
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料3.2.3	資料なし	添付資料 3. 2. 2	
格納容器破損モード「DCH」,「FCI」及び「MCCI」の評価事故シー		格納容器破損モード「DCH」,「FCI」及び「MCCI」の	
ケンスの位置付け		評価事故シーケンスの位置づけ	
格納容器破損モード「高圧溶融物放出/格納容器雰囲気直接加		格納容器破損モード「高圧溶融物放出/格納容器雰囲気直接加	
熱 (DCH)」,「原子炉圧力容器外の溶融燃料-冷却材相互作用 (FCI)」		熱(DCH)」,「原子炉圧力容器外の溶融燃料ー冷却材相互作用(F	
及び「溶融炉心・コンクリート相互作用 (MCCI)」については、各		CI)」及び「溶融炉心・コンクリート相互作用(MCCI)」につ	
プラント損傷状態 (PDS) に対応する各重要事故シーケンス及び「雰		いては、各プラント損傷状態(PDS)に対応する各重要事故シ	
囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の評		ーケンス及び「雰囲気圧力・温度による静的負荷(格納容器過圧・	
価事故シーケンスへの重大事故等対策の有効性評価の結果等か		過温破損)」の評価事故シーケンスへの重大事故等防止対策の有効	
ら,重大事故等対処設備に期待する場合,炉心損傷あるいは炉心		性評価の結果等から、重大事故等対処設備に期待する場合、炉心	
下部プレナムへの溶融炉心移行までに事象の進展を停止し、これ		損傷あるいは炉心下部プレナムへの溶融炉心移行までに事象の進	
らの現象の発生を防止することが出来る。		展を停止し、これらの現象の発生を防止することが出来る。	
しかしながら,格納容器破損モード「DCH」,「FCI」及び「MCCI」		しかしながら、格納容器破損モード「DCH」、「FCI」及び	
は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の		「MCCI」は、「実用発電用原子炉及びその附属施設の位置、構	
基準に関する規則の解釈」(以下「解釈」という。)第37 条2-1(a)		造及び設備の基準に関する規則の解釈」(以下,「解釈」という。)	
において、「必ず想定する格納容器破損モード」として定められて		第 37 条 2-1(a)において,「必ず想定する格納容器破損モード」と	
いる。このため,今回の評価では重大事故等対処設備の一部に期		して定められている。このため,今回の評価では重大事故等対処	
待しないものとして、各物理化学現象に伴う格納容器破損が懸念		設備の一部に期待しないものとして、各物理化学現象に伴う格納	
される状態に至る評価事故シーケンスを設定している。		容器破損が懸念される状態に至る評価事故シーケンスを設定して	
		いる。	
一方、格納容器破損モード「雰囲気圧力・温度による静的負荷		一方、格納容器破損モード「雰囲気圧力・温度による静的負荷	
(格納容器過圧・過温破損)」については,事故シーケンス選定の		(格納容器過圧・過温破損)」については、事故シーケンス選定の	
プロセスにおいて、国内外の先進的な対策と同等な対策を講じて		プロセスにおいて、国内外の先進的な対策と同等な対策を講じて	
も炉心損傷を防止できない事故シーケンスとして抽出された,「太		も炉心損傷を防止できない事故シーケンスとして抽出された、「冷	
破断LOCA+ECCS 注水機能喪失+全交流動力電源喪失」を評価事故		却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動	
シーケンスとして選定し,重大事故等対策の有効性を評価してい		力電源喪失」を評価事故シーケンスとして選定し、重大事故等対	
る。		策の有効性を評価している。	
以上のとおり、格納容器破損モード「雰囲気圧力・温度による		以上のとおり、格納容器破損モード「雰囲気圧力・温度による	
静的負荷(格納容器過圧・過温破損)」は重大事故等対策に期待し		静的負荷(格納容器過圧・過温破損)」は重大事故等対策に期待し	
て評価し,解釈第37条2-3(a)~(c)の評価項目に対する重大事故		て評価し、解釈第37条2-3(a)~(c)の評価項目に対する重大事	
等対策の有効性を評価しており、格納容器破損モード「DCH」,「FCI」		故等対策の有効性を評価しており、格納容器破損モード「DCH」、	
及び「MCCI」は,評価を成立させるために,重大事故等対処設備		「FCI」及び「MCCI」は、評価を成立させるために、重大	
の一部に期待しないものとして,解釈第37条2-3(d),(e),(i)の		事故等対処設備の一部に期待しないものとして,解釈第37条	
評価項目に対する重大事故等対策の有効性を評価している。		2-3(d),(e),(i)の評価項目に対する重大事故等対策の有効性を評	
以上		価している。 以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
添付資料3.2.2	添付資料3.2.5	添付資料 3. 2. 3	
原子炉建屋から大気中への放射性物質の漏えい量について	原子炉建屋から大気中へ漏えいするCs-137の漏えい量評価につ	原子炉建物から大気中への放射性物質の漏えい量について	
	<u> </u>	(高圧溶融物放出/格納容器雰囲気直接加熱)	
本格納容器破損モードの重大事故等対策の有効性評価では、厳し	本資料では、「原子炉建屋から大気中へ漏えいするCs-137」の	本格納容器破損モードの重大事故等対策の有効性評価では、厳	
い事象を想定した場合でも,原子炉格納容器が破損することなく安	放出量評価について示す。	しい事象を想定した場合でも、原子炉格納容器が破損することな	
定状態に至る結果が得られている。この評価結果に照らして原子炉		く安定状態に至る結果が得られている。この評価結果に照らして	
建屋から大気中への放射性物質の漏えい量を考える。		原子炉建物から大気中への放射性物質の漏えい量を考える。	
本格納容器破損防止対策の有効性評価では,非常用ディーゼル発	なお、本評価では、原子炉建屋ガス処理系(非常用ガス処理系及	<u>格納容器</u> 破損防止対策の有効性評価では, <u>通常運転時に用いて</u>	・解析条件の相違
電機からの電源供給により非常用ガス処理系が起動し,事象発生か	び非常用ガス再循環系で構成)が起動するまでの間,格納容器から	いる原子炉棟内の換気系が全交流動力電源喪失により停止し、交	【柏崎 6/7】
ら原子炉建屋の設計負圧が維持されていることを想定している。	原子炉建屋に漏えいした放射性物質は、瞬時に原子炉建屋から大気	流電源が回復した後に非常用ガス処理系が起動する状況を想定し	島根2号炉は、本シナ
	中へ漏えいするものとして、放出量を保守的に評価しているが、下	ている。ここで,原子炉棟内の換気系の停止から非常用ガス処理	リオの評価においてSB
	記のとおり、格納容器の健全性が維持されており、原子炉建屋の換	<u>系が起動するまでの時間遅れを考慮し、非常用ガス処理系によっ</u>	〇の重畳を考慮してい
	気空調系が停止している場合は、格納容器から原子炉建屋に漏えい	て原子炉棟の設計負圧が達成されるまで事象発生から 70 分かか	る。
	した放射性物質の一部は、原子炉建屋内で沈着又は時間減衰するた	ると想定している。	
本格納容器破損モードの重大事故等対策の有効性評価では原子	め、大気中への放出量は本評価結果より少なくなると考えられる。	本格納容器破損モードの重大事故対策の有効性評価では原子炉	
炉格納容器の閉じ込め機能は健全であると評価していることから,	・格納容器が健全な場合、格納容器内の放射性物質は、格納容器圧	格納容器の閉じ込め機能は健全であると評価していることから,	
原子炉格納容器から多量の水蒸気が原子炉建屋に漏えいすること	力に応じて原子炉建屋へ漏えいするものとしている。漏えいした	原子炉格納容器から漏えいした水蒸気は原子炉建物内で凝縮さ	
<u>は無く</u> ,漏えいした水蒸気は <u>原子炉建屋内</u> で凝縮されることから,	放射性物質の一部は、原子炉建屋内での重力沈降等に伴い、原子	れ,原子炉建物空間部が加圧されることはないと考えられる。ま	
原子炉建屋空間部が加圧されることはないと考えられる。また,原	炉建屋内に沈着すると考えられる。	た,原子炉棟内の換気系は停止しているため,原子炉建物内空間	
子炉建屋内の換気空調系は停止しているため,原子炉建屋内空間部	・原子炉建屋内の換気空調系が停止している場合,原子炉建屋内外	部と外気との圧力差が生じにくく,原子 <u>炉建物内外</u> での空気のや	
と外気との圧力差が生じにくく,原子炉建屋内外での空気のやりと	における圧力差が生じにくく,原子炉建屋内外での空気のやりと	りとりは殆どないものと考えられる。さらに、原子炉格納容器内	
りは殆どないものと考えられる。さらに、原子炉格納容器内から原	りは多くないと考えられるため,漏えいした放射性物質の一部は	から原子炉建物に漏えいした粒子状放射性物質は,原子炉建物内	
子炉建屋に漏えいした粒子状放射性物質は,原子炉建屋内での重力	原子炉建屋内に滞留し、時間減衰すると考えられる。	での重力沈降や水蒸気の凝縮に伴い,原子炉建物内に沈着するも	
沈降や水蒸気の凝縮に伴い,原子炉建屋内に沈着するものと考えら		のと考えられる。	
れる。			
これらのことから、原子炉格納容器の健全性が維持されており、		これらのことから, 原子炉格納容器の健全性が維持されており,	
原子炉区域・タービン区域換気空調系が停止している場合は,原子		原子炉棟内の換気系が停止している場合は、原子炉格納容器から	
炉格納容器から原子炉建屋内に漏えいした放射性物質は,原子炉建		原子炉建物内に漏えいした放射性物質は、原子炉建物内で時間減	
屋内で時間減衰し、また、原子炉建屋内で除去されるため、大気中		衰し,また,原子炉建物内で除去されるため,大気中へは殆ど放	
へは殆ど放出されないものと考えられる。		出されないものと考えられる。	
		本評価では、上述の状況に係わらず、非常用ガス処理系が起動	・解析条件の相違
		し,原子炉建物の設計負圧が達成されるまでの間,原子炉格納容	【柏崎 6/7】
		器から原子炉建物に漏えいした放射性物質は、保守的に全量原子	島根2号炉は、本シナ
		炉建物から大気中へ漏えいすることを想定した場合の放出量を示	リオの評価において, S
		<u>す。</u>	BOの重畳を考慮してい

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			9. 12 版)			備考
1. 評価条件				1.	評価条件	る。
(1) 本格納容器破損モードの評価事故シーケンスである「 <u>過渡事象</u> +高圧注水失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失 Bt. (+ DOU 75 th.) - 12 のいて評価する	図及び第2図に示す。	~	······································	図を第1 (1	象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の原子	
敗(+DCH 発生)」について評価する。	項目	表 放出量評価条件	選定理由		炉減圧失敗+原子炉注水失敗+DCH発生」について評価する。	
(2) 原子炉格納容器からの漏えい量は、MAAP 解析上で原子炉格納容器内圧力に応じて漏えい率が変化するものとし、開口面積は	評価事象 炉心熱出力	「過渡事象+高圧炉心冷却失敗+手動減 圧失敗+炉心損傷後の手動減圧失敗+ DCH」(全交流動力電源喪失の重量を 考慮) 3,293MW	定格熱出力	(2	2) 原子炉格納容器からの漏えい量は、MAAP解析上で原子炉 格納容器圧力に応じて漏えい率が変化するものとし、開口面	
以下のように設定する。(添付資料3.1.2.6 参照)	運転時間	1 サイクル当たり 10,000 時間 (416 日)	1 サイクル 13 ヶ月 (395 日) を考慮して設定		積は以下のように設定する。(添付資料 3.1.2.6 参照)	
・1Pd 以下 : 0.9Pd で <u>0.4%</u> /日 相当	取替炉心の 燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229	取替炉心の燃料装荷割 合に基づき設定		・ 1 Pd 以下: 0.9Pd で 0.5%/日 相当	・設計漏洩率の相違
・1~2Pd : 2.0Pd で1.3%/日 相当	炉内蓄積量 (Cs-137)	4 サイクル: 0, 229 5 サイクル: 0, 084 約4, 36×10 ¹⁷ Bq	「単位熱出力当たりの 炉内蓄積量 (Bq/Mm)」 × 3,3293M (定格熱出 力)」 (単位熱出力当たりの 炉内蓄積量 (Bq/Mm)は, BWR共通条件として、 東海第二と同じ装荷燃 料(9×9燃料(A型)),		・ 1 ~ 2 Pd : 2. 0Pd で 1. 3%/日 相当	【柏崎 6/7】
なお、エアロゾル粒子は格納容器外に放出される前に貫通			上記の運転時間及び取替炉心の燃料装荷割合で算出したABWRのサイクル末期の値*を使用)	(3		
部内で捕集されることが実験的に確認されていることから	放出開始時間格納容器内への	格納容器漏えい:事象発生直後	MAAP解析結果		部内で捕集されることが実験的に確認されていることから原	
格納容器の漏えい孔におけるエアロゾルの捕集の効果 <u>に期</u>	放出割合 (Cs 137) 格納容器の漏え	約0.73	MAAP解析結果		子炉格納容器の漏えい孔におけるエアロゾルの捕集の効果 <u>を</u>	・解析条件の相違
<u>待できるが、本評価では保守的に考慮しないこととする。</u>	除去効果 格納容器内pH 制御の効果 ※ 東海第二発電	ラン・アール及びペデスタル (ドライウェル部) 水ブールでのスクラビング並びにドライウェルスプレイ) 考慮しない 所(BWR5)に比べて炉心比出力が大きく的に評価するABWRの値を使用。	デル サブレッション・ブール 水pH制御設備は、重大 事故等対処設備と位置 付けていないため、保守 的に設定		<u>考慮して評価する(DF=10)。</u>	【柏崎 6/7, 東海第二】 ①島根 2 号炉は、最確条件として格納容器貫通部の捕集効果を考慮した評価としている。
(3) 非常用ガス処理系による原子炉建屋の設計負圧が維持されて いることを想定し,本評価では設計換気率0.5 回/日相当を考慮 する。	項目	表 放出量評価条件 評価条件 IPd以下: 0.9Pdで0.5%/d IPd超過: 2Pdで1.3%/d	選定理由 MAAP解析にて格納容器の関ロ面積を設定し格納容器圧力に応じ 滴えい率が変化するものとし、格納容器の設計 漏えい率 (0.994 で 0.5%/d)及びAECの式等に基づき設定(派付資料3.1.2.5参照)	(4)	原子炉建物から大気中への放射性物質の漏えいについては、 非常用ガス処理系により負圧が達成される事象発生 70 分後 までは原子炉建物内の放射性物質の保持機能に期待しないこ ととし(換気率無限)、非常用ガス処理系により設計負圧を達 成した後は設計換気率1回/日相当を考慮する。	・解析条件の相違【柏崎 6/7】島根 2 号炉は、本シナリオの評価において、SBOの重畳を考慮してい
	格納容器から原 子炉建屋への漏 えい割合	CsI類:約2.07×10 ⁻⁷ CsOH類:約6.17×10 ⁻⁸	MAAP解析結果			3 .
	率(非常用ガス	無限大/d (地上放出) (格納容器から原子炉建屋へ漏えいしただ 射性物質は、瞬時に大気へ漏えいするもの として評価)	女 保守的に設定			・運用の相違 【東海第二】 ②島根2号炉は,非常用
	系から大気への 放出率(非常用 ガス処理系及び 非常用ガスを 非常用ガスを	1回/d (排気筒放出)	設計値に基づき設定 (非常用ガス処理系の ファン容量)			ガス処理系の起動操作時
	非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	事象発生から 2 時間後	起動操作時間 (115 分) + 負圧達成時間 (5 分) (起動に性い原子炉建 屋原子炉棟内は負圧に なるが、保守的に負圧達 成時間として 5 分を想 定))		間(60分)+負圧達成時 間(10分)を想定して設 定。
	作品カイルを生 系及び非常用ガ ス再循環系のフ イルタ除去効率	考慮しない	保守的に設定			・設計換気率の相違
	ブローアウトバ ネルの開閉状態	閉状態	原子炉建屋原子炉棟内 の急激な圧力上昇等に よるブローアウトパネ ルの開放がないため			【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1) 非常用ガス処理系はフィルタを通して原子炉区域内の空気を		(5) 非常用ガス処理系はフィルタを通して原子炉棟内の空気を	
外気に放出するためフィルタの放射性物質の除去性能に期待で		外気に放出するためフィルタの放射性物質の除去性能に期待	
きるが,本評価では保守的に期待しないこととする (DF=1)。		できるが,本評価では保守的に期待しないこととする(DF	
		= 1)。	
5)原子炉建屋内での放射能量の時間減衰は考慮せず,また,原子		(6) 原子炉建物内での放射能量の時間減衰は考慮せず、また、原	
炉建屋内での粒子状物質の除去効果は保守的に考慮しない。		子炉建物内での粒子状物質の除去効果は保守的に考慮しな	
		٧٠°	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
2. 評価結果	2. 評価結果	2. 評価結果	・解析結果の相違
原子炉建屋から大気中へ漏えいするCs-137 の評価結果を表1に	原子炉建屋から大気中へのCs-137の漏えい量を第2表に示	原子炉建物から大気中へ漏えいする Cs-137 の評価結果を表	【柏崎 6/7】
示す。	力 。	1 に示す。	島根2号炉は、格納容器
原子炉建屋から大気中へ <u>漏えいするCs-137 は7 日間で約2.5TBq</u>	原子炉建屋から大気中へ <u>のCs-137の漏えい量は</u> , <u>約3.2×10</u>	原子炉建物から大気中へ <u>の放射性物質(Cs-137)の漏えい量</u>	漏えい時のエアロゾル捕
であり, 基準の100TBq を下回っている。	-2TBq(事象発生7日間)であり、評価項目の100TBqを下回ってい	<u>は約0.56TBq(7日間)</u> であり,基準の100TBq を下回っている。	集効果 (DF10) を考慮し
	る。		たこと等により、格納容
			器漏えい起因の放出が減
	なお,本評価事象では,原子炉圧力容器破損に伴いペデスタル		少している。
	(ドライウェル部) にデブリが移行するが、ペデスタル (ドライ		【東海第二】
	ウェル部) に移行したデブリからのC s -137放出は, デブリがペ		島根2号炉は、格納容器
	デスタル(ドライウェル部)のコンクリートを侵食した際に発生		圧力が高めに推移するた
	<u>するガスに随伴して生じるものであり、東海第二発電所ではコリ</u>		め、格納容器漏えい起因
	ウムシールドの設置によりコンクリートの侵食は生じないため、		の放出が増加している。
	ペデスタル(ドライウェル部)に移行したデブリ内に含まれるC		
	s −137の放出は考慮していない。ペデスタル(ドライウェル部)		・記載方針の相違
	に移行したデブリ内からのCs-137が全て放出されたと仮定し		【東海第二】
	た場合でも,高揮発性核種であるCs-137は,炉心損傷に伴い大		
	部分が炉内から放出されるため、ペデスタル(ドライウェル部)		
	<u>に移行したデブリ内に含まれるCs-137は少なく,Cs-137放</u>		
	出量への影響はほとんどない。(第3表参照)		
	また,添付資料3.1.2.4に示す「雰囲気圧力・温度による静的		
	<u>負荷(格納容器過圧・過温破損)」において代替循環冷却系を使用</u>		
	する場合のCs−137の漏えい量(約7.5TBq)より10 ⁻² 程度小さ		
	い結果となっているが,これは事象初期におけるCs-137の原子		
	炉圧力容器から格納容器への放出経路の違いによる影響が大きい		
	<u>(下記参照)。</u>		・記載方針の相違
	・格納容器から原子炉建屋へ放出するCs-137の放出量に対す		【東海第二】
	る格納容器圧力の違いによる影響は小さい(格納容器内の除去効		
	果を受けない希ガスに対する格納容器から原子炉建屋への放出		
	割合*に大きな差がなく、高揮発性核種であるCsも同様と考え		
	<u>る)</u>		
	※「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」:		
	<u>約0.04</u>		
	「高圧溶融物放出/格納容器雰囲気直接加熱」:約0.03		
	・「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」		
	では,LOCA破断口から格納容器気相部へ直接放出されるのに		
	対し、「高圧溶融物放出/格納容器雰囲気直接加熱」では、原子		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2 号炉	備考
	炉圧力容器破損前まで (事象発生約4.5時間), 逃がし安全弁 (自		
	動減圧機能)を介してサプレッション・プールへ移行した後、格		
	納容器気相部へ放出されるため, サプレッション・プールにおい		
	てスクラビングによる除去効果を受ける。		
		なお、事象発生7日間以降の影響を確認するため、事象発生	
なお,事象発生7日間以降の影響を確認するため,事象発生30日	また,事象発生7日間以降の影響を確認するため評価した,事	30 日間,100 日間における環境への Cs-137 の放出量を確認し	
引, 100 日間における環境へのCs-137 の放出量を確認している。	象発生30日間,100日間における大気中へのCs−137の漏えい量	ている。	
	は、約3.4×10 ⁻² TBq (事象発生30日間) 及び約3.9×10 ⁻² TBq (事	事象発生後30日間及び100日間での放出量においても100TBq	解析結果の相違
事象発生後30 日間及び100 日間での放出量においても100TBq	象発生100日間) であり、いずれの場合においても100TBqを下回		【東海第二】
全下回る。	27\2		
	なお,事象発生7日以降の長期解析においては,事象発生約53		 ・解析結果の相違
	日後※に格納容器内水素燃焼防止の観点で格納容器圧力逃がし		【東海第二】
	装置による格納容器除熱(以下「格納容器ベント」という。)を		島根2号炉は,事象
	実施し、事象発生100日まで格納容器ベントを継続しているが、		生 100 日までに酸素濃
	格納容器の除熱機能、格納容器への窒素注入機能及び格納容器内		がベント基準に至らな
	の可燃性ガスの濃度制御系機能が確保できた場合には、格納容器		ことから、格納容器へ
	ベントを停止する運用とする。		トを実施していない。
	<u>バン 下を停止する遅用とする。</u> ※ 第3.2-28図に示す格納容器圧力の推移では,格納容器の圧		「で大地していない。
	力を高く評価するために格納容器からの漏えいを考慮していないが、約53月後に競表濃度が4.2、10/12を表表		
	ていないが、約53日後に酸素濃度が4.3vo1%に到達し格納		
	容器ベントを実施している		
末1 医乙烷净尼亚含山层中,西北镇城塘所(G. 197) 西温克以县	数0ま 上层中、の 0 107の温さい B.		
表 1 原子炉建屋から大気中への放射性物質(Cs-137)の漏えい量	第2表 大気中へのCs-137の漏えい量	表 1 原子炉建物から大気中への放射性物質(Cs-137)の漏えい量	知に針田の担告
(単位:TBq)		漏えい量(7日間) 漏えい量(30日間) 漏えい量(100日間) 高圧溶融物放出/	・解析結果の相違
漏えい量 (7日間) 漏えい量 (30日間) 漏えい量 (100日間)	事象発生7日間 事象発生100日間 事象発生100日間	格納容器雰囲気直 約 0. 56 約 0. 57 約 0. 58**	【柏崎 6/7】
高圧溶融物放出/格納容 器雰囲気直接加熱 約 2. 5 約 2. 6 約 2. 6	約 3. 2×10 ⁻² TBq 約 3. 4×10 ⁻² TBq 約 3. 9×10 ⁻² TBq*	接加熱	島根2号炉は、格納容
			漏えい時のエアロゾル
	※ 格納容器圧力逃がし装置から大気中への放出量を含む(事象発	※ 格納容器フィルタベント系から大気中への放出量を含	集効果 (DF10) を考慮
	生約53日後から事象発生100日まで格納容器ベント実施)	む(事象発生約 81 日後から 100 日まで格納容器ベント実施)	たこと等により、格納
		以上	
			少している。
			【東海第二】
			島根2号炉は,格納容
			圧力が高めに推移する
			め,格納容器漏えい起
			の放出が増加している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第3表 原子炉圧力容器から格納容器へのCs-137の放出割合及 びペデスタル (ドライウェル部) に移行したデブリ内に含まれ るCs-137の割合		・記載方針の相違 【東海第二】
	原子炉圧力容器から格納容器への Cs-137の放出割合*		
	・原子炉圧力容器破損箇所から格納容器気相部への放出		

柞		(2017. 12. 20 版)				とめ資料比較表 第二発電所(2018.9	(有効性評価 - 添f 9.12 版)	1 EAT 0.	1, 1,		島根原子力発電所	2 号炉		備考
1/2)		添付資料 3. 2. 4					添付資	資料 3.2.9	(2)			添付	資料 3.2.4	・相違理由は本文参照
気直接加熱) 腎融物放出/格納容器雰囲気直接加熱)(子・テ・テ・テル・ラスの数別	ンな報酬とのモデルが建築される保護とコード と、このである。 「「おおりの名前は新の方 ないである。」 「「ならんなら」(なられている。 ないがある。 「なったんなら」(なられている。 ないがまする「国際上がある。」。 はに発生をは、は、中の一に、は をは、大きない。 実になっている。ことからみ着からは、 実になっては、 実になっている。ことからみ着からは、 実になっては、 実になっている。ことからみ着からは、 実になっては、 ままれた。 ままれたた。	気直接加熱 -タに与える影響 (1/2)	評価項目となる に与える 解析条件を最確条件とした場合	なるパラメータに与える影響」に トアップに関するモデルは、TM AN 実験についての再現性を確認 エトアップの態度解析(ジルコニ ートアップの態度解析(ジルコニ	始時間への感度は数分程度であり、いる。 、いる。 、「アケットの感度は数分程度であり、いる。 に列達した時点での運転員等操作に に対金に、原子やルバ原子便に力を 2、001716 は828 に 1 日 力 常 日 力 正 日 フ ているため、運転員等操作時間に与ているため、運転員等操作時間に与	原子母水位洋動について原子存圧力容器内のモデルが構製である解析コード SAPER の評価結果との比較により水位底下幅は解信コード SAPER の評価結果との比較により水位底下幅は解信コード SAPER に対して保守的であることを確認している。このため、原子母本位が無料有効長の20%上の位置に到達する時間が早まる可能性があるが、最有復長の発達であり、原子母急組織圧集作があるが、最有度の発達であり、原子母急組織圧操作があるが、最有度の発達であり、原子母急組織圧発作後に原子母に打造やかに低下することから、評価項目となるイラメータに与える影響は小さい。	基がし安全弁からの液量は、設計に基づいて計算されていること から不確かさは小さい。このため、原子炉急速減圧操作後の原子 炉圧力の低下等動に対する影響はないことから、評価項目となる バラメータに与える影響はない。	格納容器雰囲気直接加熱) 影響(高圧溶融物放出/格納容器雰囲気直接加熱)(1,	評価項目となるパラメータに与える影響 「解析条件を最確条件とした場合の運転員等操作 時間及び評価項目となるパラメータに与える影響」	にて確認 与いての再現性及びCORA実験についての再現 ついての再現性及びCORA実験についての再現 中が確認されている。炉ひヒートアップの機能 解析)では、声心溶離時間をび停む下部プレナムへ の溶酸炉心移行の開始時間への感度は数分程度で あり、影響は小さいことが確認している。 本評価事故シーケンスでは、原子炉水位が燃料棒有 効長底部から燃料棒有効長の20%上の位置に到達し た時点での運転員等操作による原子を通過に た時点での運転員等操作による原子を通過速に た時点での運転員等操作による原子を通過速に た時点での運転員等操作による原子を通過速に よって速やかに原子が圧力を20%に原20%に 低減し、原子が圧力を器機は時の原子が圧力を 2.0Mのfgweg以下に 低減し、原子が圧力を器機は時の原子が正力を 2.0Mのfgweg以下に 低減し、原子が圧力を影響はないことから、評価項目とな るバラメータに与える影響はない。	原子炉水位準動について原子炉圧力容器内のモデルが精緻であるSAFERコードとの比較により、水位低下幅に解析コードMAAPの評価結果の方が保守的であることを確認している。このため、原子布水位が燃料棒有効長低部から燃料棒有効長の20%上の位置に到達する時間が再まる可能性があるが、数分程度の差異であり、原子炉急速減圧操作後に原子炉圧力は速やかに低下することから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項目となるバラメータに与える影響はから、評価項	なが、なますがつることがある。 計算なれていることから不確かなは小さい。このた と、原子が急速減圧操作後の原子が圧力の低下挙動 に対する影響はないことから、評価項目となるバラ メータに与える影響はない。	• 怕基理由は本义参照
出/格納容器雰囲: - える影響(高圧溶	対面の日となるパラ ・	所で水が平地についてが、FPU SURE のが高いました。 SURE のがでかることを確認してい を有効ができる。 を有効ができる。 の数はのが減であり、水平が2番 かないできからの体は、あがな 適ぶし次や多からの体は、あがな のかい、このため、原 (4・他の形は はないことから、単伸用したかる はないことから、単伸用したかる	器雰囲	与える影響語画を引き続作時間及び評価	ついての再現性 反応速度の係数 Prefix 下部プレ	は数分程度である。 までは重大等数 切得しないにと 表別に実施す ・また。然料数 等級作はないに また。 然料数	野りのモデルが精緻であ 数により水位低下幅は解 解析コード SATR に対 でのため、原子症水位が の位置に到達する時間が であることから、運転員	に基立いて流量が計算されてい このため、事象進展に与える影響 時間に与える影響はない。	出/格納容器雰囲 える影響 (高圧溶幅	8影響 = 時間及び評価項目となるバ	11事故についての再現性及びCO5。 A-本反応速度の係数についての酸 ガンナムへの溶離炉心移行の開始 野はレナム、とを確認している。 物設機合きむをての原子炉への注 投加設備を含むをての原子炉への注 20%上の位置に到達した時点の減圧 20%上の位置に到達した時点の減圧 20%上の位置に到達した時点の減圧 5.8響性ない。	洋動について原子炉圧力名 比較により、急速減圧後のいてより。 かってより緩慢な洋動を示す 以底部から燃料棒有効長の るが、数分程度の差異である。	が計算されていることから 影響はないことから、運転	
バついて (高圧溶融物放出) 貧目となるパラメータに与え	(新田田分配件の単四に与る必要等 「新年本件を都定すとした場合の選問に対するを認 があったのかった」というな。 かったローンアングンに対するセグルは、対すがはこのようが が出来するのでは、 かったローンアングンを関係があった。 かったローンアングンを関係が の原数についてのの異性をある。でいる。 かったローンアングの観光が、でいる内性を参加。でいる。 かったローンアングの観光が、でいる中の性を参加。でいる。 かったローンアングの観光が の下が、かったローンドングを観光がである。 を対象でののい気が一つでし、中のでは、 の下が、かったローンドングに、 ががませんが、 本が推出がまった。とかがにてあり、 本が推出がないとしてきる。 本がはできるががないでいてきる。 がはいている。 がはいるない。 がはいるながないない。 をはずれないでしている。 をはずれないない。 をはずれないない。 をはずれないないない。 をはかまれないない。 をはずれないないない。 をはかまれないない。 をはかまれないない。 をはずれないないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではがまれないない。 ではかまれないない。 ではがまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないない。 ではかまれないないないないないないない。 ではかまれないないないないないないないないないないないないないないないないないないない	の中央水水準度について同十年日分本部内の中の中部計算 である著作コード SEET のが電路器 かりませい とまた 下面は著作コード SEET のが電路器 かりませい をこう を容認している。このであ、 場合との手を表示する を容認している。 はったり、 場合との手を表示する から都を表することがあっている。 国内部へから、国际計 発展的に対しての。 はっちの 間の20年である。 のは他であるを、集りを取りの第4个を らことから、国际計 発展する。 またり はいました。 またり はっちの はっちゃく はないもことから本権がはおいい、このたり、本部選出 おってしたことがら本権がはおいい、このたり、本部選出 おけていることがら本権がは対しない、このたり、本部選出 おけない。	について (高圧溶融物放出/格納容: 5員等操作時間及び評価項目となるバ	運転員等操作時間に 近転員等操作時間に 近条件を最離条件とした場合の	なるパラメータに与える影響 - トアップに関するモデルは、 M 実験についての再現性を確 - トアップの感度解析 (ジルニートアップの感度解析 (ジルニートアップの感度解析) カゴー ばい 感力	ナムへの溶酵のも移行の開始時間になかるの り、物質はやけいたを確認している。 本語価事故へ一ケンスでは、原子毎日が溶験機 等対心設備を含む全ての原子毎~の注水機能に に展子年日が複数機能に対しても差別しており べき権作は原子時本化が総料が発射が発射が 上の位置に到達した時点が懸すが発展に確から終 上の位置に到達した時点が展すが展析が参加 整確異等を操作開始の展点としている運転員 とから、運転員等機作時間に与える影響はない。	原子存水位塗動について原子が圧力容易 る解析コード SAFRE の評価結果との比4 作コード NAMO の評価様果の方が大きく、 に保守的であることを確認している。 燃料有効長底部から燃料有効長の20%上 早まる可能性があるが、数分程度の登職 早まる可能性があるが、数分程度の登職 等機件時間に与える影響は小さい。	がかし安全すからの消費は、設計に基めることがの不確かなはなかない。このためないとかる不確かなはかない。このためはないことがの、運転員等業件時間にもないことがの、運転員等業件時間にもない。	価について (高圧溶融物放出/*) 項目となるパラメータに与える鼎	運転員等操作時間に与える を最確条件とした場合の運転員等操作	- ナインが 割 1 、	(炉心水位計算モルが精緻である8 び蒸気流出の維約 されており、原子 配に到途する時間。 配の過去の時間。	5年からの消量は、設計に基づいて消量 ひ/さい。このため、事象進展に与える 拝問に与える影響はない。	
響評価() /評価項	1. F いる の ことを確 を でいた。 では できる では できる に 「 に に に に に に に に に に に に に に に に に に	3540 コー 80 扱って、 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	響評価にされば重要		素ガスを散分のアイン	- イイン・フィー・イイン・フロの信息 を コロの信息 を ボルリ 影響を 可心溶離の 囲 始時刻は,ほ	ンスに対して、 以下の値向を ている CCFL を どに差異が生じ が大きく、解 その後の注水 「回復時刻は両	て計算され	響評評価	「解析条件	かって R R A S 機能 所 R C R A S 機能 不 R M M M M M M M M M M M M M M M M M M	炉心モデル 器内のモデ 水位上昇及 ことが確認 20%上の位] ことから道	遊がし安全 不確かさは 員等操作時	
解析コード及び解析条件の不確かさの影 る重要現象の不確かさが運転員等操作時間及び	をといいます。 では、マント では、マント では、アント では、	TUMEシーランス及び50分娩期 DOSスケーランスに対して、 と SETTER 1、12の対象を行う。 した 木 Martin コードッグ COR 会 の たいこと等から、本の変化に正正すのでは、たいのがない ロードの方式を作り、これのでしてこれのの本が形 日本での本が出版等がは12回コードで日本でのある。 指すでの本が出版等がは13回コードで日本でのある。 でなって、参加らいの表はは、数学前に基づいて時間なわる。 でなって、またのからの原出は、数学前に基づいて時間なわる。	ド及び解析条件の不確かさの影 ドにおける重要現象の不確かさ	不確かさ入力値に含まれる。	ップ時の いて, TM 単細権	,	TQUXソーケンス及び中小破断 LDCA シーケンスに対して、 MAP コードと SAFER コードの比較を行い、以下の傾向を 確認した。 MAP コードでは SAFER コードで多慮している CCFL き 取り扱っていないこと等から、本位変化に差異が生じ たものの水位低下循紅 MAP コードの方が大きく、 新コード SAFER に対して保守的であり、その後の注が 無作による燃料有効長原語までの本位回復時刻は国 コードで同等である	基がし安全弁からの流量は、設計値に基づいる。 る。	解析コード及び解析条件の不確かさの影 る重要現象の不確かさが運転員等操作時間及び	不確かさまれる。	3ける炉心ヒートアップ時の なでの溶ᢝ通販状態について、 果と良く一致することを確認 よける、燃料被置等、制御棒 ルクスの温度変化について、割 なすることを確認した。 を通にし、低却対策酸で酸化の を通にし、低却対策酸・V様 がルニーウム・水反応速度の係 が解析により影響を確認した。 LOCAシーケンスともに炉 への影響は小さい。	プーケンス及び中小破断LOCAシー 「して、MAAPコードとSAFERコ とを行い、以下の傾向を確認した。 エードではたる。 CFLを取り扱っていないこと等か 変化に差異が生じたものの本位低下離 Pコードの方が保守的であり、その後 行による有効燃料棒原部までの本位回 有コードで有等である。	5弁からの流量は,設計値に基めいた計	
コード及 の不確カ	解析セライ からをディー カンテマイー 発展からの ディイザル・ ップ・	からもディ(P)の大 を記録さかり) 高 の の の の の の の の の の の の の	l l	7/ 1/2	H	y .\	(行心木位		11 ド及7 7 7 7 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	入力値に含まれる。	TM 1 等待	TQUXシケンスに対ケンスに対・アンスに対・アンスに対・アの比較・MAAPにているC。ち、水位3はMAA別の注水極(後時刻は)	進がし安全) 算される。	
解析;	7.5円 所受投棄 所需要 所有毒性	等級 出人 下本級的	解析表 解析	解析モデ	炉心セテル (原十炉 力及び崩壊熱)	がらモデル (好心熱な カモデル) 溶離が心が動モディ (好心ヒートアップ)	がひモデル (計算モデル)	原子炉圧力容器モデ(破断流モデル)	解析: 重要現象0	解析モデル 炉心モデル(原 子炉出力及び	かっ のをどかり 準らん	炉心モデル(炉 心水位計算モ デル)	原子炉圧力容器モデル(破断 満モデル)	
ドにおける			第1	重要現象	崩壊熱 燃料棒內温度変化	燃料棒表面熟伍 避 燃料被覆管酸化 燃料被覆管废化	楽器・ボイド率 変化 気液分離 (木位 変化)・対向流	冷却材放出(臨 界流・差圧流)	32 T	**	内と 表		帝 本 本 本 本 本 本 本 本 本 本 本 本 本 本 年 の 語 が 選 が ま 年 田 田 雅 田 田 麗 田 雅 田 雅 田 雅 田 雅 田 雅 田 雅 田 雅	
解析コー				分類	_ ***		200 000	原子炉 社会器 以	解析コード	[MAAP] 分類 重要手 炉心 前機業	1900 1900 AND 1900 AN	Ĭ.	が よ が な が が が	
表1 集									表 1 網					

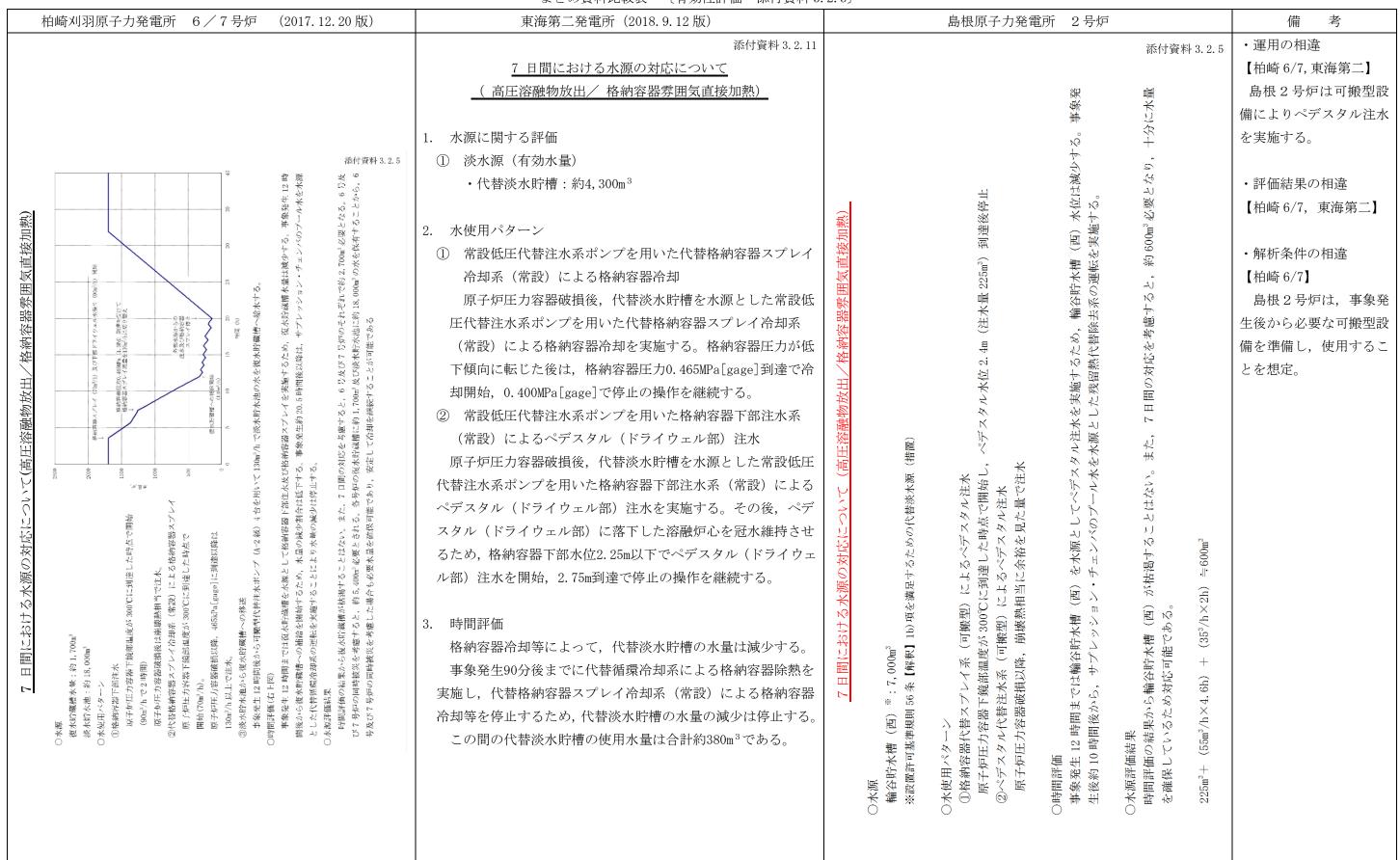
The control of the co	· 所以羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備君
19	(2015年)	 等操作年時間及び評価項目となるパラメータに与える影響 事価の事業においての所提性を確認している。	議権債等操作時間に与える影響 (高圧溶離物放出) 格納容器等 開気直接加熱) (2/2) 選権債等操作時間に与える影響 溶離がないまた。 現体が関している。 また。 近くとの影響をデルはTM 1 事故についての所限を確認している。 また。 近くとの影響にしている。 また。 のの影響をデルはTM 1 事故についての所限を確認している。 また。 近くとの影響にしている。 また。 のようを観されている。 本学館 となる影響はない。 とを確認している。 また。 を表している。 とがある。 所有に対している。 また。 を表している。 とから、 のの影響に関する。 とが認明により。 原子や圧力器 により、原子中に対象を配置している。 また。 では、 のの影響に関する。 とが認明により。 原子や圧力器 をといるとの影響に関する。 では、 のの影響に関する。 とないのでしている。 また。 を表しましている。 とから、 が参考をデルはTM 1 事故についての再別を整理している。 また。 のの影響を多かますが、 では、 のの影響に関する。 により、原子中に対象を関係により。 にないますが、 のの影響によい。 にないますが、 のの影響によい。 にないますが、 のの影響により。 が参考をデルはTM 1 事故についての再別をを認定している。 また。 のの影響をデルはTM 1 事故についての再別をを認定している。 また。 ののでの影響にはない。 とから、 選帳員等操作が関係により。 ののでの影響により、 の子が、 また。 ののでの影響により、 の子が上が、 とないますが、 の子を応じますが、 の子のとが ののでの影響により、 の子を応じますが、 の子を応じますが、 の子を応じますが になり ののでの影響により、 の子を応じますが の子のとが の子のとが の子のとが の子のとが の子のとが の子のとが の子のとが のる を表れない。 を表れないまれますが のとが のとが のとが のとが の。 を表れている。 本書を解している。 本書を応している。 本書を成り の子のとが の。 を表れないまるとい。 を表れないまれますが の。 を表れないまるにある。 を表れないまるといる。 を表れないまるといる。 を表れないまないますが の子のとが のとが のとが のとが のとが のとが のとが	備考
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	が発展している。	7年カンさ が近車式 員 等操化性 の溶機進度状態につい とを想定し、 かん アメンジ車式 員 等操化をの とを提定し、 かん アメンション を を発定し、 かん アルマンション を が かっさいことを確 の アケブリ 性子経を バラ カタ 密線 出 の アケブリ は ア を ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア	1及び評価項目とない の溶験進 果と一致 溶像炉もの等動を子 をせた感 排削になる影響 は 期間になる影響 は 内でノード制機の は 対している がででいる 素をして、 がするにから、道 は カインナムでの落 数をびず下部プレナムでの落 数をびず下部プレナムを を確認し、でいる運転員等操作 でに、 がする運転の原子が圧力 を発酵は時間に与え が高さい。 ないは、リロケー が存れまして、 が最近かの を発酵は時間に与え がなばいい。 として がない。 といては、リロケー がない。 といる がない。 は がある。 は がないる。 は は がないる。 は は は は は は は は は は は は は は	
A	新春年を元の が高からの報告 で (リコケーツ で () コケーツ で () コケーツ で () コケーマ が () で () で () で () で () で () で () で () に ()		不確か 大子 (本) 1 1 1 1 1 1 1 1 1	
大大田 大田 大田 大田 大田 大田 大田 大	第20年にかって、 19日ケーション 1870年にか数4 1870年にか数4 1870年にか数4 1870年にか数4 1870年とよって 1870年とよって 1870年とよって 1870年とよって 1870年とよって 1870年にか数4 1870年とよって 1870年をよって	大 大	面面 一	
を (A)	② 及一型日本作権(②・小量命の)	1 日	MAAP MA	
			中には、「は、」では、」では、「は、」では、「は、」では、「は、」は、は、は、は、	

