783(km²), 24.3%           |
|                 | +77_++                     | すべり量                                     | 30.26(m)                        |                                         | +71 > - 1         | すべり量                  | 24.56(m)                     |
|                 | 超大すへり或                     | 面積及び面積比率                                 | 25,538(km²), 16.2%              | 25,538(km <sup>2</sup> ), 16.2%         |                   | 面積及び面積比率              | 19,271 (km²), 17.4%          |
| 千島              | 面積(S)                      |                                          | 87,587 (km <sup>2</sup> )       |                                         | 面積(S)             | •                     | 69,513(km²)                  |
| 前弧ス             |                            | すべり量                                     | 3.33(m)                         | 3.33(m)                                 |                   | すべり量                  | 2.70(m)                      |
| リバ              | 月京限以                       | 面積及び面積比率                                 | 52,059(km²), 59.5%              | 日本                                      | 月京识以              | 面積及び面積比率              | 40,592(km²), 58.4%           |
| 北東              | キオベリオ                      | すべり量                                     | 14.12(m)                        | 沖                                       | キオベルボ             | すべり量                  | 11.46(m)                     |
| ·<br>ふ<br>納     | 入りへり攻                      | 面積及び面積比率※                                | 22,099(km²), 25.2%              | 十勝                                      | 入りへり政             | 面積及び面積比率※             | 16,812(km²), 24.2%           |
| 沙布              | おキナ ぐいせ                    | すべり量                                     | 30.26(m)                        | 沪                                       | ᅒᆃᅷᇂᆝᄖᅷ           | すべり量                  | 24.56(m)                     |
|                 | 超入9へり攻                     | 面積及び面積比率                                 | 13,429(km²), 15.3%              |                                         | 超入9へり或            | 面積及び面積比率              | 12,109(km²), 17.4%           |
|                 | 面積(S)                      |                                          | 69,513(km²)                     | 青                                       | 面積(S)             |                       | 40,959 (km²)                 |
|                 | 北早初世                       | すべり量                                     | 3.33(m)                         | 日 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 | 兆모여난              | すべり量                  | <b>2</b> .70(m)              |
| 全               | 月京唄以                       | 面積及び面積比率                                 | 40,592(km²), 58.4%              | 方                                       | 月京唄坞              | 面積及び面積比率              | 23,827(km²), 58.2%           |
| 泙               | キオベルボ                      | すべり量                                     | 14.12(m)                        | 及び                                      | キオベルボ             | すべり量                  | 11.46(m)                     |
| 帯               | 入りへり埋                      | 面積及び面積比率 <sup>※</sup>                    | 16,812(km²), 24.2%              | 日子                                      |                   | 面積及び面積比率※             | 9,971(km²), 24.3%            |
| ру <del>н</del> | 却ナオズロゼ                     | すべり量                                     | 30.26(m)                        | □ □ 県<br>〕 沖                            | 却ナオズリゼ            | すべり量                  | 24.56(m)                     |
|                 | 超大すべり域                     | 面積及び面積比率                                 | 12,109(km <sup>2</sup> ), 17.4% | 部                                       | 但人 9 へり以          | 面積及び面積比率              | 7,162(km²), 17.5%            |

※:超大すべり域を含まない面積及び面積比率

※:超大すべり域を含まない面積及び面積比率

第989回審査会合(R3.7.9) 資料1-1 p133 再掲

131

## 1.2.4 津波予測計算:最大水位上昇量,最大水位下降量

• 各評価位置における最大水位上昇量・下降量を以下に※,水位時刻歴波形,並びに最大水位上昇量分布の比較を次頁以降に示す。

※:津波解析条件,津波水位の評価位置の詳細を補足説明資料「5.津波解析条件」に,各ケースのスナップショットを「I.「十勝沖・根室沖から岩手県沖北部の連動型地震」に起因 する津波の評価 4.千島海溝・日本海溝沿いで発生する津波解析結果(スナップショット)」に記載。

| ・十勝沖・根室沖から千島前弧スリバー北東端                       | 【水位上昇側】                        |                          |                  |             | -                    | F線:最大ケース    |
|---------------------------------------------|--------------------------------|--------------------------|------------------|-------------|----------------------|-------------|
|                                             |                                | 最大水位上昇量(m)               |                  |             |                      |             |
| ・1 協力で設定がある子家方北部の建動主地展<br>:超巨大地震(東北地方太平洋沖型) |                                | 敷地                       | 也前面              | 取水口前面       | 補機冷却海<br>水系取水口<br>前面 | 放水路護岸<br>前面 |
|                                             | 十勝沖・根室沖から千島前弧<br>スリバー北東端の連動型地震 | 4                        | 4.77             | 2.97        | 3.03                 | _           |
| 新沙市                                         | 十勝沖・根室沖から岩手県沖<br>北部の連動型地震      | から岩手県沖<br>也震 <u>6.91</u> |                  | <u>6.11</u> | <u>6.27</u>          | <u>6.30</u> |
| 東通原子力                                       | 超巨大地震<br>(東北地方太平洋沖型)           |                          | 4.30             | 3.96        | 3.93                 | 3.17        |
| 発電所<br>日本海溝・千島海溝<br>島弧会合部                   | 【水位下降側】                        |                          |                  |             |                      |             |
|                                             |                                |                          | 最大水伯             | 立下降量(m)     |                      |             |
|                                             |                                |                          | 補機冷却海水系<br>取水口前面 |             |                      |             |
| フィリトン海ブレート北東端                               | 十勝沖・根室沖から千島前弧スリ<br>北東端の連動型地震   | バー                       |                  | -3.01       |                      |             |

十勝沖・根室沖から岩手県沖北部の

超巨大地震(東北地方太平洋沖型)

連動型地震

-4.16

-3.51

検討対象領域 (地震調査研究推進本部(2017a, 2019)に一部加筆)

ション、そう、ちから。

## 1.2.4 津波予測計算:水位時刻歴波形の比較

• 基準津波策定位置(左図),並びに取水口前面(右図)における水位時刻歴波形※を以下に示す。

・ 基準津波策定位置,取水口前面のいずれの位置においても十勝沖・根室沖から岩手県沖北部の連動型地震による津波が水位の上昇側,下降側 ともに最も影響が大きいことを確認した。

※:基準津波策定位置及び水位時刻歴波形抽出位置の詳細は,補足説明資料「VI.計算条件等 5.津波解析条件」に記載。



#### 【十勝沖・根室沖から岩手県沖北部の連動型地震】





#### 第989回審査会合(R3.7.9) 資料1-1 p136 再掲 **134**

### **1.2 想定波源域の設定**

## 1.2.4 津波予測計算:最大水位上昇量の比較

- 最大水位上昇量分布,並びに敷地前面における最大水位上昇量の比較を以下に示す。
- ・ 敷地前面全体に亘って、十勝沖・根室沖から岩手県沖北部の連動型地震による津波の影響が最も大きいことを確認した。

#### ■最大水位上昇量分布





1.2.5 まとめ

・ 以上から、基準断層モデルの想定波源域は、十勝沖・根室沖から岩手県沖北部に設定する。