1

崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉
なる。	える野響 (2/4) 評価項目となるパラメータ に与える影響 に与える影響 に与える影響により直接的な影響はない。 原子炉への注水機能に期待しないこと ることを想定しており、水温の影響は イ状 公和 公 四 婦 田 后 古 丘	
及業を指していた場合は、動作者が17.20%にているが最上りも限され もの場合において、自己が2.20%の対応 19.00mm 2.21%と対しているが最上りも限され もの場合には、19.00mm 2.21%と対しているが最上りも限され とくが日といるには、19.00mm 2.21%と対しているが最上りも限され との場合には、19.00mm 2.21%と対しているが、19.00mm 2.21%に対しているが、19.00mm 2.21%に対してはいるが、19.00mm 2.21%に対しているが、19.00mm 2.21%に対しているが、19.00m	項目となるパラ 楽術を対象としていること な影響はない。 おり、水温の影響はない。 とおり、水温の影響はない。 ととから「無検等対極」 がよって「無検達では必要 があって、用検索を関係 がなって、日の とから、1日の とから、1日の とから、1日の とがら とがら とがら とがら とがら とがら とがら とがら とがら とがら	7 メータ (こ 与 ス る) 野 2 (同 上 1 全 間
Pの記載語 Pの記載語 Pの記載語 Pの記載語 Pの記載語 Pの記載語 Pの記載器 Pの記述器 Pのといて認識 Pのといて認述 Pのといて記述 Pのといて記述 Pのといて記述 Pのといて記述 Pのといて記述 Pのに認述 Pのに述	# 1	第件設定の考え方 イウェル内体積の設計値 が機能数及び構造物の体積 いた値)を設定 レッション・チェンパ内体 アッション・チェンパ内体 設計値 (内部機器及び構造 産売時のサブレッション 一ル水位として設定 運転時のサブレッション ル水位として設定 運転時の格納容器圧力と 設定 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度として 耐水槽の水源温度と の が着め水源温度と が が が が が が が が が が が が が
64年 100 (2012) 2012 (2014年2014年2014年2014年2014年2014年2014年2014年		1. 1. 1. 1. 1. 1. 1. 1
本書を建るのでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学を表えて、大学を表えて、大学を表えて、大学を表えて、大学を表えて、大学を表えて、大学を表えている。	2 表 (初期条件 (初期条件 (初期条件 (初期条件 (30 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	解析条件 (700m ² 発制器: 4,700m ² 発制器: 4,700m 液相器: 2,800m ² (ドライウェ アレッション・チェン 第5 OkPa [gage] 5,0kPa [gage] 5,0kPa [gage]
- 京都東在	項 目 グレッション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	等操作時間及び評価項目と立るパラメータに与える影響 (3/4)	2.方 運転員等操作時間に与える影響 評価項目となるパラメータに与える影響 (起日事象として、原子が米位の底下の製点で鑑しい事 (現立) (現立) (現立) (東文も方しOCA等の原子が治財日カパマング) (安全・設定、佐、株件業別が指の第一の第一の第一の第一の第一の第一の第一の第一の第一の第一の第一の第一の第一の	
	中子(て)運転点 佐の低下の観点で像し 改成の低下の観点で像し かって、一部を開発等の機 場合し、記述 を成し、記述 を成し、記述 を成し、記述 を成し、このできずの電子 を表するのでですが をのできずが をのできずが をのできずが をのできずが をのできずが をのできずが をのできずが をのできずが をのできずが をのできずが をしてのですが をのできずが をのが をのが をのが でんが をのが でんが をのできずが をのが をのが をのが でんが をのが をのが をのが をのが をのが をのが をのが をの	4	
		事故条件)の不確かさ 最確条件 	
	特権を (1)	4析条件 (初期) 特条件 (初期) が機能度失 が機能度失 が対数値によっ が対数値によっ が対数値によっ が対数値になっ が対数値になっ が対数値になっ が対数値になっ が対象値になっ が対象値になっ が対象値になっ が対象値になっ が表しない。	
	(3) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Digitary Exp Man	
	解析	項目 ・ 近日 ・ できた機構 ・ に対する ・ には ・ には には ・ には ・ に	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第2支 接射条件を表確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響	### 1997年を日本の	


前崎刈羽原子力発電所 6 ∕ 7 号炉 (2017. 12.))版)		東海第二発電所(201	18. 9. 12 放)			備	
		訓練実績等	10年 10年 10年 10年 10年 10年 10年 10年	英田御楽によ3:1 養作のため、シミ でな。)にく部業者 を収録。 を収録。 条項をは 第6 素のは 第6 素のは 第6 素のは 第6 素のは 第6 をできる をできる。 をできる をできる。 できる。 でする。 でする。 でする。 でする。 でする。 でする。 でする。 でする。 でする。 でする。 でする。 をできる。 をできる。 をできる。 をできる。 でする。 でる。 でる。 でる。 でる。 でる。 でる。 でる。	直接加熱)(1/5)	訓練実績等	国業技術等による 関連技術等による 株有分別を 株有分別を を を を を を を を を を を を を を	
(1) 大型	39年を 39年を 39年 49年 49年 49年 49年 49年 49年 49年 49年 49年 4		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	各種等級機関 開発 を	格納容器雰囲気直	操作余裕時間	原子を急速減圧操作に ついては、原子を提供に ついては、原子を提供 おおのでは、原子を かん吸があるが、原子 が開開は事象発生から約 時間は事象発生から約 5.4 時間があり、準備時間 5.4 時間条約がある。 り、時間余額がある。	
※ 会別の	権的なでの場合を表現した。 6 時間を発展的によっている。 6 時間を保証した。 6 時間を保証していると、 6 時間を保証をある。 6 時間を保証を表現した。 2 を表現を存在しません。 2 を表現を存在を開発を表現した。 2 を表現を存在を開発を表現した。 2 を表現を表現を表現した。 2 を表現を表現を表現した。 2 を表現を表現を表現した。 2 を表現を表現を表現した。 2 を表現を表現を表現した。 2 を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	評価項目となる パラメータ		機作 一種作用 は、本種作も母女 は、本種作も母女 は、本種作も母女 で参加を の一種を で参加を ので のの一種 である のの一種 にたから、 でしたり にたから にたから にたから にたから にしたり にいま でしたが の が を が を が を の の の の の の の の の の の の の	融物放出/	評価項目となるパラ メータに与える影響	集像の操作開始を開 は解析上の設定を	
中央のおおりの (1998年) (19	一	運転員等操作時間	が参奏を を を を を を を を の の の の の の の の の の の の の	代替循環冷却系通転は事象発 中の分板に関することとしているが、時間分散を含めて記 定されているため操作の不顧 をされているため操作の不顧 が多が操作的時間に与える 影響は力ないことがら、運転間 等権作時間に与える影響は力 ない。また、非様中の機作開始 時間に与える影響は 時間に与える影響は 時間による影響は 時間による形象性間 時間に対象が可能を 時間にするできた。 時間に対象が 時間に対象が 時間に対象が 時間に対象が 時間に対象が 時間に対象が 時間に対象が 時間に対象が 時間に対象が が が を が を が を が を が を が を が を が を が を	作時間余裕(高圧溶	運転員等操作時間に与え 書る影響	原子存水位が燃料棒有効を 及底部より燃料棒有効を るまでには事業等やから 参引し、時間の時間分差が かり、まてには事業を かり、まてには事業を 付き逃がしな生物圧原子 がらめたかってが準備 付き逃がしな音が用原子 がらめたかってが準備 がらめたからなりが、 がの底であることが がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが、実験の操作開始時間 がが存むか、他の操作と が表するが、は、 の重複もないことか。他の を の重複もないことが、他の を があるい。とので があるが、は、 があるが、は、 があるが、は、 があるが、は、 があるが、は、 があるが、は、 があるが、 があれるが、 があるが、 があるが、 があるが、 があるが、 があるが、 があれるが、 がないが、 があるが、 がなが、 があるが、 がなが、 があるが、 がなが、 があるが、 がなが、 があるが、 がなが、 がなが、 があるが、 がなが、 がない がない、 がない がない がない がない がない がない がない がない がない がない がない がない がない がない がない がない がない がない がなが がない がなが がなが がない がない がなが がなが がない がない がない がなが、 がなが が	
40.2 1 (2011) (2012年) (2013年) (2013年	のMADAMINO to MANAMINO to MADAMINO to MAD	田田田の一名様子の七葉	(現2) (現2) (12年後発生から約38分の場間が投がが スータして機能関係しているため。 オータして機能関係しているため。 (こい。よって、認り組むにも発作 (展集局配置) (2、機作関係を関係の発作のみであり、当覧が の、機作関係時間に与える影響はない。 (業件所要時間に与える影響はない。 (事件所要時間に与える影響はない。 (事件所要時間による影響はない。 (事件所要時間による影響はない。 (事件所要時間による影響はない。 (事件所要時間による影響はない。 (事件所要時間による影響はない。 (事件の第次は、 (事件の第次する当価運転員に他の3 無数はない。 (事件の第次する当価運転員に他の3 無数はない。 (事件の第次する当価運転員に他の3 (本作の第次さする当価運転員に他の3 (本作の第次さする当価運転員に他の3 (本作の第次さする当価運転員にもの3 (本たりまる当価運転員にもの3 (本たりまる当の第2年にあるよります。)	交び非常用ディーセル発電機 いの電影回位下可と判断し、こ している。そのため、認知選 響はなし。 ・当直選転員は中央制御室に がなし。 パンフ盤動、系能構成にかかる 台別系の起動にお分を想定し に他の並列操作はなく、操作 に他の並列操作はなく、操作 による簡易な機作のため。 (に他の近列操作はなく、操作	評価項目となるパラメータに与える影響及び操	操作の不確かき要因	[認知] 原子が水が燃料棒有効長底部より燃料棒有効長の 20%高い位置に到達する までは事業を生から約1.0時間の時間条格があり、原子が水位は事故時の重要 著えていまって、認知選れが操作開始時間に与える影響はない。	
新年上の発行工工	第 3 表 通転員	条件 (操作)	kft	照急用 ※及びの 離額が の様 時間や 時間や 次で認っ]に与える影響,	作条件) の よさ 開始時間 考え方	心態影光祖七響題後の発力を受ける。	
源芒条丛			资 在	所 所 の 所 の の 所 の の の の の の の の の の の の の	等操作時間	解析条件 (操作条件) の 不確かさ 解析上の操作開始時間 解析上の 機作用始 時間 解析開始 時間 時間 時間 時間	原位棒底機効の位達点子が有部科人 子が有部科人。置した療験のよ棒(高にた 水料長り有のい到時	
				L 学術生	表3 運転員	項目	操作条件 原 速作 子減 存 正	

柏崎	所刈羽原子力発電所 6/7号炉	「(2017. 12. 20版)	東海第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉	備考
気直接加熱) (2/4)	ない。 ない。 ない。 ない。 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、	《八郎 《张春·一年 《张春·一年 李明 《 · · · · · · · · · · · · · · · · · ·		式直接加熱)(2/5)		
器雰囲(器)	一、	製業大雅やいの、係が 成々を定成として参う 公司でを実施等して参う 公司でを実施等である。 (1972) による (1973) による (1973) による (1973) による (1973) による (1974) になる (1974) になる (1974) になる (1974) になる (1974) になる (1974) による (1974)		無 総 総 器	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
放出/格納容	作品等等等 (全型) (全型) (全型) (全型) (全型) (全型) (全型) (全型)	(中で) が無機() からからの時間工事の かからの時間工事の 中がら関わる情報を 中がら関わる情報を 大力が関わる情報を かけなった場合を 大力なからに関する 大力なからに関する () かまのは、 大力なから、 大力なから、 大力なから、 大力なから、 大力なから、 大力なが、 大力な 大力な 大力な 大力な 大力な 大力な 大力な 大力な 大力な 大力な		 	格 海 は、大は変々があるため、ないないなどである。 は、大は変々があるため、なまでは、ないないなどである。 は、大は変々があるなどを発生しているなどである。 は、大は変々がある。 は、大はないないないないないないないないないないないないないないないないないないない	
容融物 Farence	日本のでは、 日本のでも 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の	米部の衛子直接を登立 大部の衛子直接を 下では、大郎大・アマールの では、「大郎大・アマールの を 野町工・ルットルの を 野町工・ルットルの を 野町工・ルットルの を 野町工・ルットルの を 野町工・ルットルの を の の の の の の の の の の の の の		容融物放	なな、 関係となる	
余裕(高压 *####################################	新聞報 ではない ではない ではない をおったを ではない をおったを ではない では、 では、 では、 では、 では、 では、 では、 では、	原子やH.力等級機関する の開発がある。対し、開発 の開発がある。対し、開発 では、所述の対し、ない。 では、所述の対し、ない。 では、所述のでは、 では、所述のでは、 では、所述のでは、 では、所述のでは、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 では、 が変し、 です。 です。 でが、 でができた。 です。 でが、 でができた。 です。 でが、 でができた。 です。 です。 です。 です。 です。 です。 です。 です			# X	
価項目となるパラメータに与える影響及び操作II	「原源」 作業を指揮を表文して活動系(深刻)による原子を発表を製作型操行に、原子的口力体器を実現高数 を知りては当難したことを確認して関係するが、前面があって対象によるが設性を基金するとも、所 型に力が表現を開発していると確認していると、 を認めることによるが、 には、 には、 には、 には、 には、 には、 には、 には	(6年1) 治療所を治療性の大きに、 (6年1) 治療性の必要性が発生が発生がある。 (7. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19		近国となるパラメータに与える影響及び操作時間	議任の不満かき東西 (1977年)	
1	格びまえ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	できる。 では、 では、 では、 では、 では、 では、 では、 では、		量, 評价	(t) 間 歳火	
中次の製造 MMA条件(操作条 MM I FON場件	商名 ・	元 f む i i i ガ / 幼 投 高 素 数 (4) 7 / 3 / 5 (8) 7 : 0 等 展 後 (4)		が め 別	解 解 解 解 解 表 表 表 表 表	
等操作時間に-	ななななななななななななななななななななななななななない。 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	報報である。 でのできない。 では、 では、 では、 では、 では、 では、 では、 では、		時間に与	機手条件 をかりが出し が動力を対し を対し を対し を対し を対し を対し を対し を対し	
表3 運転員等操/	変 上 水 土			表3 運転員等操作時		

拍崎刈羽原子力発電所 6 / 7 号炉 (20	2017. 12. 20 版)		東海第二発電所(2013	8. 9. 12 版)		島根原子力発電所 2 号炉	備考
原金の経過 日本の表現 日本	March 10 (1997) (2014	連修調等操作時面の不確かな要因に与える影響に与える影響	# 1	原本が正力容器の破損は、原子が圧力容器の機損は、原子が圧力容器の機関で 形体 はの温度	 等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(高圧溶融物放出/格納容器雰囲気直接加熱)(3/5)	第11年 1月 1日	

柏崎〉	刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
操作時間に与: # (操作条件) のな確か の数 条件設定の考え 地間			### (1997年) 1997年 1997年	
重転員等排 ##% ##%	海 か つ		海 一 一 一 一 一 一	
恢	表作条件 存 型 交 型 在 2 次 型 图 2 次 图 2 2 2 2			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018. 9. 12 版)				島根原子力発電所	2 号炉	備考
		海棒失戦等	可需型資素供給 装成この部件連	安加熱) (5/5)				
	(3/3)	藤井韓国弥在 ・ 1000 1000	1	容器雰囲気直接	調練美鐵等	格所上に本作業成立 住を設定されまた。 中心が212時間後、 しており、このから が32年間後、 数値により、このから 数値によりを開発が 数値によりを開発が 数値によりを開発が が22年にが32年に が32年にが32年に か32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う う32年に う う32年に う う32年に う う う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う32年に う う う う う う う う う う う う う う う う う う	新価上に本業の 住を提出・事業の 以降としており、 以降としており、 のうち、大配送外 への誘動に解しており、 への誘動に解しており、 のうち、大配送外 を関いている。 表籍でではこう理解 関のができる。 を ができる。 と と を と と と と と と と と と と と と と を と を	
	び操作時間余裕(3, step 1 step 1	本の本の本の本の主要を表現を表現を表現を表現を表現を表現を表現を表現を入り、2000年の大きの大きの大きの大きの大きの大きの大きの大きの大きの大きの大きの大きを表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	1	放出/格納	操作余裕時間	「新春秋春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春春	評性生以の〈左右系用を作っ〉	
	影響及	に与える影響 格倫容器内への電素社入の36幅振電である格牌容器(中の18条件)到電は事象を4のの18、(下 ライ条件)到電は事象を5のの18、(下 の		裕(高圧溶融物	評価項目となるバラ メータに与える影響	無機 を受験を を受験を なのので を受験して を受験して を受験して を受験して を受験して を受験を を受験して を受めるで を受めるで を受めるで を受めるで を受めるで を受めるで をして を受めるで をして をして をして をして をして をして をして をして	t t	
	ラメータに	(大大なり、 (大大なり、 (大大なり、 (大大なり)、 (大大なり)、 (大大なり)、 (大大なり)、 (大大な) (大大な) (大な) (等 167 時	/操作時間余裕	操作時間1	第一下との条件開始を開じ 「大学会を生か」に 時間 を必定だっている。 海転員 を必定にている。 海転員 として、契約の条件制があった。 に、対し、対し、大学の条件に対している。 大学の条件に対している。 に、大学の条件に対している。 に、大学の表には、また。 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 は、大学の大学の表には、 をは、 は、大学の表には、 は、大学の表には、 をは、 は、大学の表には、 をは、 は、 は、 は、 は、 は、 は、 は、 は、 は、	r	
	与える影響、評価	原常的 1 原源的 1 最初的 1 本が時に、 本が時に、 本が時に、 本がらい。 (ドライ条中) に到達する事象をおいら割、124 的回復に用始となるのに (ドライ条中) に到達する事象をおいら親、124 的回復に用始となるのに (日本) 2 本文 2 本本 2	可樂型童素供給装置~の燃料結准操作期始までの時間は、事象発生から間あり十分な時間余裕がある。	なるパラメータに与える影響及び	素件の下離から原因	海体等の 開始時間に与える影響は全 開始時間に与える影響は全 基礎を を を を が を が を が で に で に に に に に に に に に に に に に	存金件額ではメブイ系(1)書記)及びペデメタル代数は本派(10書記)の大乗 法本目の数字記録ではま建立には、在本であり、存金は原ではインマイ・ 10書記しているイスンでを全を行う。 60年記しているイスンでを全を行う。 10年記しているイスンでを全に、年後出から。11年国家から教室する 50年のとにより、十分な単語等的がある。	
		条件設立の 場次方 イベント・基準 イベント・基準 (14) 当後を5 (4) 当後を5 (4) 当後を5	可樂型強素供給数層への燃料給油機 行は、解析条件では たいが、解析ででは している操作の成 している操作の成 以や機能に必要な 放や機能に必要な 放や機能に必要な なを機能に必要な を機能に必要な を機能に必要な を機能に必要な を機能に必要な を を を を を を を を を を を を を を を を を を を	5影響,評価項	解析条件 (操作条件) の 不識かる 解析上の條何開始期間 解析上の 機付開始 条件設定の 瞬間 条件制	発い 発い 所代文書館 下本び来の等く 情知観音館を等く 機子状態可可能表 後子状態的可能を 後子状態的可能を 後子状態的可能を 後子状態的可能を 後子が悪い 後子が悪い 後子が悪い 後子が悪い 後子が表する 後子が悪い 後子が表する 後子が悪い 後子が 後を 後を 後を 後を 後を を 後を を	生名間 生名間 連集を表する。 連集を与える。 連集を与える。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	
	3表 解析条件	森斯奈森 森	事象発生から167時間以降、適宜	時間に与える	_	維任条件 所表 1 名	・ 大人行送の結 子注子体 大大大章 女心量へ補 本の「公後 後。「こ後	
		操作条件 同供用 容 葉 生 難 禁い 器 禁 に 内 性 素 意 性 内 性 素 意 は 内 内 土 生 意 意 な 人 八 社 素 を 前 外 人 内 の 様	タンソン リによる数 単名合業権不	転員等操作				
		· · · · · · · · · · · · · · · · · · ·		表3 運				

### (こうせきのないのは、) ははないのは、	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	(で) 原子炉圧力容器破損に伴う常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設)による格納容器冷却及び格納容器下部注水系(常設)によるベデスタル(ドライウェル部)注水開始 (常設)によるベデスタル(ドライウェル部)注水開始 (常設)による格納容器冷却及び格納容器下部注水系(常設)によるベデスタル(ドライウェル部)注水停止 (常設)によるベデスタル(ドライウェル部)注水停止 (新設)によるベデスタル(ドライウェル部)注水停止 (高圧溶融物放出/格納容器雰囲気直接加熱)	島根原子力発電所 2号炉	考

まとめ資料比較表 「有効性評価 添付資料3.2.6〕

柏崎刈	羽原子	力発電	折 6	/7-	号炉	(20	017. 12	2. 20 片	反)		東	海第二発電所	r (2018. 9. 12	版)			島根原子力発電所	2 号炉		備考
														添付	資料 3.2.12	2		添	付資料 3.2.6	
											7 🗆	月月1ァチンナ フ ぬ	4年のおけた	ついて			7.口間シェナッナブ(砕む)のち	+けについて		【柏崎 6/7】
													燃料の対応につい 納容器雰囲気)		7日間における燃料の対 (高圧溶融物放出/格納容器		釻)	島根2号炉は,緊急時 対策所用発電機用の燃料
											(141/-1-1711)			(巨)及//印///	<u></u>				<u>nv/</u>	タンクを有している。ま
								添作	計資料 3.2.	保守的	りに全ての記	設備が,事象	発生直後から	7日間燃料	を消費する		保守的に全ての設備が、事象発生直	後から7日間	燃料を消費す	た、モニタリングポスト
	ンッな ※3) やあ 能。	ソクな事 ※3) であ 能。	ンク谷町 (1) いちり, (1)	ンク容量 () いわり, (f) 。	ンク容量)であり, 他,	ンク冷康()でむり、	ンク谷間)であり, 絶。	マンケー バンボ ソマケ(公 ※発車	드 됐	ものとし	て評価する	3。					るものとして評価する。			は非常用交流電源設備又
数)	· 020kL () () () () () () () () () () () () ()	号が軽油タ t 11,020kL (※ 日間対応可(1 号炉軽油タン/ は 約 632kL(※3)で 7 ロ間対応可能。	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 号炉軽油タン は 約 632kL (※3) 7 日間対応可能	4 Dが電笛タン (1) 約 632kL (※3) で 7 日西洋沢回標。	が軽消タ 32kL (※3 関対応可	1~7 号万軽当分 及びガスタ・ピン 電機用燃料タンク 量約 100KJ) の税	195kL 195kL 四本計画							,				は常設代替交流電源設備
※加	語。 [2] (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	3¥	3¥	넴	ÚÉ.	nd#4	riH	rl#				時系列		合計	判定		時系列	合計	判定	による電源供給が可能で
格納容器雰囲気直接加熱) 欧城嶼も対象とする。	4 日間の	: 品次 7 日間の 松油消費。 約 816kL 約 16kL	7 日間の 軽油消費 約 632kL	7 ロ回の 極定活動 巻 632kL	7 日間の 軽油消費 約 632kL	7 山間の 軽油消費] 約 632kL	7 日間の 軽油消費 約 632kL	7 日間の整治消費	※9 13年	(燃料消費	(燃料消費率)>	台起動 格出力運転時を想知 ×168h(運転時間)		7日間の 軽油消費量 約352.8kL	軽油貯蔵タ ンクの容量 は約 800kL であり,7日		ガスタービン発電機 1 台起動 (燃費は保守的に最大負荷時を想定) 2.09m³/h×24h×7日×1台=351.12m³			ある。
容器雰[************************************	令却系用の大容 ュニット用) I×1 台=10,92	冷却系用の人容 ユニット用) 日×1 台=10,92								窒素供給装	置用電源車 1:			7日間の	間対応可能 可搬型設備 用軽油タン		大量送水車 1 台起動 0.0652m³/h×24h×7日×1台=10.9536m³	7日間の ― 軽油消費量	ガスタービン発 電機用軽油タン クの容量は約	・評価結果の相違 【柏崎 6/7,東海第二】
/格納	代替原子炉補機冷 水車(熟交換器ユニ 1 台起動。 651/h×24h×7 Ll×	代替原子炉槽機治 木車(熱交換器ユ 1 台起動。 651./h×2·h×7 日、日										.) ×168h(運転時間)	×1 台(運転台数)	軽油消費量 約 18.5kL	クの容量は 約 210kL で あり,7日間 対応可能	. で 日間 能	大型送水ポンプ車 1 台起動 0.31m³/h×24h×7日×1台=52.08m³	約 423m³ 	450m ³ であり,7 日間対応可能	
放出	の観波市 付最大負荷 A 最大負荷 A 36,960L 65								ů 4.	即之,由七人位		ムおあ			緊急時対策所用発電機		可搬式窒素供給装置 1台起動 0.036 m³/h×24h×7日×1台=6.048m³			
て(高圧溶融物	代替原子何都機冷却系專用の編 2 台起戲。(紫費は保守的に最才時を想定) 110L/Lix24hx7 日×2 台=36,9	が 高。 の の の の の の の の の の の の の						青時を想定)	ゼル発電機3 台次起動させて評価し ゼル発電機2 台を超勤させて評価し	(燃料消費	然料消費率)×1	日起勤 格出力運転時を想象 68h(運転時間)×		7日間の 軽油消費量 約70.0kL	燃料油貯蔵 タンクの容量は約 75kL であり,7日間の対応可能		緊急時対策所用発電機 1台 0.0469 m³/h×24h×7日×1台=7.8792m³	7日間の 軽油消費量 約8 m³	緊急時対策所用 燃料地下タンク の容量は約 45m ³ であり, 7 日間 対応可能	
る燃料の対応につい *Fighth Table 5 Mar 1 Magalar Artoceel, 5 Magaramagalar Hrance 1 SAM TAM Magalar Hrance 1 SAM TAM Magalar	復木時威僧給水用 - 市拠型代替注水ボンブ (A-2 級) 4 台起動。 21L/h×24h×7 F×4 Ď=14, 113L	復本野蔵橋希本用 『樂型代替注水ボンブ (A 2 級) 1台起勤。 211/h×24h×7 L×4 行=14, 1121.						S原設備 1 合起勤。(然)	(然数は保付的に最大負債等を認定) 職は2在であるが、保存的に非常用ディー 戦に1右であるが、保守的に非常用ディー 戦に1右であるが、保守的に非常用ディー											
所 新羅維 他 一 他 一	- 事業発生直後~事業発生後71日 - 非常用ディーゼル発電機3合起動。※1 (然費は保守的に最大負荷時を設定) 1,493L/h×24h×7 日×3 台=732,472L		事業発生直後~事業発生を7日間 非常用ディーセル発電機 2 行起動。※2 (然業は保守的に最大負荷時を提定) 1879/A×20A×7 ロメ2 ==631,3441.	● 業務生口後~事業発生後7日度 ・ 非常用ディーゼル発苗級2台起襲。※2 (然度に保予的に展大性信息を選用) 1,879/A×24×71×2,4-631,344)	事象発生値後~事象発生後71日間 非常用ディーゼル発電機2台起脚。※2 「機費は保守的に最大負荷時を想定) 1,8791,h×24h×7日×2 台=631,3441。	事象発生液 7 日間 非常用ディーゼル発電機 2 右起動。※3 (然質は学行が、最大単位の表現の (がまな学行が、最大単位のを選出) アードアリアンチョドの 344	# 単級等生産 7 日 201.0 また。 1 日 201.0 また。 1 日 201.0 また。 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2	事象発生(後~事象発生後7月間おりが原子が発展以際金融対策所用・「糖気の45L/h×24h×7月=7,560L	キニタリング・ボスト用発電機 9L/h×2h×7 ロ×3 右=4, 5341. 日本故収 東に必要な非常用ディー 1 事故収 東に必要な非常用ディー 2 事故収 東に必要な非常用ディー											
7 同日音融制放 なお、全ブラ	事象発生直後 非常用ディー (然費は保守) 1,493L/h×24	事象発生直後 非常用ディー (燃費は保守 1, 1931,/h×21	事後を生産を一事条を生産7日間 中 非原門アディーとの基礎の「土地型」 が需要は保守的に最大を指揮を担信) ドルタルトアコンスクローの31,3441	事業34年度30~事業34年度7日間 中 非常用ディービル発電機 2 台通橋、第 7 (※要は18年的に最大負債を包配) が(※要は18年的に最大負債を包配) 1、879L/h.X.2h.X.7 日 X.2 (↑ = 631, 344).	事象報告価後へ事象等年後7日図 3万円円 アイールの番級でも表現。 1次円円 アイールの番級でも発展。 (参数は保守的に最大自身時を配置) 1、1879:1/A・X 2 h x 7 L X 2 h = 1631, 3 441,	- 神像発生両後~神像発生後7日節 - 非常用ゲイーゼル強粗線 2台域像、深 - (参加性保全地に発生を開発。2台域像 - アードル・スタル・スタルを発展を - アードル・スタル・スタール・スタール・スタール・スタール・スタール・スタール・スタール	5 非常用では、中央発生像で目的 5 非常用で、一生へ発電機・台側艦、 5 は常用で、一生へ発電機・2台側艦、窓 7 (機能は保守的に発生的に発展を2台側艦・窓) 1 に対したなれて、日ンと音声は23.34	事象発生直後~事象発生後7日間 5号炉原了炉建屋内緊急時対策所 45L/h×24h×7月=7,560L	キニタリング・ボスト用発電機 9L/h×2h×7 ロ×3 右=4, 5341. 日本故収 東に必要な非常用ディー 1 事故収 東に必要な非常用ディー 2 事故収 東に必要な非常用ディー											

まとめ資料比較表 〔有効性評価 添付資料 3.2.7〕

# 報報報報子 / 光電節 1 大き	柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	まどの資料に					屁 り」			備考
第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		果 供 另 一	(2016. 9.		上次 似 0 0 10		****			
全型性・特別性・特別性 全型性	I			初 於1	寸食科 3. 2. 13	3	·			
(本語 1				h- 11.			->-L1.11	11.11. 715.71		
# 報報								放出/格紋	的容器雰囲気	
本事業の		(高圧溶融物放出/格	納容器雰	用気直接加	執)	直接加熱	tį)			荷に対して常設代替交
### 1										流電源設備にて電源供
		主要負荷リスト	電源設備:							給を行う。
2				大負荷容量	大負荷容量	電源設備:ガスタービン発電機	定格出力		定費時の	
(1)		・緊急用直流125V充電器・その他必要な負荷	約 97			主要機器				・設備設計の相違
(1) 対分ター・シャ産機所被機 約11 条列		③ 常設低圧代替注水系ポンプ - 緊急用海水ポンプ	約 190 約 510	約 892	約 597		(kW)	(kW)	(kW)	【東海第二】
### 2015 10 10 10 10 10 10 10		⑤ 代替循環冷却系ポンプ 非常用母線 2 C 自動起動負荷	約140	約 1,468	約 1, 251				· ·	
### 1		 事常用照明*4 120/240v計装用主母線盤2A 	約 108 約 134	約 1,833	約 1,820	充電器,非常用照明,非常用ガス処理系				
### (S.A) 世界機構 (S.A) 世界機構 (S.A) 日本 (S.A) (1.00) (・その他不要な負荷®ペ 非常用母線2 D 自動起動負荷 ・直流1257×2 電器 B	約 234 約 60			他 (D 杀局上母級目動投入負荷)				
### 2.523		・ 120 / 240V 計 装 用 主 母 線 盤 2 B ・ そ の 他 不 要 な 負 荷 * 4	約 134 約 135	約 2,240	約 2,235	素濃度(SA)監視設備			·	こなる具例が共なる。
□ 中央機関を対しています。		寒 常用ガス処理系排風機 その他必要な負荷	約 8 約 95	約 2,529	#9 2,341					
● 「		中央制御室換気系空気調和機ファン 中央制御室換気系フィルタ系ファン	約 45 約 8	約 2,918	約 2,577					
(日本の主席を表現を含め、 100 日本の主席を表現を含め、 100 日本の主席を表現を表現を含め、 100 日本の主席を表現を含め、 100 日本の主意味を含め、 100 日本の主意味を含め、 100 日本の主意味を含め、 100 日本の主意味を含め、 100 日本の主意味を含め、 100 日本の主意味を含め、		御 蓄電池室排気ファン その他必要な負荷	約 8 約 15 4			(8)	約 329	約 1, 562	約 1,500	
### 2 (A)		八世際年ノール田埠州中ノノ	#9 30	my 2, 646	#9 2, 169		約 110	·		
1,000 (
またれるのと またいのと (大きない) (7,000	常設代替品	5圧電源装置5台の最大	容量 6,900km ⁺⁻¹	⑪ 残留熱代替除去ポンプ	約 75	約 1,986	約 1, 795	
5.000 の定要性方(1.00m) 5.100 の定要性方(1.00m) 5.100 の対象を表現 (2.00m) 5.100 の変数を表現 (2.00m) 5.100 の変数を表現 (2.00m) 5.000 ができるに変数を表現 (2.00m) 5.000 ができるに変数を表現を表現 (2.00m) 5.000 ができるに		6,000	常設代替高圧電	1源装置5台の連続定格	· 容量 5,520km ^{+ 2}		約 110			
2,000 (日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日		5,000								
2,000 (日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日		4 000								
第次性等点に電源整理と の機能を発展していない。 変化性等点に 電影性第二位 電影性等 電影			最大負荷名 約3,1311	F 量 k W		4,000				
2,000 1,000 (1		3,000 の最大容量2,760kW** : 常設代替高圧電源装置2台 8		<u> </u>		2 000				
② (3,000		最大容量;	約1,986kW	
② () () () () () () () () () (1,000				2,000 -			(<u>1</u> 2)	
常設 大陸 高圧 電源 装置 2 台 電源 装置 2 台 通知 起動。 常設 代替高圧電源 装置 2 合 負荷 積算 イメージ 祭1 常設 代替高圧電源 装置 2 存 的 5 % (1,380 km × 0.8 × 運転 台 数 = 連続定格 容 最) 祭2 常設 代替高圧電源 装置 2 格 出 力 運転 時 中 5 % (1,380 km × 0.8 × 運転 台 数 = 連続定格 容 最) 祭3 非常用 音線 の 負荷 への 給電 に伴い、 負荷 容 量 が 増加 す る た め、 常設 代 替 高 圧 電源 装置 を 3 台 追加 起動 す る 変 4 有 効性 評価 で 期待 して い な い が 電源 供給 さ れ る 不要 な 負荷			11	1		0	® ├──	//—لرّ® السير		
起動 追加起動。3 電源装置の負荷標算イメージ 常設代替高圧電源装置の負荷標算イメージ			1)	25	経過時間(h)	1.000 S S S	J ''	L		
※2 常設代替高圧電源要要定格出力運転時の 80%の容量 (1,380kW × 0.8×運転台数 = 連続定格容量) ※3 非常用母級の負荷への鉛電に伴い、負荷容量が増加するため、常設代替高圧電源要置を 3 台追加起動する ※4 有効性評価で期待していないが電源供給される不要な負荷 △ガスタービン発電機起動 △ガスタービン発電機起動		起動 追加起動 **	京装置の負荷積算イ	メージ						
※4 有効性評価で期待していないが電源供給される不要な負荷		※2 常設代替高圧電源装置定格出力運転時の 80%の容量 (1,380kW×0.8×運車	云台数 = 連統定格容量			1	1 10	24	
常設代替交流電源設備の負荷積算イメージ		※4 有効性評価で期待していないが電源供給される不要な	負荷						経過時間(h)	
						常設代替交流電源設備の)負荷積	算イメージ	>	
							2 11 4 12			

まとめ資料比較表 〔有効性評価 3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用〕

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

- 3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用
- 3.3.1 格納容器破損モードの特徴,格納容器破損防止対策
- (1) 格納容器破損モード内のプラント損傷状態

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」に至る可能性のあるプラント損傷状態は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、TQUV、 TQUX、LOCA、長期TB、TBU 及びTBPである。

(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基本的考え方

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」では、発電用原子炉の運転中に運転時の異常な 過渡変化、原子炉冷却材喪失事故(LOCA)<u>又は全交流動力電</u> 源喪失が発生するとともに、非常用炉心冷却系等の安全機能 の喪失が重畳する。このため、緩和措置がとられない場合に は、溶融炉心と原子炉圧力容器外の水が接触して一時的な格 納容器圧力の急上昇が生じ、このときに発生するエネルギが 大きい場合に構造物が破壊され原子炉格納容器の破損に至

原子炉圧力容器外の溶融燃料-冷却材相互作用による水蒸 気爆発事象については、これまでに実ウランを用いて種々の 実験が行われている。水蒸気爆発は、溶融炉心が水中に落下 し、細粒化して分散する際に蒸気膜を形成し、そこに何らか の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の 圧力伝播を生じ、大きなエネルギを発生させる事象である。 細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が 実験等により得られている。原子炉格納容器下部に張られた 水は準静的であり、外乱が加わる要素は考えにくい。このこ とから、実機において水蒸気爆発に至る可能性は極めて小さ いと考えられる。

(添付資料 3.3.1, 3.3.2)

また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ の伝熱によって水蒸気が発生することに伴う急激な格納容器 東海第二発電所(2018.9.12版)

- 3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用
- 3.3.1 格納容器破損モードの特徴,格納容器破損防止対策
- (1) 格納容器破損モード内のプラント損傷状態

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に至る可能性のあるプラント損傷状態は、「1.2評価対象の整理及び評価項目の設定」に示すとおり、TQUV、TQUX、LOCA、長期TB、TBU、TBP及びTBDである。

(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基本的考え方

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」では、発電用原子炉の運転中に運転時の異常な 過渡変化、原子炉冷却材喪失事故(LOCA)<u>又は全交流動</u> 力電源喪失が発生するとともに、非常用炉心冷却系等の安全 機能の喪失が重畳する。このため、緩和措置がとられない場 合には、溶融炉心と原子炉圧力容器外の水が接触して一時的 な格納容器圧力の急上昇が生じ、このときに発生するエネル ギが大きい場合に構造物が破壊され格納容器の破損に至る。

原子炉圧力容器外の溶融燃料ー冷却材相互作用による水蒸 気爆発事象については、これまでに実ウランを用いて種々の 実験が行われている。水蒸気爆発は、溶融炉心が水中に落下 し、細粒化して分散する際に蒸気膜を形成し、そこに何らか の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の 圧力伝播を生じ、大きなエネルギを発生させる事象である。 細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が 実験等により得られている。ペデスタル(ドライウェル部) に張られた水は準静的であり、外乱が加わる要素は考えにく い。このことから、実機において水蒸気爆発に至る可能性は 極めて小さいと考えられる。

(添付資料 3. 3. 1, 3. 3. 2, 3. 3. 3, 3. 3. 4, 3. 3. 5)

また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ の伝熱によって水蒸気が発生することに伴う急激な格納容器

3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用

3.3.1 格納容器破損モードの特徴,格納容器破損防止対策

島根原子力発電所 2号炉

(1) 格納容器破損モード内のプラント損傷状態

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」に至る可能性のあるプラント損傷状態は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、TQU V, TQUX及びLOCAである。

(2) 格納容器破損モードの特徴及び格納容器破損防止対策の基プラント損傷状態の相本的考え方 違。

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」では、発電用原子炉の運転中に運転時の異常な 過渡変化、原子炉冷却材喪失事故(LOCA)が発生すると ともに、非常用炉心冷却系等の安全機能の喪失が重畳する。 このため、緩和措置がとられない場合には、溶融炉心と原子 炉圧力容器外の水が接触して一時的な格納容器圧力の急上昇 が生じ、このときに発生するエネルギが大きい場合に構造物 が破壊され原子炉格納容器の破損に至る。

原子炉圧力容器外の溶融燃料ー冷却材相互作用による水蒸 気爆発事象については、これまでに実ウランを用いて種々の 実験が行われている。水蒸気爆発は、溶融炉心が水中に落下 し、細粒化して分散する際に蒸気膜を形成し、そこに何らか の外乱が加わることによって蒸気膜が崩壊した際に、瞬時の 圧力伝播を生じ、大きなエネルギを発生させる事象である。 細粒化した溶融炉心を覆う蒸気膜には安定性があり、何らか の外乱がなければ蒸気膜の崩壊は起こりにくいという知見が 実験等により得られている。ペデスタルに張られた水は準静 的であり、外乱が加わる要素は考えにくい。このことから、 実機において水蒸気爆発に至る可能性は極めて小さいと考え られる。

(添付資料 3. 3. 1, 3. 3. 2)

また、水蒸気爆発とは別に、溶融炉心から原子炉冷却材へ の伝熱によって水蒸気が発生することに伴う急激な格納容器

・評価条件の相違 【柏崎 6/7, 東海第二】 PRA により抽出される プラント損傷状態の相

備考

・評価条件の相違

【柏崎 6/7, 東海第二】 PRA により抽出される

事故シーケンスの相違。

イクについてその影響を評価する。

圧力の上昇(以下「圧力スパイク」という。)が発生する。 上記のとおり、現実的には水蒸気爆発が発生する可能性は 極めて小さいと考えられることから、本評価では、圧力スパ

したがって, 本格納容器破損モードでは, 原子炉格納容器 を冷却及び除熱し、溶融炉心から原子炉格納容器下部の水へ の伝熱による,水蒸気発生に伴う格納容器圧力の上昇を抑制 することにより、原子炉格納容器の破損を防止する。

また、溶融炉心の落下後は、格納容器下部注水系(常設) によって溶融炉心を冷却するとともに、代替格納容器スプレ イ冷却系(常設)による原子炉格納容器冷却を実施する。そ の後、代替循環冷却系又は格納容器圧力逃がし装置によって 原子炉格納容器の圧力及び温度を低下させる。

なお,本格納容器破損モードの有効性評価を実施する上で は、重大事故等対処設備による原子炉注水機能についても使 用できないものと仮定し,原子炉圧力容器破損に至るものと する。

(3) 格納容器破損防止対策

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」で想定される事故シーケンスでは、原子炉格納 容器下部への溶融炉心落下を想定する。この状況では、原子 炉格納容器下部における「溶融炉心・コンクリート相互作用」 を緩和する観点から、溶融炉心落下前に格納容器下部注水系 (常設)による原子炉格納容器下部への水張りを行うことか ら、溶融炉心落下時には原子炉格納容器下部に水が張られた 状態を想定する。なお、この水張り深さは、「原子炉圧力容

東海第二発電所(2018.9.12版)

イクについてその影響を評価する。

圧力の上昇(以下「圧力スパイク」という。)が発生する。 上記のとおり、現実的には水蒸気爆発が発生する可能性は 極めて小さいと考えられることから、本評価では、圧力スパ

したがって, 本格納容器破損モードでは, 格納容器を冷却 及び除熱し、溶融炉心からペデスタル (ドライウェル部)の 水への伝熱による, 水蒸気発生に伴う格納容器圧力の上昇を 抑制することにより、格納容器の破損を防止する。

また、溶融炉心の落下後は、格納容器下部注水系(常設) によって溶融炉心を冷却するとともに、代替格納容器スプレ イ冷却系(常設)による格納容器冷却を実施する。その後, 代替循環冷却系又は格納容器圧力逃がし装置によって格納容 器の圧力及び雰囲気温度を低下させる。

さらに,格納容器内における水素燃焼を防止するため,格 納容器内の水素濃度及び酸素濃度が可燃領域に至るまでに, 格納容器内へ窒素を注入することによって、格納容器の破損 を防止する。

なお,本格納容器破損モードの有効性評価を実施する上で は、原子炉圧力容器破損までは重大事故等対処設備による原 子炉注水機能についても使用できないものと仮定し、原子炉 圧力容器破損に至るものとする。一方, 本格納容器破損モー ドに対しては、原子炉圧力容器破損後の格納容器破損防止の ための重大事故等対策の有効性についても評価するため,原 子炉圧力容器破損後は重大事故等対策に係る手順に基づきプ ラント状態を評価することとする。したがって本評価では、 原子炉圧力容器破損後も原子炉圧力容器内に残存する放射性 物質の冷却のために原子炉に注水する対策及び手順を整備す ることから、これを考慮した有効性評価を実施することとす

(3) 格納容器破損防止対策

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」で想定される事故シーケンスでは、ペデスタル (ドライウェル部) への溶融炉心落下を想定する。この状況 では、ペデスタル (ドライウェル部) には通常運転時から約 1mの水位が形成されており、ペデスタル (ドライウェル部) における「溶融炉心・コンクリート相互作用」を緩和する観 点から,溶融炉心落下前に格納容器下部注水系(常設)によ るペデスタル (ドライウェル部) 水位の確保を行うことから,

島根原子力発電所 2号炉

圧力の上昇(以下「圧力スパイク」という。)が発生する。 上記のとおり、現実的には水蒸気爆発が発生する可能性は 極めて小さいと考えられることから、本評価では、圧力スパ イクについてその影響を評価する。

したがって, 本格納容器破損モードでは, 原子炉格納容器 を冷却及び除熱し、溶融炉心からペデスタルの水への伝熱に よる, 水蒸気発生に伴う格納容器圧力の上昇を抑制すること により, 原子炉格納容器の破損を防止する。

また、溶融炉心の落下後は、ペデスタル代替注水系(可搬 型)によって溶融炉心の冷却を実施する。その後,残留熱代 替除去系又は格納容器フィルタベント系によって原子炉格納 容器の圧力及び温度を低下させる。

さらに、原子炉格納容器内における水素燃焼を防止するた┃・運用の相違 め,原子炉格納容器内の水素濃度及び酸素濃度が可燃領域に 【 柏崎 6/7】 至るまでに、原子炉格納容器内へ窒素を注入することによっ て、原子炉格納容器の破損を防止する。

なお、本格納容器破損モードの有効性評価を実施する上で↓備である可搬式窒素供給 は、重大事故等対処設備による原子炉注水機能についても使一装置による窒素封入を実 用できないものと仮定し、原子炉圧力容器破損に至るものと「施することとしている。 する。

・解析条件の相違 【柏崎 6/7, 東海第二】

備考

島根2号炉は,可燃性 ガス濃度の制御は SA 設

解析条件の相違

【東海第二】

島根2号炉は、シナリ オの想定として,原子炉 圧力容器破損後も原子炉 圧力容器内を冷却するた めの原子炉注水が実施で きないものとしている。

(3) 格納容器破損防止対策

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却 材相互作用」で想定される事故シーケンスでは、ペデスタル への溶融炉心落下を想定する。この状況では、ペデスタルに おける「溶融炉心・コンクリート相互作用」を緩和する観点 ・ 運用の相違 から、溶融炉心落下前に格納容器代替スプレイ系(可搬型) によるペデスタルへの水張りを行うことから、溶融炉心落下 時にはペデスタルに水が張られた状態を想定する。なお、こ│に原子炉圧力容器破損の の水張り深さは、「原子炉圧力容器外の溶融燃料ー冷却材相 │ 徴候によりペデスタルに

【東海第二】

島根2号炉は,事故時

て約2m としている。

器外の溶融燃料ー冷却材相互作用」に伴う圧力スパイクの発 生を仮定した場合の影響を小さく抑えつつ、「溶融炉心・コ ンクリート相互作用」の緩和効果に期待できる深さを考慮し

また、その後の格納容器圧力及び温度の上昇を抑制する観 点から、代替格納容器スプレイ冷却系(常設)による原子炉 格納容器冷却手段及び代替循環冷却系による原子炉格納容器 除熱手段又は格納容器圧力逃がし装置による原子炉格納容器 除熱手段を整備する。なお、これらの原子炉圧力容器破損以 降の格納容器過圧・過温に対応する手順及び重大事故等対策 は「3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損) 」と同じである。

本格納容器破損モードに至るまでの事象進展への対応、本 格納容器破損モードによる原子炉格納容器の破損防止及び原 子炉格納容器の破損を防止した以降の対応を含めた一連の重 大事故等対策の概要は、「3.2 高圧溶融物放出/格納容器雰 囲気直接加熱」の 3.2.1(3)の a.から j.に示している。この うち,本格納容器破損モードに対する重大事故等対策は,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」の3.2.1(3)に示 す g. 及び h. である。なお、g. の原子炉格納容器下部への注水 は、原子炉格納容器下部における「溶融炉心・コンクリート 相互作用」を緩和する観点から実施するものであるが、原子 炉格納容器下部に溶融炉心が落下した際の「原子炉圧力容器 外の溶融燃料ー冷却材相互作用」への影響も考慮して原子炉 格納容器下部への注水量及び原子炉格納容器下部の水位を定 めていることから、本格納容器破損モードの対策として整理 した。

(添付資料 3.3.3)

東海第二発電所 (2018.9.12版)

溶融炉心落下時にはペデスタル(ドライウェル部)に水が張 られた状態を想定する。なお、この水位は、「原子炉圧力容 器外の溶融燃料ー冷却材相互作用」に伴う圧力スパイクの発 生を仮定した場合の影響を小さく抑えつつ、「溶融炉心・コ ンクリート相互作用」の緩和効果に期待できる深さを考慮し て 1m としている。

また、その後の格納容器圧力及び雰囲気温度の上昇を抑制 する観点から、代替格納容器スプレイ冷却系(常設)による 格納容器冷却手段、緊急用海水系による冷却水(海水)の確 保手段及び代替循環冷却系による格納容器除熱手段又は格納 容器圧力逃がし装置による格納容器除熱手段を整備し、長期 的な格納容器内酸素濃度の上昇を抑制する観点から、可搬型 窒素供給装置による格納容器内への窒素注入手段を整備す る。

本格納容器破損モードに至るまでの事象進展への対応、本 格納容器破損モードによる格納容器の破損防止及び格納容器 の破損を防止した以降の対応を含めた一連の重大事故等対策 の概要は、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」 の3.2.1(3)のa.からg.に示している。このうち、本格納 容器破損モードに対する重大事故等対策は,「3.2 高圧溶融 物放出/格納容器雰囲気直接加熱」の 3.2.1.(3)に示す i. 及びk. である。なお, i. の格納容器下部注水系(常設) によるペデスタル(ドライウェル部)水位の確保は、ペデス タル(ドライウェル部)における「溶融炉心・コンクリート 相互作用」を緩和する観点から実施するものであるが、ペデ スタル(ドライウェル部)に溶融炉心が落下した際の「原子 炉圧力容器外の溶融燃料ー冷却材相互作用」への影響も考慮 してペデスタル(ドライウェル部)の水位を定めていること から、本格納容器破損モードの対策として整理した。

島根原子力発電所 2号炉

互作用」に伴う圧力スパイクの発生を仮定した場合の影響を 小さく抑えつつ、「溶融炉心・コンクリート相互作用」の緩 和効果に期待できる深さを考慮して 2.4m としている。

また、その後の格納容器圧力及び温度の上昇を抑制する観 点から, 残留熱代替除去系による原子炉格納容器除熱手段又 は格納容器フィルタベント系による原子炉格納容器除熱手段 を整備する。なお、これらの原子炉圧力容器破損以降の格納 容器過圧・過温に対応する手順及び重大事故等対策は「3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」 と同じである。

本格納容器破損モードに至るまでの事象進展への対応、本 格納容器破損モードによる原子炉格納容器の破損防止及び原 子炉格納容器の破損を防止した以降の対応を含めた一連の重 大事故等対策の概要は、「3.2 高圧溶融物放出/格納容器雰 囲気直接加熱」の 3.2.1(3)の a.から k.に示している。この うち,本格納容器破損モードに対する重大事故等対策は,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」の 3.2.1(3)に示 す f. 及び g. である。なお, g. のペデスタルへの注水は, ペデ |・運用の相違 スタルにおける「溶融炉心・コンクリート相互作用」を緩和 【東海第二】 する観点から実施するものであるが、ペデスタルに溶融炉心 が落下した際の「原子炉圧力容器外の溶融燃料ー冷却材相互 | 器代替スプレイ系 (可搬 作用」への影響も考慮してペデスタルへの注水量及びペデス | 型) にてペデスタルへ初 タルの水位を定めていることから,本格納容器破損モードの 対策として整理した。

(添付資料 3.3.3)

備考

水張りをする運用として いる。

・ 運用の相違

【柏崎 6/7, 東海第二】 初期水張り深さの相違

・解析結果の相違 【柏崎 6/7, 東海第二】

・整理方針の相違

【東海第二】

島根2号炉は、原子炉 圧力容器破損以降のマネ ジメントは「3.1 雰囲気 圧力・温度による静的負 荷(格納容器過圧・過温 破損)」に記載の対応と同 じである旨を記載してい

島根2号炉は,格納容 期水張りを行い、ペデス タル水位に応じて停止す る手順としている。

本格納容器破損モードに至るまでの事象進展への対応、本格納容器破損モードによる原子炉格納容器の破損防止及び原子炉格納容器の破損を防止した以降の対応を含めた一連の重大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」に示す第3.2.1 図から第3.2.4 図である。このうち、本格納容器破損モードの重大事故等対策の概略系統図は第3.2.2 図及び第3.2.3 図である。本格納容器破損モードに対応する手順及び必要な要員と作業項目は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じである。

3.3.2 格納容器破損防止対策の有効性評価

(1) 有効性評価の方法

本格納容器破損モードを評価する上で選定した評価事故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、プラント損傷状態を TQUV とし、事象進展が早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因事象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+高圧注水失敗+低圧注水失敗+損傷炉心冷却失敗(+FCI 発生)」である。ここで、逃がし安全弁再閉失敗を含まない事故シーケンスとした理由は、プラント損傷状態が TQUV であるため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考え、発生頻度の観点で大きい事故シーケンスを選定したためである。

また,「1.2.2.1(3)c. 原子炉圧力容器外の溶融燃料-冷却材相互作用」に示すとおり,プラント損傷状態の選定では,水蒸気爆発に対する条件設定の厳しさを考慮し,溶融炉心の内部エネルギの観点でより厳しいと考えられる TQUV を選定した。一方,プラント損傷状態を LOCA とする場合,事象発生直後から原子炉冷却材が原子炉格納容器内に流出するため原子炉圧力容器破損までの時間が短くなる。この時の圧力スパイクへの影響については,解析条件のうち初期条件の不確かさとして評価する。

本格納容器破損モードに至るまでの事象進展への対応、本格納容器破損モードによる格納容器の破損防止及び格納容器の破損を防止した以降の対応を含めた一連の重大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」に示す第3.2-1図である。このうち、本格納容器破損モードの重大事故等対策の概略系統図は第3.2-1図(2/5)及び第3.2-1図(3/5)である。本格納容器破損モードに対応する手順及び必要な要員と作業項目は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じである。

3.3.2 格納容器破損防止対策の有効性評価

(1) 有効性評価の方法

本格納容器破損モードを評価する上で選定した評価事故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、プラント損傷状態をTQUVとし、事象進展が早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因事象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷却失敗(+FCI(ペデスタル))」である。ここで、逃がし安全弁再閉失敗を含まない事故シーケンスとした理由は、プラント損傷状態がTQUVであるため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考え、発生頻度の観点で大きい事故シーケンスを選定したためである。

また,「1.2.2.1(3) c. 原子炉圧力容器外の溶融燃料一冷却材相互作用」に示すとおり、プラント損傷状態の選定では、水蒸気爆発に対する条件設定の厳しさを考慮し、溶融炉心の内部エネルギの観点でより厳しいと考えられるTQUVを選定した。一方、プラント損傷状態をLOCAとする場合、事象発生直後から原子炉冷却材が<u>格納容器内</u>に流出するため原子炉圧力容器破損までの時間が短くなる。このときの圧力スパイクへの影響については、解析条件のうち事故条件の不確かさとして評価する。

さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、格納容 2000 注水・除熱を実施するまでの対応時間を厳しく評価する観点から、全交流動力電源喪失の重畳を考慮する。 本格納容器破損モードに至るまでの事象進展への対応,本格納容器破損モードによる原子炉格納容器の破損防止及び原子炉格納容器の破損を防止した以降の対応を含めた一連の重大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」に示す第3.2.1-1(1)図から第3.2.1-1(3)図である。このうち,本格納容器破損モードの重大事故等対策の概略系統図は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」に示す第3.2.1-1(2)図である。本格納容器破損モードに対応する手順及び必要な要員と作業項目は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じである。

3.3.2 格納容器破損防止対策の有効性評価

(1) 有効性評価の方法

本格納容器破損モードを評価する上で選定した評価事故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、プラント損傷状態をTQUVとし、事象進展が早く炉心損傷までの時間余裕の観点で厳しい過渡事象を起因事象とし、逃がし安全弁再閉失敗を含まない、「過渡事象+高圧炉心治却失敗+低圧炉心治却失敗+炉心損傷後の原子炉注水(重大事故等対策を含む)失敗+FCI発生」である。ここで、逃がし安全弁再閉失敗を含まない事故シーケンスとした理由は、プラント損傷状態がTQUVであるため、事故対応に及ぼす逃がし安全弁再閉の成否の影響は小さいと考え、発生頻度の観点で大きい事故シーケンスを選定したためである。

また,「1.2.2.1(3)c. 原子炉圧力容器外の溶融燃料-冷却材相互作用」に示すとおり,プラント損傷状態の選定では,水蒸気爆発に対する条件設定の厳しさを考慮し,溶融炉心の内部エネルギの観点でより厳しいと考えられるTQUVを選定した。一方,プラント損傷状態をLOCAとする場合,事象発生直後から原子炉冷却材が原子炉格納容器内に流出するため原子炉圧力容器破損までの時間が短くなる。この時の圧力スパイクへの影響については、解析条件のうち初期条件の不確かさとして評価する。

さらに、本評価事故シーケンスにおいては、電源の復旧、 注水機能の確保等、必要となる事故対処設備が多く、原子炉 格納容器への注水・除熱を実施するまでの対応時間を厳しく 評価する観点から、全交流動力電源喪失の重畳を考慮する。

・解析条件の相違

【柏崎 6/7】

島根2号炉は、本シナリオの評価において全交

流動力電源喪失の重畳を 考慮する。

なお、本評価事故シーケンスは、「3.2 高圧溶融物放出/ 格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー ト相互作用」において有効性を評価したシーケンスと同様の シーケンスである。本格納容器破損モード及び「3.5 溶融炉 心・コンクリート相互作用」ではプラント損傷状態を TQUV と し、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」では プラント損傷状態を TQUX としており、異なるプラント損傷 状態を選定している。しかしながら、どちらのプラント損傷 状態であっても原子炉水位が有効燃料棒底部から有効燃料棒 の長さの 10%上の位置に到達した時点で逃がし安全弁の手動 開操作によって原子炉を減圧する手順であり,原子炉減圧以 降も、溶融炉心の挙動に従って一連の流れで生じる各格納容 器破損モードを、定められた一連の手順に従って防止するこ ととなる。このことから、これらの格納容器破損モードにつ いては同様のシーケンスで評価する。

本評価事故シーケンスでは、炉心における崩壊熱、燃料棒 内温度変化,燃料棒表面熱伝達,燃料被覆管酸化,燃料被覆 管変形、沸騰・ボイド率変化、気液分離(水位変化)・対向 流、炉心損傷後の原子炉圧力容器におけるリロケーション、 構造材との熱伝達、原子炉圧力容器破損、原子炉格納容器に おける格納容器各領域間の流動、炉心損傷後の原子炉格納容 器における原子炉圧力容器外 FCI(溶融炉心細粒化)並びに原 子炉圧力容器外 FCI(デブリ粒子熱伝達)が重要現象となる。

よって、これらの現象を適切に評価することが可能であり、 原子炉圧力容器内及び原子炉格納容器内の熱水力モデルを備 え、かつ、炉心損傷後のシビアアクシデント特有の溶融炉心 挙動に関するモデルを有するシビアアクシデント総合解析コ ード MAAP により格納容器圧力等の過渡応答を求める。

また、解析コード及び解析条件の不確かさの影響評価の節 囲として、本評価事故シーケンスにおける運転員等操作時間 に与える影響、評価項目となるパラメータに与える影響及び 操作時間余裕を評価する。

(2) 有効性評価の条件

本評価事故シーケンスの有効性評価の条件は、「3.2 高圧

なお、本評価事故シーケンスは、「3.2 高圧溶融物放出/ 格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー ト相互作用」において有効性を評価したシーケンスと同様の シーケンスである。本格納容器破損モード及び「3.5 溶融炉 心・コンクリート相互作用」ではプラント損傷状態をTQU Vとし、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」 ではプラント損傷状態をTQUXとしており、異なるプラン ト損傷状態を選定している。しかしながら、どちらのプラン ト損傷状態であっても原子炉水位が燃料有効長底部から燃料 有効長の20%上の位置に到達した時点で逃がし安全弁(自動 減圧機能) の手動開操作によって原子炉を減圧する手順であ り,原子炉減圧以降も,溶融炉心の挙動に従って一連の流れ で生じる各格納容器破損モードを、定められた一連の手順に 従って防止することとなる。このことから、これらの格納容 器破損モードについては同様のシーケンスで評価する。

本評価事故シーケンスでは、炉心における崩壊熱、燃料棒 内温度変化,燃料棒表面熱伝達,燃料被覆管酸化,燃料被覆 管変形、沸騰・ボイド率変化及び気液分離(水位変化)・対 向流, 炉心損傷後の原子炉圧力容器におけるリロケーション, 構造材との熱伝達及び原子炉圧力容器破損、格納容器におけ る格納容器各領域間の流動、炉心損傷後の格納容器における 原子炉圧力容器外FCI(溶融炉心細粒化)並びに原子炉圧 力容器外FCI (デブリ粒子熱伝達) が重要現象となる。

よって、これらの現象を適切に評価することが可能であり、 原子炉圧力容器内及び格納容器内の熱水力モデルを備え、か つ、炉心損傷後のシビアアクシデント特有の溶融炉心挙動に 関するモデルを有するシビアアクシデント総合解析コードM AAPにより格納容器圧力等の過渡応答を求める。

また、解析コード及び解析条件の不確かさの影響評価の節 囲として、本評価事故シーケンスにおける運転員等操作時間 に与える影響、評価項目となるパラメータに与える影響及び 操作時間余裕を評価する。

(2) 有効性評価の条件

本評価事故シーケンスの有効性評価の条件は,「3.2 高圧

なお、本評価事故シーケンスは、「3.2 高圧溶融物放出/ 格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリー ト相互作用」において有効性を評価したシーケンスと同様の シーケンスである。本格納容器破損モード及び「3.5 溶融炉 心・コンクリート相互作用」ではプラント損傷状態をTQU Vとし、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」 ではプラント損傷状態をTQUXとしており、異なるプラン ト状態を選定している。しかしながら、どちらのプラント損 傷状態であっても原子炉水位が燃料棒有効長底部から燃料棒 有効長の20%上の位置に到達した時点で逃がし安全弁の手動 | 開操作によって原子炉を減圧する手順であり、原子炉減圧以 降も、溶融炉心の挙動に従って一連の流れで生じる各格納容 器破損モードを、定められた一連の手順に従って防止するこ ととなる。このことから、これらの格納容器破損モードにつしるという考え方は同じで いては同様のシーケンスで評価する。

本評価事故シーケンスでは、炉心における崩壊熱、燃料棒 内温度変化,燃料棒表面熱伝達,燃料被覆管酸化,燃料被覆 | 炉は,BAF+20%で原子炉減 管変形、沸騰・ボイド率変化、気液分離(水位変化)・対向 圧を実施する。 流、炉心損傷後の原子炉圧力容器におけるリロケーション、 構造材との熱伝達、原子炉圧力容器破損、原子炉格納容器に おける格納容器各領域間の流動、炉心損傷後の原子炉格納容 器における原子炉圧力容器外FCI(溶融炉心細粒化)並び に原子炉圧力容器外FCI (デブリ粒子熱伝達) が重要現象 となる。

よって、これらの現象を適切に評価することが可能であり、 原子炉圧力容器内及び原子炉格納容器内の熱水力モデルを備 え、かつ、炉心損傷後のシビアアクシデント特有の溶融炉心 挙動に関するモデルを有するシビアアクシデント総合解析コ ードMAAPにより格納容器圧力等の過渡応答を求める。

また、解析コード及び解析条件の不確かさの影響評価の範 囲として、本評価事故シーケンスにおける運転員等操作時間 に与える影響、評価項目となるパラメータに与える影響及び 操作時間余裕を評価する。

(2) 有効性評価の条件

本評価事故シーケンスの有効性評価の条件は、「3.2 高圧

解析結果の相違 【柏崎 6/7】

ジルコニウムー水反応 が著しくなる前に減圧す はあるが, 感度解析結果 の差異により、島根2号

溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。

(3) 有効性評価の結果

本評価事故シーケンスにおける原子炉圧力及び原子炉水位 (シュラウド内外水位)の推移を第3.3.1 図及び第3.3.2 図 に,格納容器圧力,格納容器温度,原子炉格納容器下部の水 位及び注水流量の推移を第3.3.3 図から第3.3.6 図に示す。

a. 事象進展

事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接 加熱」と同じである。

b. 評価項目等

圧力スパイクによって原子炉格納容器バウンダリにかかる圧力の最大値は、約0.51MPa[gage]に抑えられる。原子炉格納容器バウンダリにかかる圧力は、原子炉格納容器の限界圧力0.62MPa[gage]を下回るため、原子炉格納容器バウンダリの機能は維持される。

圧力スパイクによって原子炉格納容器バウンダリにかかる温度の最大値は、約146℃に抑えられる。原子炉格納容器バウンダリにかかる温度は、原子炉格納容器の限界温度の200℃を下回るため、原子炉格納容器バウンダリの機能は維持される。

本評価では、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(5)の評価項目について、格納容器圧力をパラメータとして対策の有効性を確認した。なお、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(4)及び(8)の評価項目の評価結果については「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリート相互作用」にて評価項目を満足することを確認している。また、原子炉格納容器下部に落下した溶融炉心及び原子炉格納容器の安定状態維持については「3.5溶融炉心・コンクリート相互作用」にて確認している。

東海第二発電所 (2018.9.12版)

溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。

(3) 有効性評価の結果

本評価事故シーケンスにおける格納容器圧力及び格納容器 雰囲気温度の推移を第3.3-1図及び第3.3-2図に示す。

a. 事象進展

事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じである。

b. 評価項目等

圧力スパイク(約1分間の溶融炉心落下)によって格納容器 バウンダリにかかる圧力の最大値は、約0.22MPa [gage] に抑えられる。格納容器バウンダリにかかる圧力は、格納容器の 限界圧力0.62MPa [gage] を下回るため、格納容器バウンダリの機能は維持される。

圧力スパイクによって<u>格納容器バウンダリ</u>にかかる温度の 最大値は、<u>約118℃</u>に抑えられる。<u>格納容器バウンダリ</u>にかか る温度は、<u>格納容器</u>の限界温度の200℃を下回るため、<u>格納容</u> 器バウンダリの機能は維持される。

本評価では、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(5)の評価項目について、格納容器圧力をパラメータとして対策の有効性を確認した。なお、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(4)及び(8)の評価項目の評価結果については「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリート相互作用」にて評価項目を満足することを確認している。また、原子炉圧力容器が破損する場合における「1.2.2.2 有効性を確認するための評価項目の設定」に示す(1)から(3)、(6)、(7)の評価項目の評価結果並びにペデスタル(ドライウェル部)に落下した溶融炉心及び格納容器の安定状態維持については

島根原子力発電所 2号炉

溶融物放出/格納容器雰囲気直接加熱」の条件と同じである。

(3) 有効性評価の結果

本評価事故シーケンスにおける原子炉圧力及び原子炉水位 (シュラウド内外水位)の推移を第 3.3.2-1(1)図及び第 3.3.2-1(2)図に,格納容器圧力,格納容器温度,ペデスタル の水位及び注水流量の推移を第 3.3.2-1(3)図から第 3.3.2 -1(6)図に示す。

a. 事象進展

事象進展は「3.2 高圧溶融物放出/格納容器雰囲気直接 加熱」と同じである。

b. 評価項目等

圧力スパイクによって原子炉格納容器バウンダリにかかる圧力の最大値は、約193kPa[gage]に抑えられる。原子炉格納容器バウンダリにかかる圧力は、原子炉格納容器の限界圧力853kPa[gage]を下回るため、原子炉格納容器バウンダリの機能は維持される。

圧力スパイクによって原子炉格納容器バウンダリにかかる温度の最大値は、約123℃に抑えられる。原子炉格納容器バウンダリにかかる温度は、原子炉格納容器の限界温度の200℃を下回るため、原子炉格納容器バウンダリの機能は維持される。

本評価では、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(5)の評価項目について、格納容器圧力をパラメータとして対策の有効性を確認した。なお、「1.2.2.2 有効性を確認するための評価項目の設定」に示す(4)及び(8)の評価項目の評価結果については「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」及び「3.5 溶融炉心・コンクリート相互作用」にて評価項目を満足することを確認している。また、ペデスタルに落下した溶融炉心及び原子炉格納容器の安定状態維持については「3.5溶融炉心・コンクリート相互作用」にて確認している。

・解析結果の相違

・設備設計の相違

【柏崎 6/7, 東海第二】

備考

- 【柏崎 6/7, 東海第二】 島根 2 号炉(Mark- I 改)と柏崎 6/7(ABWR), 東海第二(Mark-Ⅱ)の最
- 解析結果の相違【柏崎 6/7, 東海第二】

高使用圧力の相違。

・整理方針の相違 【東海第二】

各格納容器破損モード で確認対象とする評価項

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」にて確認		目の相違。
	している。		
(添付資料 3.5.1)	(添付資料3.2.8)	(添付資料 3. 5. 1)	
3.3.3 解析コード及び解析条件の不確かさの影響評価	3.3.3 解析コード及び解析条件の不確かさの影響評価	3.3.3 解析コード及び解析条件の不確かさの影響評価	
解析コード及び解析条件の不確かさの影響評価の範囲として,	解析コード及び解析条件の不確かさの影響評価の範囲として、	解析コード及び解析条件の不確かさの影響評価の範囲として、	
運転員等操作時間に与える影響、評価項目となるパラメータに与	運転員等操作時間に与える影響、評価項目となるパラメータに与	運転員等操作時間に与える影響、評価項目となるパラメータに与	
える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	える影響及び操作時間余裕を評価するものとする。	
格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相	
互作用」では、重大事故等対処設備を含む全ての原子炉注水機能	互作用」では,重大事故等対処設備を含む全ての原子炉注水機能	互作用」では、重大事故等対処設備を含む全ての原子炉注水機能	
が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	が喪失して炉心損傷及び原子炉圧力容器破損に至り、溶融炉心が	
原子炉格納容器下部の水中に落下して大きいエネルギを発生する	ペデスタル(ドライウェル部)の水中に落下して大きいエネルギ	ペデスタルの水中に落下して大きいエネルギを発生することが特	
ことが特徴である。	を発生することが特徴である。	徴である。	
また、不確かさの影響を確認する運転員等操作は、事象発生か	また,不確かさの影響を確認する運転員等操作は,事象進展に	また,不確かさの影響を確認する運転員等操作は,事象進展に	・記載方針の相違
ら12 時間程度までの短時間に期待する操作及び事象進展に有意	有意な影響を与えると考えられる操作として、緊急用海水系によ	有意な影響を与えると考えられる操作として、格納容器代替スプ	【柏崎 6/7,東海第二】
な影響を与えると考えられる操作として、溶融炉心落下前の格納	る冷却水(海水)の確保操作及び代替循環冷却系による格納容器	レイ系(可搬型)によるペデスタルへの注水操作(原子炉圧力容	島根2号炉は,事象発
容器下部注水 (常設) による水張り操作とする。	<u>除熱操作</u> とする。	器破損前の初期水張り)とする。	生から 12 時間までの操
			作ではなく、FCI 等の物
			理現象に対する対策のみ
			記載し、その操作の不確
			かさについての影響を確
			認している。
本評価事故シーケンスの有効性評価における現象の不確かさと	本評価事故シーケンスの有効性評価における現象の不確かさと	本評価事故シーケンスの有効性評価における現象の不確かさと	
しては、溶融炉心落下速度、細粒化量、プール水とデブリ粒子の	しては,溶融炉心落下速度,細粒化量及びプール水とデブリ粒子	しては,溶融炉心落下速度,細粒化量,プール水とデブリ粒子の	
伝熱が挙げられる。	の伝熱が挙げられる。	伝熱が挙げられる。	
本評価事故シーケンスの評価では、溶融炉心落下速度、細粒化	本評価事故シーケンスの評価では,溶融炉心落下速度,細粒化	 溶融炉心落下速度及び細粒化量の不確かさに対して,エントレ	- ・記載方針の相違
量の不確かさに対してエントレインメント係数を変化させた場合	量の不確かさに対して、エントレインメント係数を変化させた場	インメント係数を変化させた場合並びにプール水とデブリ粒子の	【柏崎 6/7, 東海第二】
の影響評価を実施する。	合の影響評価を実施する。なお、プール水とデブリ粒子の伝熱の		BWR プラント安全審査
なお、プール水とデブリ粒子の伝熱の不確かさに対してデブリ粒	不確かさに対してデブリ粒子径を変化させた場合の本格納容器破	容器破損モードに対する影響は小さいことを確認している。	資料「重大事故等対策の
子径を変化させた場合の本格納容器破損モードに対する影響は小	損モードに対する影響は小さいことを確認している。	存的以京と「「(これ) があが音なりでくことを推動している。	有効性評価に係るシビア
さいことを確認している。			アクシデント解析コード
エントレインメント係数を変化させた場合の影響評価の結果、	エントレインメント係数を変化させた場合の影響評価の結果,		について」において,
運転員等操作時間に与える影響はなく、評価項目となるパラメー	運転員等操作時間に与える影響はなく、評価項目となるパラメー		BWR-5 Mark-I 改良型格
タに与える影響は小さいことを確認している。	<u>単純貝寺採下時間に子だる影響はなく、計画場片となるパック</u> タに与える影響は小さいことを確認している。		納容器プラントに対し
/ に / た 3 が 管は47 じゃことで単語的 し くく 3 。			て、エントレインメント
			C, エンドレインメント 係数及びデブリ粒子径を
	1	1	ニュ・・・・ ハーニイと と コール・ルスル具 田井

なお、これまでのFCI 実験の知見からは、一部の二酸化ウラン 混合物を用いて実機条件よりも高い溶融物温度の条件のもとで実 ン混合物を用いて実機条件よりも高い溶融物温度の条件の下で実 施された実験においてトリガなしで水蒸気爆発が発生している例 | 施された実験においてトリガなしで水蒸気爆発が発生している例 が報告されているが、実機で想定される程度の溶融物の温度におしが報告されているが、実機で想定される程度の溶融物の温度にお いて実施された実験においてトリガなしで水蒸気爆発が発生して「いて実施された実験においてトリガなしで水蒸気爆発が発生して いる例は確認されていないことから、実機条件においては原子炉 格納容器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー冷 却材相互作用の発生の可能性は低いと推定される。

(1) 解析コードにおける重要現象の不確かさの影響評価

本評価事故シーケンスにおいて不確かさの影響評価を行う 重要現象とは、「1.7解析コード及び解析条件の不確かさの 影響評価方針」に示すとおりであり、それらの不確かさの影 響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃 料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心 ヒートアップに関するモデルは、TMI 事故についての再現 性及びCORA 実験についての再現性を確認している。 炉心ヒ ートアップの感度解析(ジルコニウムー水反応速度の係数 についての感度解析)では、炉心溶融時間及び炉心下部プ レナムへの溶融炉心移行の開始時間に対する感度は数分程 度であり、影響は小さいことを確認している。

本評価事故シーケンスでは、原子炉圧力容器下鏡部温度 が300℃に到達した時点で原子炉格納容器下部への初期水 張り操作を実施するが、炉心下部プレナムへの溶融炉心移 行の開始時間の不確かさは小さく、炉心下部プレナムへ溶 融炉心が移行した際の原子炉圧力容器下鏡部温度の上昇は 急峻であることから、原子炉圧力容器下鏡部温度を操作開 始の起点としている原子炉格納容器下部への初期水張り操 作に係る運転員等操作時間に与える影響は小さい。

炉心における沸騰・ボイド率変化及び気液分離(水位変 化)・対向流の不確かさとして、炉心モデル(炉心水位計算

なお,これまでのFCI実験の知見からは,一部の二酸化ウラ いる例は確認されていないことから、実機条件においては格納容 器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー冷却材相 互作用の発生の可能性は低いと推定される。

(1) 解析コードにおける重要現象の不確かさの影響評価

本評価事故シーケンスにおいて不確かさの影響評価を行う 重要現象とは、「1.7解析コード及び解析条件の不確かさの 影響評価方針」に示すとおりであり、それらの不確かさの影 響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃 料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心 ヒートアップに関するモデルは、TMI事故についての再 現性及びCORA実験についての再現性を確認している。 炉心ヒートアップの感度解析(ジルコニウムー水反応速度 の係数についての感度解析)では、炉心溶融開始時間及び 炉心下部プレナムへの溶融炉心移行の開始時間に対する感 度は数分程度であり、影響は小さいことを確認している。

本評価事故シーケンスでは、原子炉圧力容器温度(下鏡 部)を操作開始の起点としている運転員等操作はないこと から、運転員等操作時間に与える影響はない。

炉心における沸騰・ボイド率変化及び気液分離(水位変 化)・対向流の不確かさとして、炉心モデル(炉心水位計

なお、これまでのFCI実験の知見からは、一部の二酸化ウラ ン混合物を用いて実機条件よりも高い溶融物温度の条件のもとで 実施された実験においてトリガなしで水蒸気爆発が発生している 例が報告されているが、実機で想定される程度の溶融物の温度に おいて実施された実験においてトリガなしで水蒸気爆発が発生し ている例は確認されていないことから、実機条件においては原子 炉格納容器の損傷に至る大規模な原子炉圧力容器外の溶融燃料ー 冷却材相互作用の発生の可能性は低いと推定される。

(1) 解析コードにおける重要現象の不確かさの影響評価

本評価事故シーケンスにおいて不確かさの影響評価を行う 重要現象とは、「1.7解析コード及び解析条件の不確かさの 影響評価方針」に示すとおりであり、それらの不確かさの影 響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒内温度変化,燃料棒表面熱伝達,燃 料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心 ヒートアップに関するモデルは、TMI事故についての再 現性及びCORA実験についての再現性を確認している。 炉心ヒートアップの感度解析(ジルコニウムー水反応速度 の係数についての感度解析)では、炉心溶融開始時間及び 炉心下部プレナムへの溶融炉心移行の開始時間に対する感 度は数分程度であり、影響は小さいことを確認している。

本評価事故シーケンスでは、原子炉圧力容器下鏡温度が一・運用の相違 300℃に到達した時点でペデスタルへの初期水張り操作を 実施するが、炉心下部プレナムへの溶融炉心移行の開始時 間の不確かさは小さく、炉心下部プレナムへ溶融炉心が移 | 圧力容器下鏡温度 300℃ 行した際の原子炉圧力容器下鏡温度の上昇は急峻であるこ とから、原子炉圧力容器下鏡温度を操作開始の起点として いるペデスタルへの初期水張り操作に係る運転員等操作時 間に与える影響は小さい。

炉心における沸騰・ボイド率変化及び気液分離(水位変 化)・対向流の不確かさとして、炉心モデル(炉心水位計算 圧力スパイクへの感度が 小さいことを確認してい

【東海第二】

島根2号炉は、原子炉 到達にてペデスタルへの 注水操作を実施するた め,不確かさの影響を記 載している。

モデル)は、原子炉水位挙動について原子炉圧力容器内のモデルが精緻である解析コードSAFER の評価結果との比較により水位低下幅は解析コードMAAP の評価結果の方が保守的であるものの、その差異は小さいことを確認していることから、運転員等操作時間に与える影響は小さい。

原子炉格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(格納容器の熱水力モデル)はHDR 実験解析では区画によって格納容器温度を十数℃程度、格納容器圧力を1割程度高めに評価する傾向を確認しているが、BWR の格納容器内の区画とは異なる等、実験体系に起因するものと考えられ、実機体系においてはこの解析で確認された不確かさは小さくなるものと推定される。しかし、全体としては格納容器圧力及び温度の傾向を適切に再現できており、また、格納容器圧力及び温度を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

炉心損傷後の原子炉圧力容器におけるリロケーション及び構造材との熱伝達の不確かさとして、溶融炉心の挙動モデルはTMI事故についての再現性を確認している。また、炉心ノード崩壊のパラメータを低下させた感度解析により原子炉圧力容器破損時間に与える影響は小さいことを確認している。リロケーションの影響を受ける可能性がある操作としては、原子炉圧力容器下鏡部温度が300℃に到達した時点での原子炉格納容器下部への初期水張り操作があるが、炉心下部プレナムへの溶融炉心移行の開始時間の不確かさは小さく、炉心下部プレナムへ溶融炉心が移行した際の原子炉圧力容器下鏡部温度の上昇は急峻であることから、原子炉圧力容器下鏡部温度を操作開始の起点としている原子炉格納容器下部への初期水張り操作に係る運転員等操作時間に与える影響は小さい。

炉心損傷後の原子炉圧力容器における原子炉圧力容器破損の不確かさとして、制御棒駆動機構ハウジング溶接部の破損判定に用いる最大ひずみ(しきい値)に関する感度解析により最大ひずみを低下させた場合に原子炉圧力容器破損時間が早まることを確認している。本評価事故シーケンスでは、原子炉圧力容器破損を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える

算モデル)は、原子炉水位挙動について原子炉圧力容器内のモデルが精緻である解析コードSAFERの評価結果との比較により水位低下幅は解析コードMAAPの評価結果の方が大きく、解析コードSAFERに対して保守的であるものの、その差異は小さいことを確認していることから、運転員等操作時間に与える影響は小さい。

格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(格納容器の熱水力モデル)はHDR実験解析では区画によって格納容器雰囲気温度を十数℃程度、格納容器圧力を1割程度高めに評価する傾向を確認しているが、BWRの格納容器内の区画とは異なる等、実験体系に起因するものと考えられ、実機体系においてはこの解析で確認された不確かさは小さくなるものと推定される。しかし、全体としては格納容器圧力及び雰囲気温度の傾向を適切に再現できており、また、格納容器圧力及び雰囲気温度を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

炉心損傷後の原子炉圧力容器におけるリロケーション及び構造材との熱伝達の不確かさとして、溶融炉心の挙動モデルはTMI事故についての再現性を確認している。また、炉心ノード崩壊のパラメータを低下させた感度解析により原子炉圧力容器破損時間に与える影響は小さいことを確認している。本評価事故シーケンスでは、原子炉圧力容器温度(下鏡部)を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

炉心損傷後の原子炉圧力容器における原子炉圧力容器破損の不確かさとして、制御棒駆動機構ハウジング溶接部の破損判定に用いる最大ひずみ(しきい値)に関する感度解析により最大ひずみを低下させた場合に原子炉圧力容器破損時間が早まることを確認している。本評価事故シーケンスでは、原子炉圧力容器破損を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える

モデル)は、原子炉水位挙動について原子炉圧力容器内の モデルが精緻である解析コードSAFERの評価結果との 比較により水位低下幅は解析コードMAAPの評価結果の 方が大きく、解析コードSAFERに対して保守的である ものの、その差異は小さいことを確認していることから、 運転員等操作時間に与える影響は小さい。

原子炉格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(原子炉格納容器の熱水力モデル)はHDR実験解析では区画によって格納容器温度を十数℃程度、格納容器圧力を1割程度高めに評価する傾向を確認しているが、BWRの格納容器内の区画とは異なる等、実験体系に起因するものと考えられ、実機体系においてはこの解析で確認された不確かさは小さくなるものと推定される。しかし、全体としては格納容器圧力及び温度の傾向を適切に再現できており、また、格納容器圧力及び温度を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える影響はない。

炉心損傷後の原子炉圧力容器におけるリロケーション及び構造材との熱伝達の不確かさとして、溶融炉心の挙動モデルはTMI事故についての再現性を確認している。また、炉心ノード崩壊のパラメータを低下させた感度解析により原子炉圧力容器破損時間に与える影響は小さいことを確認している。リロケーションの影響を受ける可能性がある操作としては、原子炉圧力容器下鏡温度が300℃に到達した時点でのペデスタルへの初期水張り操作があるが、炉心下部プレナムへの溶融炉心移行の開始時間の不確かさは小さく、炉心下部プレナムへ溶融炉心が移行した際の原子炉圧力容器下鏡温度の上昇は急峻であることから、原子炉圧力容器下鏡温度を操作開始の起点としているペデスタルへの初期水張り操作に係る運転員等操作時間に与える影響は小さい。

炉心損傷後の原子炉圧力容器における原子炉圧力容器破損の不確かさとして、制御棒駆動機構ハウジング溶接部の破損判定に用いる最大ひずみ(しきい値)に関する感度解析により最大ひずみを低下させた場合に原子炉圧力容器破損時間が早まることを確認している。本評価事故シーケンスでは、原子炉圧力容器破損を操作開始の起点としている運転員等操作はないことから、運転員等操作時間に与える

・運用の相違

【東海第二】

島根2号炉は,原子炉 圧力容器下鏡温度300℃ 到達にてペデスタルへの 注水操作を実施するた め,不確かさの影響を記 載している。 影響はない。

炉心損傷後の原子炉格納容器における溶融燃料ー冷却材相互作用の不確かさとして、溶融炉心の細粒化モデルにおけるエントレインメント係数及びデブリ粒子径の感度解析により原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力スパイクに与える影響は小さいことを確認している。本評価事故シーケンスでは、原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力スパイクを起点とした運転員等操作はないことから、運転員等操作時間に与える影響はない。

(添付資料 3.3.4)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒内温度変化、燃料棒表面熱伝達、燃料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心ヒートアップに関するモデルは、TMI 事故についての再現性及びCORA 実験についての再現性を確認している。炉心ヒートアップの感度解析(ジルコニウムー水反応速度の係数についての感度解析)では、格納容器圧力挙動への影響は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

炉心における沸騰・ボイド率変化及び気液分離(水位変化)・対向流の不確かさとして、炉心モデル(炉心水位計算モデル)は、原子炉水位挙動について原子炉圧力容器内のモデルが精緻である解析コードSAFER の評価結果との比較により水位低下幅は解析コードMAAP の評価結果の方が保守的であるものの、その差異は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

原子炉格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(格納容器の熱水力モデル)はHDR 実験解析では区画によって格納容器温度を十数℃程度、格納容器圧力を1割程度高めに評価する傾向を確認しているが、BWR の格納容器内の区画とは異なる等、実験体系に起因するものと考えられ、実機体系においてはこの解析で確認された不確かさは小さくなるものと推定される。しかし、全体としては格納容器圧力及び温度の傾向を適切に再現できていることから、評価項目となるパラメータに

影響はない。

炉心損傷後の格納容器における溶融燃料ー冷却材相互作用の不確かさとして、溶融炉心の細粒化モデルにおけるエントレインメント係数及びデブリ粒子径の感度解析により原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力スパイクに与える影響は小さいことを確認している。

本評価事故シーケンスでは,原子炉圧力容器外の溶融燃料-冷却材相互作用による圧力スパイクを起点とした運転員等操作はないことから,運転員等操作時間に与える影響はない。

(添付資料 3.3.6)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒内温度変化、燃料棒表面熱伝達、燃料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心ヒートアップに関するモデルは、TMI事故についての再現性及びCORA実験についての再現性を確認している。炉心ヒートアップの感度解析(ジルコニウムー水反応速度の係数についての感度解析)では、格納容器圧力挙動への影響は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

炉心における沸騰・ボイド率変化及び気液分離(水位変化)・対向流の不確かさとして、炉心モデル(炉心水位計算モデル)は、原子炉水位挙動について原子炉圧力容器内のモデルが精緻である解析コードSAFERの評価結果との比較により水位低下幅は解析コードMAAPの評価結果の方が大きく、解析コードSAFERに対して保守的であるものの、その差異は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(格納容器の熱水力モデル)はHD R実験解析では区画によって格納容器雰囲気温度を十数℃ 程度、格納容器圧力を1割程度高めに評価する傾向を確認 しているが、BWRの格納容器内の区画とは異なる等、

実験体系に起因するものと考えられ、実機体系において はこの解析で確認された不確かさは小さくなるものと推定 される。しかし、全体としては格納容器圧力及び雰囲気温 度の傾向を適切に再現できていることから、評価項目とな 影響はない。

炉心損傷後の原子炉格納容器における溶融燃料ー冷却材相互作用の不確かさとして,溶融炉心の細粒化モデルにおけるエントレインメント係数及びデブリ粒子径の感度解析により原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力スパイクに与える影響は小さいことを確認している。本評価事故シーケンスでは,原子炉圧力容器外の溶融燃料ー冷却材相互作用による圧力スパイクを起点とした運転員等操作はないことから,運転員等操作時間に与える影響はない。

(添付資料3.3.4)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒内温度変化、燃料棒表面熱伝達、燃料被覆管酸化及び燃料被覆管変形の不確かさとして、炉心ヒートアップに関するモデルは、TMI事故についての再現性及びCORA実験についての再現性を確認している。炉心ヒートアップの感度解析(ジルコニウムー水反応速度の係数についての感度解析)では、格納容器圧力挙動への影響は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

炉心における沸騰・ボイド率変化及び気液分離(水位変化)・対向流の不確かさとして、炉心モデル(炉心水位計算モデル)は、原子炉水位挙動について原子炉圧力容器内のモデルが精緻である解析コードSAFERの評価結果との比較により水位低下幅は解析コードMAAPの評価結果の方が大きく、解析コードSAFERに対して保守的であるものの、その差異は小さいことを確認していることから、評価項目となるパラメータに与える影響は小さい。

原子炉格納容器における格納容器各領域間の流動の不確かさとして、格納容器モデル(原子炉格納容器の熱水力モデル)はHDR実験解析では区画によって格納容器温度を十数℃程度、格納容器圧力を1割程度高めに評価する傾向を確認しているが、BWRの格納容器内の区画とは異なる等、実験体系に起因するものと考えられ、実機体系においてはこの解析で確認された不確かさは小さくなるものと推定される。しかし、全体としては格納容器圧力及び温度の傾向を適切に再現できていることから、評価項目となるパ

与える影響は小さい。

炉心損傷後の原子炉圧力容器におけるリロケーション及 び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ デルはTMI 事故についての再現性を確認している。また、 炉心ノード崩壊のパラメータを低下させた感度解析により 原子炉圧力容器破損時間に与える影響は小さいことを確認 しており、原子炉圧力容器外の溶融燃料ー冷却材相互作用 による格納容器圧力上昇に与える影響はほぼないことか ら, 評価項目となるパラメータに与える影響はない。

炉心損傷後の原子炉圧力容器における原子炉圧力容器破 損の不確かさとして、制御棒駆動機構ハウジング溶接部の 破損判定に用いる最大ひずみ(しきい値)に関する感度解 析により最大ひずみを低下させた場合に原子炉圧力容器破 損時間が早まることを確認しているが、原子炉圧力容器破 損(事象発生から約7時間後)に対して早まる時間は僅か であることから、評価項目となるパラメータに与える影響 は小さい。

炉心損傷後の原子炉格納容器における溶融燃料ー冷却材 相互作用の不確かさとして, エントレインメント係数につ いて感度解析を行った結果, 第3.3.7 図及び第3.3.8 図に 示すとおり、エントレインメント係数を変化させた場合に おいても原子炉圧力容器外の溶融燃料ー冷却材相互作用に よる圧力スパイクに与える影響は小さいことを確認してい ることから、評価項目となるパラメータに与える影響は小 さい。

(添付資料 3.3.4, 3.3.5)

(2) 解析条件の不確かさの影響評価

a. 初期条件, 事故条件及び重大事故等対策に関連する機器 条件

東海第二発電所 (2018.9.12版)

るパラメータに与える影響は小さい。

炉心損傷後の原子炉圧力容器におけるリロケーション及 び構造材との熱伝達の不確かさとして、溶融炉心の挙動モ デルはTMI事故についての再現性を確認している。また、 炉心ノード崩壊のパラメータを低下させた感度解析により 原子炉圧力容器破損時間に与える影響は小さいことを確認 しており、原子炉圧力容器外の溶融燃料ー冷却材相互作用 による格納容器圧力上昇に与える影響はほぼないことか ら, 評価項目となるパラメータに与える影響は小さい。

炉心損傷後の原子炉圧力容器における原子炉圧力容器破 損の不確かさとして、制御棒駆動機構ハウジング溶接部の 破損判定に用いる最大ひずみ(しきい値)に関する感度解 析により最大ひずみを低下させた場合に原子炉圧力容器破 損時間が早まることを確認しているが、原子炉圧力容器破 損(事象発生から約4.5 時間後)に対して早まる時間は僅 かであることから、評価項目となるパラメータに与える影 響は小さい。

炉心損傷後の格納容器における溶融燃料ー冷却材相互作 用の不確かさとして、溶融炉心の細粒化モデルにおけるエ ントレインメント係数及びデブリ粒子径の感度解析によ り、BWR 5、Mark-I改良型格納容器プラントにお いて、原子炉圧力容器外の溶融燃料-冷却材相互作用によ る圧力スパイクに与える影響は小さいことを確認してい る。BWR 5、Mark-II型格納容器プラントである東 海第二発電所においても原子炉圧力容器外の溶融燃料ー冷 却材相互作用による圧力スパイクに与える影響を確認する ため、最も感度のあるエントレインメント係数について 感度解析を行った結果, 第3.3-3 図及び第3.3-4 図に示 すとおり、エントレインメント係数を変化させた場合にお いても原子炉圧力容器外の溶融燃料ー冷却材相互作用によ る圧力スパイクに与える影響は小さいことを確認している ことから、評価項目となるパラメータに与える影響は小さ V)

(添付資料 3.3.6, 3.3.7)

(2) 解析条件の不確かさの影響評価

a. 初期条件, 事故条件及び重大事故等対策に関連する機器 条件

ラメータに与える影響は小さい。

炉心損傷後の原子炉圧力容器におけるリロケーション及 び構造材との熱伝達の不確かさとして、溶融炉心挙動モデ ルはTMI事故についての再現性を確認している。また、 炉心ノード崩壊のパラメータを低下させた感度解析により 原子炉圧力容器破損時間に与える影響は小さいことを確認 しており、原子炉圧力容器外の溶融燃料ー冷却材相互作用 による格納容器圧力上昇に与える影響はほぼないことか ら, 評価項目となるパラメータに与える影響はない。

島根原子力発電所 2号炉

炉心損傷後の原子炉圧力容器における原子炉圧力容器破 損の不確かさとして、制御棒駆動機構ハウジング溶接部の 破損判定に用いる最大ひずみ(しきい値)に関する感度解 析により最大ひずみを低下させた場合に原子炉圧力容器破 損時間が早まることを確認しているが、原子炉圧力容器破 損(事象発生から約5.4時間後)に対して早まる時間は僅か であることから, 評価項目となるパラメータに与える影響 は小さい。

炉心損傷後の原子炉格納容器における溶融燃料ー冷却材 相互作用の不確かさとして、エントレインメント係数及びし・記載方針の相違 デブリ粒子径の感度解析により、原子炉圧力容器外の溶融 燃料ー冷却材相互作用による圧力スパイクに与える影響は 小さいことを確認していることから、評価項目となるパラ メータに与える影響は小さい。

(添付資料3.3.4, 3.3.5)

解析結果の相違 【柏崎 6/7, 東海第二】

備考

【柏崎 6/7, 東海第二】

BWR プラント安全審査 資料「重大事故等対策の 有効性評価に係るシビア アクシデント解析コード について」において、 BWR-5 Mark-I 改良型格 納容器プラントに対し て、エントレインメント 係数及びデブリ粒子径を パラメータとした感度解 析を実施し、原子炉圧力 容器外 FCI により生じる 圧力スパイクへの感度は 小さいことを確認してい

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件、事故条件及び重大事故等対策に関連する機器 条件

東海第二発電所 (2018.9.12版)

島根原子力発電所 2号炉

備考

初期条件、事故条件及び重大事故等対策に関連する機器 条件は、第3.2.2表に示すとおりであり、それらの条件設定 を設計値等, 最確条件とした場合の影響を評価する。また, 解析条件の設定に当たっては、評価項目となるパラメータ に対する余裕が小さくなるような設定があることから、そ の中で事象進展に有意な影響を与えると考えられる項目に 関する影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約 30GWd/t であり、解析条件の不確かさと して、最確条件とした場合は、解析条件で設定している 崩壊熱よりも小さくなるため、発生する蒸気量は少なく なり、原子炉圧力容器破損に至るまでの事象進展は緩和 されるが、操作手順(原子炉圧力容器下鏡部温度に応じ て原子炉格納容器下部への初期水張り操作を実施するこ と)に変わりはないことから,運転員等操作時間に与え る影響はない。

初期条件の外部水源の温度は、解析条件の50℃(事象 開始 12 時間以降は 45°C, 事象開始 24 時間以降は 40°C) に対して最確条件は約 35℃~約 50℃であり、解析条件の 不確かさとして, 最確条件とした場合は, 原子炉格納容 器下部への注水温度が低くなり,原子炉圧力容器破損時 の原子炉格納容器下部プール水温度が低くなるが、注水 温度を操作開始の起点としている運転員等操作はないこ とから、運転員等操作時間に与える影響はない。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 容器容積(ウェットウェル)の空間部及び液相部、サプ レッション・チェンバ・プール水位、格納容器圧力及び 格納容器温度は、解析条件の不確かさとして、ゆらぎに より解析条件に対して変動を与え得るが、事象進展に与 える影響は小さいことから, 運転員等操作時間に与える 影響は小さい。

事故条件の起因事象は、解析条件の不確かさとして、 大破断 LOCA を考慮した場合、原子炉冷却材の放出量が増 加することにより原子炉圧力容器破損に至るまでの事象 進展は早まるが、操作手順(原子炉圧力容器下鏡部温度

初期条件、事故条件及び重大事故等対策に関連する機器 条件は、第3.2-2表に示すとおりであり、それらの条件設 定を設計値等, 最確条件とした場合の影響を評価する。ま た、解析条件の設定に当たっては、評価項目となるパラメ ータに対する余裕が小さくなるような設定があることか ら、その中で事象進展に有意な影響を与えると考えられる 項目に関する影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約31GWd/tであり、解析条件の不確かさと して、最確条件とした場合は、解析条件で設定している 崩壊熱よりも小さくなるため、発生する蒸気量は少なく なり、原子炉圧力容器破損に至るまでの事象進展は緩和 されるが、原子炉圧力容器温度(下鏡部)を操作開始の 起点としている運転員等操作はないことから、運転員等 操作時間に与える影響はない。

初期条件の外部水源の温度は、解析条件の35℃に対し て最確条件は35℃以下であり、解析条件の不確かさとし て、最確条件とした場合は、ペデスタル(ドライウェル 部) への注水温度が低くなるが、注水温度を操作開始の 起点としている運転員等操作はないことから, 運転員等 操作時間に与える影響はない。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 容器体積(サプレッション・チェンバ)の空間部及び液 相部、サプレッション・プール水位、格納容器圧力及び 格納容器雰囲気温度は、解析条件の不確かさとして、ゆ らぎにより解析条件に対して変動を与え得るが、事象進 展に与える影響は小さいことから, 運転員等操作時間に 与える影響は小さい。

事故条件の起因事象は、解析条件の不確かさとして、 大破断LOCAを考慮した場合、原子炉冷却材の放出量 が増加することにより原子炉圧力容器破損に至るまでの 事象進展は早まるが、原子炉圧力容器温度(下鏡部)を

初期条件、事故条件及び重大事故等対策に関連する機器 条件は、第3.2.2-1表に示すとおりであり、それらの条件設 定を設計値等, 最確条件とした場合の影響を評価する。ま た,解析条件の設定に当たっては,評価項目となるパラメ ータに対する余裕が小さくなるような設定があることか ら、その中で事象進展に有意な影響を与えると考えられる 項目に関する影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約 30GWd/t であり、解析条件の不確かさと ・実績値の相違 して、最確条件とした場合は、解析条件で設定している 【東海第二】 崩壊熱よりも小さくなるため、発生する蒸気量は少なく なり、原子炉圧力容器破損に至るまでの事象進展は緩和しを記載。 されるが、操作手順(原子炉圧力容器下鏡温度に応じて ペデスタルへの初期水張り操作を実施すること) に変わ りはないことから、運転員等操作時間に与える影響はな

初期条件の外部水源の温度は、解析条件の35℃に対し て最確条件は31℃以下であり、解析条件の不確かさとし て、最確条件とした場合は、ペデスタルへの注水温度が 低くなり,原子炉圧力容器破損時のペデスタルのプール 水温度が低くなるが、注水温度を操作開始の起点として を記載。 いる運転員等操作はないことから、運転員等操作時間に 与える影響はない。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 容器容積(ウェットウェル)の空間部及び液相部、サプ レッション・プール水位, 格納容器圧力及び格納容器温 度は、解析条件の不確かさとして、 ゆらぎにより解析条 件に対して変動を与え得るが、事象進展に与える影響は 小さいことから, 運転員等操作時間に与える影響は小さ

事故条件の起因事象は、解析条件の不確かさとして、 大破断LOCAを考慮した場合、原子炉冷却材の放出量 が増加することにより原子炉圧力容器破損に至るまでの 事象進展は早まるが、操作手順(原子炉圧力容器下鏡温

島根2号炉の最確条件

実績値の相違

【柏崎 6/7、東海第二】

島根2号炉の最確条件

・運用の相違

に応じて原子炉格納容器下部への初期水張りを実施する こと) に変わりはないことから、運転員等操作時間に与 える影響はない。

(添付資料 3.3.4, 3.3.6)

(b) 評価項目となるパラメータに与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約 30GWd/t であり、解析条件の不確かさと して、最確条件とした場合は、解析条件で設定している 崩壊熱よりも小さくなるため、溶融炉心の持つエネルギ が小さくなることから, 評価項目となるパラメータに対 する余裕は大きくなる。

初期条件の外部水源の温度は、解析条件の50℃(事象 開始 12 時間以降は 45℃, 事象開始 24 時間以降は 40℃) に対して最確条件は約35℃~約50℃であり,解析条件の 不確かさとして、最確条件とした場合は、原子炉格納容 器下部への注水温度が低くなり,原子炉圧力容器破損時 の原子炉格納容器下部プール水温度が低くなるが、原子 炉格納容器下部プール水温度が低い場合は, 顕熱による エネルギの吸収量が多くなり、潜熱で吸収するエネルギ が相対的に減少し、圧力スパイクに寄与する水蒸気発生 量が低下することで格納容器圧力の上昇は緩和されるこ とから、評価項目となるパラメータに対する余裕は大き くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 容器容積(ウェットウェル)の空間部及び液相部、サプ レッション・チェンバ・プール水位、格納容器圧力及び 格納容器温度は、解析条件の不確かさとして、ゆらぎに より解析条件に対して変動を与え得るが、事象進展に与 える影響は小さいことから、評価項目となるパラメータ に与える影響は小さい。

事故条件の起因事象は、原子炉圧力容器への給水はで きないものとして給水流量の全喪失を設定している。事 故条件について,原子炉圧力容器外の溶融燃料-冷却材 相互作用による圧力スパイクを評価するにあたり、溶融 炉心落下時の崩壊熱の影響を確認する観点から感度解析 を実施した。感度解析は、事故シーケンスを「大破断 東海第二発電所 (2018.9.12版)

操作開始の起点としている運転員等操作はないことか ら, 運転員等操作時間に与える影響はない。

(添付資料 3.3.6, 3.3.8)

(b) 評価項目となるパラメータに与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約31GWd/tであり、解析条件の不確かさと して、最確条件とした場合は、解析条件で設定している 崩壊熱よりも小さくなるため、溶融炉心の持つエネルギ が小さくなることから, 評価項目となるパラメータに対 する余裕は大きくなる。

初期条件の外部水源の温度は、解析条件の35℃に対し て最確条件は35℃以下であり、解析条件の不確かさとし て、最確条件とした場合は、ペデスタル (ドライウェル 部)への注水温度が低くなるが、ペデスタル(ドライウ ェル部) には通常運転時から約 1m の水位が形成されてい ることから外部水源の温度がペデスタル(ドライウェル 部)のプール水に与える影響はなく、評価項目となるパ ラメータに対する影響はない。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 容器体積(サプレッション・チェンバ)の空間部及び液 相部、サプレッション・プール水位、格納容器圧力並び に格納容器雰囲気温度は,解析条件の不確かさとして, ゆらぎにより解析条件に対して変動を与え得るが、事象 進展に与える影響は小さいことから、評価項目となるパ ラメータに与える影響は小さい。

事故条件の起因事象は、原子炉圧力容器への給水はで きないものとして給水流量の全喪失を設定している。事 故条件について,原子炉圧力容器外の溶融燃料-冷却材 相互作用による圧力スパイクを評価するに当たり、溶融 炉心落下時の崩壊熱の影響を確認する観点から感度解析 を実施した。感度解析は、事故シーケンスを「大破断し

島根原子力発電所 2号炉

度に応じてペデスタルへの初期水張りを実施すること) に変わりはないことから, 運転員等操作時間に与える影 響はない。

(添付資料3.3.4, 3.3.5)

(b) 評価項目となるパラメータに与える影響

初期条件の原子炉停止後の崩壊熱は、解析条件の燃焼 度 33GWd/t に対応したものとしており、その最確条件は 平均的燃焼度約 30GWd/t であり、解析条件の不確かさと ・実績値の相違 して、最確条件とした場合は、解析条件で設定している
【東海第二】 崩壊熱よりも小さくなるため、溶融炉心の持つエネルギ が小さくなることから、評価項目となるパラメータに対しを記載。 する余裕は大きくなる。

初期条件の外部水源の温度は、解析条件の35℃に対し て最確条件は31℃以下であり、解析条件の不確かさとし て、最確条件とした場合は、ペデスタルへの注水温度が 低くなり、原子炉圧力容器破損時のペデスタルのプール 水温度が低くなるが、ペデスタルのプール水温度が低い 場合は、顕熱によるエネルギの吸収量が多くなり、潜熱 で吸収するエネルギが相対的に減少し、圧力スパイクに 寄与する水蒸気発生量が低下することで格納容器圧力の 上昇は緩和されることから、評価項目となるパラメータ に対する余裕は大きくなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納 ール水温度に影響がある 容器容積(ウェットウェル)の空間部及び液相部、サプー旨を記載。 レッション・プール水位、格納容器圧力及び格納容器温 度は、解析条件の不確かさとして、 ゆらぎにより解析条 件に対して変動を与え得るが、事象進展に与える影響は 小さいことから、評価項目となるパラメータに与える影 響は小さい。

事故条件の起因事象は、原子炉圧力容器への給水はで きないものとして給水流量の全喪失を設定している。事 故条件について,原子炉圧力容器外の溶融燃料-冷却材 相互作用による圧力スパイクを評価するにあたり、溶融 炉心落下時の崩壊熱の影響を確認する観点から感度解析 を実施した。感度解析は、事故シーケンスを「大破断L

【東海第二】

備考

島根2号炉の最確条件

- 実績値の相違
- 【柏崎 6/7, 東海第二】

島根2号炉の最確条件 を記載。

運用の相違

【東海第二】

島根2号炉は,原子炉 圧力容器下鏡温度 300℃ 到達で屋外貯蔵槽水源に よるペデスタル注水を実 施することから外部水源 の温度がペデスタルのプ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

LOCA+ECCS 注水機能喪失」とし、本評価事故シーケンス の解析条件と同様、電源の有無に係らず重大事故等対処 設備による原子炉注水機能についても使用できないもの と仮定した場合,原子炉圧力容器破損のタイミングが早 くなることを考慮したものである。その結果、第3.3.9 図に示すとおり、事象発生から約6.4時間後に原子炉圧 力容器破損に至り, 圧力スパイクの最大値は約 0.44MPa[gage]となったが、圧力スパイクの最大値は本評 価の結果と同程度であり、原子炉格納容器の限界圧力 0.62MPa[gage]以下であることから、評価項目を満足す る。

(添付資料 3. 3. 4, 3. 3. 6)

b. 操作条件

操作条件の不確かさとして、操作の不確かさを「認知」、 「要員配置」,「移動」,「操作所要時間」,「他の並列操作有 無」及び「操作の確実さ」の6要因に分類し、これらの要因 が運転員等操作時間に与える影響を評価する。また、運転 員等操作時間に与える影響が評価項目となるパラメータに 与える影響を評価し、評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の溶融炉心落下前の格納容器下部注水系(常 設)による水張り操作は、解析上の操作時間として原子 炉圧力容器下鏡部温度が 300℃に到達した時点を設定し ている。運転員等操作時間に与える影響として、原子炉 圧力容器下鏡部温度が 300℃に到達するまでに事象発生 から約3.7時間の時間余裕があり、また、原子炉格納容 器下部の水張り操作は原子炉圧力容器下鏡部温度を監視 しながら溶融炉心の炉心下部プレナムへの移行を判断 し、水張り操作を実施するため、実態の操作開始時間は 解析上の設定とほぼ同等であり、操作開始時間に与える 影響は小さいことから、運転員等操作時間に与える影響 も小さい。当該操作は、解析コード及び解析条件(操作 条件を除く) の不確かさにより操作開始時間は遅れる可 能性があるが、中央制御室の運転員とは別に現場操作を 行う運転員(現場)を配置しており、また、他の並列操 作を加味して操作の所要時間を算定していることから, 他の操作に与える影響はない。

東海第二発電所(2018.9.12版)

OCA+注水機能喪失」とし、本評価事故シーケンスの 解析条件と同様、電源の有無に係らず重大事故等対処設 備による原子炉注水機能についても使用できないものと 仮定した場合,原子炉圧力容器破損のタイミングが早く なることを考慮したものである。その結果、第3.3-5図 に示すとおり、事象発生から約3.3時間後に原子炉圧力 容器破損に至り、圧力スパイクの最大値は約 0.20MPa 「gage」となったが、圧力スパイクの最大値は本評価の 結果と同程度であり、格納容器の限界圧力 0.62MPa[gage] 以下であることから、評価項目を満足する。

(添付資料 3.3.6, 3.3.8)

b. 操作条件

操作条件の不確かさとして、操作の不確かさを「認知」、 「要員配置」,「移動」,「操作所要時間」,「他の並列 操作有無」及び「操作の確実さ」の6要因に分類し、これ らの要因が運転員等操作時間に与える影響を評価する。ま た, 運転員等操作時間に与える影響が評価項目となるパラ メータに与える影響を評価し、評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

島根原子力発電所 2号炉

OCA+ECCS注水機能喪失」とし、本評価事故シー ケンスの解析条件と同様,電源の有無に係らず重大事故 等対処設備による原子炉注水機能についても使用できな いものと仮定した場合、原子炉圧力容器破損のタイミン グが早くなることを考慮したものである。その結果,第 3.3.2-1(7)図に示すとおり、事象発生から約3.3時間後 に原子炉圧力容器破損に至り、圧力スパイクの最大値は 約301kPa[gage]となったが、圧力スパイクの最大値は本 評価の結果と同程度であり、原子炉格納容器の限界圧力 |・設備設計の相違 853kPa「gage」以下であることから、評価項目を満足する。 (添付資料3.3.4, 3.3.5)

b. 操作条件

操作条件の不確かさとして、操作の不確かさを「認知」、 「要員配置」,「移動」,「操作所要時間」,「他の並列操作 有無」及び「操作の確実さ」の6要因に分類し、これらの 要因が運転員等操作時間に与える影響を評価する。また、 運転員等操作時間に与える影響が評価項目となるパラメー タに与える影響を評価し、評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の格納容器代替スプレイ系(可搬型)による ペデスタルへの注水操作(原子炉圧力容器破損前の初期 水張り)は、解析上の操作時間として原子炉圧力容器下 鏡温度が 300℃に到達した時点を設定している。運転員 等操作時間に与える影響として,原子炉圧力容器下鏡温 度が 300℃に到達するまでに事象発生から約 3.1 時間の 時間余裕があり、また、格納容器代替スプレイ系(可搬 型)によるペデスタルへの注水操作は原子炉圧力容器下 鏡温度を監視しながら溶融炉心の炉心下部プレナムへの 移行を判断し、水張り操作を実施するため、実態の操作 開始時間は解析上の設定とほぼ同等であり、操作開始時 間に与える影響は小さいことから、運転員等操作時間に 与える影響も小さい。当該操作は、解析コード及び解析 条件(操作条件を除く)の不確かさにより操作開始時間 は遅れる可能性があるが、当該操作に対応する運転員、 対策要員に他の並列操作はなく, また, 現場操作におけ る評価上の所要時間には余裕を見込んで算定しているこ

備考

- 解析結果の相違 【柏崎 6/7, 東海第二】
- 【柏崎 6/7, 東海第二】 島根2号炉(Mark-I 改) と柏崎 6/7 (ABWR), 東海第二(Mark-Ⅱ)の最 高使用圧力の相違。

解析結果の相違 【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
(添付資料 3. 3. 4)		とから,他の操作に与える影響はない。	
	操作条件の緊急用海水系による冷却水(海水)の確保	(<u>添付資料3.3.4</u>)	・運用の相違
	操作及び代替循環冷却系による格納容器除熱操作は、事		【東海第二】
	象発生90分後に開始することとしているが、余裕時間を		島根2号炉は、FCI等
	含めて設定されているため操作の不確かさが操作開始時		の物理現象に対する対策
	間に与える影響は小さい。また、本操作の操作開始時間		のみを対象とし、その操
	は、緊急用海水系の準備期間を考慮して設定したもので		作の不確かさについての
	あり、緊急用海水系の操作開始時間が早まれば、本操作		影響を記載することとし
	の操作時間も早まる可能性があり、代替循環冷却系の運		ており, 残留熱代替除去
	転開始時間も早まるが、その他の操作と並列して実施す		系による格納容器除熱に
	る場合でも、順次実施し所定の時間までに操作を完了で		対して影響を与える操作
	きることから影響はない。		とはしていない。
	(添付資料 3. 3. 6)		
(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	(b) 評価項目となるパラメータに与える影響	
操作条件の溶融炉心落下前の格納容器下部注水系(常		操作条件の格納容器代替スプレイ系(可搬型)による	
設)による水張り操作は、運転員等操作時間に与える影		ペデスタルへの注水操作(原子炉圧力容器破損前の初期	
響として、実態の操作開始時間は解析上の設定とほぼ同		水張り)は、運転員等操作時間に与える影響として、実	
等であることから、評価項目となるパラメータに与える		態の操作開始時間は解析上の設定とほぼ同等であること	
影響は小さい。		から、評価項目となるパラメータに与える影響は小さい。	
(添付資料 3. 3. 4)		(添付資料3.3.4)	
`ttitttaatttiiiii''	操作条件の緊急用海水系による冷却水(海水)の確保	\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
	操作及び代替循環冷却系による格納容器減圧及び除熱操		 ・記載方針の相違
	作は、緊急用海水系の操作開始時間が早まった場合には、		【東海第二】
	本操作も早まる可能性があり、格納容器圧力及び雰囲気		島根2号炉は, FCI 等
	温度を早期に低下させる可能性があることから、評価項		の物理現象に対する対策
	目となるパラメータに対する余裕が大きくなる。		のみを対象とし、その携
	<u>はこなるがクケークに対する水柏が入さくなる。</u> (添付資料 3. 3. 6)		作の不確かさについての
	(till) # (Ti		影響を記載することとし
			ており、残留熱代替除去
			(おり、残留熱代智原之 系による格納容器除熱搏
			ポによる格利容器味料 作は記載していない。
(3) 操作時間余裕の把握	(3) 操作時間余裕の把握	(3) 操作時間余裕の把握	
操作開始時間の遅れによる影響度合いを把握する観点か	操作開始時間の遅れによる影響度合いを把握する観点か		
ら、評価項目となるパラメータに対して、対策の有効性が確	ら、評価項目となるパラメータに対して、対策の有効性が確		
認できる範囲内での操作時間余裕を確認し、その結果を以下	認できる範囲内での操作時間余裕を確認し、その結果を以下		
に示す。	に示す。	に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	なお、格納容器下部注水系(常設)によるペデスタル(ド		・運用の相違
	ライウェル部)水位の確保操作については解析上考慮しない		【東海第二】
	操作であるが、「原子炉圧力容器外の溶融燃料ー冷却材相互		島根2号炉は,通常運
	作用」の影響を小さく抑える観点を踏まえ操作時間余裕を確		転時からのペデスタル水
	認する。_		位確保操作はなく, 事故
			時の原子炉圧力容器破損
			の徴候によりペデスタル
			に水張りを実施する運用
			としている。
操作条件の溶融炉心落下前の <u>格納容器下部注水系(常設)</u>		操作条件の <u>格納容器代替スプレイ系(可搬型)によるペデ</u>	・解析結果の相違
による水張り操作については、原子炉圧力容器下鏡部温度が		スタルへの注水操作(原子炉圧力容器破損前の初期水張り)	【柏崎 6/7】
300℃に到達するまでの時間は事象発生から <u>約3.7時間</u> あり,		については, <u>原子炉圧力容器下鏡温度</u> が 300℃に到達するま	
原子炉格納容器下部への注水操作は原子炉圧力容器下鏡部温		での時間は事象発生から <u>約3.1時間</u> あり、 <u>ペデスタル</u> への注	
度の上昇傾向を監視しながらあらかじめ準備が可能である。		水操作は原子炉圧力容器下鏡温度の上昇傾向を監視しながら	
また,原子炉圧力容器下鏡部温度 300℃到達時点での中央制		あらかじめ準備が可能である。また,溶融炉心落下前の <u>格納</u>	
御室における原子炉格納容器下部への注水操作の操作時間は		<u>容器代替スプレイ系(可搬型)</u> による水張りは <u>約 1.9 時間</u> で	
<u>約5分間である。</u> 溶融炉心落下前の <u>格納容器下部注水系(常</u>		完了することから、水張りを <u>原子炉圧力容器下鏡温度 300℃</u>	
<u>設)</u> による水張りは <u>約2時間</u> で完了することから、水張りを		<u>到達時点である</u> 事象発生から <u>約3.1時間後</u> に開始すると,事	
事象発生から <u>約3.7時間後</u> に開始すると,事象発生から <u>約5.7</u>		象発生から <u>約 5.0 時間後</u> に水張りが完了する。事象発生から	
<u>時間後</u> に水張りが完了する。事象発生から <u>約 5.7 時間後</u> の水		<u>約 5.0 時間後</u> の水張りの完了から,事象発生から <u>約 5.4 時間</u>	
張りの完了から,事象発生から <u>約 7.0 時間後</u> の原子炉圧力容		後の原子炉圧力容器破損までの時間を考慮すると、ペデスタ	
器破損までの時間を考慮すると、原子炉格納容器下部への注		ルへの注水操作は操作遅れに対して <u>0.4 時間</u> 程度の時間余裕	
水操作は操作遅れに対して <u>1 時間</u> 程度の時間余裕がある。		がある。	
(添付資料 3. 3. 4)			
	操作条件の緊急用海水系による冷却水(海水)の確保操作	(<u>添付資料3.3.4</u>)	・記載方針の相違
	及び代替循環冷却系による格納容器除熱操作については、格		【東海第二】
	納容器除熱開始までの時間は事象発生から90分あり,準備時		島根2号炉は、FCI等の
	間が確保できるため、時間余裕がある。なお、本操作が大幅		物理現象に対する対策の
	に遅れるような事態になった場合でも、原子炉圧力容器破損		みを対象とし,その操作
	に至るまでの時間は事象発生から約4.5時間であり、約3時		の不確かさについての影
	間の時間余裕がある。		響を記載することとして
	格納容器下部注水系(常設)によるペデスタル(ドライウ		いる。
	エル部)水位の確保操作については、事象発生から90分後の		
	代替循環冷却系による格納容器除熱操作実施後に行う。原子		
	炉圧力容器破損までの時間は事象発生から約4.5時間あり,		
	操作時間は約24分間であることから,操作完了後の排水時間		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	5 分を考慮しても、操作遅れに対して約 2.5 時間程度の時間		
	<u>余裕がある。</u>		
	(添付資料 3. 3. 6)		
(4) まとめ	(4) まとめ	(4) まとめ	
解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	解析コード及び解析条件の不確かさの影響評価の範囲とし	
て、運転員等操作時間に与える影響、評価項目となるパラメ	て、運転員等操作時間に与える影響、評価項目となるパラメ	て,運転員等操作時間に与える影響,評価項目となるパラメ	
ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	ータに与える影響及び操作時間余裕を確認した。その結果,	
解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	解析コード及び解析条件の不確かさが運転員等操作時間に与	
える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	える影響等を考慮した場合においても、評価項目となるパラ	
メータに与える影響は小さい。このほか、評価項目となるパ	メータに与える影響は小さい。このほか,評価項目となるパ	メータに与える影響は小さい。このほか,評価項目となるパ	
ラメータに対して、対策の有効性が確認できる範囲内におい	ラメータに対して,対策の有効性が確認できる範囲内におい	ラメータに対して,対策の有効性が確認できる範囲内におい	

なお,「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」 において,原子炉圧力容器破損後の原子炉注水を考慮しない 場合の影響について感度解析を実施しており,評価項目とな るパラメータに対する影響は小さいことを確認している。

て,操作時間には時間余裕がある。

(添付資料 3.2.10)

・解析条件の相違 【東海第二】

島根2号炉は、原子炉 圧力容器破損後の原子炉 注水を想定していない が、東海第二では、原子 炉圧力容器破損後、原子 炉圧力容器内の冷却を考 慮し、代替循環冷却系に よる原子炉注水を行うを のとしているため、原子 炉注水を考慮しない場合 の感度解析を実施している。

3.3.4 必要な要員及び資源の評価

て,操作時間には時間余裕がある。

本評価事故シーケンスは、「3.2高圧溶融物放出/格納容器雰囲気直接加熱」と同じであることから、必要な要員及び資源の評価は「3.2.4必要な要員及び資源の評価」と同じである。

3.3.5 結論

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相 互作用」では、運転時の異常な過渡変化、原子炉冷却材喪失事故 (LOCA) 又は全交流動力電源喪失が発生するとともに、非常用炉 心冷却系等の安全機能の喪失が重畳する。このため、溶融炉心と 原子炉圧力容器外の水が接触して一時的な圧力の急上昇が生じ、

3.3.4 必要な要員及び資源の評価

本評価事故シーケンスは、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じであることから、必要な要員及び資源の評価は「3.2.4 必要な要員及び資源の評価」と同じである。

3.3.5 結論

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相 互作用」では、運転時の異常な過渡変化、原子炉冷却材喪失事故 (LOCA) 又は全交流動力電源喪失が発生するとともに、非常 用炉心冷却系等の安全機能の喪失が重畳する。このため、溶融炉 心と原子炉圧力容器外の水が接触して一時的な格納容器圧力の急

3.3.4 必要な要員及び資源の評価

て,操作時間には時間余裕がある。

本評価事故シーケンスは、「3.2 高圧溶融物放出/格納容器雰囲気直接加熱」と同じであることから、必要な要員及び資源の評価は「3.2.4 必要な要員及び資源の評価」と同じである。

3.3.5 結論

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相 互作用」では、運転時の異常な過渡変化又は原子炉冷却材喪失事 故(LOCA)が発生するとともに、非常用炉心冷却系等の安全 機能の喪失が重畳する。このため、溶融炉心と原子炉圧力容器外 の水が接触して一時的な圧力の急上昇が生じ、このときに発生す

・評価条件の相違 【柏崎 6/7, 東海第二】 PRA により抽出される

このときに発生するエネルギが大きい場合に構造物が破壊され原 子炉格納容器の破損に至ることが特徴である。格納容器破損モー ド「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対する格 納容器破損防止対策としては、格納容器下部注水系(常設)によ る格納容器下部注水により原子炉圧力容器破損前に原子炉格納容 器下部へ約2mの水張りを実施する手段を整備している。

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相 互作用」の評価事故シーケンス「過渡事象+高圧注水失敗+低圧 注水失敗+損傷炉心冷却失敗 (+FCI 発生)」について、有効性評 価を行った。

上記の場合には、水蒸気発生によって圧力スパイクが発生する が、原子炉格納容器バウンダリにかかる圧力は、 原子炉格納容器 の限界圧力 0.62MPa[gage]を下回るため、原子炉格納容器バウン ダリの機能は維持できる。また、安定状態を維持できる。

(添付資料 3.5.1)

解析コード及び解析条件の不確かさについて確認した結果、運 転員等操作時間に与える影響及び評価項目となるパラメータに与┃転員等操作時間に与える影響及び評価項目となるパラメータに与┃ える影響は小さい。また、対策の有効性が確認できる範囲内にお いて、操作時間余裕について確認した結果、操作が遅れた場合で も一定の余裕がある。

重大事故等対策時に必要な要員は、運転員及び緊急時対策要員 にて確保可能である。また, 必要な水源, 燃料及び電源を供給可 能である。

以上のことから、格納容器下部注水系(常設)による原子炉格 納容器下部への注水等の格納容器破損防止対策は、選定した評価 事故シーケンスに対して有効であることが確認でき、格納容器破 損モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対 して有効である。

上昇が生じ、このときに発生するエネルギが大きい場合に構造物 が破壊され格納容器の破損に至ることが特徴である。格納容器破 損モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対 する格納容器破損防止対策としては、格納容器下部注水系(常設) によるペデスタル(ドライウェル部)注水により原子炉圧力容器 破損前にペデスタル (ドライウェル部) の水位1m を確保する手段 を整備している。

格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相 互作用」の評価事故シーケンス「過渡事象+高圧炉心冷却失敗+ 低圧炉心冷却失敗+損傷炉心冷却失敗(+FCI(ペデスタル))」 について, 有効性評価を行った。

上記の場合には、水蒸気発生によって圧力スパイクが発生する が、格納容器バウンダリにかかる圧力は、格納容器の限界圧力 0.62MPa [gage] を下回るため、格納容器バウンダリの機能は維持 できる。また、安定状態を維持できる。

解析コード及び解析条件の不確かさについて確認した結果、運 える影響は小さい。また、対策の有効性が確認できる範囲内にお いて、操作時間余裕について確認した結果、操作が遅れた場合で も一定の余裕がある。

重大事故等対策時に必要な要員は、災害対策要員にて確保可能 である。また、必要な水源、燃料及び電源を供給可能である。

以上のことから、格納容器下部注水系(常設)によるペデスタ ル (ドライウェル部) 水位の確保等の格納容器破損防止対策は, 選定した評価事故シーケンスに対して有効であることが確認で き、格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材│モード「原子炉圧力容器外の溶融燃料ー冷却材相互作用」に対し 相互作用」に対して有効である。

るエネルギが大きい場合に構造物が破壊され原子炉格納容器の破 損に至ることが特徴である。格納容器破損モード「原子炉圧力容 器外の溶融燃料ー冷却材相互作用」に対する格納容器破損防止対 | 策としては、格納容器代替スプレイ系(可搬型)によるペデスタ ル注水により原子炉圧力容器破損前にペデスタルへ 2.4m の水張 りを実施する手段を整備している。

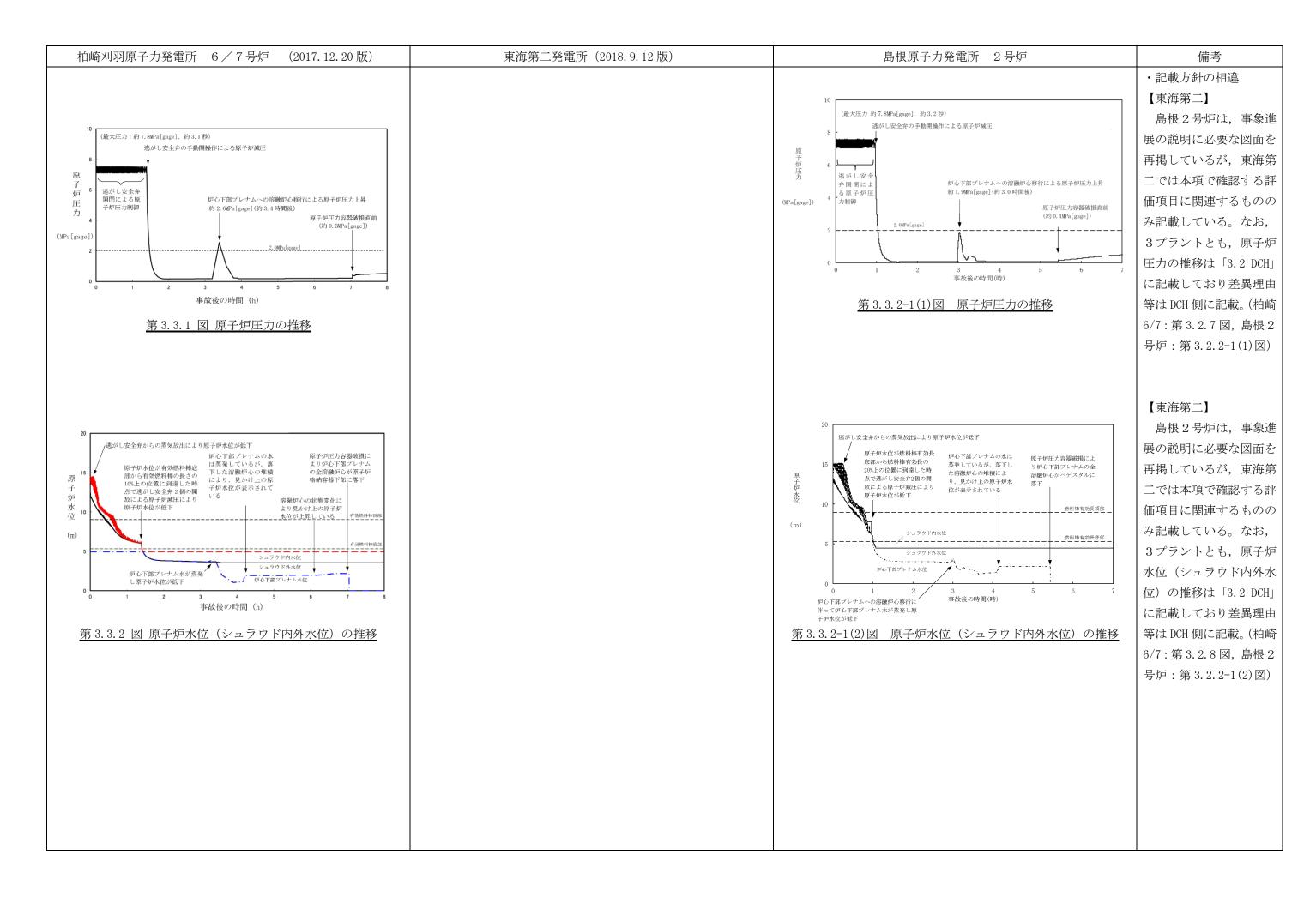
格納容器破損モード「原子炉圧力容器外の溶融燃料ー冷却材相」違。 互作用」の評価事故シーケンス「過渡事象+高圧炉心冷却失敗+ 低圧炉心冷却失敗+炉心損傷後の原子炉注水(重大事故等対策を 含む) 失敗+FCI発生」について、有効性評価を行った。

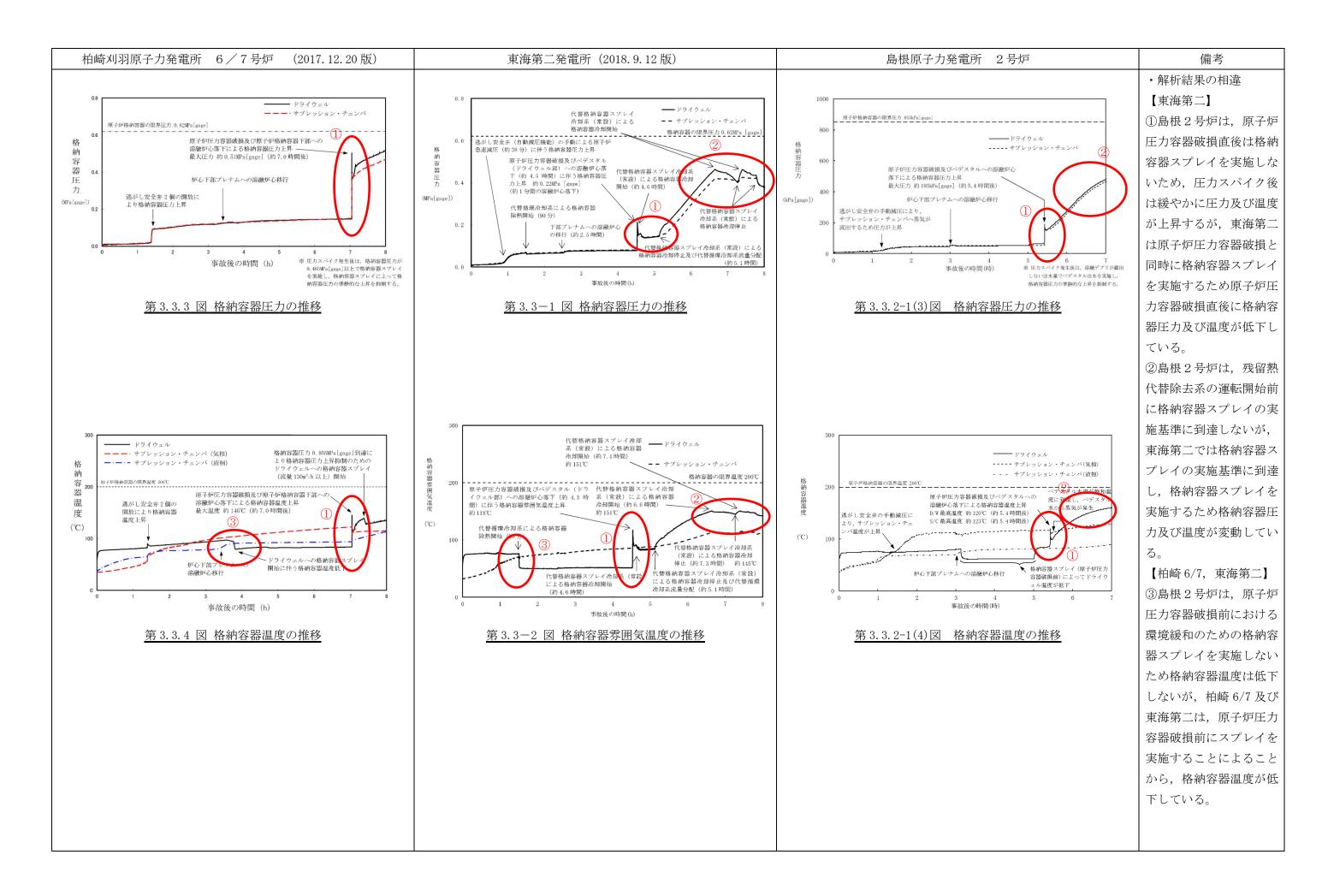
上記の場合には、水蒸気発生によって圧力スパイクが発生する が、原子炉格納容器バウンダリにかかる圧力は、原子炉格納容器 の限界圧力853kPa[gage]を下回るため,原子炉格納容器バウンダ リの機能は維持できる。また、安定状態を維持できる。

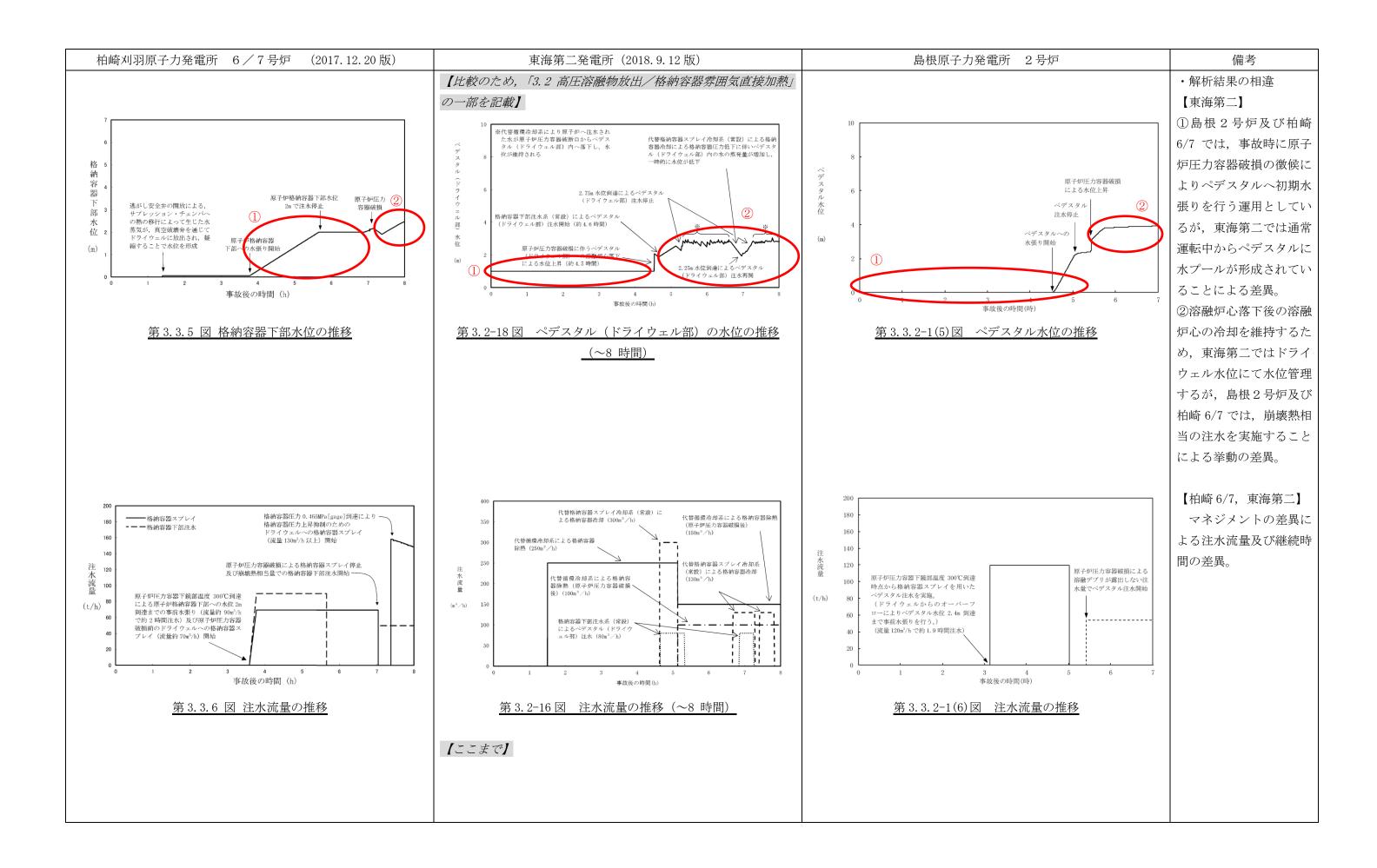
(添付資料 3.5.1)

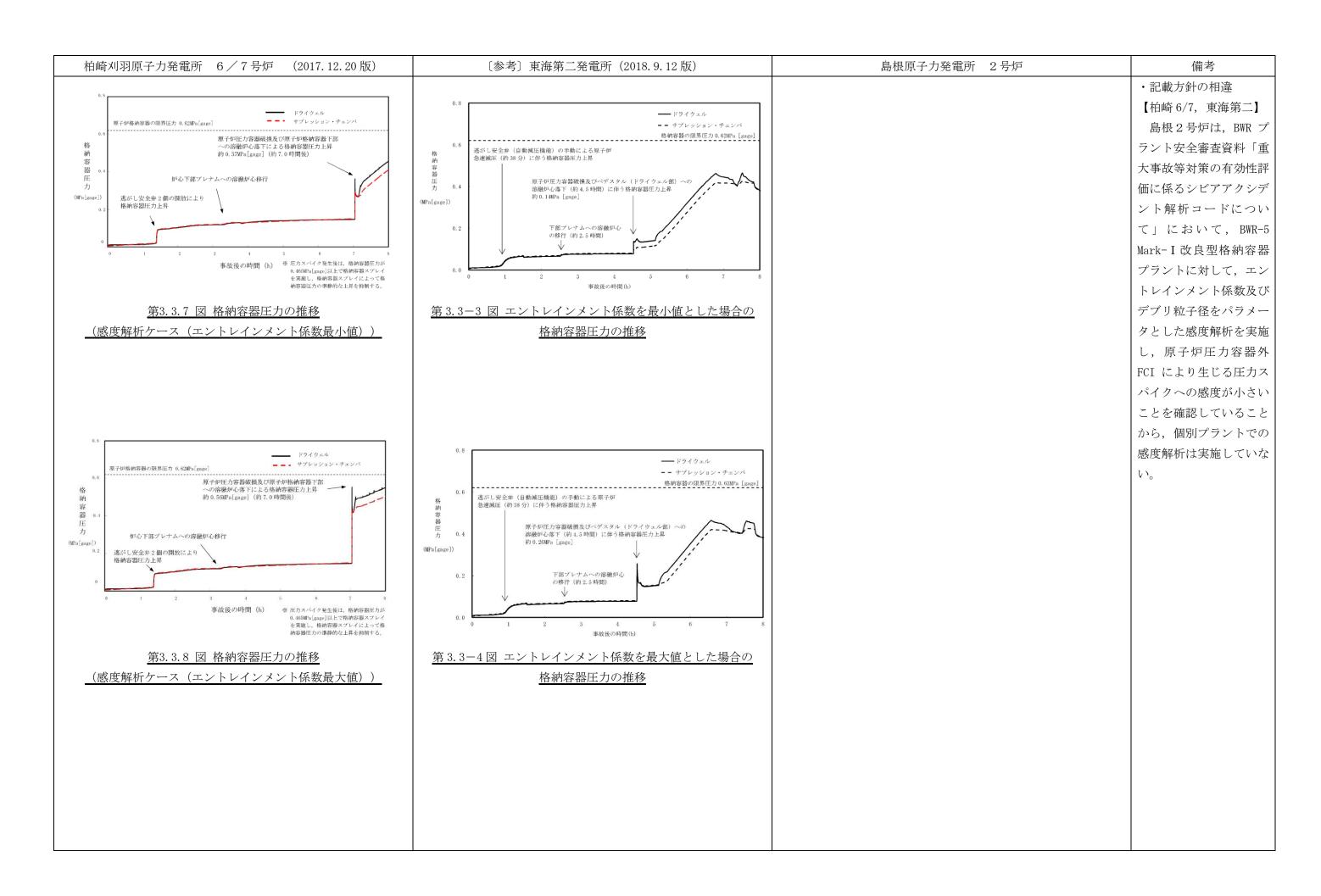
解析コード及び解析条件の不確かさについて確認した結果、運 │ 改)と柏崎 6/7 (ABWR), | 転員等操作時間に与える影響及び評価項目となるパラメータに与 | える影響は小さい。また、対策の有効性が確認できる範囲内にお 高使用圧力の相違。 いて、操作時間余裕について確認した結果、操作が遅れた場合で も一定の余裕がある。

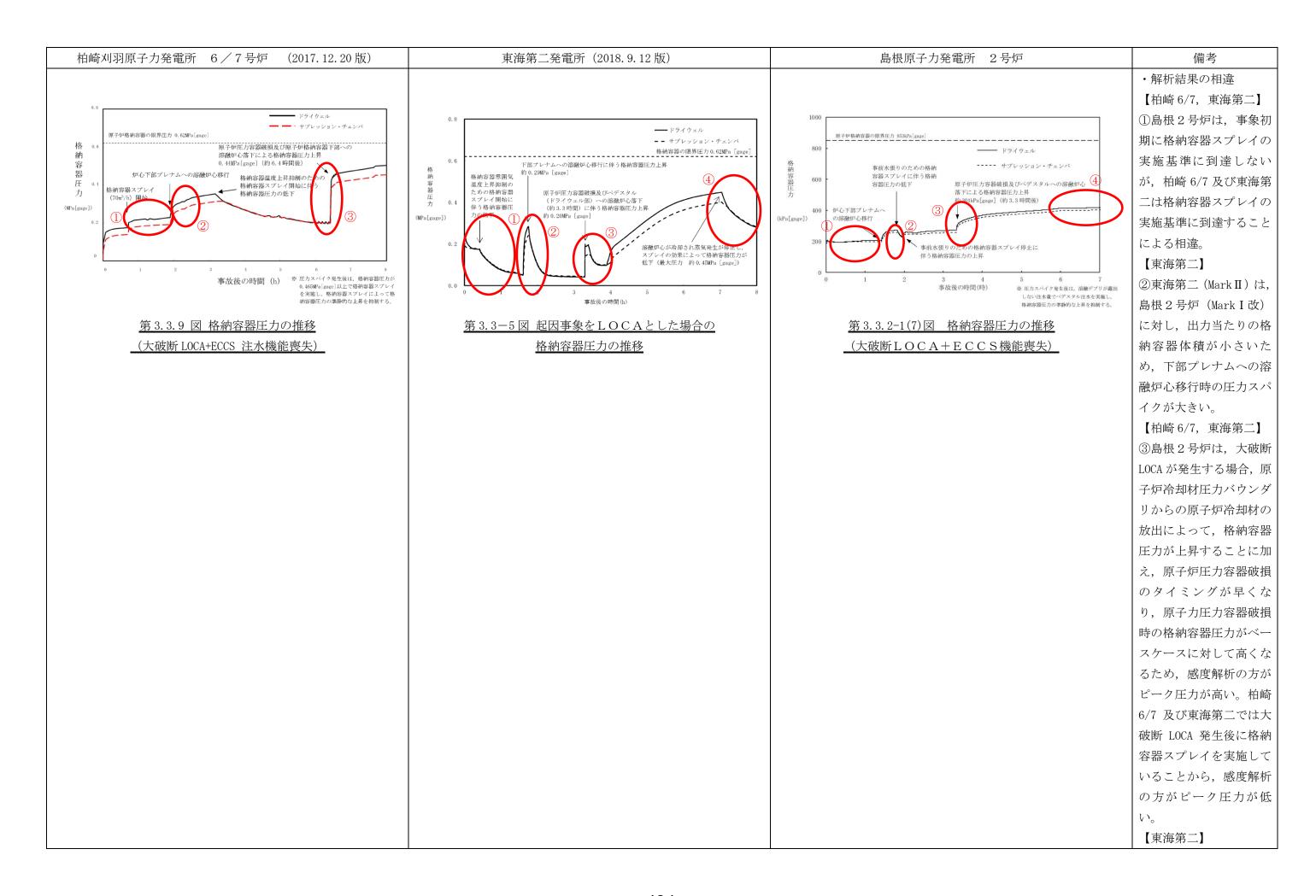
重大事故等対策時に必要な要員は、運転員及び緊急時対策要員 にて確保可能である。また, 必要な水源, 燃料及び電源を供給可 能である。


以上のことから、格納容器代替スプレイ系(可搬型)によるペ デスタルへの注水等の格納容器破損防止対策は, 選定した評価事 故シーケンスに対して有効であることが確認でき、格納容器破損 て有効である。


運用の相違


【柏崎 6/7, 東海第二】 初期水張り深さの相


【柏崎 6/7, 東海第二】 島根2号炉(Mark-I 東海第二(Mark-Ⅱ)の最


・設備設計の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	〔参考〕東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			④島根2号炉は,残留熱
			代替除去系の運転開始前
			に格納容器スプレイ実施
			基準に到達しないが、東
			海第二では格納容器スプ
			レイの実施基準に到達
			し、スプレイを実施する
			ため格納容器圧力が変動
			している。

まとめ資料比較表 〔有効性評価 添付資料 3. 3. 1〕			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
添付資料 3. 3. 1	添付資料 3. 3. 1	添付資料 3.3.1	
 原子炉圧力容器外の溶融燃料ー冷却材相互作用に関する知見の整	原子炉圧力容器外の溶融燃料ー冷却材相互作用(炉外FCI)	原子炉圧力容器外の溶融燃料ー冷却材相互作用に関する知見の	
	に関する知見の整理について	※ 1 が上 7 存命がの存置が行って知り行うに関するが元の 整理	
产 生	に関する研究の選座について	定 在	
1. 原子炉圧力容器外の溶融燃料ー冷却材相互作用の概要	1. <u>炉外FCI</u> の概要	1. 原子炉圧力容器外の溶融燃料ー冷却材相互作用の概要	
炉心損傷後,溶融燃料と冷却材が接触すると,一時的な圧力の	炉外FCIは,溶融炉心が原子炉圧力容器の破損口から放出さ	炉心損傷後,溶融燃料と冷却材が接触すると,一時的な圧力の	
急上昇が生じる可能性がある。このときに発生するエネルギが大	れた際に,溶融炉心と原子炉圧力容器外の冷却材が接触して一時	急上昇が生じる可能性がある。このときに発生するエネルギが大	
きいと構造物が破壊され原子炉格納容器が破損する場合がある。	的な圧力の急上昇が生じる事象である。このときに発生するエネ	きいと構造物が破壊され原子炉格納容器が破損する場合がある。	
溶融炉心と冷却材との接触及びそれに伴って引き起こされる現象	ルギが大きいと原子炉支持構造材が破損され、格納容器が破損す	溶融炉心と冷却材との接触及びそれに伴って引き起こされる現	
のことを「溶融燃料ー冷却材相互作用 (FCI)」と呼ぶ。また、FCI	る可能性がある。この圧力上昇については激しい水蒸気発生によ	象のことを「溶融燃料—冷却材相互作用 (FCI)」と呼ぶ。ま	
のうち、溶融炉心が水中に落下した際に溶融炉心の周囲に形成さ	る場合(圧力スパイク)に加え、水蒸気爆発によって衝撃波が生	た、FCIのうち、溶融炉心が水中に落下した際に溶融炉心の周	
れる蒸気膜が、何らかの外乱によって崩壊した際に瞬時の圧力伝	じる場合が考えられるが、これまでの知見から、水蒸気爆発の発	囲に形成される蒸気膜が、何らかの外乱によって崩壊した際に瞬	
播を生じ、大きなエネルギを発生させる事象を「水蒸気爆発」と	生の可能性は極めて低いと考えられている。	時の圧力伝播を生じ、大きなエネルギを発生させる事象を「水蒸	
呼び、溶融炉心から原子炉冷却材への伝熱によって水蒸気が発生		気爆発」と呼び、溶融炉心から原子炉冷却材への伝熱によって水	
することに伴う急激な格納容器圧力の上昇を「圧力スパイク」と		蒸気が発生することに伴う急激な格納容器圧力の上昇を「圧力ス	
呼ぶ。		パイク」と呼ぶ。	
原子炉圧力容器底部から溶融炉心が流出し,原子炉格納容器下		原子炉圧力容器底部から溶融炉心が流出し、ペデスタルで冷却	
部で冷却材と接触することで発生する FCI を「原子炉圧力容器外		材と接触することで発生するFCIを「原子炉圧力容器外の溶融	
の溶融燃料-冷却材相互作用(炉外 FCI)」と呼ぶ。これまでの研		燃料—冷却材相互作用(炉外FCI)」と呼ぶ。これまでの研究	
究では、炉外 FCI における水蒸気爆発現象を以下のような段階的		では、炉外FCIにおける水蒸気爆発現象を以下のような段階的	
な過程によって説明するモデルが提唱されている。		な過程によって説明するモデルが提唱されている。	
① 原子炉圧力容器から落下する溶融炉心(デブリジェット)が		① 原子炉圧力容器から落下する溶融炉心(デブリジェット)が	
冷却材中に落下する。冷却材と接触した溶融炉心は、その界		冷却材中に落下する。 冷却材と接触した溶融炉心は、その界	
面の不安定性により細粒化して冷却材中に分散する(エント		面の不安定性により細粒化して冷却材中に分散する(エント	
レイン)。細粒化した溶融炉心(以下「デブリ粒子」と称す。)		レイン)。細粒化した溶融炉心(以下「デブリ粒子」と称す。)	
は、蒸気膜に覆われた状態で膜沸騰を伴う冷却材との混合状態はなる(料温会)		は、蒸気膜に覆われた状態で膜沸騰を伴う冷却材との混合状態はなる(料温分)	
態となる(粗混合)。		態となる(粗混合)。	
② さらに、自発的もしくは外部からの圧力パルス等の外乱によ		② さらに、自発的もしくは外部からの圧力パルス等の外乱によ	
り、膜沸騰が不安定化し(トリガリング)、デブリ粒子と冷		り、膜沸騰が不安定化し(トリガリング)、デブリ粒子と冷	
却材が直接接触する。		却材が直接接触する。	
③ デブリ粒子と冷却材の直接接触により、急速な熱の移動が発生し、急速な蒸気が生、溶融信じの微細化により、 さらにデ		③ デブリ粒子と冷却材の直接接触により、急速な熱の移動が発	
生し、急速な蒸気発生・溶融炉心の微細化により、さらにデ		生し、急速な蒸気発生・溶融炉心の微細化により、さらにデ	
ブリ粒子と冷却材の接触を促進し(伝播),蒸気発生を促進		ブリ粒子と冷却材の接触を促進し(伝播),蒸気発生を促進	
する。この蒸気発生により圧力波が発生する。		する。この蒸気発生により圧力波が発生する。	
④ 発生した圧力波が通過した後の高温高圧領域(元々は粗混合		④ 発生した圧力波が通過した後の高温高圧領域(元々は粗混合	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
領域)の膨張により運動エネルギが発生し、構造材を破壊す		領域)の膨張により運動エネルギが発生し、構造材を破壊す	
る要因となる。		る要因となる。	
水蒸気爆発が発生するためには、トリガリングが働く必要があ		水蒸気爆発が発生するためには、トリガリングが働く必要があ	
り、さらにデブリ粒子と冷却材の接触が瞬時に粗混合領域全体に		り, さらにデブリ粒子と冷却材の接触が瞬時に粗混合領域全体に	
伝播する必要がある。水蒸気爆発に至らない場合でも,急速な蒸		伝播する必要がある。水蒸気爆発に至らない場合でも, 急速な蒸	
気発生による圧力上昇(圧力スパイク)が発生する。		気発生による圧力上昇(圧力スパイク)が発生する。	
	FCIに関するこれまでの知見の概要を次に整理する。		・記載方針の相違
			【東海第二】
2. 水蒸気爆発が発生する可能性について	2. 過去の知見の整理	2. 水蒸気爆発が発生する可能性について	島根2号炉は、過去に
これまでの代表的なFCIの実験として、JRC イスプラ研究所で	過去に実施された代表的なFCIの実験研究として,(旧)日本		
実施された FARO 実験, KROTOS 実験, (旧) 原子力発電技術機構	原子力研究所で実施されたALPHA試験, JRCイスプラ研究	所で実施されたFARO実験、KROTOS実験、(旧)原子力	
で実施された COTELS 実験、韓国原子力研究所で実施された TROI	所で実施されたKROTOS試験、FARO試験、(旧)原子力発	発電技術機構で実施されたCOTELS実験、韓国原子力研究所	· ·
実験等がある。これらの実験では UO ₂ 混合物と模擬溶融物として	電技術機構で実施されたCOTELS試験,韓国原子力研究所(K	で実施されたTROI実験等がある。これらの実験ではUO₂混	
アルミナ等を用いている。	AERI) で実施されたTROI試験 <u>及びSERENA試験</u> がある。これらの試験では模擬溶融物としてUO ₂ 混合物を用いた試験	合物と模擬溶融物としてアルミナ等を用いている。	る。
これまでの代表的な FCI の実験から得られた知見については,	る。これらの試験では関係体制のことでして2位日初を用いた試験 とアルミナ等を用いた試験がある。各試験の試験条件及び試験結	これまでの代表的なFCIの実験から得られた知見について	
付録3「重大事故等対策の有効性評価に係るシビアアクシデント	果については、以下に示すとおりである。	は、解析コード (MAAPコード) [1] の「添付2 溶融炉心と冷	
解析コードについて」第5部MAAPの添付2「溶融炉心と冷却材	The section, by the section of the s		
の相互作用について」に示した。これまでのUO ₂ 混合物を用いた		合物を用いた実験では、KROTOS実験及びTROI実験の一	
実験では、KROTOS 実験及びTROI 実験の一部の実験ケースにおい		部の実験ケースにおいて、水蒸気爆発の発生が報告されている。	
て、水蒸気爆発の発生が報告されている。		THE CAUCK S.	
このうち、KROTOS 実験は、溶融炉心が水中に落下している時に		このうち、KROTOS実験は、溶融炉心が水中に落下してい	
容器の底から圧縮ガスを供給し、膜沸騰を強制的に不安定化させ		る時に容器の底から圧縮ガスを供給し、膜沸騰を強制的に不安定	
て(外部トリガを与えて)いるため、実機で起こるとは考えられ		化させて(外部トリガを与えて)いるため、実機で起こるとは考	
ない条件で実験した結果であるが、機械的エネルギへの変換効率		えられない条件で実験した結果であるが、機械的エネルギへの変	
は最大でも 0.05%程度であり大規模な水蒸気爆発に至っていない。		換効率は最大でも 0.05%程度であり大規模な水蒸気爆発に至っ	
また、外部トリガを与えた場合でも水蒸気爆発に至らなかったケ		ていない。また、外部トリガを与えた場合でも水蒸気爆発に至ら	
ースが複数確認されている。		なかったケースが複数確認されている。	
* · · · · · · · · · · · · · · · · · · ·	2.1 ALPHA試験		
	ALPHA試験 ^[1] では、テルミット反応による酸化アルミニウ		
	ムと鉄からなる模擬溶融物を用いた実験が実施されている。AL		
	PHA試験装置の概要を第1図に示す。試験容器は、内径3.9m,		
	高さ 5.7m, 容積 50m ³ である。模擬格納容器に設置した冷却水プー		
	ルに高温溶融物を落下させ、水蒸気爆発に関する特性データを計		
	<u></u> 測する試験装置である。ALPHA試験結果のまとめを第 1 表に		
	<u>示</u> す。高雰囲気圧力 (STX008, STX012, STX015), サブクール度が		
	ルンリセク(CTVO14)は、土井戸旧水の水上が近れたとってALMA上		

小さい場合 (STX014) は、水蒸気爆発の発生が抑制される試験結

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	果が知見として得られている。溶融物を半減させた 3 ケース		
	(STX001, STX010, STX013) のうち, 2ケース (STX001, STX013)		
	では、水蒸気爆発が発生していない。また、水蒸気爆発のエネル		
	ギ変換効率は、1~6%程度となっている。ALPHA試験の代表		
	的試験 (STX016) の圧力変化の例を第2図に示す。		
	2.2 KROTOS試験		
	KROTOS試験 ^{[2][3][4]} では、FARO試験が大型試験装置で		
	あるのに対して小型の試験装置であるが、主に低圧・サブクール		
	水を条件として試験を実施している。KROTOS試験装置の概		
	要を第3図に示す。KROTOS試験の代表的試験(K37, K42)		
	の圧力変化の例を第4図に示す。KROTOS試験では模擬コリ		
	ウムとしてUO2混合物を用いた試験とアルミナを用いた試験を		
	実施している。 KROTOS試験結果のまとめを第2表に示す。		
	アルミナ試験では, サブクール度が大きい試験ケース (K38, K40,		
	K42, K43, K49) では、外部トリガ無しで水蒸気爆発が発生してい		
	るが, サブクール度が小さい試験ケース (K41, K44, K50, K51)		
	では、外部トリガ無しでは水蒸気爆発は発生していない。一方、		
	UO2混合物試験では、サブクール度に依らず外部トリガ無しで		
	は水蒸気爆発は発生していない。また, UO2混合物試験でも外		
	部トリガありでは水蒸気爆発が発生している(K46, K52, K53)が,		
	これらのケースはサブクール度が大きい試験ケースである。また,		
	UO2混合物試験の水蒸気爆発のエネルギ変換効率は、アルミナ		
	試験の水蒸気爆発に比較して低い結果となっている。アルミナ試		
	験とUO2混合物の相違については、以下のように考察されてい		
	<u>る。</u>		
	・アルミナはプール水面近傍でブレークアップし、粗混合時に粒		
	子が半径方向に拡がり、水蒸気爆発の伝播がしやすくなった可		
	能性がある。		
	・UO2混合物試験では、外部トリガ無しでは水蒸気爆発は発生		
	していない。UO2混合物の方が一般的に過熱度は小さく,U		
	O2混合物の粒子表面が水と接触した直後に表面が固化しや		
	すく、これが水蒸気爆発の発生を抑制した可能性がある。UO		
	2 混合物試験では水素が発生し、これにより蒸気膜の崩壊によ		
	る水蒸気爆発の発生を抑制した可能性がある。		
	2.3 FARO試験		
	FARO試験 ^{[3][5]} では、酸化物コリウム及び金属Zrを含むコ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	リウムが用いられ,多くの試験は高圧・飽和水条件で実施されて		
	いるが、低圧・サブクール水条件の試験も実施されている。FA		
	RO試験装置の概要を第5図に示す。FARO試験結果のまとめ		
	を第3表に示す。また,圧力変化の例としてL-14とL-19の圧力		
	挙動を第6図に示す。FARO試験のいずれの試験ケースでも水		
	蒸気爆発は発生していない。FARO試験で得られた主な知見は		
	以下のとおりである。		
	・高圧・飽和水試験、低圧・サブクール試験の何れにおいても水		
	蒸気爆発は発生していない。		
	・高圧・飽和水の酸化物コリウム試験の場合は一部が粒子化し、		
	一部はパンケーキ状でプール底部に堆積した。高圧・飽和水の		
	コリウムに金属Zr成分を含んだ試験及び低圧・サブクール試		
	験では全てのコリウムは粒子化した。		
	・粒子の質量中央径は比較的大きかったが、試験条件(初期圧力,		
	水深、コリウム落下速度、サブクール度)に依存していない。		
	・金属Zrを含めた試験ケース (L-11) では、金属Zrの酸化に		
	より、金属Zrを含めない試験ケース(L-14)よりも圧力上昇		
	が大きくなる。		
	2.4 COTELS試験		
	COTELS ^[6] 試験では、模擬溶融物としてUO2-Zr-Z		
	rO2-SS混合物を用いており、コリウムに金属成分が含まれ		
	ている。COTELS試験装置の概要を第7図に示す。COTE		
	LS試験結果のまとめを第4表に示す。COTELS試験の代表		
	的な試験ケース(A1)の圧力挙動を第8図,各試験ケースの圧力		
	変化を第9図に示す。溶融混合物がプール水に接触した直後		
	(Region 1) は急激な圧力上昇となる。その後、サブクール水で		
	は蒸気凝縮が発生し、一時的に圧力が減少する(Region 2)が、		
	溶融混合物からの熱伝達による蒸気発生により, 準定常的な状態		
	まで徐々に圧力が上昇する (Region 3)。 COTELS試験で得ら		
	れた主な知見は、以下のとおりである。_		
	・サブクール度が大きいケースも含めて,全ての試験での水蒸気		
	爆発は発生していない。		
	・プールに落下した溶融コリウムは、ほとんどがプール水中で粒		
	<u>子化した。</u>		
	・粒子径は、コリウム落下速度の大きいケースを除いて、質量中		
	央径で 6mm 程度である。コリウム落下速度の大きいケースの粒		
	子径は小さくなっている。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	・コリウム落下速度の大きいケースで、粒子径が小さく初期圧力		
	上昇幅も大きくなる傾向がある。また、準定常的な状態での圧		
	力は、溶融物量が多く、サブクール度が小さく、プール水量が		
	少ない程高くなる傾向である。		
	2.5 TROI試験		
	TROI試験[7]は,韓国原子力研究所(KAERI)で実施さ		
	れている試験であり、2007 年から 2012 年までは、KROTOS		
	試験とともにOECD/NEAのSERENAプロジェクトとし		
	て実施された試験である。TROI試験装置の概要を第10図に示		
	す。TROI試験条件と試験結果のまとめを第5表に示す。		
	ZrO2を用いた試験では外部トリガリングを与えていない		
	が, 圧力スパイクや水蒸気爆発が発生した試験がある。一方, U		
	O2-ZrO2の混合物を用いた試験では、異なった条件による		
	内部トリガリングを発生させるため又は外部トリガリングによる		
	水蒸気爆発時の発生エネルギを変えるため、混合物の割合、水深,		
	混合物量等の様々な条件による試験を実施し、数ケースでは水蒸		
	気爆発が発生している。TROI試験で得られた主な知見は以下		
	<u>のとおりである。</u>		
	・自発的な水蒸気爆発が生じた試験は、融点を大きく上回る過熱		
	度を溶融物に対して与えるなどの実機と異なる条件であり, そ		
	の他の試験では自発的な水蒸気爆発は生じていない。		
	・水深が深い場合 (130cm) では,内部トリガリングによる水蒸		
	気爆発は発生していない。水深が深いことにより,溶融物粒子		
	が底部に到達するまでの沈降時間が長くなり,溶融物粒子が固		
	化しやすい状況となる。このため、溶融物粒子が底部に接触す		
	ることで発生するトリガリングの可能性は低減する可能性が		
	<u>ある[8]。</u>		
	2.6 SERENA試験		
	SERENA試験は、OECD/NEA主導のもと実施されて		
	いる試験であり、2001 年から 2006 年にかけて実施されたフェー		
	ズ1と,2007年から2012年にかけて実施されたフェーズ2に分		
	かれている。フェーズ 1 では既存の試験に対する再現解析が行わ		
	れた。また、フェーズ 2 ではKROTOS及びTRO I 装置を使		
	用した試験と、その再現解析が行われた。さらに、両フェーズに		
	おいて実機原子炉を想定した解析が行われた。フェーズ 2 で行わ		
	れた試験の試験条件及び試験結果を表6に示す。SERENA試		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	験で得られた知見は以下のとおりである。		
	<u>(1) フェーズ 1</u>		
	・(解析)解析コードはアルミナを用いた試験によって調整され		
	ており、UO2-ZrO2コリウムの爆発による機械的エネル		
	ギ変換効率を過大評価する傾向にある。		
	・(解析) 予測される炉内水蒸気爆発の最大荷重は原子炉圧力容		
	器の破損強度と比べて十分小さい。		
	・(解析) 予測される炉外水蒸気爆発の最大荷重は格納容器に影		
	響を与える可能性があるが、解析コードの不確かさとばらつき		
	が大きく、その程度を推定することは難しい。		
	<u>(2) フェーズ 2</u>		
	・(実験) 80%UO2-20%ZrO2コリウムは,70%UO2-		
	30% Z r O 2 コリウムに比べてやや爆発のエネルギが大きい。		
	これは,フェーズ1の結果と逆の傾向であり,更に考察が必要。		
	・(実験) UO2-ZrO2のみで構成されるコリウムは、アル		
	ミナと比べて爆発のエネルギは小さい。		
	・(実験) コリウムの組成に酸化物以外(金属の単体など)が含		
	まれる場合について,酸化と水素生成による影響は定量化でき		
	なかった。		
	・(実験)全ての観測された爆発の機械的エネルギ変換効率は,		
	従来観測されていたエネルギ変換効率と同様に, 比較的小さ		
	い。これは、UO2の密度が高いために溶融コリウムの粒子径		
	が小さくなり、固化が促進されて水蒸気爆発への寄与が小さく		
	なったことと、粗混合段階のボイド率が上昇して爆発のエネル		
	ギを低減したことによると推測されている。		
	3. FCI実験の知見の整理		
	前項で示したFCI実験の知見を整理し、原子炉圧力容器外水		
	蒸気爆発の可能性について考察する。		
	酸化アルミニウムと鉄からなる模擬溶融物を用いたALPHA		
	試験及びアルミナを用いたKROTOS試験では、外部トリガ無		
	しで水蒸気爆発が発生しているが、UO2を用いたKROTOS,		
	FARO, COTELS試験では外部トリガ無しでは水蒸気爆発		
	は発生していない。 UO2混合物では一般的に過熱度が小さいた		
	め、粗混合粒子表面が早期に固化し、蒸気膜が崩壊しても溶融物		
	の微細化が起きにくく、水蒸気爆発の発生が抑制されるためと考		
	えられる。_		
TROI 実験については,No.10,12,13 及び14 実験において,	TROI試験ではUO2混合物を用いた場合でもトリガ無しで	TROI実験については、No. 10, 12, 13 及び14 実験において,	

外部トリガがない条件で水蒸気爆発が観測されている。しかしながら、TROI 実験で用いた溶融物の過熱度が実機条件の過熱度 (300K 程度)に比べてかなり高いことが水蒸気爆発の発生に至った理由と考えられ、実機条件に近い溶融物温度では水蒸気爆発の発生に至っ発生可能性は小さいと考えられる。また、自発的に水蒸気爆発が発生したとされる No. 13 のエネルギ変換効率は 0.4%であり、KROTOS 実験の例よりは大きくなるが、1%を下回る小さいものである。なお、溶融物の温度を含め、実機を模擬した溶融物を用いた実験の中で水蒸気爆発が観測された例は、いずれも外部トリガがある条件で実施されたものである。

水蒸気爆発が発生している例(TROI-10, 12, 13, 14)が報告されている。TROI-10, 12 は、溶融物温度が 3,800K程度の高い温度での試験条件である。また、TROI-13, 14 の溶融物温度は、それぞれ 2,600K, 3,000Kであるが、TROI-13では、温度計測に問題があり実際には 3,500K以上と推測されている。また、TROI-14では、二つの温度計が異なる最高温度(4,000K, 3,200K)を示しており、温度計測の不確かさが大きいとされている。以上を踏まえると、TROI 試験の溶融物温度はかなり高い試験条件と考えられ、他の試験で想定しているような実機条件に近い溶融物温度では水蒸気爆発の発生可能性は十分小さいと考えられる。

TROI試験と実機条件の比較を検討するために、模擬溶融物にコリウム(UO2-ZrO2)を用いたTROI-10,12,23,25と実機条件の比較を第7表に示す。この表では、第11図に示すRicou-Spalding式による粒子化割合^[9]の概算値を示している。溶融物温度が高く過熱度が大きいTROI-10,12では、自発的水蒸気爆発が観測されている。これに対して、溶融物温度が高く過熱度が大きいが水深が1.3mと深いTROI-23では、水蒸気爆発は発生していない。これは、水深が深いことにより、溶融物粒子が底部に到着するまでの沈降時間が長くなり、溶融物粒子が固化しやすいため、溶融物粒子が底部に接触することで発生するトリガリングを抑制したと考えられる^[8]。

水蒸気爆発が発生したTROI-10,12の粒子化割合は約60%であるが,水深がより深いTROI-23では,粒子化割合が約80%と比較的大きい値となっており,底部に到達する前に固化する溶融物粒子が比較的多いと考えられる。一方,水深及び粒子化割合はTROI-10,12と同程度であるが,溶融物温度がやや低いTROI-25では,蒸気発生による圧力上昇(Steam Spike)は生じているが,水蒸気爆発は発生していない。溶融物温度が低い場合,過熱度が小さく粒子が固化しやすいため,水蒸気爆発が抑制されたものと考えられる。

実機条件では、溶融ジェットの初期直径は計装配管口径(約4cm) ~制御棒駆動機構ハウジングの直径(約15cm)程度と想定されるが、ペデスタル(ドライウェル部)注水対策により水深は1mとなる。これより、粒子化割合は約35%~90%となるが、溶融物温度が約2,650K以下と水蒸気爆発が発生したTROI試験よりも十分低いと考えられ、大規模な水蒸気爆発の発生の可能性は十分小さいと考えられる。

また、いくつかのTROI試験では水蒸気爆発が発生したとき

外部トリガがない条件で水蒸気爆発が観測されている。しかしながら、TROI実験で用いた溶融物の過熱度が実機条件の過熱度 (300K程度)に比べてかなり高いことが水蒸気爆発の発生に至った理由と考えられ、実機条件に近い溶融物温度では水蒸気爆発の発生可能性は小さいと考えられる。また、自発的に水蒸気爆発が発生したとされる No. 13 のエネルギ変換効率は 0.4%であり、KROTOS実験の例よりは大きくなるが、1%を下回る小さいものである。なお、溶融物の温度を含め、実機を模擬した溶融物を用いた実験の中で水蒸気爆発が観測された例は、いずれも外部トリガがある条件で実施されたものである。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	の機械的エネルギ変換効率が報告されている(第5表)。これらの		
	中で自発的に水蒸気爆発が発生したとされる TROI-13 の機械的工		
	ネルギ変換効率は 0.4%である。これは、ALPHA試験(第1		
	表)やKROTOS試験(第2表)で観測されているように、ア		
	ルミナによる金属模擬溶融物試験の値に対して比較的小さい値と		
	なっている。		
	また, KROTOS試験 (K46, K52, K53) では, UO2混合物		
	を用いた試験でも外部トリガを与えた場合は水蒸気爆発が観測さ		
	れているが、これらの試験ケースはサブクール度が大きい試験ケ		
	ースである(K46のサブクール度:83K, K52のサブクール度:102K,		
	K53のサブクール度:122K)。したがって、サブクール度が大きい		
	場合には、UO2混合物を用いた場合でも、水蒸気爆発の可能性		
	が高くなることが考えられる。これは、サブクール度が大きい場		
	合には、粗混合粒子の蒸気膜の安定度が低下し、蒸気膜の崩壊が		
	発生しやすいことが要因と考えられる。		
	しかし、KROTOS試験のK52、K53と同程度の高サブクール		
	度の条件であるFARO試験のL-31 (サブクール度:104K), L-33		
	(サブクール度:124K)では、水蒸気爆発が発生していない。こ		
	れらの試験のUO2混合物量は、KROTOS試験が数 kg である		
	のに対して 100kg 程度であり、より実機条件に近い。		
	また、COTELS試験の高サブクール試験(A11)でも水蒸気		
	爆発は発生していない。COTELS試験は、BWRの原子炉圧		
	力容器外FCIを模擬した試験であり、溶融物に圧力容器内の構		
	造物を想定したステンレススチールを含んでいる。また、溶融物		
	量も 50kg 程度であり、KROTOS試験よりも実機条件に近い。		
	以上より、UO2混合物の溶融物量が少ないKROTOS試験		
	では、水蒸気爆発が発生しているが、溶融物量が多くより実機体		
	系に近い大規模試験であるFARO試験, COTELS試験では,		
	水蒸気爆発は発生していない。		
上述のとおり、溶融物の温度を含め、実機を模擬した溶融物を見	FCI試験では、水蒸気爆発のトリガを発生させるために、高	上述のとおり、溶融物の温度を含め、実機を模擬した溶融物を	
いた FCI 実験において水蒸気爆発が発生したケースでは,水蒸気	Eガスを封入した装置(KROTOS試験では最高 20MPa のガス	用いたFCI実験において水蒸気爆発が発生したケースでは、水	
暴発のトリガを発生させるための装置を用いている。水蒸気爆発	を封入可能な装置)を用いている。水蒸気爆発のトリガは粗混合	蒸気爆発のトリガを発生させるための装置を用いている。水蒸気	
のトリガは粗混合粒子の周囲に形成される蒸気膜の崩壊に起因す	粒子の周囲に形成される蒸気膜の崩壊に起因すると考えられてお	爆発のトリガは粗混合粒子の周囲に形成される蒸気膜の崩壊に	
ると考えられており,上述の実験で用いられたトリガ装置は蒸気	(り、トリガ装置により圧力パルスを発生させ蒸気膜を不安定化さ	起因すると考えられており、上述の実験で用いられたトリガ装置	
膜を不安定化させる効果があると考えられるが,一方,実機条件	せる効果があると考えられる。実機条件では、このようなトリガ	は蒸気膜を不安定化させる効果があると考えられるが、一方、実	
ではこのようなトリガ装置で発生させているような圧力外乱とな	装置で発生させているような圧力外乱となる要因は考えられな	機条件ではこのようなトリガ装置で発生させているような圧力	
る要因は考えられない。	い。また、溶融物がプール底部に接触することでトリガ要因とな	外乱となる要因は考えられない。	
	ることが考えられるが、BWRの原子炉圧力容器外FCIを模擬		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	したCOTELS試験の試験装置では、BWRのペデスタル底部		
	と同様に平板コンクリートを模擬した試験装置としており、実機		
	条件と同様であるが水蒸気爆発は観測されていない。		
	また、実機条件では、水深が試験条件よりも深くなる可能性が		
	あるが、水深が深いことにより、溶融物粒子が底部に到達するま		
	での沈降時間が長くなり、溶融物粒子が固化しやすい状況となる。		
	このため、溶融物粒子が底部に接触することで発生するトリガリ		
	ングのリスクは低減する可能性がある。		
	以上より、BWRの実機条件において水蒸気爆発のトリガとな		
	る特段の要因は考えられないため、実機条件でも水蒸気爆発の発		
	生リスクは十分小さいと考えられる。		
以上のことから, 実機において大規模な水蒸気爆発が発生する可	上記の試験条件と実機条件の検討より、実機においては、格納	以上のことから、実機において大規模な水蒸気爆発が発生する	
能性は極めて小さいと考えられ,原子炉格納容器健全性に与える	容器の損傷に至る大規模な原子炉圧力容器外水蒸気爆発の可能性	可能性は極めて小さいと考えられ、原子炉格納容器健全性に与え	
影響はないと考える。	は十分に小さいと考えられる。	る影響はないと考える。	
以上			
	4 参考文献	<u>3</u> . 参考文献	
	[1]N. Yamano, Y. Maruyama, T. Kudo, A. Hidaka, J. Sugimoto,	[1]「沸騰水型原子力発電所 重大事故等対策の有効性評価に係	・記載方針の相違
	Phenomenological studies on melt-coolant interactions in	<u>るシビアアクシデント解析コード(MAAP)について」,東芝</u>	【東海第二】
	the ALPHA program, Nucl. Eng. Des. 155 369-389, 1995	エネルギーシステムズ株式会社, TLR-094, 日立GEニューク	島根2号炉は,過去に
	[2]I. Huhtiniemi, D. Mgallon, H. Hohmann, Results of recent	<u>リア・エナジー株式会社,HLR-123,平成30年5月</u>	実施された代表的なF
	KROTOS FCI tests : alumina versus corium melts, Nucl. Eng.		CIの実験の概要につ
	<u>Des. 189 379-389, 1999</u>		いては、MAAPコート
	[3]D. Magllon, Characteristics of corium debris bed generated		説明資料を引用してい
	in large-scale fuel-coolant interaction experiments, Nucl.		る。
	Eng. Des. 236 1998-2009, 2006		
	[4]H. S. Park, R. Chapman, M. L. Corradini, Vapor Explosions in a		
	One-Dimensional Large-Scale Geometry With Simulant Melts,		
	NUREG/CR-6623, 1999		
	[5]D. Magallon, et al, Lessons learn from FARO/TERMOS corium		
	melt quenching experiments, Nucl. Eng. Des. 189 223-238,		
	<u>1999</u>		
	[6]M. Kato, H. Nagasaka, COTELS Fuel Coolant Interaction Tests		
	under Ex-Vessel Conditions, JAERI-Conf 2000-015, 2000		
	[7]V. Tyrpekl, Material effect in the fuel - coolant		
	interaction : structural characterization and		
	solidification mechanism, 2012		
	[8] J. H. Kim, et al, The Influence of Variations in the Water		
	Depth and Melt Composition on a Spontaneous Steam Explosion		

<u>in the TROI Experiments, Proceedings of ICAPP'04</u> [9] (財) 原子力安全研究協会,「シビアアクシデント対策評価の		
[9] (財) 原子力安全研究協会,「シビアアクシデント対策評価の		
ための格納容器イベントツリーに関する検討」,平成13年7月		
[10]M. Kato, et al, Fuel Coolant Interaction Tests using UO2		
Corium under Ex-vessel Conditions, JAERI-Conf 99-005, 1999.		
[11] J.H. Song, Fuel Coolant Interaction Experiments in TROI		
using a U02/Zr02 mixture, Nucl. Eng. Des., 222, 1-15, 2003		
[12] J. H. Kim, Results of the Triggered Steam Explosion from the		
TROI Experiment, Nucl. Tech., Vol. 158 378-395, 2007		
[13]NEA/CSNI/R, OECD/SERENA Project Report Summary and		
Conclusions, 2015		
[14] NUCLEA Nuclear Thermodynamic Database, Version 2005-01		
	以上	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	機械的エネルギ 変換効率(%) - - - - - - - - - - - - - - - - - - -		
	水蒸気燥発発生 機1 Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No No No No No Yes Yes Yes Yes Yes Yes		
	検結果[1]		
	(X) 水深 (m) 外部トリルの 1.0 No 1.0 No 1.0 No 0.9 No 0.9 No 1.0 No 0.9		
	主要な試験条 Pa) 本温度(K) 289 289 289 286 286 287 287 288 0 290 0 290 0 290 0 288 0 28		
	田 (W)		
	表 ALPH. 溶融物質量(kg) 20 2		
	落 融 物 組 成 Fe-Al ₂ 0 ₃ Fe-A		
	映版ケース		
	試		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	機械的エネルギ 変換効率(%) 1.45 0.9 0.9 1.3 2.6 2.2 - - - - - - - - - - - - - - - - - -		
	A		
	上		
	(K) (MPa) (K) (m) トリガ (m) トリガ (MPa) (K) (m) トリガ (MPa) (K) (m) トリガ (MPa) (K) (m) トリガ (MPa) (K) (m) トリガ (MPa) (MP		
	試験条件及 サブケール (K) (K) (T) 100 1100 113 5 5 5 5 77 77 77 77 77 77 77 77 79 83 83 83 83 80 1100 1100 1100 1100 1100		
	り主要 次 (MPa) 0.1 (MPa) 0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (
	(K) (K) (K) (K) (K) (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B		
	X		
	辞 融 物組 成 Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Alumina Sowt%U0 ₂ -20wt%ZrO ₂ 80wt%U0 ₂ -20wt%ZrO ₂		
	決 験		
	於		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	機械的エネルギ 変換効率(%) - - - - - - - - - - - - - - - - - - -		
	※		
	を No No No No No No No No No No		
	新井 (m)		
	条件及び試 サブケール度 (K) 0 0 0 0 0 0 1 1 1 1 1 1 12 12 2 2 2 2 0 0 0 0		
	五次計(MPa) (MPa) (
	FARO就験の主要な試験条件及び試験結果[3] [kg] 溶融物温度 圧力 サブクール度 水深 (kg) (MPa) (K) (m) [18] 2,923 5.8 12 1.00 [15] 3,123 5.8 12 2.00 [15] 3,173 2 0.5 1 1 1.10 [177 3,023 0.5 1] 1.47 [175 3,070 0.2 97 1.48 [92 2,990 0.2 104 1.45 1.00 3,070 0.4 1.24 1.60 [100]		
	表 FARC 溶融物質量 (kg) 18 44 151 157 167 177 117 177 175 39 92 92 92 92 100		
	辞 融 物 組 成 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 77wt%U02_19wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2 80wt%U02_20wt%ZrO2		
	対象 ケース レー06 L-08 L-19 L-19 L-20 L-29 L-29 L-33 L-33		
	漢 整 本		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	20		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	水蒸気燥器 浴生 窓はam Spike No No No Yes Yes No Yes Yes No No No No No No No Steam Spike Steam Spike Steam Spike Steam Spike		
	(7] [8] [11] [12]		
	本 深 本 深 (m)		
	験給果 (K) (K) 365 365 365 365 365 323 292 296 298 298 298 298 297 298 298 298 287 298 288 288 288 288 288 288 288 288 288		
	展力 (MPa) 0.1 0.1 0.11 0.11 0.110		
	主要な試験 溶融物温度 (K) >3,373 >3,373 >3,373 3,200 3,800 2,600(注 1) 3,000(注 2) 3,000 2,900 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,000 2,900 3,0		
	大阪 大阪 大阪 大阪 大阪 大阪 大阪 大阪		
	辞 融 物 組 成 99 # t % Z r O 2 - 1 w t % Z r 99 # t % Z r O 2 - 1 w t % Z r 99 # t % Z r O 2 - 1 w t % Z r 99 # t % Z r O 2 - 1 w t % Z r 99 # t % Z r O 2 - 1 w t % Z r 98 · 5 w t % Z r O 2 - 1 w t % Z r 70 w t % U O 2 - 30 w t % Z r O 2 70 w t % U O 2 - 30 w t % Z r O 2 70 w t % U O 2 - 30 w t % Z r O 2 70 w t % U O 2 - 30 w t % Z r O 2 70 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U O 2 - 20 w t % Z r O 2 80 w t % U D 2 - 20 w t % Z r O 3 80 w t % U D 2 - 20 w t % Z r O 3 80 w t % U Z r O 0 溫 度 計 が 異 な な よ む む t ば ニ つ の 溫 度 計 が 異 な な よ む む t ば ニ つ の 溫 度 計 が 異 な な ま む む t ば ニ つ の 溫 度 計 が 異 な な ま む む t ば ニ つ の 溫 度 計 が 異 な な		
	(注 1) (注 2) (

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	機械的エネルギ 変換効率(%) - - 0.63 0.21 0.50 - - - - - - - - - - - - -		
	外部		
	111 M X X		
	(K) (K) (K) (K) (K) (K) (K) (K) (K) (K)		
	(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (0.110 0.105 0.105 0.115 0.116 0.116 0.116 (たち。) 計である。		
	2		
	デート 29 32 32 34 35 36 36 37 38 39 39 39 39 39 39 39 39 39 39		
	TRO 1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	機械的 エネルギ 数域 効		
	水 素 気 爆 発 第 第 年 Yes		
	及び (m) 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1		
	藤条件/ (K) (K) (K) 331 331 332 332 333 332 332 332		
	展 (MPa) (M		
	溶融物温度 (K) (X) (X) (X) (X) (X) (X) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B		
	容融物質量 (7.2 kg) (7.3		
	第6 表 SEREN		
	& 1 1 2 5 4 5 9 1 3 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
	試験名		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第7表 TROI試験と実機条件の比較		
	試験ケース 溶融物温度 溶融 水深 粒子化割合(注 2) 水蒸気爆発 ジェット径		
	TROI-10 3,800K 6.5cm 0.67m 約60% Yes		
	TROI-12 3,800K 6.5cm 0.67m 約 60% Yes		
	TROI-23 3,600K 7.4cm 1.30m 約 80 80 No		
	TR01-25 3,500K 8.0cm 0.67m 約50% Steam Spike		
	実機条件 約 2,650K 約 4~15cm 1m 約 35~90% —		
	(注 1)試験条件の過熱度は U02/Zr02の相図 ^[14] より固相線温度を約 2,900K とした場合の概算値 実機条件の過熱度は事故解析結果による下部プレナム部の溶融物(酸化物層)の過熱度の概 算値		
	発型 (注 2) R i c o u - S p a l d i n g 相関式 (第 11 図) による概算評価値		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	Melt Generator Pressure Model Containment Vessel High-Speed Video Camera Water Pool High-Speed Camera		
	第1図 ALPHA試験装置の概要		
	0.14 0.13 0.12 0.10 0.09 9 10 11 12 Time (ms) 第2図 ALPHA試験の圧力変化の例(STX016)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	TEST SECTION (DXD-200/240		

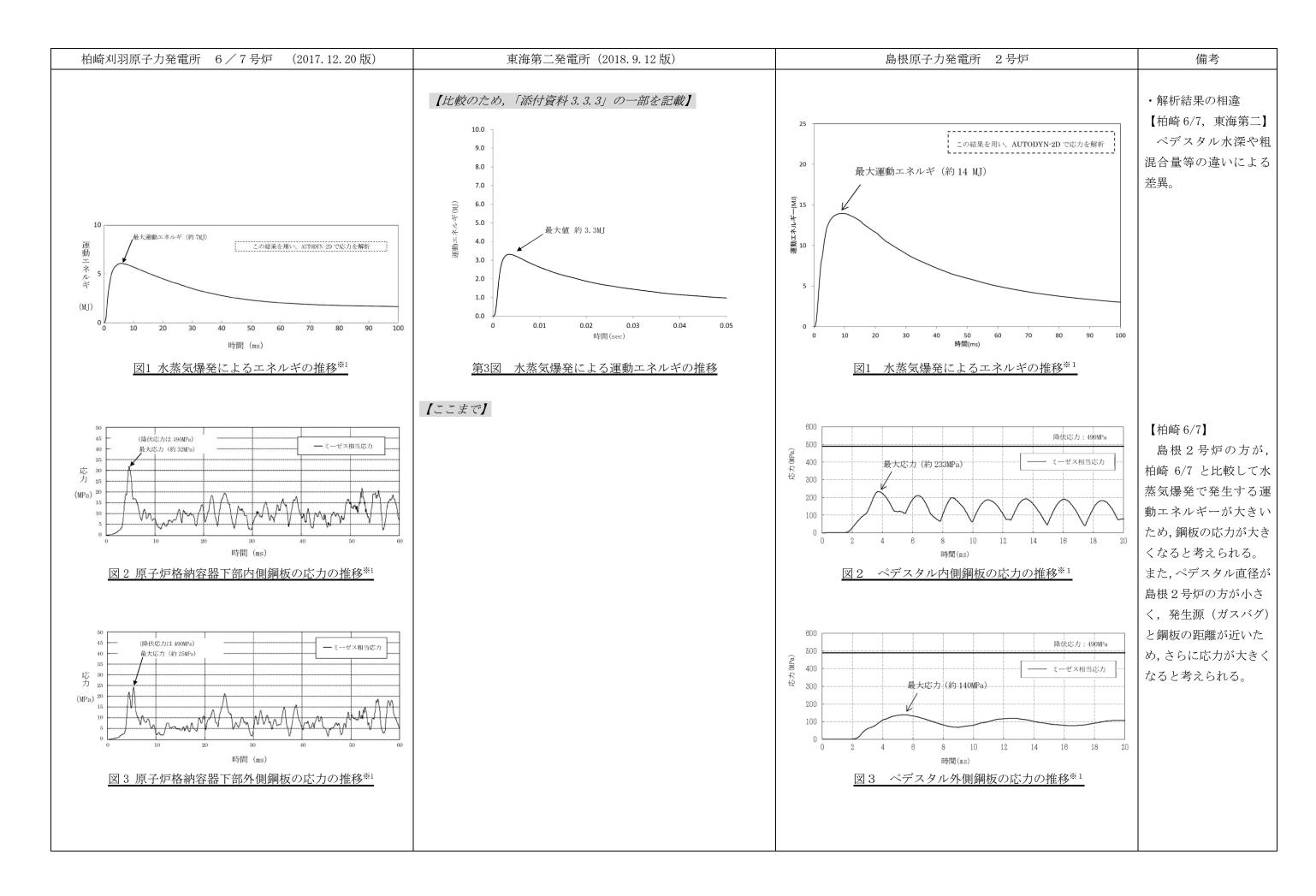
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	Release tube closing disc (W) Lower electrode ———————————————————————————————————		
	第5図 FARO試験装置の概要 50.0 40.0 20.0 10.0 50 -25 0 .25 50 .75 1.00 1.25 1.50 1.75 2.00 第6図 FARO試験の圧力変化の例 (L-14, L-19)		

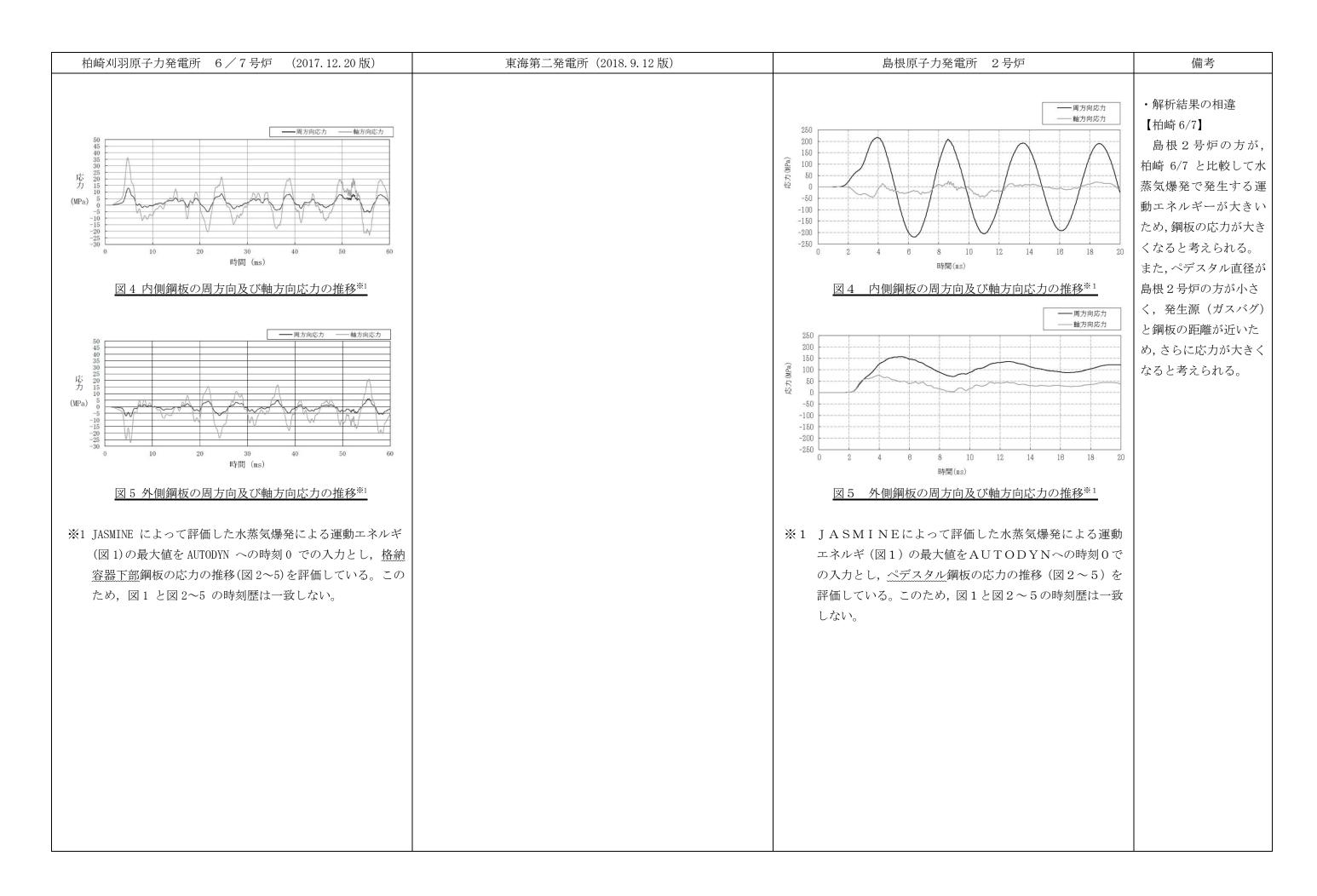
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	Electric Melting Furnace (EMF) Test Vessel (LAVA) P.T. Water Level P.T. Concrete Plate P.T. Melt Catcher P. Pressure, T: Temperature, G: Gas sampling line 第7図 COTELS試験装置の概要		
	Region 2 Region 3 P _{fe} : Final equilibrium pressure estimated by initial stored energy in corium O 1 2 3 4 5 6 7 8 9 10 Time after corium contacting pool surface (s) 第8図 COTELS試験の圧力変化の例(A1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	Effect of corium mass or pool depth A1 A2 A2 A3 Effect of subcooling or non-condensable gas A6 A1 A1 A1 A8 Effect of velocity MMD(mm) A1 A1 A8 5.2 A10 A8 5.2 A10 A10 A1 A1 A1 A1 A1 A1 A1		
	第9図 COTELS試験の各試験ケースの圧力変化 Expl.: VDP - water dynamic pressure PVT - pressure vessel temperature PVDP - pressure vessel temperature PVDP - pressure vessel static press. IVDL - bottom dynamic load IVT - water temperature 2. set up (surely from TROI-50 experiment) 第10図 TROI 試験装置の概要		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第11図 Ricou-Spalding相関式による		
	粒子化割合のマップ		

まとめ資料比較表 〔有効性評価 添付資料 3. 3. 2〕					
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考		
添付資料 3. 3. 2	添付資料 3. 3. 2	添付資料 3. 3. 2			
水蒸気爆発の発生を仮定した場合の原子炉格納容器の健全性へ	水蒸気爆発の発生を想定した場合の格納容器の健全性への影響評	水蒸気爆発の発生を仮定した場合の原子炉格納容器の健全性へ			
小然式爆光の光生を仮足した場合の原子が俗称る器の度主性への影響評価	小祭式療光の光生を忍足した場合の性料合命の健生性、の影響計価	の影響評価			
(7) (京) (香) (田) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	1Ш				
1. 評価の目的	1. 評価目的	1. 評価の目的			
水蒸気爆発現象は、粗混合、トリガリング、拡大伝播といった		水蒸気爆発現象は、粗混合、トリガリング、拡大伝播といった	・記載方針の相違		
段階的な過程によって説明するモデルが提唱されており、これら		段階的な過程によって説明するモデルが提唱されており、これら	【東海第二】		
を全て満たさなければ大規模な水蒸気爆発は発生しないと考えら		を全て満たさなければ大規模な水蒸気爆発は発生しないと考え	島根2号炉は,過去に		
れている。		られている。	実施された代表的な		
溶融炉心が原子炉圧力容器の破損口から落下した際に水蒸気爆	溶融炉心(以下「デブリ」という。)が原子炉圧力容器(以下「R	溶融炉心が原子炉圧力容器の破損口から落下した際に水蒸気爆	FCI の実験から得られ		
発が発生する可能性は、これまでの知見からも極めて低いと考え	PV」という。)の破損口から落下した際に水蒸気爆発(以下「S	発が発生する可能性は、これまでの知見からも極めて低いと考え	た知見について記載し		
られるが、水蒸気爆発が発生した場合についても考慮し、原子炉	<u>E」という。</u>)が発生する可能性は、これまでの知見からも極めて	られるが、水蒸気爆発が発生した場合についても考慮し、原子炉	ている。		
格納容器の健全性に対する影響を確認しておくことは、原子炉格	低いと考えられる。しかしながら, SEが発生した場合を考慮し,	<u>格納容器</u> の健全性に対する影響を確認しておくことは、 <u>ペデスタ</u>			
納容器下部への水張り等の格納容器破損防止対策の適切性を確認	<u>格納容器</u> の健全性に対する影響を確認しておくことは <u>格納容器下</u>	<u>ル</u> への水張り等の格納容器破損防止対策の適切性を確認する上			
する上でも有益な参考情報になると考える。このため、ここでは	部への水張り等の格納容器破損防止対策の適切性を確認する上で	でも有益な参考情報になると考える。このため、ここでは <u>溶融炉</u>			
溶融炉心落下時の水蒸気爆発の発生を仮定し、水蒸気爆発が生じ	も有益な参考情報になると考える。このため、ここではデブリ落	心落下時の水蒸気爆発の発生を仮定し、水蒸気爆発が生じた際の			
た際の原子炉格納容器の健全性を評価した。	下時のSE発生を想定し、その際の格納容器の健全性を評価する。	原子炉格納容器の健全性を評価した。			
	2. 評価方針		・評価方針の相違		
	東海第二発電所のペデスタルは鉄筋コンクリート造の上下層円		【東海第二】		
	筒部の中間に床スラブを有する構造であり、デブリ落下時にSE		島根2号炉は内側鋼		
	が発生した場合、ペデスタルの側壁(上下層円筒部)及び床スラ		板,外側鋼板,リブ鋼板		
	ブに過大な圧力が作用する。		からなる二重鋼板製ペ		
	ペデスタルの側壁はRPV支持機能を分担している。SE発生		デスタルであるのに対		
	<u>の影響により、ペデスタルの側壁が損傷し、RPV支持機能が喪</u>		し, 東海第二はペデスタ		
	失した場合には、RPVが転倒し格納容器本体へ接触する等によ		ル側壁及び床スラブは		
	り、格納容器の健全性が損なわれるおそれがある。		鉄筋コンクリート製ペ		
	また、ペデスタルの床スラブは、RPV破損時に落下するデブ		デスタルであることか		
	<u>リをペデスタル(ドライウェル部)で保持する機能を分担してい</u>		ら,構造の違いにより評		
	る。SE発生の影響により、ペデスタルの床スラブが損傷し、デ		価方法が異なる。		
	ブリ保持機能が喪失した場合には、サプレッション・チェンバへ				
	デブリが落下し、サプレッション・チェンバを水源とする系統(残				
	留熱除去系, 代替循環冷却系) に影響を及ぼし, 格納容器の冷却				
	ができなくなることで格納容器の健全性が損なわれるおそれがあ				
	<u>る。</u>				
	以上を踏まえ、SE発生時の格納容器の健全性を評価するため、				


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	SEが発生した場合のペデスタルの構造健全性を評価し、ペデス		
	タルのRPV支持機能及びデブリ保持機能が損なわれないことを		
	確認する。		
	3. 評価方法		
2. 評価に用いた解析コード等	(1) 評価条件	2. 評価に用いた解析コード等	
水蒸気爆発の影響を評価するにあたっては、溶融燃料ー冷却材	SEの影響を評価するに当たっては、SEによって発生するエ		
相互作用によって発生するエネルギ、発生エネルギによる圧力伝	ネルギ、発生エネルギによる圧力伝播挙動及び構造応答が重要な	相互作用によって発生するエネルギ、発生エネルギによる圧力伝	
播挙動及び構造応答が重要な現象となる。よって、これらの現象			
を適切に評価することが可能である水蒸気爆発解析コード	であるSE解析コードJASMINE及び汎用有限要素解析コー		
JASMINE, 構造応答解析コード AUTODYN-2D により圧力伝播挙動及		MINE, 構造応答解析コードAUTODYN-2Dにより圧力	・評価条件の相違
び構造応答、格納容器圧力等の過渡応答を求める。	TES DINAZAVICIO A PROPERTIZIONE SOL	伝播挙動及び構造応答、格納容器圧力等の過渡応答を求める。	【東海第二】
これらの解析コードに対して構築した評価モデル及び入力の詳	本評価に適用するJASMINEコードの解析条件及び解析結		東海第二では、鉄筋
細は添付資料 1.5.1 の(3) に示している。溶融炉心の物性値は	<u>本計価に適用する J A S M I N E コードの牌析来件及の牌析相</u> 果の詳細を添付資料 3.3.3 に示す。また、L S - D Y N A コード	細は添付資料 1.5.1 の(3) に示している。溶融炉心の物性値は J	ンクリート製格納容
JASMINE コードに付属している溶融コリウム模擬のライブラリか		ASMINEコードに付属している溶融コリウム模擬のライブラ	であり,鉄筋構造をモ
JASMINE コートに下属している俗配コックム候嬢のフィッフッから、デブリ物性値が実機条件に近いと考えられるライブラリを用	の計画でプル及の人分の評判を部門員付3.3.4にかり。	リから、デブリ物性値が実機条件に近いと考えられるライブラリ	ル化するために、
		を用いた。また、これらの解析コードへの入力条件の一部は、シ	LS-DYNA-3D が用いら
いた。また、これらの解析コードへの入力条件の一部は、シビア			
アクシデント総合解析コード MAAP を用いて評価した,「3.3 原子		ビアアクシデント総合解析コードMAAPを用いて評価した,	ている。一方,島根2-
炉圧力容器外の溶融燃料-冷却材相互作用」の評価結果を用いた。		「3.3 原子炉圧力容器外の溶融燃料ー冷却材相互作用」の評価結	炉および柏崎 6/7 の~
		果を用いた。	デスタルは, 周方向に
(添付資料 1.5.1)		(添付資料 1.5.1)	則的な構造物である
o === (m \(\rho \) (l).		0 =T /T // //	め、AUTODYN-2D が用い
3. 評価条件		3. 評価条件	られている。
主要解析条件を表 1 に示す。MAAP による解析の結果から溶融		主要解析条件を表1に示す。MAAPによる解析の結果から溶	
炉心は原子炉圧力容器底部の中央から落下するものとし、溶融炉		融炉心は原子炉圧力容器底部の中央から落下するものとし、溶融	
心が原子炉圧力容器の破損口から落下する際には、溶融炉心・コ		炉心が原子炉圧力容器の破損口から落下する際には、溶融炉心・)
ンクリート相互作用の緩和策として、原子炉格納容器下部に水位			・運用の相違
<u>2m</u> の水張りが実施されているものとした。	<u>ル部)の水位は1mとし、コリウムシールドは模擬しない条件とす</u>	水張りが実施されているものとした。	【柏崎 6/7, 東海第二】
	<u>5.</u>		島根2号において
			マネジメントで想定す
			る水張り水位を評価
			件に設定。
なお,応力評価の対象としている <u>内側及び外側鋼板(厚さ30mm)</u>		なお,応力評価の対象としている <u>内側鋼板(厚さ 32mm)及び外</u>	・設備設計の相違
の降伏応力は約 490MPa である。		<u>側鋼板(厚さ 38mm)</u> の降伏応力は約 490MPa である。	【柏崎 6/7】
			内側および外側鋼
			厚さの相違。


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(2) 判断基準		・設備設計の相違
	炉心損傷防止に失敗し、重大事故時を想定する防護レベルにお		【東海第二】
	いて、格納容器の健全性維持に必要な安全機能であるRPV支持		島根2号炉は内側鋼
	機能及びデブリ保持機能が損なわれないことを確認する観点か		板,外側鋼板,リブ鋼板
	ら、本評価では構造物が終局限界状態に至らないことを確認する		からなる二重鋼板製ペ
	ための判断基準を設定する。		デスタルであるのに対
	第1表にペデスタル構造健全性評価の判断基準を示す。		し, 東海第二はペデスタ
			ル側壁及び床スラブは
	a. 側壁(R P V 支持機能)		鉄筋コンクリート製ペ
	ペデスタルの側壁は上下層円筒構造であることから、同様な		デスタルであることか
	円筒形状の構築物の設計規格が示されている,発電用原子力設		ら,構造の違いにより評
	備規格コンクリート製原子炉格納容器規格((社)日本機械学会,		価の判断条件が異なる。
	2003) (以下「CCV規格」という。) を準用して判断基準を設		
	定する <u>。</u>		
	コンクリートの圧縮ひずみについては, CCV規格		
	CVE-3511.2 荷重状態Ⅳのシェル部コンクリートの許容ひずみ		
	である 3,000 μ を基準として, R P V 支持機能に影響を及ぼす		
	範囲の圧壊が生じないこととする。鉄筋の引張ひずみについて		
	は, C C V 規格 CVE-3511.2 荷重状態IVの鉄筋の許容ひずみであ		
	る 5,000 μ を超えないこととする。SE時に発生する面外方向		
	のせん断については, C C V 規格 CVE-3514.2 荷重状態Ⅳにおけ		
	る終局面外せん断応力度を設定し,上部側壁で3.09N/mm ² ,下		
	せん断応力度の算定過程を示す。		
	また, S E は爆発事象であり衝撃荷重が問題となることから,		
	建築物の耐衝撃設計の考え方((社) 日本建築学会, 2015))(以		
	下「AIJ耐衝撃設計の考え方」という。) において進行性崩壊		
	回避の考え方が示されていることを参考に、構造物の崩壊に対		
	する健全性を確認する観点より、SEによる側壁の変位が増大		
	しないことを確認することとする。_		
	<u>b. 床スラブ(デブリ保持機能)</u>		
	コンクリートの圧縮ひずみについては、側壁と同様にCCV		
	規格を準用することとし、荷重状態IVのコンクリートの許容ひ		
	ずみである 3,000 μ を基準として,デブリ保持機能に影響を及		
	ぼす範囲の圧壊が生じないこととする。鉄筋についても側壁と		
	同様に荷重状態 IV の鉄筋の許容ひずみである $5,000\mu$ を超えな		
	いこととする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	ペデスタルは上下層円筒部の中間に円盤形の床スラブを有す		
	る構造であるが、この構造に対する面外せん断の判断基準設定		
	に当たり、CCV規格には適した規定がないことから、コンク		
	リート標準示方書 [構造性能照査編] ((社) 土木学会, 2002))		
	(以下「コンクリート標準示方書 [構造性能照査編]」という。)		
	に基づく終局面外せん断応力度を設定し、4.33N/mm ² を超えな		
	いこととした。別添2に終局面外せん断応力度の算定過程を示		
	<u> </u>		
	また、側壁と同様に、AIJ耐衝撃設計の考え方を参考に、		
	構造物の崩壊に対する健全性を確認する観点より、SEによる		
	【比較のため,「添付資料 3.3.3」の一部を記載】		
. 評価結果	3. 解析結果	4. 評価結果	
水蒸気爆発に伴うエネルギ、原子炉格納容器下部内側及び外側	第3図に水蒸気爆発に伴う運動エネルギの推移を示す。	水蒸気爆発に伴うエネルギ、ペデスタル内側及び外側鋼板の応	
板の応力の推移を図 1, 図 2 及び図 3 に示す。また,参考とし		力の推移を図1,図2及び図3に示す。また、参考として、内側	
- - - - - - - - - - - - - - - - - - -		鋼板の周方向及び軸方向応力の推移を図4に示す。外側鋼板の周	
板の周方向及び軸方向応力の推移を図5に示す。		方向及び軸方向応力の推移を図5に示す。	
水蒸気爆発の発生を想定した場合に原子炉格納容器下部ドライ	水蒸気爆発の発生を想定した場合にペデスタル(ドライウェ	水蒸気爆発の発生を想定した場合にペデスタルの水に伝達され	
	ル部) の水に伝達される運動エネルギの最大値は約3.3MJ であ	る運動エネルギの最大値は,約 14MJ である。このエネルギを入力	・解析結果の相違
	<u></u> る。	とし、ペデスタル内側及び外側鋼板にかかる応力を解析した結果,	【柏崎 6/7,東海第二
 板にかかる応力を解析した結果, <u>原子炉格納容器下部</u> の内側鋼	【ここまで】	ペデスタルの内側鋼板にかかる応力は約233MPa,外側鋼板にかか	島根2号炉の方が
「にかかる応力は <u>約 32MPa</u> ,外側鋼板にかかる応力は <u>約 25MPa</u> と		る応力は約140MPaとなった。これは内側及び外側鋼板の降伏応力	 柏崎 6/7,東海第二とb
			較して水蒸気爆発でき
。 り、かつ、弾性範囲内にあることから、原子炉圧力容器の支持 ・		子炉圧力容器の支持に支障が生じるものではない。なお、構造上、	生する運動エネルギ
支障が生じるものではない。なお,構造上,原子炉格納容器下		ペデスタル内側鋼板にかかる応力の方が外側鋼板にかかる応力よ	が大きいため,鋼板の原
3の内側鋼板にかかる応力の方が外側鋼板にかかる応力よりも大		りも大きくなる傾向があるが、原子炉圧力容器の支持機能につい	力が大きくなると考え
		てはペデスタルの外側鋼板のみで維持可能である。	られる。
・炉格納容器下部の外側鋼板のみで維持可能である。			【柏崎 6/7】
			ペデスタル直径が島
			根2号炉の方が小さく
			発生源(ガスバグ)と
			板の距離が近いため,
			らに応力が大きくなる
			と考えられる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	4. 評価結果		
			・解析結果の相違
	a. 側壁の変位		【東海第二】
	第 1 図に側壁の半径方向変位時刻歴を示す。最大変位はX		島根2号炉は内側
	方向で約0.16mmにとどまり,変位は増大していないことから,		板,外側鋼板,リブ鋼
	SE後の構造物の進行性の崩壊はない。_		からなる二重鋼板製
	b. コンクリートの圧縮ひずみ		デスタルであるのに
	第3図に最小主ひずみ(圧縮ひずみ)分布を示す。側壁に		し, 東海第二はペデス
	$はCCV規格に基づく許容ひずみ 3,000\mu を超える部位は生$		ル側壁及び床スラブ
	じないことから、機能に影響を及ぼす圧壊は生じない。		鉄筋コンクリート製
	c. 鉄筋の引張ひずみ		デスタルであること
	第 4 図に鉄筋の軸ひずみ(引張ひずみ)分布を示す。側壁		ら,構造の違いにより
	の鉄筋に発生する軸ひずみは約 184 μ であり、CCV規格に		価結果および評価の
	基づく許容ひずみ 5,000 μ を超えない。		断条件が異なる。
	d. 側壁の面外せん断		
	第 2 表に側壁の面外せん断評価結果を示す。発生するせん		
	断応力度は上部約 0.93N/mm ² 及び下部約 0.77N/mm ² であり,		
	それぞれのCCV規格に基づく終局面外せん断応力度であ		
	<u>る,3.09N/mm²及び2.65N/mm²を超えない。</u>		
	(2) 床スラブ (デブリ保持機能)		
	a. 床スラブの変位(たわみ量)		
	第 2 図に床スラブの鉛直方向変位の時刻歴を示す。最大変		
	位は約 2.0mm とどまり、変位は増大していないことから、S		
	E後の構造物の進行性の崩壊はない。		
	b. コンクリートの圧縮ひずみ		
	第3図に示したとおり、CCV規格に基づく許容ひずみ		
	3,000 μ を超える部位は,床スラブ上面の僅かな範囲にとどま		
	ることから、機能に影響を及ぼす圧壊は生じない。		
	c. 鉄筋の引張ひずみ		
	第 4 図に示したとおり、床スラブの鉄筋に発生する軸ひず		
	みは約 364μ であり、 CCV 規格に基づく許容ひずみ $5,000 \mu$		
	を超えない。		
	d. 床スラブの面外せん断		
	第3表に床スラブの面外せん断に対する評価結果を示す。		
	<u> </u>		
	<u> </u>		
	<u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第 4 表にペデスタル構造健全性評価の評価結果のまとめを示		
	<u> </u>		
	5. まとめ		
 	SE解析コードJASMINE,汎用有限要素解析コードLS	以上の結果から、水蒸気爆発の発生を想定した場合であって	
子炉圧力容器の支持機能は維持され格納容器の健全性に支障が	-DYNAにより、SEの発生を想定した場合の格納容器健全性	も,原子炉圧力容器の支持機能は維持され格納容器の健全性に	
いことから,原子炉格納容器バウンダリの機能を維持できるこ	への影響を評価した。その結果, SE時のペデスタル (ドライウ	支障がないことから、原子炉格納容器バウンダリの機能を維持	
を確認した。	ェル部)床面及び壁面に発生する応力やひずみは判断基準を満足	できることを確認した。	
	し、SE後においても変位の増大はないことから、ペデスタルに		
以上	要求されるRPV支持機能及びデブリ保持機能が損なわれないこ	以上	
	とを確認した。したがって、SEの発生を想定した場合であって		
	も、格納容器の健全性は維持される。		

	下黑					7				女 禮 恒			粒径		7	・解析条件の相違 【柏崎 6/7】 ペデスタル水深およ
制御棒駆動機構ハウジング1本の外径として設定	戸心ーコンクリート相互作用による格納容器破損防止対策として,落下容融炉心を微粒子化し,十分な除熱量を確保するため,あらかじめ水張行うものとして手順上定めている値	水源の水温として設定	試験結果におけるデブリ粒径分布をもとに設定	KR0TOS 等の各種試験結果におけるデブリ粒径分布をもとに設定	I	除く。	一冷却材相互作用	一行為內伯里作用	条件設定の考え方 制御棒駆動機構ハウジング1本の外径として設定	溶融炉心ーコンクリート相互作用による格納容器破損防止対策として、落下した溶融炉心を微粒子化し、十分な除熱量を確保するため、予め水張りを行うものとして手順上定めている値	外部水源の水温として設定	FARO試験結果におけるデブリ粒径分布をもとに設定	FARO, KROTOS等の各種試験結果におけるデブリ粒 分布をもとに設定		条件を除く。	び水温の差異。
0.2m 制御	松曜 2m した 0 を:	50℃ 外部	4mm FARO	50 μ m FARO	NE の解析結果を もとに設定	と重複する	十 七 次 器 ※	土儿谷布外	王罗蔣竹条件0.2m	2. 4m	35°C	4 mm	50 μ m	JASMINE の解析結果を もとに設定	と重複す	
原子炉圧力容器の破損径	メタル水深	5格納容器下部への水 :用いる木の温度	松子径	算時の微粒子径					項目 原子炉圧力容器の破損径	ペデスタル水深	ペデスタルへの水張りに 用いる水の温度	粗混合粒子径	爆発計算時の微粒子径	溶融炉心ー冷却材相互作 用による発生エネルギ	1 1	
MAAP** 原子炉	メデペ			爆発計	容融機 AUTODYN-2D による	※ 「3.3 原子炉圧力	+ +	K .	1 *			JASMINE		AUTODYN-2D	※ 「3.3原子炉圧力	
- 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.	原寸界 圧力谷益の敬損任	原土が圧力存着の軟損在 0.2m 即個棒影劃機件ハゾンプノ 1 本の外径として配 溶融炉心ーコンクリート相互作用による格納容器破損防止対策 2m した溶融炉心を微粒子化し、十分な除熱量を確保するため、ありを行うものとして手順上定めている値	 原子が圧力谷益の破損性 ○・2m 前向棒撃動機伸バリンノク14年の外径として配ん 常融炉心ーコンクリート相互作用による格納容器破損防止対策 りを行うものとして手順上定めている値 原子炉格納容器下部への水 売りに用いる水の温度 外部水源の水温として設定 	原子が圧力谷締の敗損任 0.2m 即何幹影則依用ハンノク14年の外径として配定 ペデスタル水深 2m した溶融炉心を微粒子化し,十分な除熱量を確保するため,ありを行うものとして手順上定めている値 原子炉格納容器下部への水 50°C 外部水瓶の水温として設定 租混合粒子径 4mm FARO 試験結果におけるデブリ粒径分布をもとに設定	原子が上力存締の改員住 0. 2m 市内中部別後年インシップ 1 本の外住として ペデスタル水深 2m した溶融炉心を微粒子化し、十分な除熱量を 原子炉格納容器下部への水 50°C 外部水源の水温として設定 根混合粒子径 4mm FARO 試験結果におけるデブリ粒径分布をもと 爆発計算時の微粒子径 50 μm FARO, KROTOS 等の各種試験結果におけるデブ	原子が圧力存締の破損を 0.2m 制向性幹影動機構へリンプリート相互作用による格納 ペデスタル水深 2m した溶離炉心を微粒子化し、十分な除熱量を値 りを行うものとして手順上定めている値 りを行うものとして手順上定めている値 りを行うものとして手順上定めている値 まりに用いる水の温度 構造合粒子径 4mm FARO 試験結果におけるデブリ粒径分布をもと を避難 特別中を対け相互作用 JASMINE の解析結果を もとに設定 とよる発生エネルギ もとに設定	原子が圧力を描い破損任 0.2m	Particular	A	所書を記している	A	Party Pa	A	A	A	本子 本子 本子 本子 本子 本子 本子 本子

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			-	東海第	二発電点	折(201	18. 9. 12	2版)			島根原子力発電所 2号炉	備考
		準用規格等	AIJ耐衝撃設計の考え方	C C V 規格 CVE-3511. 2	C C V 規格 CVE-3514.2	C C V 規格 CVE-3511.2	AIJ耐衝撃設計の考え方	C C V 規格 CVE-3511.2	コンクリート標準示方書 [構造性能照査編]	C C V 規格 CVE-3511.2		・評価条件の相違 【東海第二】 島根 2 号炉は内側 板,外側鋼板,リブ鋼 からなる二重鋼板製 デスタルであるのに し,東海第二はペデス ル側壁及び床スラブ 鉄筋コンクリート製 デスタルであること
	第1表 ペデスタル構造健全性評価の判断基準	制断基準	変位が増大せず, SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊 (3,000μ) が生じない	終局面外せん断応力度 (上部側壁:3.09 N/mm ² , 下部側壁2.65N/mm ²) を超えない	許容ひずみ (5,000μ) を超えない	変位が増大せず, SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊 (3,000μ) が生じない	終局面外せん断応力度 (4.33N/mm²) を超えない	許容ひずみ (5,000μ) を超えない		ら、構造の違いにより価の判断条件が異なる
		項目	変 位	圧縮ひずみ	面外せん断	引張ひずみ	変位	圧縮ひずみ	面外せん断	引張ひずみ		
		評価部位	п	シグン	 	栽徭	П	米スンクリー	(IN)	黎 େ		
		機能		₩ d >	支持機能	!		アブコ	保柱機能			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	j	東海第二発電所(20)18. 9. 12 版)		島根原子力発電所 2 号炉	備考
	第2表	側壁の面外せん	新に対する評価結	果		・評価条件の相違
	評価部位	発生応力度	判断基準	評価*		【東海第二】
						島根2号炉は内側鋼
	側壁上部	約 0.93 N/mm ²	3.09 N/mm ²	0		板,外側鋼板,リブ鋼板
	側壁下部	約 0.77 N/mm ²	2.65 N/mm ²	0		からなる二重鋼板製へ
	※ 「○」解析系	吉果の発生応力度が判	断基準を満足する			デスタルであるのに対
						し, 東海第二はペデスタ
	第3表	床スラブの面外せん	し断に対する評価	結果		ル側壁及び床スラブは
	評価部位	発生応力度	判断基準	評価*		鉄筋コンクリート製べ
	床スラブ	約 3. 70 N/mm²	4. 33 N/mm ²	0		デスタルであることか
						ら,構造の違いにより評
	※ 「○」解析結	果の発生応力度が判	断基準を満足する			価結果および評価の半
						断条件が異なる。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				東海第	第二発電	這所(2	018. 9.	12版)				島根原子力発電所 2 号炉	備考
													・評価条件の相違 【東海第二】 島根 2 号炉は内側
		評価*	0	0	0	0	0	0	0	0			板,外側鋼板,リブのからなる二重鋼板
			((12)	mm ²		(面を					デスタルであるのし, 東海第二はペデ
		報 器	変位は増大しない	圧壊は側壁に生じない	上部側壁:約0.93N/下部側壁:約0.77N/	84 μ	変位は増大しない	圧壊は床スラブ上面の 僅かな範囲にとどまる	$3.70\mathrm{N/mm}^2$	54 μ			ル側壁及び床スラ
		解析結果	位は増	は側壁	摩: ※	約 184 µ	位は増	は床スな範囲	約3.70	約 364 µ			鉄筋コンクリート デスタルであるこ
	& √		枫	田	上部側下部側		枫	圧壊し	714				ら,構造の違いによ
					順						+		価結果および評価断条件が異なる。
	第4表 ペデスタル構造健全性評価の評価結果のま	判断基準	変位が増大せず,SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊 (3,000μ) が生じない	終局面外せん断応力度(上部側壁:3.09N/mm ² , 下部側2.65N/mm ²)を超えない	許容ひずみ (5,000μ) を超えない	変位が増大せず,SE後の構造物の進行性の崩壊がない	機能に影響を及ぼす範囲の圧壊 (3,000μ) が生じない	終局面外せん断応力度(4.33N/mm²)を超えない	許容ひずみ (5,000μ) を超えない	 		例未件が共なる。
		項目	麥位	圧縮ひずみ	面外せん断	引張ひずみ	変位	圧縮ひずみ	面外せん断	引張ひずみ	 解析結果が判断基準		
		評価部位	П	ソ シン-	- ـــ	鉄筅	П	ソケシー	· <u>-</u>	黎 摇			
		計画		■	区掛			床ス	ブブ				
		機能		지 다 >	支持機能			デブリ保	朴機能		**		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	スカ向 (+) アガウ (+) マガカ (+) マガスタル南面 ベデスタル南面 ベデスタル南面 ・ 大声楽館 ・ 大声楽作 ・		・評価条件の相違 【東海第二】 島根2号炉は内側鋼板、外側鋼板、外側鋼板、リブ鋼板、リブ鋼板、リブ鋼板、リブ鋼板のでスタルでは、東海及では、スラールのでは、スラールのでは、カールのでは、大きのでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(デスタル新国		・評価条件の相違 【東海第二】 島根2号炉は内側鋼板 板,外側鋼板、関鋼板、がなる二である。である。では、東海及びクリカをでは、東海及びクリカーでは、東海とりでは、水がでは、水がでは、水がでは、水がでは、水がでは、水がでは、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
			・証体を供の担害
			・評価条件の相違 【東海第二】
			島根2号炉は内側
			板,外側鋼板,リブ鋼
			からなる二重鋼板製・
			デスタルであるのに
			し、東海第二はペデス
			ル側壁及び床スラブ
			鉄筋コンクリート製
			デスタルであること
			ら,構造の違いにより
			価結果および評価の
			断条件が異なる。
			PINTIN FR. & SO
	第3図 コンクリートの最小主ひずみ(圧縮ひずみ)分布		
	77 0 Ed		
	第4図 鉄筋の軸ひずみ分布		
	<u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉	備考
		別添 1		
	側壁の終局面外せん断応力度			・評価方針の相違
				【東海第二】
	1. 算定条件			島根2号炉は内側鋼
	ペデスタルの側壁は、円筒形シェル構造でる	あることから, C		板,外側鋼板,リブ鋼板
	C V 規格 CVE-3514.2 荷重状態IVにおけるシ	ェル部の終局面外		からなる二重鋼板製ペ
	せん断応力度の算定式を適用し、側壁の終局	面外せん断応力度		デスタルであるのに対
	を算定する。第1図に算定対象部位を示す。			し, 東海第二はペデスタ
				ル側壁及び床スラブは
	$\tau_H = 10p_{t\theta} \cdot f_y / \left(13.2\sqrt{\beta} - \beta\right)$			鉄筋コンクリート製ペ
	ここで、			デスタルであることか
	$ au_H$:終局面外せん断応力度 (N/mm^2)			ら、構造の違いにより評
	$p_{t heta}$: 円周方向主筋の鉄筋比(一)			価方法が異なる。
	f_y : 鉄筋の許容引張応力度(N/mm²)			
	β : 次の計算式により計算した値 β	=r/t		
	r :シェル部の胴の厚さの中心までの	半径(mm)		
	t :シェル部の胴の厚さ(mm)			
	各項目の数値を下表に示す。			
	項目	数值		
	$p_{t heta}$: 円周方向主筋の鉄筋比			
	上 部 f _y :鉄筋の許容引張応力度	345N/mm²		
	 側 r: シェル部の胴の厚さの中心までの半径			
	t:シェル部の胴の厚さ	† †		
	$p_{t heta}$:円周方向主筋の鉄筋比	† †		
	下 f・鉄銃の許容引張応力度	345N/mm²		
	部			
	生:シェル部の胴の厚さ	 		
	С. 3 277 продинотр С			
	a Mitcheld III			
	2. 算定結果	tr/m/pt ~ 2 222		
	算定の結果, 側壁の終局面外せん断応力度は	上部側壁で 3.09N		
	/mm ² , 下部側壁で 2.65N/mm ² となる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(側壁) 上部側壁		
	第1図 算定対象部位		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	別添 2		
	<u>床スラブの終局面外せん断応力度</u>		・評価方針の相違
			【東海第二】
	1. 算定条件		島根2号炉は内側錚
	SE時の床スラブのせん断力に対する検討は、コンクリート		板,外側鋼板,リブ鋼板
	標準示方書[構造性能照査編]に基づき,終局限界状態に至ら		からなる二重鋼板製へ
	ないことを確認する。評価対象となる床スラブの形状は円盤形		デスタルであるのに対
	であり、SEによる分布荷重を受ける。		し, 東海第二はペデスタ
	せん断に対する検討に際して、分布荷重を受ける円盤スラブ		ル側壁及び床スラブに
	の部材応力分布について,機械工学便覧を参照し,対象とする		鉄筋コンクリート製ぐ
	部材のせん断力の最大値が生じている断面の曲げモーメント及		デスタルであることか
	びせん断力と躯体の形状寸法より、せん断スパン比が 1.0 以下		ら,構造の違いにより記
	であることを確認した。一般的に、せん断スパン比が 1.0 以下		価方法が異なる。
	である梁部材はディープビームと呼ばれており、本検討では、		
	コンクリート標準示方書 [構造性能照査編] に示されるディー		
	プビームの設計せん断耐力式を適用し、床スラブの終局面外せ		
	ん断応力度を設定する。		
	$V_{cdd} = \beta_d \cdot \beta_p \cdot \beta_a \cdot f_{dd} \cdot b_w \cdot d / \gamma_b$		
	ここで、		
	$f_{dd} = 0.19 \sqrt{f'_{cd}} (N/mm^2)$		
	$eta_d=\sqrt[4]{1/d}$ ただし, $eta_p>$ 1.5 となる場合は 1.5 とする		
	$eta_p=\sqrt[3]{100p_w}$ ただし, $eta_p>$ 1.5 となる場合は 1.5 とする		
	$\beta_a = \frac{5}{1 + (a/d)^2}$		
	f'_{cd} : コンクリートの設計圧縮強度(N $/$ mm 2)		
	d : 有効せい (m)		
	p_{w} : 引張鉄筋比(一)		
	a/d: せん断スパン比 (-) b _w : 腹部の幅 (mm)		
	γ_b :部材係数(一)		
	各項目の数値を下表に示す。		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.1	2版)	島根原子力発電所 2 号炉	備考
	項目	数值		
	f'ca: コンクリートの設計圧縮強度	32.86N/mm²		
	コンクリートの設計基準強度	22. 06N/mm²		
	圧縮強度動的増倍率**	1.49		
	d:有効せい			
	p_w :引張鉄筋比			
	a/d: せん断スパン比	0.43		
	b_{w} :腹部の幅			
	γ_b : 部材係数	1. 3		
	※ 次項参照			
	2. 圧縮強度動的増倍率の算定			
	一般に、コンクリートの強度、ヤング	係数等の材料特性は,		
	コンクリートに作用する荷重の載荷速度	に依存する。その強度		
	とヤング係数は、応力速度又はひずみ速	度の対数に比例して増		
	加することが明らかになっていることよ	り、床スラブの終局面		
	外せん断応力度算定においては、圧縮に	対する材料強度にひず		
	み速度効果を考慮することとし, 本評価	ではコンクリート標準		
	示方書 [構造性能照査編] において具体	的計算方法が示されて		
	いる, CEB-FIP Model Code 1990 による	圧縮強度動的増倍率を		
	設定した。			
	LS-DYNAコードによるSE解析	では、せん断検討範囲		
	の床スラブのコンクリート要素が経験す	るひずみ速度が 30s ⁻¹		
	以下であるため,その範囲における CEB	-FIP Model Code 1990		
	の圧縮強度動的増倍率の算定式を以下に	示す。		
	$f_{c,imp}/f_{cm} = (\dot{\varepsilon_c}/\dot{\varepsilon_{c0}})^{1.026\alpha_s}$ for $ \dot{\varepsilon_c} \le 30$	$0s^{-1}$		
	ここで,			
	1			
	$\alpha_s = \frac{1}{5 + 9f_{cm}/f_{cm0}}$			
	$f_{c,imp}$: 衝撃時の圧縮強度 f_{cm} : 圧縮強度 = $225 \text{kg/cm}^2 \times 0.09$ f_{cm0} : 10MPa $\dot{\varepsilon}_c$: ひずみ速度 * = 0.5 s^{-1}	80665 ≒ 22.06 MPa		
	$arepsilon_{c0}$: $30 \times 10^{-6} \ \mathrm{s}^{-1}$ ※ LS-DYNAコードを用いたSE角 ひずみ速度に基づき設定	発析における床スラブ端部の		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
	以上より、圧縮強度の動的増倍率は 1.49 となる。		
	3. 算定結果 ディープビームの設計せん断耐力 V_{cdd} は、約6,078 kN となり、		
	終局面外せん断応力度として 4.33 N/mm ² となる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	別添 3		
	SE発生時の面外せん断応力度の算定方法		・評価方針の相違
			【東海第二】
	1. 面外せん断に対する検討範囲		島根2号炉は内側針
	(1) 床スラブの検討範囲		板,外側鋼板,リブ鋼板
	第1図にペデスタルの床スラブの形状寸法を示す。ペデス		からなる二重鋼板製
	タルの床スラブは直径 6,172mm, 板厚の円盤形状で		デスタルであるのに
	あり、SE時には圧力波の伝播による分布荷重を受ける。面		し, 東海第二はペデス
	外せん断に対する検討に際して、分布荷重を受ける円盤スラ		ル側壁及び床スラブ
	ブの部材応力分布について,機械工学便覧の円板の応力計算		鉄筋コンクリート製
	式に基づき、対象とする部材のせん断力(Q)の最大値が生		デスタルであること
	じている断面の曲げモーメント(M)及びせん断力(Q)に		ら,構造の違いにより
	よりせん断スパン比を確認した。第2図に曲げモーメント及		価方法が異なる。
	びせん断力分布図を示す。せん断力の最大値が生じる断面は		
	スラブ端部であり、曲げモーメントとの関係を算定した結果,		
	せん断スパン比が 1.0 以下であった。一般的にせん断スパン		
	比が 1.0 以下である梁部材は、ディープビームと呼ばれてお		
	り,本検討では,コンクリート標準示方書 [構造性能照査編]		
	に示されるディープビームの設計せん断耐力式に適用し、終		
	局限界に対する構造健全性を確認する。		
	前述のとおり,東海第二発電所のペデスタルの床スラブは,		
	躯体の形状、寸法及び応力状態より、せん断スパン比が小さ		
	い構造物である。本評価に用いる検討範囲及び検討用のせん		
	断力については、原子力発電所耐震設計技術規程JEAC		
	4601-2008 ((社) 日本電気協会, 2008) において, 主要な荷		
	重が分布荷重又は多点荷重で、材料非線形解析手法を用いて		
	具体的な部材性能照査を行う場合の参考図書として記載され		
	ている原子力発電所屋外重要土木構造物の耐震性能照査指		
	針・マニュアル((社) 土木学会, 1992)を用いて検討範囲及		
	び検討用せん断力の設定を行った。		
	第3図に床スラブの形状及び発生するせん断力分布の概念		
	図を示す。検討断面の位置は側壁内側のスラブ端部からの距		
	離 x に設定する。なお, 距離 x の上限値として有効せいの 1.5		
	倍,下限値として断面せいの1/2倍と規定されているため,		
	本評価においては、安全側に下限値となる断面せいの1/2倍		
	であるとし、更に検討用のせん断力についても、スラ		
	ブ端部からの位置のせん断力ではなく、距離xから部		
	材端部までのせん断力分布の平均値を用いた値を検討用のせ		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	ん断力とした。第4図に,	解析モデルにおける床スラブ検討		
	範囲(LS-DYNA解析	結果の評価におけるせん断力の抽		
	出範囲)を示す。			
	(2) 側壁の検討範囲			
	第 5 図に側壁検討範	囲を示す。ペデスタルの側壁は		
	EL. 12. 184m にて上部と下部	の二階層に分けられている設計で		
	ある。SE発生時の水張高	さであるペデスタル床面高さ 1m ま		
	での側壁に直接動的荷重が	加わることから, 側壁の検討断面		
	は上部,下部のそれぞれの	水の接する高さの断面とした。		
	2. 面外せん断応力度の算定			
	面外せん断応力度の算定に	ついて, 床スラブを例に説明する。		
	なお、側壁についても床スラ	ブと同様に面外せん断応力度を算		
	定している。			
	第6図にペデスタル床スラ	ブ端部の躯体形状の概念を示す。		
	また、第7図に直交座標系応	力成分を示す。床スラブ端部1列		
	目の各要素のせん断力(Q(1	, 1) ~Q(1, j)) は, 直交座標系		
	における τ yz 応力成分に相当	するせん断応力度 (τ _{yz} (1, 1) ~		
	τ _{yz} (1, j)) を要素毎に取り	出し,要素毎のせん断断面積(A		
	(1, 1) ∼A (1, j)) をそれ	ぞれ乗じることにより算定する。		
	床スラブ端部の1列目の要素	幅当たりの面外せん断応力度は,		
	スラブの厚さ方向(1~j 行目) の各要素のせん断力 (Q (1, 1)		
	~Q (1, j)) を合算した値($\sum_{i=1}^{j}Q_{(1,\ i)}$)に 1 列目のせん断断		
	面積($\sum_{i=1}^{j} A_{(1,\ i)}$)で除して,	スラブ端部 1 列目の面外せん断		
		たがって、k列目の面外せん断応		
	力度(τ_k)は, $\tau_k=\sum_{i=1}^j Q_{ij}$	$(x_{i,j})/\sum_{i=1}^{j}A_{(k,j)}$ で表すことができ		
		応力度($\tau_1 \sim \tau_k$)に,それぞれの		
	半径方向要素幅を乗じて合算	した値を検討範囲の幅で除すこと		
	により、検討範囲における面	外せん断応力度を算定する。第 1		
	表に本手順により算定したS	E発生時の面外せん断応力度を示		
	す。			
	第1表 SE発生町	時の面外せん断応力度		
	評価対象部位	発生応力度		
	上部 側壁	約 0.93 N/mm ²		
	下部	約 0.77 N/mm²		
	床スラブ	約 3.70 N/mm²		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第1図 ペデスタルの床スラブの形状寸法 1: 部材長 W: 分布荷重 W: 分布荷重 せん断力(Q)分布図 第2図 曲げモーメント及びせん断力分布の関係 ペデスタル様次のサントを対して、		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12 版) 第 4 図 床スラブ部解析モデルにおける面外せん断力の検討範囲 第 5 図 側壁部解析モデルにおける面外せん断力の検討範囲 「yx(1,1)×A(1,1)=Q(1,1) 「yx(1,2)×A(1,2)=Q(1,2) 「yx(1,3)×A(1,3)=Q(1,3) 「xx(1,3)×A(1,3)=Q(1,3) [xx(1,3)×A(1,3)×A(1,3)=Q(1,3) [xx(1,3)×A(1,3)×A(1,3)=Q(1,3) [xx(1,3)×A(1,3)×A(1,3)=Q(1,3) [xx(1,3)×A(1,3)×A(1,3)=Q(1,	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
伯崎刈羽原十刀発電所 6 / 7 号炉 (2017, 12, 20 版)	東海第二発電所 (2018. 9. 12 版) (第 7 図 直交座標系応力成分	高恨原十刀発電所 2 号炉	順考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	別添 4		
	ペデスタルに作用する圧力について		・評価方針の相違
			【東海第二】
	1. ペデスタル躯体に作用する圧力の分布		島根2号炉は内側錐
	水蒸気爆発は、溶融デブリが水中に落下し、融体が膜沸騰状		板,外側鋼板,リブ鋼板
	態で分散混合することで粗混合領域が形成され、さらに、この		からなる二重鋼板製へ
	粗混合領域においてトリガリングが発生することで、融体の細		デスタルであるのに対
	粒化、急速放熱に伴い圧力波が粗混合領域内を伝播し、この相		し, 東海第二はペデスタ
	互作用の結果,高圧領域(爆発源)が形成される事象である。		ル側壁及び床スラブに
	ペデスタル中心でSEが発生すると、高圧領域より生じた圧力		鉄筋コンクリート製
	波は、水中で減衰(距離減衰)しながら側壁の方向へ進行する。		デスタルであることだ
	第1図及び第2図にLS-DYNA解析におけるペデスタル		ら,構造の違いにより記
	躯体に作用する圧力の分布を示す。LS-DYNA解析では、		価方法が異なる。
	床スラブには最高約 55MPa,側壁には最高約 4MPa の圧力が作用		
	する。		
	なお、LS-DYNAにおける爆発源の調整の結果、側壁及		
	び床スラブの力積がSE解析コードJASMINEの解析結果		
	を包絡していることを確認している。(添付資料3.3.4別添)		
	2. 手計算との発生応力の比較		
	ペデスタル躯体に作用する圧力より材料力学に基づく手計算		
	手法を用いて求めたコンクリートの応力と、LS-DYNA解		
	析におけるコンクリートの応力を比較した。		
	第3図に手計算及び解析結果の応力比較を示す。下部側壁に		
	作用する圧力の平均値(最高約 2MPa)より機械工学便覧に示さ		
	れている内圧を受ける円筒の弾性応力算定式にて求めた面外方		
	向応力の平均値は最大約 0.70N/mm²であり,解析結果の約		
	0.77N/mm²と比較して両者はよく一致している。したがって,		
	LS-DYNA解析では構造物の応答が適切に評価されてい		
	る。		
	$\sigma_r = -\frac{k^2/R^2 - 1}{k^2 - 1} P_a$ $= -\frac{k^2/R^2 - 1}{R^2 - 1} P_a$		
	k : b/a により計算した値 R : r/a により計算した値		
	a : 内半径 (mm) …3,086mm 図6・9 内外圧を受ける円筒 (機械工学便覧 基礎編 a3 材料力学) b : 外半径 (mm) …		
	r : 半径方向の座標 (mm) … (下部側壁の壁厚中心)		
	P _a : 内圧 (MPa)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	2.2 2.		

1. は 東 環 が SE 価 確 認 ひ こと れ か 2. 残 (1)	別添5 SE後のコンクリートの残留ひび割れの影響(参考) にじめに 海第二発電所では、SEによって残留熱除去系及び代替循・却系の水源となるサプレッション・チェンバに大量のデブ移行するような経路が形成されないことを確認するため、によってペデスタルの構造が終局状態に至らないことを評している。しかしながら、SEによって躯体に生じた残留で割れより、デブリの冷却水がペデスタルの外へ漏えいするも考えられることから、デブリ冷却性の観点で残留ひび割もらの漏水影響を検討する。 留ひび割れ幅の算定算定方法 LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書に設計編]((社) 土木学会、2012))(以下「コンクリート標準示方書「設計編]」という。)のひび割れ幅の算定式を用い	 ・評価方針の相違 【東海第二】 島根 2 号炉は内側銀板,外側鋼板,リブ鋼板 がらなる二重鋼板のに対するのでである。 が見りますが 鉄筋コンであるにより ボスタルである。 一方とり 一方法が異なる。
1. は 東 環 が SE 価 確 認 ひ こと れ か 2. 残 (1)	にじめに 海第二発電所では、SEによって残留熱除去系及び代替循 却系の水源となるサプレッション・チェンバに大量のデブ 移行するような経路が形成されないことを確認するため、 によってペデスタルの構造が終局状態に至らないことを評 、RPV支持機能及びデブリ保持機能が維持されることを している。しかしながら、SEによって躯体に生じた残留 割れより、デブリの冷却水がペデスタルの外へ漏えいする も考えられることから、デブリ冷却性の観点で残留ひび割 らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	【東海第二】 島根 2 号炉は内側部 板,外側鋼板,リブ鋼板 からなる二重鋼板製 デスタルであるのに し,東海第二はペデス ル側壁及び床スラブル 鉄筋コンクリート製 デスタルであることが ら,構造の違いにより記
東環境リが SE 価は確認 ひこと れか 2. 残 (1)	海第二発電所では、SEによって残留熱除去系及び代替循 ・却系の水源となるサプレッション・チェンバに大量のデブ ・移行するような経路が形成されないことを確認するため、によってペデスタルの構造が終局状態に至らないことを評 ・、RPV支持機能及びデブリ保持機能が維持されることを ・している。しかしながら、SEによって躯体に生じた残留 を割れより、デブリの冷却水がペデスタルの外へ漏えいする ・も考えられることから、デブリ冷却性の観点で残留ひび割 ・らの漏水影響を検討する。 ・留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 ・設計編]((社) 土木学会、2012))(以下「コンクリート標 ・示方書[設計編]」という。)のひび割れ幅の算定式を用い	島根2号炉は内側。板,外側鋼板,リブ鋼がらなる二重鋼板製・デスタルであるのに、し,東海第二はペデスル側壁及び床スラブ、鉄筋コンクリート製・デスタルであること、6,構造の違いにより。
東環境リが SE 価は確認 ひこと れか 2. 残 (1)	海第二発電所では、SEによって残留熱除去系及び代替循 ・却系の水源となるサプレッション・チェンバに大量のデブ ・移行するような経路が形成されないことを確認するため、によってペデスタルの構造が終局状態に至らないことを評 ・、RPV支持機能及びデブリ保持機能が維持されることを ・している。しかしながら、SEによって躯体に生じた残留 を割れより、デブリの冷却水がペデスタルの外へ漏えいする ・も考えられることから、デブリ冷却性の観点で残留ひび割 ・らの漏水影響を検討する。 ・留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 ・設計編]((社) 土木学会、2012))(以下「コンクリート標 ・示方書[設計編]」という。)のひび割れ幅の算定式を用い	板,外側鋼板,リブ鋼からなる二重鋼板製・デスタルであるのにし、東海第二はペデスル側壁及び床スラブ鉄筋コンクリート製・デスタルであることも、構造の違いにより
環件 リが SE 価し 確認 ひひこと れか 2. 残 (1)	対系の水源となるサプレッション・チェンバに大量のデブ移行するような経路が形成されないことを確認するため、によってペデスタルの構造が終局状態に至らないことを評し、RPV支持機能及びデブリ保持機能が維持されることをしている。しかしながら、SEによって躯体に生じた残留を割れより、デブリの冷却水がペデスタルの外へ漏えいするも考えられることから、デブリ冷却性の観点で残留ひび割らの漏水影響を検討する。 留ひび割れ幅の算定算定方法 LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書設計編]((社) 土木学会、2012))(以下「コンクリート標準示方書、設計編]((社) 土木学会、2012))(以下「コンクリート標準示方書、設計編]、という。)のひび割れ幅の算定式を用い	からなる二重鋼板製デスタルであるのにし、東海第二はペデスル側壁及び床スラブ 鉄筋コンクリート製デスタルであることら、構造の違いにより
リが SE 価し 確認 ひひ こと れか 2. 残 (1) 節 「準 て	移行するような経路が形成されないことを確認するため、によってペデスタルの構造が終局状態に至らないことを評し、RPV支持機能及びデブリ保持機能が維持されることをしている。しかしながら、SEによって躯体に生じた残留割れより、デブリの冷却水がペデスタルの外へ漏えいするも考えられることから、デブリ冷却性の観点で残留ひび割らの漏水影響を検討する。 留ひび割れ幅の算定算定方法 LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書設計編]((社) 土木学会、2012))(以下「コンクリート標準示方書、設計編]((社) 土木学会、2012))(以下「コンクリート標語示方書「設計編]」という。)のひび割れ幅の算定式を用い	デスタルであるのに し,東海第二はペデス ル側壁及び床スラブ 鉄筋コンクリート製 デスタルであること ら,構造の違いにより
SE 価し 確認 ひひ こと れか 2. 残 (1) 筋 「準 て 曲	によってペデスタルの構造が終局状態に至らないことを評 、RPV支持機能及びデブリ保持機能が維持されることを している。しかしながら、SEによって躯体に生じた残留 割れより、デブリの冷却水がペデスタルの外へ漏えいする も考えられることから、デブリ冷却性の観点で残留ひび割 らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	し, 東海第二はペデス ル側壁及び床スラブ 鉄筋コンクリート製 デスタルであること ら, 構造の違いにより
価して確認でいることれか。 2. 残(1) 節(1) がは、 は、 は	、RPV支持機能及びデブリ保持機能が維持されることを している。しかしながら、SEによって躯体に生じた残留 割れより、デブリの冷却水がペデスタルの外へ漏えいする も考えられることから、デブリ冷却性の観点で残留ひび割 らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	ル側壁及び床スラブ 鉄筋コンクリート製 デスタルであること ら, 構造の違いにより
確認 ひひ こと れか 2. 残 (1) 節 単 て	はしている。しかしながら、SEによって躯体に生じた残留で割れより、デブリの冷却水がペデスタルの外へ漏えいするも考えられることから、デブリ冷却性の観点で残留ひび割らの漏水影響を検討する。 は留ひび割れ幅の算定算定方法 LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書で設計編]((社) 土木学会、2012))(以下「コンクリート標語示方書「設計編]」という。)のひび割れ幅の算定式を用い	鉄筋コンクリート製 デスタルであること ら, 構造の違いにより
ひひ こと れか 2. 残 (1) 節 単 て	割れより、デブリの冷却水がペデスタルの外へ漏えいする も考えられることから、デブリ冷却性の観点で残留ひび割 らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	デスタルであること ら, 構造の違いにより
こと れか 2. 残 (1) 節 「準 て	も考えられることから、デブリ冷却性の観点で残留ひび割らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書設計編]((社) 土木学会、2012))(以下「コンクリート標志示方書「設計編]」という。)のひび割れ幅の算定式を用い	ら,構造の違いにより
れか 2. 残 (1) 節 し 準 て 曲	らの漏水影響を検討する。 留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	
2. 残 (1) 筋 (重	留ひび割れ幅の算定 算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	価方法が異なる。
(1) (1) (1)	算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	
(1) (1) (1)	算定方法 LS-DYNAコードによるSE解析終了時刻における鉄 の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	
第 〔 〕 章 で	LS-DYNAコードによるSE解析終了時刻における鉄の軸方向の引張応力状態により、コンクリート標準示方書設計編]((社) 土木学会、2012))(以下「コンクリート標示方書[設計編]」という。)のひび割れ幅の算定式を用い	
節に関する。	の軸方向の引張応力状態により、コンクリート標準示方書 設計編]((社) 土木学会、2012))(以下「コンクリート標 示方書[設計編]」という。)のひび割れ幅の算定式を用い	
道 道 世	設計編] ((社) 土木学会, 2012)) (以下「コンクリート標 示方書 [設計編]」という。) のひび割れ幅の算定式を用い	
準 て 曲	示方書 [設計編]」という。)のひび割れ幅の算定式を用い	
#		
######################################		
#	ペデスタル躯体の残留ひび割れ幅を算定する。	
	鉄筋コンクリート部材に曲げモーメントが作用した場合,	
增	げモーメントの増加と共にひび割れが発生し、その本数が	
	加することでひび割れ間隔が小さくなっていく。しかし,	
ш	げモーメントがある程度以上大きくなると、新たなひび割	
ħ	が発生しない状態となる。このとき、鉄筋コンクリートの	
U	び割れ幅(W_{cr})は,一般的に(1)式で表すことができ,	
豑	筋コンクリートのひび割れ間隔に、ひび割れ間のコンクリ	
_	トと鉄筋のひずみ差を乗じた値として与えられることにな	
Z	0	
	$W_{cr} = \int_0^{l_{cr}} (\varepsilon_s - \varepsilon_c) d_x \cdots (1)$	
	こで、	
	l_{cr} : ひび割れ間隔	
	$ \varepsilon_s - \varepsilon_c $: 鉄筋とコンクリートのひずみ差	
	これを基に、コンクリート標準示方書[設計編]では、鉄	
· · · · · · · · · · · · · · · · · · ·	のかぶりや鋼材の表面形状等を考慮し、(2) 式のように示	
	れている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
伯啊对初原十刀発電所 6/ 7 写炉 (2017.12.20 版)	果海第二発電所(2018.9.12 版) $W_{cr} = 1.1k_1k_2k_3\{4c + 0.7(C_S - \emptyset)\}\left(\frac{\sigma_{Se}}{E_S} + \varepsilon'\right) \cdots (2)$ ここで、 $k_1 : 鉄筋の表面形状がひび割れ幅に及ぼす影響を表す 係数(一) k_2 : 3 \rightarrow 0 以一トの品質がひび割れ幅に及ぼす影響を表す係数で(3)式による k_2 = \frac{15}{f'_{c} + 20} + 0.7 \cdots (3) f'_{c} : 3 \rightarrow 0 以一トの圧縮強度(N/nm²) k_3 : 引張鋼材の段数の影響を表す係数で(4)式による k_3 = \frac{5(n+2)}{7n+8} \cdots (4) n : 引張鋼材の段数(一) c : かぶり(nm) C_S : 鋼材を(mm) G_S : :鋼材を他置のコンクリートの応力が 0 の状態からの 鉄筋応力度の増加量(N/mm²) E_S : :鉄筋のヤング係数(N/mm²) E_S : :鉄筋のヤング係数(N/mm²) E_S : :銀新のヤング係数(N/mm²) E_S : :銀筋のヤング係数(N/mm²) E_S : : 3 ※ 第 の そ 第 で 2 が 3 が 4 で 3 が 4 で 3 が 4 で 3 が 4 で 3 が 4 が 4 で 3 が 4 で 3 が 4 が 4 で 3 が 4 で 3 が 4 が 4 で 3 が 4 が 4 が 4 が 4 が 4 で 3 が 4 が 4 が 4 が 4 が 4 が 4 が 4 が 4 が 4 が$	局限原士 刀 発 电灯 2 方炉	/ 用 考
	項目 数値 k1 :鉄筋の表面形状がひび割れ幅に及ぼす影響を表す係数(異形鉄筋) 1.0 f'c :コンクリートの圧縮強度 22.06 N/mm² n :引張鋼材の段数 22.06 N/mm² c :かぶり 25.05×10 ⁵ N/mm² c : 銀材の中心間隔 2.05×10 ⁵ N/mm² を'sd:コンクリートの収縮及びクリープ等によるの数値 150×10 ⁻⁶ でが割れ幅の増加を考慮するための数値 150×10 ⁻⁶		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	す。解析終了時刻における鉄筋の軸方向引張応力状態に基づ		
	き算定した各鉄筋位置における残留ひび割れ幅の最大値は側		
	壁部で約 0.05mm,床スラブ部(最下段鉄筋)で約 0.13mm で		
	ある。		
	3. SE後の残留ひび割れによる漏水影響の検討		
	(1) ペデスタル躯体の応力状態を考慮した漏水影響の検討		
	残留ひび割れによる漏水影響が表れやすいと考えられる床		
	スラブを対象に、ペデスタル躯体の応力状態より漏水影響に		
	ついて検討する。		
	第 2 図に鉄筋の応力-ひずみ関係を示す。解析終了時刻に		
	おける床スラブ下端鉄筋の 1 段目の軸方向の引張ひずみは		
	200μ 程度である。これは、鉄筋の応力-ひずみ関係で表現		
	した場合, ほぼ初期状態に当たる長期許容応力度 (195N/mm		
	²) の 1/5 に相当する応力レベルであり、床スラブ下端側に		
	作用する引張応力に対する強度は損なわれていない。		
	第3図に床スラブ断面応力状態を示す。SE後にはデブリ		
	自重等の荷重が作用した状態となることから、構造的に床ス		
	ラブ断面内では中立軸を境に鉄筋が配置される床スラブ下端		
	側に引張応力が作用するが、床スラブ上端側ではひび割れを		
	閉鎖させる方向の圧縮応力が作用する。また、SE後におい		
	ても、ペデスタル(ドライウェル部)へ落下したデブリによ		
	って床スラブの上端側のコンクリートが加熱されることで、		
	圧縮応力が作用した状態となる。		
	以上のことより、ペデスタル躯体の応力状態を考慮すると、		
	実機においてSE後の残留ひび割れが生じた場合において		
	も、漏水量は相当小さい値になると考えられる。		
	り、個が重は作品がです。		
	(2) 既往の知見を踏まえた漏水影響の検討		
	「コンクリートのひび割れ調査、補修・補強指針―2009―」		
	において、建築物を対象とした漏水実験や実構造物における		
	実態調査がまとめられている。この中で坂本他の検討*1で		
	は、10cm~26cm までの板厚による実験を行っており、板厚が		
	厚くなる方が漏水に対して有利であり、26cmでは漏水が生じ		
	多ひび割れ幅は 0.2mm 以上であったと報告されている。これ		
	に対して、実機ペデスタルの側壁(厚さ:上部 , 下		
	部		
	前 <u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	また,一般に,ひび割れ幅が 0.2mm 未満であれば,水質に		
	よる目詰まりやひび割れ内部のコンクリートの水和反応によ		
	る固形物の析出等により、漏水流量が時間とともに減少する※		
	² ことが分かっている。		
	※1 コンクリート壁体のひびわれと漏水の関係について		
	(その2)(日本建築学会大会学術講演便概集,昭和		
	55 年 9 月)		
	※2 沈埋トンネル側壁のひび割れからの漏水と自癒効果		
	の確認実験 (コンクリート工学年次論文報告集,		
	Vol. 17, No. 1 1995)		
	(3) MCCI影響抑制対策施工に伴う漏水影響の低減効果につ		
	いて		
	MCCI影響抑制対策であるコリウムシールドの設置に伴		
	い、水密性確保の観点でペデスタル躯体とコリウムシールド		
	の間をSUS製ライナでライニングする計画としている。こ		
	のため、デブリが落下した以降の状態においても、SUS製		
	ライナが残留ひび割れからの漏水影響低減に寄与すると考え		
	られる。		
	4. 残留ひび割れからの漏水を仮定したデブリ冷却性への影響評		
	価		
	前述のとおり,ペデスタル躯体の応力状態や既往の知見等を		
	考慮すると、実機において残留ひび割れから漏えいが発生した		
	場合においても、漏水量は相当小さくなると考えられるが、こ		
	こでは残留ひび割れからの漏水を仮定した場合のデブリ冷却性		
	への影響について定量的に検討する。		
	(1) 漏水量の評価		
	漏水量は「コンクリートのひび割れ調査、補修・補強指針		
	-2009-付:ひび割れの調査と補修・補強事例(社団法人日		
	本コンクリート工学協会)」における漏水量の算定式に基づ		
	き、残留ひび割れ幅に対する漏水量を評価する。なお、本評		
	価における算定条件は漏水量を多く見積もる観点で保守的な		
	設定とする。		
	【漏水量算定式】		
	$Q = \frac{C_w \cdot L \cdot w^3 \cdot \Delta p}{12v \cdot t}$		
	ここで, Q :漏水量 (mm³/s)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(20	18. 9. 12 版)	島根原子力発電所 2号炉	備考
	C _w : 低減係数(一) L : ひび割れ長さ(mn w : ひび割れ幅(mm) Δp : 作用圧力(N/mm ² ν : 水の粘性係数(Ns t : 部材の厚さ(ひひ	2) 5/mm ²)		
	項目の数値を下表に示す。			
	項目	数值		
	C _w : 低減係数 ^{※1}	0.01		
	L : ひび割れ長さ*2	上部側壁: 112,000mm 下部側壁: 27,000mm 床スラブ: 74,000mm		
	w : ひび割れ幅 ^{※3}	側 壁:0.05mm 床スラブ:0.13mm		
	Δ <i>p</i> : 作用圧力 ^{※4}	0.25 N/mm ²		
	ν : 水の粘性係数**5	$1.82 \times 10^{-10} \text{ Ns/mm}^2$		
	t :部材の厚さ(ひび割れ深さ)			
	基づく値 ※2 コンクリート標準示方書 [設計編] びペデスタル躯体寸法に基づき設定 ※3 LS-DYNA解析結果に基づき算れ幅の最大値 ※4 デブリ全量落下後に人通用開口部高 3m高さ)での床スラブ上面での水頭	F次論文報告集 vol. 17 No. 1 1995) に の算定式にて評価したひび割れ間隔及 したひび割れ長さ 定した床スラブ及び側壁の残留ひび割 さまで水張りされた状態(床面より約 圧,及びRPV破損後のドライウェル 考慮した圧力(側壁部の漏水量算定に 適用)		
	(2) 漏水量の算定結果			
	上記の条件にて求めた漏水量			
	床スラブで約 0.38m ³ /h となり	, 合計約 0.43m ³ /h である。		
	(3) 漏水量に対するデブリ冷却性 算定した床スラブ及び側壁の			
	であるが,これに対して格納容器			
	³/hのペデスタル注水が可能で			
	E後のコンクリートの残留ひび			
	においても、漏水量を十分に上 から、デブリ冷却性への影響は			
	# 10 , / / プロAPIE 10/R/管(は)	⇔ ∨ о		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	5. まとめ LS-DYNAコードの解析結果に基づきペデスタル躯体に発生する残留ひび割れ幅は側壁部で約0.05mm, 床スラブ部で約0.13mmであることを評価した。これに対して、ペデスタル躯体の応力状態, 既往の知見等を考慮すると残留ひび割れからの漏水を仮定して保守的に評価した漏水量約0.43m³/hに対して、ペデスタルの床面に落下したデブリを冷却するための格納容器下部注水系(常設)は80m³/hで注水可能であることから、万が一SE後の残留ひび割れによる漏水が生じた場合においても、ペデスタルの床面に落下したデブリを十分に冷却することが可能である。		
	要素番号 残留ひび割れ幅 ** ① B699530 約0.04 mm ② B678799 約0.04 mm ③ B696183 約0.04 mm ④ B704282 約0.04 mm ⑤ B703078 約0.04 mm ⑥ B704112 約0.04 mm ⑦ B696021 約0.05 mm ⑧ B601447 約0.13 mm		
	※ 解析終了時刻における鉄筋の軸方向引張応力より算定 第1図 側壁部及び床スラブ部の鉄筋位置における残留ひび割れ 幅		
	版力 N/mm ² σ_y $E_a: 2.05 \times 10^5 \text{ N/mm}^2$ $\sigma_y: 345 \text{ N/mm}^2$ $\varepsilon_y: 約1700 \mu$ $\varepsilon_y: 1000 \mu$ ε_y $\varepsilon_y: 1000 \mu$		
	第 2 図 鉄筋の応力-ひずみ関係とSE後の鉄筋の応力レベル		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018. 9. 12 版) (SD345 鉄筋) (SD345 大阪	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	別添 6		・評価方針の相違
	ペデスタルの対策施工に伴う床スラブの強度維持について		【東海第二】
	- ・ アステルのス対象施工(CIFアルスフラの)気及能がについて		L 木 14 カー
	SEが発生した場合のLS-DYNAコードによるペデスタ		板、外側鋼板、リブ鋼板
	ル構造健全性評価では、ペデスタル全体のコンクリートを一体		からなる二重鋼板製
	としてモデル化している。一方で、実機では、MCCI対策で		デスタルであるのに対
	あるスリット状排水流路の施工等のため、床スラブ上部の既存		し、東海第二はペデスク
	コンクリートを斫り、スリット等を設置した上で再度コンクリ		ル側壁及び床スラブル
	ートを打継ぐこととなる。そこで、コンクリート打継ぎに当た		鉄筋コンクリート製
	っては、コンクリートを斫る前と同等の強度を維持することと		デスタルであることだ
	する。		ら,構造の違いにより記
	- ここでは、床スラブの強度維持の方針、必要鉄筋量の評価、		価方法が異なる。
	施工の成立性及び施工による影響の有無について説明する。		
	1. 床スラブの強度維持の方針		
	対策後のペデスタル概要図を第 1 図に示す。施工後において		
	も、施工前と同等の強度を維持し、ペデスタル全体のコンクリ		
	ートを一体としてモデル化したLS-DYNAコードによるペ		
	デスタル構造健全性評価を適用可能とするための必要な事項及		
	び対応方針は、以下のとおりである(第2図)。		
	① 必要事項:打継ぎコンクリートと既存コンクリート間は,		
	施工前と同様に荷重が伝達されること		
	対応方針:施工前と同様に荷重伝達するため,鉄筋を追		
	加		
	② 必要事項:打継ぎコンクリートの強度は,既存コンクリ		
	ートと同等の強度を確保		
	対応方針:既存コンクリートと同等の設計基準強度を有		
	するコンクリートを選定		
	なお、実際の施工においては、コンクリートを打継ぎする際		
	は境界面の打継処理をすることから、コンクリートの打継目に		
	も一定程度の強度を有するものと考えられるが,「2. 必要鉄筋		
	量の評価」では保守的にこの効果を考慮せず、必要な鉄筋量を		
	評価することとする。		
	2. 必要鉄筋量の評価		
	施工後においても, 施工前と同様に荷重を伝達する構造とす		
	るため、必要な鉄筋量を追加することとし、各種合成構造設計		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	指針・同解説((社) 日本建築学会,2010)(以下,「合成指針」		
	という。)及び原子力施設鉄筋コンクリート構造計算規準・同		
	解説((社)日本建築学会,2005)(以下,「RC-N規準」と		
	いう。) に基づき算定する。また、SE評価では終局状態に至		
	らないことを確認しているため、コンクリート強度については		
	短期許容応力度を考慮する。さらに、SE発生時においても施		
	工前と同様の荷重伝達を達成する観点より、LS-DYNAを		
	用いたSE評価に基づく、コンクリートの圧縮強度動的増倍率		
	(1.49 倍) (別添 2 参照) を考慮した設計とする。なお, コン		
	クリートは設計上、圧縮力とせん断力を負担するが、圧縮力に		
	ついては施工前後で水蒸気爆発時の荷重伝達の様態に変わり		
	はないことから、せん断力を対象とした必要鉄筋量を評価す		
	る。		
	2.1 鉛直方向鉄筋		
	(1)接着系アンカーのせん断耐力 (鉄筋)		
	合成指針に基づき,		
	$q_a = min[q_{a1}, q_{a2}, q_{a3}]$		
	$q_{a1} = \varphi_1 \cdot {}_s \sigma_{qa} \cdot {}_{sc} a$		
	$q_{a2} = \varphi_2 \cdot {}_c \sigma_{qa} \cdot {}_{sc} a$		
	$q_{a3} = \varphi_2 \cdot {}_{c}\sigma_t \cdot A_{qc}$		
	q_a :接着系アンカーボルト 1 本当たりの許容せん断力 (N)		
	q _{a1} :接着系アンカーボルトのせん断強度により決まる 場合のアンカーボルト 1 本当たりの許容せん断力 (N)		
	q _{a2} :定着した躯体の支圧強度により決まる場合の接着		
	系アンカーボルト1本当たりの許容せん断力(N)		
	q_{a3} :定着した躯体のコーン状破壊により決まる場合の 接着系アンカーボルト 1 本当たりの許容せん断力 (N)		
	$oldsymbol{arphi_1}$:低減係数で短期荷重用の 1.0 を用いる。		
	φ ₂ : 低減係数で短期荷重用の 2/3 を用いる。		
	$s\sigma_{qa}$:接着系アンカーボルトのせん断強度で、		
	$s\sigma_{qa}=0.7\cdot s\sigma_{y}$ とする。 $s\sigma_{y}$:接着系アンカーボルトの規格降伏強度= 345 N/mm		
	- sca :接着系アンカーボルトの断面積		
	$_{c}\sigma_{qa}$:コンクリートの支圧強度で, $_{c}\sigma_{qa}=0.5\sqrt{F_{cd}\cdot E_{c}}$ とする。		
	$c\sigma_t$: コーン状破壊に対するコンクリートの引張強度で、 $c\sigma_t = 0.31\sqrt{F_{cd}}$ とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	F_c : コンクリートの設計基準強度=22.06N/mm² F_{cd} : 応力状態 (短期) 及び圧縮強度動的増倍率 (1.49 倍) を考慮したコンクリートの圧縮強度 $F_c \times 1.5 \times 1.49 = 49.30$ N/mm² $F_c \times 1.5 \times 1.49 = 49.30$ N/m² $F_c \times 1.40 \times 1.40 = 49.30$ N/m² $F_c \times 1.40 \times 1.40 = 49.30$ N/m² $F_c $		
	以上より、 $q_{a1} = 6.92 \times 10^4 \text{N}$ $q_{a2} = 9.95 \times 10^4 \text{N}$ $q_{a3} = 9.12 \times 10^4 \text{N}$ $q_{a3} = 9.12 \times 10^4 \text{N}$ よって、 $q_a = min[q_{a1}, q_{a2}, q_{a3}]$ であるため、せん断耐力 q_a は $6.92 \times 10^4 \text{N}$ となる。		
	(2) コンクリートの短期許容せん断応力度 R C $-$ N規準に基づくコンクリートの短期許容応力度において、コンクリートの圧縮強度動的増倍率を考慮し、 $f_s = 1.5 \cdot \frac{1}{30} \cdot F_c \cdot DIF$ かつ $1.5 \cdot \left(0.49 + \frac{1}{100}F_c \cdot DIF\right)$ 以下ここで、 F_c : コンクリートの設計基準強度 $= 22.06$ N/mm² DIF : コンクリートの圧縮強度動的増倍率 $= 1.49$		
	以上より, $1.5 \cdot \frac{1}{30} \cdot F_c \cdot \text{DIF} = 1.64 \text{ N/mm}^2$ $1.5 \cdot \left(0.49 + \frac{1}{100} F_c \cdot DIF\right) = 1.23 \text{ N/mm}^2$ よって,コンクリートの短期許容せん断応力度 \mathbf{f}_s は 1.23N/mm²となる。		
	(3) $1m^2$ 当たりに必要な鉄筋本数 $1m^2$ 当たりのコンクリートの許容せん断耐力 f_{sa} は, $f_{sa} = f_s \cdot 1000^2 = 1.23 \times 10^6 \mathrm{N}$		
	$1 m^2$ 当たりに配置する鉄筋の本数 n_a は, $n_a = f_{sa}/q_a = 17.78$ 本		
	以上より、打継ぎコンクリート部 1m ² 当たり 鉄筋を 18 本以上配置する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	2.2 水平方向鉄筋		
	(1)接着系アンカーのせん断耐力(
	合成指針に基づき,		
	$q_a = min[q_{a1}, q_{a2}, q_{a3}]$		
	$q_{a1} = \varphi_1 \cdot {}_{s}\sigma_{qa} \cdot {}_{sc}a$		
	$q_{a2} = \varphi_2 \cdot {}_{c}\sigma_{qa} \cdot {}_{sc}a$		
	$q_{a3} = \varphi_2 \cdot {}_c \sigma_t \cdot A_{qc}$		
	ここで,		
	q _a :接着系アンカーボルト1本当たりの許容せん断力 (N)		
	q _{a1} :接着系アンカーボルトのせん断強度により決まる 場合のアンカーボルト 1 本当たりの許容せん断力 (N)		
	q _{a2} : 定着した躯体の支圧強度により決まる場合の接着 系アンカーボルト1本当たりの許容せん断力 (N)		
	q _{a3} :定着した躯体のコーン状破壊により決まる場合の 接着系アンカーボルト 1 本当たりの許容せん断力 (N)		
	φ₁ : 低減係数で短期荷重用の 1.0 を用いる。		
	φ ₂ : 低減係数で短期荷重用の 2/3 を用いる。		
	$s\sigma_{qa}$:接着系アンカーボルトのせん断強度で,		
	$s\sigma_{qa}=0.7\cdot s\sigma_{y}$ とする。 $s\sigma_{y} : 接着系アンカーボルトの規格降伏強度=345N/mm$		
	$_{c}\sigma_{qa}$:コンクリートの支圧強度で, $_{c}\sigma_{qa}=0.5\sqrt{F_{cd}\cdot E_{c}}$ と		
	する。 $c\sigma_t$: コーン状破壊に対するコンクリートの引張強度		
	で、 $_{c}\sigma_{t}=0.31\sqrt{F_{cd}}$ とする。		
	F_c : コンクリートの設計基準強度= $22.06 \mathrm{N/mm^2}$ F_{cd} : 応力状態(短期)及び圧縮強度動的増倍率(1.49		
	(1.49) (25) (25) (25) (25) (25) (25) (25) (25		
	$F_c \times 1.5 \times 1.49 \stackrel{\cdot}{=} 49.30 \text{N/mm}^2$		
	E_c : コンクリートのヤング係数=2.2×10 ⁴ N/mm ²		
	A_{qc} : せん断力に対するコーン状は界面の有効投影面積		
	で $A_{qc}=0.5\pi c^2$ とする。(第3図) C : へりあき寸法		
	以上より, : 1.20×105N		
	$q_{a1} = 1.22 \times 10^{5} \text{ N}$ $q_{a2} = 1.76 \times 10^{5} \text{ N}$		
	$q_{a2} = 1.76 \times 10^{-8} \text{ N}$ $q_{a3} = 5.13 \times 10^{4} \text{ N}$		
	よって、 $q_a = min[q_{a1}, q_{a2}, q_{a3}]$ であるため、せん断耐力 q_a は		
	5. 13×10 ⁴ N となる。		
	3. 10. 10 A C & Ø 0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	(2) コンクリートの短期許容せん断応力度		
	RCーN規準に基づくコンクリートの短期許容応力度にお		
	いて、コンクリートの圧縮強度動的増倍率を考慮し、		
	$f_s = 1.5 \cdot \frac{1}{30} \cdot F_c \cdot \text{DIF}$ かつ $1.5 \cdot \left(0.49 + \frac{1}{100} F_c \cdot DIF\right)$ 以下		
	$ \begin{array}{c} \Gamma_{S} = 1.5 \cdot \frac{1}{30} \Gamma_{C} \cdot D \Pi^{*} N^{*} \supset 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.49 + \frac{1}{100} \Gamma_{C} \cdot D \Pi^{*}\right) \times 1.5 \cdot \left(0.4$		
	F_c : コンクリートの設計基準強度 $=22.06\mathrm{N/mm^2}$		
	DIF : コンクリートの圧縮強度動的増倍率=1.49		
	以上より,		
	$1.5 \cdot \frac{1}{30} \cdot F_c \cdot \text{DIF} = 1.64 \text{ N/mm}^2$		
	$1.5 \cdot \left(0.49 + \frac{1}{100} F_c \cdot DIF\right) = 1.23 \text{ N/mm}^2$		
	よって, コンクリートの短期許容せん断応力度f _s は 1.23N/		
	mm ² となる。		
	(3) 1m ² 当たりに必要な鉄筋本数		
	$1m^2$ 当たりのコンクリートの短期許容せん断耐力 f_{sa} は,		
	$f_{sa} = f_s \cdot 1000^2 = 1.23 \times 10^6 \mathrm{N}$		
	$1 m^2$ 当たりに配置する鉄筋の本数 $m{n_a}$ は,		
	$n_a = f_{sa}/q_a = 23.98 \text{Å}$		
	以上より,打継ぎコンクリート部 1m ² 当たり 鉄筋を 24		
	本以上配置する。		
	2.3 施工前後でのペデスタル構造の比較		
	上記で評価した必要鉄筋量を追加した場合のペデスタル構		
	造を, 施工前と比較して第4図に示す。		
	鉛直方向鉄筋及び水平方向鉄筋の追加により, 施工前と同様		
	に荷重伝達が可能となる。また、既存コンクリートと同等の設		
	計基準強度を有する打継ぎコンクリートを使用することで,打		
	継ぎコンクリート部は施工前と同等の強度が確保される。な		
	お,形状保持筋については,床スラブの強度維持ではなく,打		
	継ぎコンクリート部の形状を保持するために追加する。		
	2.4 SE評価で設定した終局面外せん断応力度への影響		
	SE評価では、ペデスタルの床スラブの形状を考慮して、コ		
	ンクリート標準示方書 [構造性能照査編] に示されるディープ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	ビームの設計せん断耐力式を適用した、終局面外せん断応力度		
	を判断基準として設定している(別添2参照)。		
	第5図に示すとおり、ディープビームの設計せん断耐力式は、		
	部材の高さと引張側主筋との関係より、部材上面に作用する荷		
	重の載荷点と支点を結ぶタイドアーチ的な耐荷機構(圧縮スト		
	ラット) により, せん断力に抵抗する考え方で定められている。		
	ここで、鉛直方向鉄筋を追加することにより、施工前の一体打		
	設コンクリートと同様に、既設コンクリートと打継ぎコンクリ		
	ートの荷重伝達を行えること, さらに, 水平方向鉄筋は, 施工		
	前と同等の強度を維持するために追加するが、ディープビーム		
	の設計せん断耐力式において関係しないことから、ペデスタル		
	の対策施工後においても、SE評価で用いた床スラブの終局面		
	外せん断応力度に変更はない。		
	3. 施工の成立性		
	①鉛直鉄筋 () の埋込長は、床スラブの既設鉄筋深さまで		
	型達しないことから、鉛直鉄筋の削孔は可能である。また、		
	ペデスタル側壁の既設鉄筋の最小ピッチは mm 程度であ		
	り、床スラブ端部に追加する水平方向鉄筋(一)の削孔径		
	より十分大きいため、削孔は可能である。		
	②ペデスタルに鉄筋用の削孔をする際は、ハンマードリルで穴		
	を開ける。ハンマードリルは鉄筋を切断しないため、鉄筋の		
	誤切断を回避可能である。		
	③ペデスタル側壁については、既設鉄筋ピッチを確認するため、		
	一部は表面の鉄筋まで斫り出し、既設鉄筋位置を目視にて確		
	認して削孔位置を決める。		
	④鉄筋の施工管理として、削孔後の穴を清掃し異物を除去する。		
	その後掘削深さを確認し、規定範囲であることを確認する。		
	規定の深さまで削孔出来なかった穴が存在する場合は、規定		
	範囲の穴と識別表示する。		
	⑤使用する接着材(セメント系アンカー)の施工手順に基づい		
	て注入し、所定の長さまで鉄筋を挿入する。		
	⑦接着材(セメント系アンカー)が固まった後、穴をコンクリ		
	ートで埋め戻す。		
	以上のとおり、既存のコンクリートに鉄筋を追加するため		
	の削孔は可能であり、工事の内容は一般建築の耐震補強で広		
	く用いられているものであるため、施工の成立性に問題はな		
	い。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	4. 削孔箇所の強度		
	床スラブへの鉄筋追加に伴い、既存コンクリートを削孔する		
	ことになるが、削孔部には耐環境性に優れ、コンクリートより		
	も付着強度や圧縮強度に優れた接着材や、コンクリートよりも		
	強度・剛性の高い鉄筋を埋め込み、その上でコンクリートを充		
	てんする。この接合部の引張強度は、鉄筋の降伏点以上の強度が		
	得られることから、削孔箇所は施工前と同等以上の強度が確保		
	される。		
	また、接着材としては、耐放射線に優れる無機系(セメント)		
	であり、かつ、200℃においても強度に影響ないものを使用する。		
	また,鉄筋についても放射線影響及び 200℃における強度低下		
	はなく、シビアアクシデント時に施工箇所の強度が低下するこ		
	とはない。		
	以上より、施工による構造強度への悪影響はなく、既存の耐		
	震評価への影響もない。		
	5. まとめ		
	MCCI対策として床スラブのコンクリートを斫り、打継ぐ		
	際、鉄筋を追加すること等により、施工前と同等の強度を維持		
	するため、施工後においてもペデスタル全体のコンクリートを		
	一体としてモデル化したLS-DYNAコードによるペデスタ		
	ル構造健全性評価を適用可能である。また、鉄筋の追加等によ		
	り床スラブの強度は施工前と同等以上になるため、施工前の床		
	スラブ全体の終局面外せん断応力度 (4.33N/mm²) は施工後に		
	おいても確保される。		
	また、既設鉄筋の配置を考慮しても、鉄筋追加のための削孔		
	等の施工は可能である。さらに、削孔箇所は施工前と同等以上		
	の強度が確保され、シビアアクシデント時に強度が低下するこ		
	とはない。		
	ホスラブ端部 コンクリートを研り、 再度打継ぐ範囲		
	無筋層		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	第1図 対策後のペデスタル概要図		
	既存コンクリートと同等の強度 第2図 ペデスタルでの荷重伝達		
	q アンカー筋 $A_{qc} = 0.5\pi c^2$		
	第3図 側面の有効投影面積		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	施工館 (原投)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	新店方向鉄筋により、既存コンクリート部 新店方向鉄筋により、既存コンクリート部 水平方向鉄筋 既存鉄筋 既存鉄筋 既存鉄筋 所有力ンクリート部 鉛直方向鉄筋 第5図 ディープピーム構造におけるせん断耐力の概念		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	まとめ資料比較表 〔有効性評価 添付資料 3. 3. 3〕 東海第二発電所 (2018. 9. 12 版) 島根原子力発電所 2 号炉	備考
添付資料 3. 3. 3	添付資料 3. 3. 3	
原子炉格納容器下部への水張り実施の適切性	ペデスタルへの水張り実施の適切性	
炉心の溶融が進展し、溶融炉心が原子炉圧力容器底部から流	炉心の溶融が進展し、溶融炉心が原子炉圧力容器底部から流	
出するような場合には、原子炉格納容器内で発生する種々の現	出するような場合には、原子炉格納容器内で発生する種々の現	
象の発生を防止あるいは影響を緩和することで、格納容器の破	象の発生を防止あるいは影響を緩和することで、原子炉格納容	
損を防止することが重要なマネジメントとなる。原子炉圧力容	器の破損を防止することが重要なマネジメントとなる。原子炉	
器の外において発生する現象のうち、溶融炉心・コンクリート	圧力容器の外において発生する現象のうち、溶融炉心・コンク	
相互作用(以下「MCCI」という。)に対してはその影響緩和の手段	リート相互作用(以下「MCCI」という。)に対してはその影	
として,格納容器下部ドライウェルへの溶融炉心落下前の水張	響緩和の手段として, ペデスタルへの溶融炉心落下前の水張り	
り(以下「初期水張り」という。)が有効な対策となる。一方,初	(以下「初期水張り」という。) が有効な対策となる。一方、初	
期水張りによって,原子炉圧力容器外の溶融燃料ー冷却材相互	期水張りによって、原子炉圧力容器外の溶融燃料ー冷却材相互	
作用(以下「FCI」という。)による急激な水蒸気発生に伴う <u>格納</u>	作用(以下「FCI」という。)による急激な水蒸気発生に伴う	
<u>容器</u> 内圧力の急激な上昇(以下「圧力スパイク」という。)が生じ	原子炉格納容器内圧力の急激な上昇(以下「圧力スパイク」と	
るほか,実機条件における大規模な水蒸気爆発の発生の可能性	いう。)が生じるほか、実機条件における大規模な水蒸気爆発の	
は低いと推定されるものの,水蒸気爆発が発生する可能性も考	発生の可能性は低いと推定されるものの、水蒸気爆発が発生す	
慮に入れる必要がある。初期水張りの水深によって想定される	る可能性も考慮に入れる必要がある。初期水張りの水深によっ	
影響の程度は変化すると考えられることから、初期水張りを実	て想定される影響の程度は変化すると考えられることから、初	
施する場合には、両者の影響を考慮して水位を決定する必要が	期水張りを実施する場合には、両者の影響を考慮して水位を決	
ある。以下に初期水張りにおける水位設定の考え方を示す。	定する必要がある。以下に初期水張りにおける水位設定の考え	
	方を示す。	
1. <u>格納容器下部ドライウェル</u> への水張りの FCI に対する影響	1. <u>ペデスタル</u> への水張りのFCIに対する影響	
FCI として生じる主な現象は、圧力スパイクである。	FCIとして生じる主な現象は、圧力スパイクである。	
圧力スパイクは、水深が深い場合、顕熱によるエネルギの吸収	圧力スパイクは、水深が深い場合、顕熱によるエネルギの吸	
量が多くなり、潜熱で吸収するエネルギが相対的に減少し、水	収量が多くなり、潜熱で吸収するエネルギが相対的に減少し、	
蒸気発生量が低下することで、ピークが低くなる可能性がある	水蒸気発生量が低下することで、ピークが低くなる可能性があ	
一方、溶融炉心の粗混合量が多くなり、細粒化した粒子から水	る一方、溶融炉心の粗混合量が多くなり、細粒化した粒子から	
への伝熱量が多くなることで、ピークが高くなる可能性もある。	水への伝熱量が多くなることで、ピークが高くなる可能性もあ	
	る。	
なお、FCI として生じる現象としては水蒸気爆発も挙げられる	なお、FCIとして生じる現象としては水蒸気爆発も挙げら	
が,水蒸気爆発については, UO_2 主体の溶融物が水中に落下した	れるが、水蒸気爆発については、 UO_2 主体の溶融物が水中に	
場合に水蒸気爆発が発生した実験例は僅かであること及び、水	落下した場合に水蒸気爆発が発生した実験例は僅かであること	
蒸気爆発が発生した実験は,外部トリガを意図的に与えた場合,	及び、水蒸気爆発が発生した実験は、外部トリガを意図的に与	
または溶融物の温度が溶融炉心の温度を上回る程の極端に大き	えた場合、または溶融物の温度が溶融炉心の温度を上回る程の	
な過熱度で実験した場合に限られることを確認している。[1-4]	極端に大きな過熱度で実験した場合に限られることを確認して	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版) 島根原子力発電所 2 号炉	備考
また,水深 1.3m 以上の条件下での水蒸気爆発の発生は報告され	いる。 ^[1-4] また,水深 1.3m 以上の条件下での水蒸気爆発の発生	
ておらず、実機条件に近い多くの溶融物量を落下させた実験で	は報告されておらず、実機条件に近い多くの溶融物量を落下さ	
も水蒸気爆発の発生は報告されていない。[2, 5, 6] これらを考慮	せた実験でも水蒸気爆発の発生は報告されていない。[2,5,6]これ	
すると,実機で水蒸気爆発が生じる可能性は小さいと考える。	らを考慮すると、実機で水蒸気爆発が生じる可能性は小さいと	
しかしながら、仮に水蒸気爆発が発生した場合を想定すると、	考える。しかしながら,仮に水蒸気爆発が発生した場合を想定	
水深が深い方が粗混合が促進され,発生するエネルギが大きく	すると、水深が深い方が粗混合が促進され、発生するエネルギ	
なることから,構造壁への衝撃荷重が大きくなると考えられる。	が大きくなることから、構造壁への衝撃荷重が大きくなると考	
	えられる。	
2. 格納容器下部ドライウェルへの水張りの MCCI に対する影響	2. ペデスタルへの水張りのMCCIに対する影響	
格納容器下部ドライウェルへの初期水張りに失敗し、溶融炉	<u>ペデスタル</u> への初期水張りに失敗し、溶融炉心落下後に注水	
心落下後に注水を開始した場合,これまでの知見 ^[7-16] からは,	を開始した場合,これまでの知見[7-16]からは、溶融炉心上部に	
容融炉心上部にクラストが形成され,溶融炉心の冷却が阻害さ	クラストが形成され、溶融炉心の冷却が阻害される可能性が考	
れる可能性が考えられる。	えられる。	
一方、初期水張りを実施することで、溶融物落下時に溶融炉	一方、初期水張りを実施することで、溶融物落下時に溶融炉	
心が粒子化されるため、クラストの形成によるデブリ内部への	心が粒子化されるため、クラストの形成によるデブリ内部への	
熱の閉じ込めを抑制することができ,デブリ上面からの除熱と	熱の閉じ込めを抑制することができ、デブリ上面からの除熱と	
落下時の溶融炉心の急速な冷却(デブリクエンチ)に期待でき	落下時の溶融炉心の急速な冷却(デブリクエンチ)に期待でき	
る。 ^[5, 6, 17]	る。 [5, 6, 17]	
. 初期水張りの水位について	3. 初期水張りの水位について	
(1) 水位の設定	(1) 水位の設定	
1. 及び 2. に示したとおり、初期水張りの水位は、FCI の水蒸	1. 及び2. に示した通り、初期水張りの水位は、FCIの	
気爆発による <u>格納容器</u> への影響の観点では低い方が良く,MCCI	水蒸気爆発による原子炉格納容器への影響の観点では低い方	
による <u>格納容器への影響の観点では高い方が良い。ABWR におい</u>	が良く、MCCIによる原子炉格納容器への影響の観点では高	
ては、従来の炉型に比較して格納容器下部ドライウェルの床面	い方が良い。 <u>なお、添付資料3.3.1「原子炉圧力容器外の溶融</u>	・設備設計の相違
積が広いため、溶融炉心が拡がった際に溶融炉心上面からの除	燃料-冷却材相互作用に関する知見の整理」で確認したように,	【柏崎 6/7】
熱に寄与する面積が大きく, また, 溶融炉心が格納容器下部に	水蒸気爆発が発生する可能性は小さいものと考えられるのに	島根2号炉では、ペラ
落下した際の堆積高さが低いため,MCCI が緩和され易いという	対し、ペデスタルに溶融炉心が落下するとMCCIは発生する	スタルにおける MCCI (
特徴がある。	ため、MCCIの影響緩和を考慮する必要があるが、島根2号	影響抑制にコリウムミ
	炉のペデスタル床面には、溶融炉心に対して耐侵食性を有する	ールドを期待している
	ジルコニア耐熱材を材料とするコリウムシールドを設置して	
	いるため、MCCIによるペデスタル下部のコンクリート侵食	
	を抑制できるという特徴がある。	
以上を踏まえ,6 号及び7 号炉においては,FCI の圧力スパイ	以上を踏まえ, 島根2号炉においては, FCIの圧力スパイ	
クを考慮しても原子炉格納容器バウンダリの機能が維持され,	クを考慮しても原子炉格納容器バウンダリの機能が維持され,	
MCCI 緩和のための溶融炉心の粒子化の効果に期待でき,さらに	MCCI緩和のための溶融炉心の粒子化の効果に期待でき、さ	

らにFCIの水蒸気爆発が発生した場合の影響を小さく抑え

FCI の水蒸気爆発が発生した場合の影響を小さく抑えることが

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	備考
できる水位として、初期水張り水位を 2m に設定している。初期	ることができる水位として,初期水張り水位を <u>2.4m (コリウ</u>	・運用の相違
水張り水位 2m における FCI, MCCI の影響や, 水張りの実施可能	<u>ムシールド上面からの水位)</u> に設定している。初期水張り水位	【柏崎 6/7】
性については, FCI, MCCI 各事象の有効性評価で示したとおり,	<u>2.4m</u> におけるFCI, MCCIの影響や, 水張りの実施可能	初期水張り深さの相
問題がないものと考える。	性については、FCI、MCCI各事象の有効性評価で示した	違。
	とおり、問題がないものと考える。	
(2) 水位の設定根拠	(2) 水位の設定根拠	
a. FCI の影響の観点	a. FCIの影響の観点	
1. に示したとおり、実機では水蒸気爆発が発生する可能性は小	1. に示したとおり、実機では水蒸気爆発が発生する可能性	
さい。しかしながら,仮に FCI による水蒸気爆発の発生を前提と	は小さい。しかしながら、仮にFCIによる水蒸気爆発の発生	
した場合、格納容器下部ドライウェルの水位について、水位が高	を前提とした場合, ペデスタルの水位について, 水位が高い方	
い方が溶融炉心の細粒化割合が大きくなる傾向がある。この場	が溶融炉心の細粒化割合が大きくなる傾向がある。この場合、	
合,細粒化した粒子から水への伝熱量が多くなるので,水蒸気爆	細粒化した粒子から水への伝熱量が多くなるので,水蒸気爆発	
発に伴い格納容器下部ドライウェルに与えられる荷重は大きく	に伴いペデスタルに与えられる荷重は大きくなる。このことか	
なる。このことから、 <u>格納容器下部ドライウェル</u> の水深が <u>2m</u> よ	ら, ペデスタルの水深が 2.4m より深い場合の影響を評価し,	・運用の相違
り深い場合の影響を評価し、問題がないことを確認している。こ	問題がないことを確認している。この詳細は4. に示す。	【柏崎 6/7】
の詳細は4. に示す。		初期水張り深さの相
		違。
b. MCCI の影響の観点	b. MCC I の影響の観点	
初期水張りの水深に応じて溶融炉心の一部が水中で粒子		・評価方針の相違
化し、急速冷却されることを考慮した上で、粒子化しなかっ		【柏崎 6/7】
た溶融炉心によって形成される連続層の高さを評価し、この		柏崎 6/7 では, ハード
連続層の冷却性の観点から、初期水張りの水深の妥当性を確		クラストが形成され,水
認した。評価条件を以下に示す。なお、本評価はコリウムシ		がコリウム内に全く浸
ールド設置前の格納容器下部床面積(約88m2)に基づき評価		入しない条件でのデブ
<u>を行っている。</u>		リの連続層高さを目安
		に, 初期水張り水深を決
・溶融炉心の水中での粒子化割合の評価には、MAAP コー		定している。
ドにも用いられている Ricou- Spalding 相関式 ^[18] を用		
<u>いた。</u>		
・原子炉圧力容器の破損形態は制御棒駆動機構ハウジング		
1 本の逸出を想定し、溶融物流出に伴う破損口の拡大を		
考慮した溶融炉心流出質量速度とした。_		
・粒子化した溶融炉心が連続層の上部に堆積した状態であ		
る, 粒子状ベッドの冷却性については, Lipinski 0-D モ		
デルを使用して評価している。粒子状ベッドのドライア		
ウト熱流束と堆積したコリウムが床に均一に拡がった		
と仮定した場合の崩壊熱除去に必要な熱流束(図1参照)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
を比較すると、粒子状ベッドのドライアウト熱流束			
_(0.8MW/m2 以上) は崩壊熱除去に必要な熱流束(全炉心			
落下で約 0.36MW/m2) よりも十分に大きく, 粒子状ベッ			
ドの冷却可能性は極めて高いことから、連続層から水へ			
の崩壊熱除去を妨げないものとした。			
・落下した溶融炉心は格納容器下部床上を拡がると考えら			
れるが,これまでの実験データを元にした解析 ^[19] による			
と、有効性評価で想定している制御棒駆動機構ハウジン			
グの逸出を想定すると、ABWR (ペデスタル半径約 5.3m)			
で床上に水がある場合でも、床全面に溶融物が拡がるこ			
とが示されていることから、溶融炉心の拡がり面積を格			
納容器下部床全面とした。			
また、初期水張りの水位を決定する上での設定目安は以下			
<u>のとおりとした。</u>			
・連続層が安定クラストとなり、水が連続層内に浸入せず、			
連続層の熱伝導が除熱の律速条件になると仮定して評			
価したところ,連続層厚さ 15cm までは,連続層が安定			
クラスト化していても連続層上面からの除熱によって			
コンクリートを分解温度以下に維持できる(MCCIの進展			
を防止可能)という結果(図2参照)が得られたため,			
連続層厚さが 15cm となる水深を初期水張りの設定目安			
<u>とした。</u>			
上記の評価条件を元に,水張り水深と溶融炉心落下量をパラ			
上記の評価条件を元に, 水張り水保と俗融炉心落下重をパク メータとして, 連続層堆積高さを評価した。評価結果を図 3			
アークとして、			
評価結果を上記の初期水張りの水位の設定目安に照らす			
と, 初期水張りの水位が 2m 程度の場合, 溶融炉心落下量が全			
<u>で、初刻が飛りの水匠が 2m 程度の場合、福岡が 心格下量が至</u> 炉心 70%であれば連続層の高さを 15cm 以下にすることがで			
き、初期水張りの水位が 3m 程度の場合、溶融炉心落下量が			
全炉心 100%の場合でも連続層の高さが 15cm 以下になること			
を確認した。			
以上の結果を考慮し,手順上,初期水張りの水位は 2m とし			
ている。コリウムシールドの設置により格納容器下部の面積			
が小さくなっていること及び有効性評価では、溶融炉心が全			
量落下するものとして評価していることにより上記の評価結			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
果より厳しくなる可能性があるものの、落下割合には不確か			
さがあることや溶融炉心落下後には崩壊熱相当の注水を実施			
する手順としていること及び実機スケールではクラストへの			
水の浸入に期待できるという知見を踏まえ、初期水張りの水			
位を 2m としている。また, 2m の初期水張りは, 事象発生か			
ら溶融炉心落下までの時間余裕の中で十分に対応可能な操作			
<u>である。</u>			
		原子炉圧力容器の下部から溶融炉心が落下するまでに, ペ	・評価方針の相違
		デスタルに溶融炉心の冷却に十分な水位及び水量を確保す	【柏崎 6/7】
		ることによって、溶融炉心が落下時に粒子化され、粒子ベッ	島根2号炉は,冷却
		ドとして堆積することにより, デブリ冷却性の向上が期待さ	プールにデブリが落
		<u>れる。</u>	した際の粒子化によ
		島根原子力発電所2号炉では、「3.5 溶融炉心・コンクリ	デブリ堆積高さへの
		一ト相互作用」に示すとおり、全炉心に相当する量が溶融炉	響を踏まえた上で,初
		心としてペデスタルに落下し、落下した溶融炉心はペデスタ	水張り水深の妥当性
		ルに一様に拡がるものとしており、この場合の堆積高さは約	確認している。
		1mとなる。しかしながら、デブリの堆積高さには不確かさ	
		があると考えられることから,この不確かさを考慮した場合	
		におけるデブリの冠水に関する評価を実施し、初期水張りの	
		水深の妥当性を確認した。	
	【比較のため,「添付資料 3.2.14」の一部を記載】		
	2. 評価対象事故シーケンス		・評価方針の相違
	RPV破損する有効性評価の評価事故シーケンスとして,過		【東海第二】
	渡事象時に注水機能が喪失する事象(以下「過渡事象」という。)		LOCA 事象の場合
	を選定している。ここでは,有効性評価のベースケースとなる		LOCA ブローダウン流
	過渡事象について,デブリの冠水状態の評価を実施する。		によるペデスタルへ
	また、起因事象をLOCAとした場合には事象進展が異なる		水の流入が考えられ
	ことから、RPV破損時間が早くなる大破断LOCA時に注水		ことから,島根2号炉
	機能が喪失する事象(以下「LOCA事象」という。)について		LOCA 事象の場合の評
	も、同様にデブリの冠水状態の評価を実施する。		を実施していない。
	3. デブリ冠水評価	(a) デブリの堆積高さ	
	デブリの堆積形状を第1図に示す。ポロシティを考慮したデ	デブリの堆積形状を図1に示す。ポロシティを考慮したデ	
	ブリ堆積高さ H _{debri} は式(1)で評価する。	ブリ堆積高さ H_{debri} は式(1)で評価する。	
		$H_{debri} = H_0 \times (1 - \phi_{ent}) + H_s + H_0 \times \phi_{ent} \div (1 - P) \Rightarrow (1)$	
	$\underline{\mathbf{H}}_{\underline{\text{debri}}} = (\underline{\mathbf{V}}_{\underline{m}} \times (1 - \underline{\mathbf{\Phi}}_{\underline{\text{ent}}}) + \underline{\mathbf{V}}_{\underline{s}} + \underline{\mathbf{V}}_{\underline{m}} \times \underline{\mathbf{\Phi}}_{\underline{\text{ent}}} \div (1 - \underline{\mathbf{P}})) \div \underline{\mathbf{S}}_{\underline{f}\underline{z}} $ (1)		
		ここで,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	<u>V_n:溶融物体積[約36m³]</u>	H ₀ <u>: 初期デブリ高さ[1.039m]</u>	
	<u>V。: ペデスタル内構造物体積[約 4m³] (別添 1 参照)</u>	H _s :ペデスタル内構造物分のデブリ堆積高さ [0.17m]	
	Φ _{ent} :Ricou-Spalding相関式に基づく粒子	— Φ _{ent} : Ricou-Spalding相関式 ^[18] に基づく	
	化割合 <u>[0.173]</u> (別添 2 参照)	粒子化割合 <u>(0.38)</u>	
	P:ポロシティ[0.5] 既往実験の知見から保守的に設定(別	P:ポロシティ[0.5] <u>PULiMS実験の知見(0.29~</u>	
	添 3 参照)	0.37) 及びMAAPコード説明書のデブリ除熱量検討	
		で想定している範囲(0.26~0.48)から保守的に設定	
	<u>S_{fz}: コリウムシールドの設置を考慮した床面積[約 27.08m</u>		
	2]		
	また, 粒子化したデブリの間隙に冷却水が浸入するため, デ		・記載箇所の相違
	ブリの冠水維持評価の観点から粒子化したデブリの範囲を除い		【東海第二】
	<u>た水プール水深 H_{pool-ent} について式(2)で評価する。ここで,デ</u>		島根2号炉は,「(c)
	ブリ堆積範囲より上の領域にはコリウムシールドが敷設されて		溶融炉心の冠水評価」に
	いないものとする。		記載。
	$\underline{\underline{H}_{pool-ent}} = (\underline{\underline{H}_{pool}} - (\underline{\underline{V}_{m}} \times \underline{\underline{\Phi}_{ent}} \div (1-\underline{P}) \times \underline{P} \div \underline{S_{fz}})) \times (\underline{S_{fz}} / \underline{S_{f}})$		
	<u>(2)</u>		
	<u>H_{pool}: 水プール初期水深[1m]</u>		
	S _f :コリウムシールドが設置されていない範囲の断面積		
	[約 29.92m ²]		
	式(1)からデブリ堆積高さ H _{debri} は <u>約 1.71m</u> となる。 <u>また,式</u>	ゴ (1) かく デザル体持官さけ、約1 Gm しわて	・解析結果の相違
	(2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent}	式(1)からデブリ堆積高さは, <u>約1.6m</u> となる。	【東海第二】
	<u> </u>		【水(两分一】
	解析コードMAAPを用いた有効性評価の結果(デブリから)		
	定)から、RPV破損によるデブリ落下からペデスタル注水開		
	始までの 7 分間におけるペデスタル水位低下量は, 過渡事象の		
	場合は約 0.34m, LOCA事象の場合は約 0.44m であり, デブ		
	リの冠水は維持される。なお、RPV破損時点からデブリ露出		
	までの時間は、過渡事象の場合で約21分間、LOCA事象の場		
	合で約15分間であることから、ペデスタル注水の開始が遅れた		
	場合でも一定時間冠水維持することが可能である。		
	[::#r]		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	【比較のため、「添付資料 3.2.14」の一部を記載】	(b) デブリ堆積形状の不確かさ評価	
	5. デブリ堆積形状の不確かさ評価 (別派 4 参照)	デブリが均一に堆積しない場合の堆積高さについて評価	
	水プール水位に対してデブリ落下量が多く粒子化割合が小さ	ナる。	
	いことから、落下したデブリは均一に堆積すると考えられる。		
	ここでは、デブリが均一に堆積しない場合にデブリ冠水維持に		
	与える影響について評価する (第3図)。	PULiMS実験において確認されたデブリ堆積高さと	
	PUL i MS実験において確認されたデブリ堆積高さと拡が	拡がり距離のアスペクト比を適用し, デブリ堆積形状を山状	
	り距離のアスペクト比を適用してデブリ堆積形状を山状と想定	と想定すると, 均一化した場合と比較して堆積高さが高くな	
	し、均一化した場合と比較して堆積高さが高くなり、露出まで	<u>5.</u>	・評価方針の相違
	の水深が低くなる場合の評価を実施した結果, 水プール水位は		【柏崎 6/7】
	約 0.56m となった。水プールとの接触面積増加の影響を考慮し		島根2号炉は,コリウ
	た場合における水位低下量は,過渡事象の場合は約 0.32m, L		ムシールドによる MCC
	OCA事象の場合は約 0.41m であり, デブリの冠水が維持され		抑制に期待しており,ま
	<u>ることを確認した。</u>		た初期水張りの開始か
	【ここまで】		ら溶融炉心が落下する
			時点までには十分な時
			間余裕があることから
			水位が低い場合を仮気
			した評価は実施してい
			ない。
	6. 機器ドレンサンプが溶融しない場合の不確かさ評価(別添5		- ・設備設計の相違
	参照)		【東海第二】
	<u> </u>		【水1時初一】
	時には溶融しデブリに取り込まれることで溶融デブリとして堆		
	積すると考えられる。ここでは、機器ドレンサンプが溶融しな		
	いと仮定した場合にデブリ冠水維持に与える影響について評価		
	する。		
	新設する機器ドレンサンプの体積を既設と同等として評価し		
	た結果, 水プール水位は約 0.58m となった。水位低下量は, 過		
	渡事象の場合は約 0.34m, LOCA事象の場合は約 0.44m であ		
	り、デブリの冠水が維持されることを確認した。		
	<u>7. まとめ</u>		
	<u> 以上の評価から、過渡事象及びLOCA事象いずれにおいて</u>		
	も, RPV破損から7分の間において, デブリの冠水状態が維		
	持されることを確認した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	粒子状デブリ溶融デブリ		
	第1図 デブリ堆積形状 Lininds 60 8 7%。 EDs: 0.4 Walaks)、形子型: 3 mm 1.06-07		・記載箇所の相違 【東海第二】 島根2号炉は,図1に 記載。
	第2図 粒子状ベッド高さとドライアウト熱流束の関係 円錐部分 円柱部分		・評価方針の相違【柏崎 6/7】
	第3図 デブリ堆積形状 (不確かさ考慮) 【ここまで】		・記載箇所の相違 【東海第二】 島根2号炉は,図2に
	【比較のため,「添付資料 3.2.14 別添 4」を記載】		記載。
	3. デブリの拡がりに関する不確かさ評価		
	これまでの知見によれば、溶融物は床全面に拡がると想定さ		
	れ、粒子状ベッドについても短期間で均一化される。よって、		
	デブリの拡がりに関する不確かさはなく、コリウムシールド高 さ等の設計は、均一化されていることを前提としたもので問題		
	ないと考えているが、デブリの堆積高さに対して厳しい評価を		
	実施し影響を確認する観点から、PULiMS実験において確		
	認されたデブリ堆積高さと拡がり距離のアスペクト比を適用		
	し、均一化した場合と比較して堆積高さが高くなる場合の評価		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	を行う。PUL i MS実験は溶融物を水中に落下した実験であ		
	り, 溶融物と粒子状デブリベッドを含めたデブリ全体としての		
	<u>堆積高さに関する知見として適用できるものである。</u>		
	(1) アスペクト比		・記載箇所の相違
	PULiMS実験のうち,溶融物量が比較的大きい E4		【東海第二】
	実験において,平均堆積高さ 41mm に対して,拡がり距離		
	は740mm×560mm となっている (第2図, 第2表)。アスペ		
	クト比としては 1:18~1:14 程度となっており, おおよそ		
	1:16 程度の拡がり挙動を示している。デブリ堆積高さの		
	評価としては、ポロシティやペデスタル内構造物量等の保		
	守的な設定をしているため,不確かさ評価として考慮する		
	アスペクト比としては,実験結果に基づく平均的な値とし		
	て 1:16 を適用し評価を行う。		
	第2表 PULiMS実験条件と結果		
	Parameter		
	Table 2. Measured and estimated properties of the debris beds in PULIMS-E tests.		
	ERUPTIONS 41mm(平均高さ) 740mm		
	第2図 PULiMS実験結果(E4)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉 備考 (2) 堆積高さ評価 デブリ堆積高さの評価でのベースケース*(添付資料 3.2.16 b. (a) の堆積高さに対して、アスペクト比を考慮した 参照)の堆積高さに対してアスペクト比を考慮した場合のデブ 場合のデブリの堆積形状として、図2のように、連続層につ リの堆積形状として, 第3図のように連続層については円柱上 いては、円柱状に堆積した形状とし、その上に粒子状デブリ に円錐が堆積した形状とし、その上に粒子化層が一様に堆積す が円錐状に堆積する形状を仮定する。ここで、アスペクト比 る形状を仮定する。 は,PULiMS試験で得られた1:14 を想定する*。これ を元に初期水張り 2.4m における堆積高さを計算した結果, 連続層の円錐部分については、堆積高さが最大となるのは床 堆積高さは約1.9mとなる。計算方法は以下のとおりである。 全面に拡がった場合であることから、コリウムシールド厚さを 考慮したペデスタル直径 5.872m にアスペクト比を考慮すると, ・連続層の円錐部分については、堆積高さが最大となるのは 頂点部分の堆積高さは約 0.37m となる。円柱部分については, 床全面に拡がった場合であることから、ペデスタル径 5.745m_にアスペクト比を考慮すると、頂点部分の堆積高さ 連続層デブリのうち円錐部分の体積を除いたものとなるため、 は約0.42mとなる。 堆積高さは約1.09mとなる。 粒子化層については、連続層の上に一様に堆積すると仮定す ・円柱部分については、連続層のうち、円錐部分の体積を除 るため、堆積高さは約0.36mとなる。 いたものとして求める。 以上から、デブリの堆積高さは、連続層と粒子化層の体積高 ・粒子状デブリについては、連続層の上に一様に堆積すると さの合計となることから、約1.81mとなる。 仮定して求める。 ※ 炉外溶融物体積:3m³, ポロシティ:0.35を設定 ・デブリ堆積高さは上述の連続層と粒子状デブリの堆積高さ の合計となる。 _ 粒子化層 連続層(円錐部分) 連続層(円柱部分) 第3図 デブリ堆積形状 (アスペクト比考慮) (3) デブリの冠水維持に対する評価 粒子化割合 0.173 のデブリ量に対してポロシティ 0.35 で全て の間隙に浸水していると仮定した場合、円錐部分の頂部から水 面までの水深は約 0.56m である。また、円錐状に堆積すること なお, デブリ堆積形状が山状の場合, 均一化した場合と比 で水プールとの接触面積が増え、蒸発量が増加するが、一様に 較して溶融炉心上部水プールとの伝熱面積が増加して、水位 堆積した場合の水プールとの接触面積からの増加割合は 1%未 低下が早くなる可能性があるが、伝熱面積の増加分は1%未 満であり、蒸発量に対して有意な影響を与えない。有効性評価 満である。したがって、伝熱面積の増加によるペデスタル水 のMAAP結果に基づく、RPV破損によるデブリ落下から格 位変化への影響は小さく、デブリ露出までの時間への影響は 納容器下部注水までの期間における水位低下量は、過渡事象の 小さい。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	場合は約 0.31m, LOCA事象の場合は約 0.40m であり, 蒸発量の増加として保守的に 1%を見込んだ場合でも, 水位低下量は, 過渡事象の場合は約 0.32m, LOCA事象の場合は約 0.41mとなるため, デブリの冠水は維持される。		
	【比較のため、「添付資料 3. 2. 14 別添 4」の一部を再掲】 (1) アスペクト比 PULiMS実験のうち、溶融物量が比較的大きい E4 実験において、平均堆積高さ 41mm に対して、拡がり距離は740mm×560mmとなっている(第2図,第2表)。アスペクト比としては1:18~1:14程度となっており、おおよそ1:16程度の拡がり挙動を示している。デブリ堆積高さの評価としては、ポロシティやペデスタル内構造物量等の保守的な設定をしているため、不確かさ評価として考慮するアスペクト比としては、実験結果に基づく平均的な値として1:16を適用し評価を行う。 【ここまで】	評価としては、保守的に、1:14を適用し評価を行う。 PULiMS実験は溶融物を水中に落下した実験であり、 連続層と粒子状デブリを含めたデブリ全体としての体積高 さに関する知見として適用できるものである。連続層と粒	・評価条件の相違 【東海第二】 島根2号炉は, 冠水評 価の観点からデブリ堆 情高さを保守的に評価 している。
	【比較のため、「添付資料 3. 2. 14」の一部を再掲】 また、粒子化したデブリの間隙に冷却水が浸入するため、デブリの冠水維持評価の観点から粒子化したデブリの範囲を除いた水プール水深 $H_{pool-ent}$ について式(2)で評価する。ここで、デブリ堆積範囲より上の領域にはコリウムシールドが敷設されていないものとする。 $H_{pool-ent} = (H_{pool} - (V_{n} \times \Phi_{ent} \div (1-P) \times P \div S_{fz})) \times (S_{fz}/S_{f})$ (2) $H_{pool}: 水プール初期水深[1m]$ $S_{f}: コリウムシールドが設置されていない範囲の断面積$ $[約 29.92m^{2}]$	(c) デブリ冠水評価 粒子化したデブリの間隙に冷却水が浸入するため、デブリの冠水維持評価の観点から粒子化したデブリの範囲を除いた水プール水深 $H_{pool-ent}$ について式(2)で評価する。 $H_{pool-ent} = H_{pool} - \left(H_0 \times \phi_{ent} \div (1-P) \times P\right) \qquad \qquad 式(2)$ ここで、 $H_{pool}: 水プール初期水深 [2.4m]$ $H_0: 初期デブリ高さ[1.039m]$ $\Phi_{ent}: Ricou-Spaldingal Holiang all Holi$	

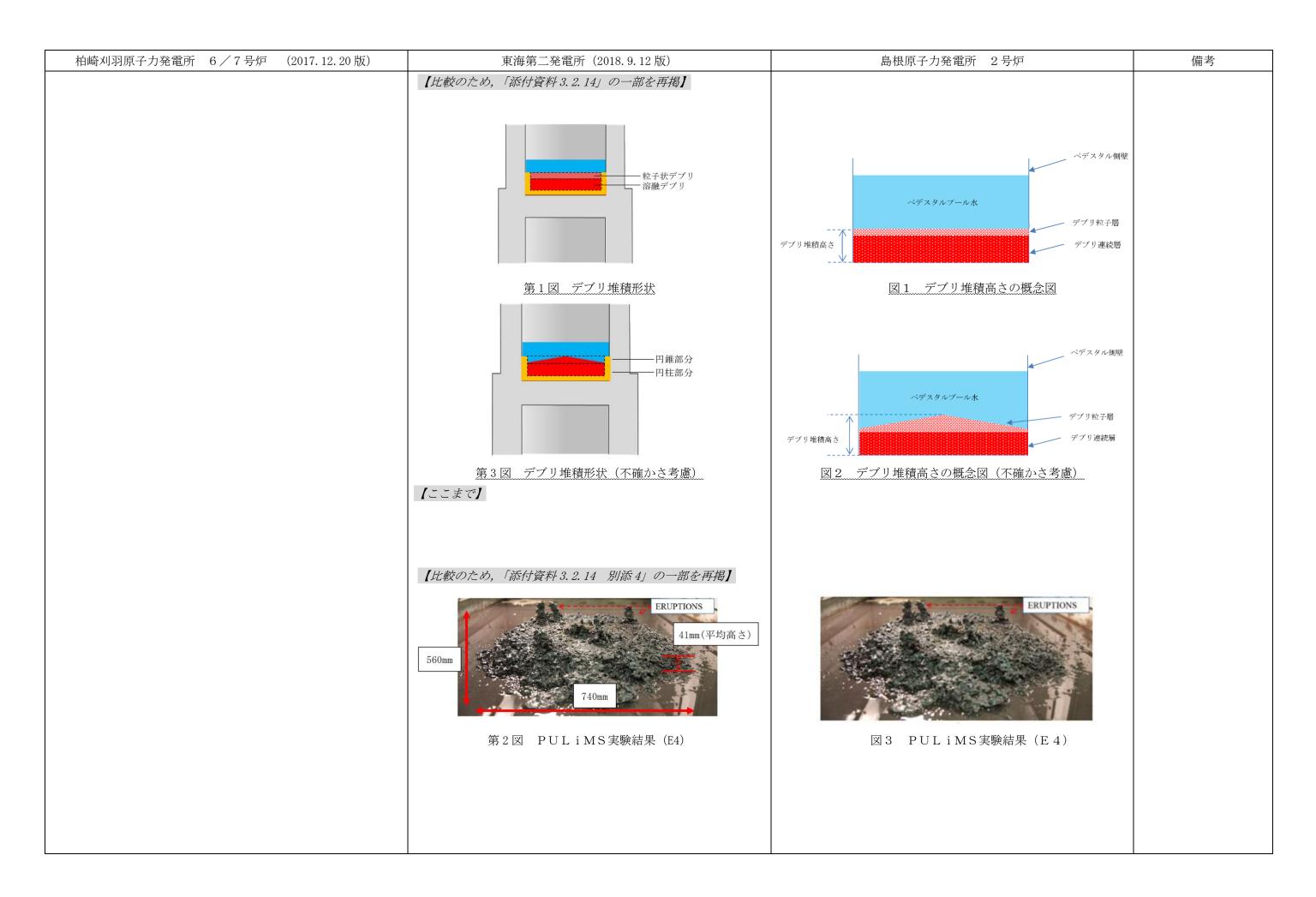
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	式(1)からデブリ堆積高さ H _{debri} は約 1.71m となる。また,式	式(2)から粒子化したデブリの範囲を除いた水プール水	
	(2)から粒子化したデブリの範囲を除いた水プール水深 H _{pool-ent}	深 $H_{pool-ent}$ は <u>約2.005m</u> となる。	・解析結果の相違
	は <u>約0.69m</u> となる。		【東海第二】
	解析コードMAAPを用いた有効性評価の結果(デブリから	MAAPコードを用いた有効性評価の結果(デブリから水	
	水プールへの限界熱流束を 800kW/m² (圧力依存性あり)と設定)	プールへの限界熱流束を800kW/m²(圧力依存性あり)と設定)	
	から、RPV破損によるデブリ落下からペデスタル注水開始ま	から、原子炉圧力容器破損後のペデスタル注水が実施され	
	での7分間におけるペデスタル水位低下量は、過渡事象の場合	ず,デブリ露出**までの時間は,過渡起因事象の場合で約1.4	・解析結果の相違
	は約 0.34m, LOCA事象の場合は約 0.44m であり, デブリの冠	時間,LOCA起因事象の場合で約 0.58 時間であることか	【東海第二】
	水は維持される。なお、RPV破損時点からデブリ露出までの	ら, 粒子化したデブリの範囲を除いた水プール水深条件であ	・評価方針の相違
	時間は,過渡事象の場合で約21分間,LOCA事象の場合で約	<u>って、</u> ペデスタル注水の開始が遅れた場合でも一定時間冠水	【東海第二】
	15 分間であることから、ペデスタル注水の開始が遅れた場合で	維持することが可能であることを確認した。	LOCA 事象の場合,
	も一定時間冠水維持することが可能である。		LOCA ブローダウン流量
	【ここまで】		によるペデスタルへの
			水の流入が考えられる
			ことから,島根2号炉で
			は LOCA 事象の場合の記
			価を実施していない。
			・設備設計の相違
			【柏崎 6/7】
			 柏崎 6/7 は, 6 号炉。
			7 号炉の差異を踏ま
また, 柏崎刈羽原子力発電所 6 号及び 7 号炉について, 「3.5		また, MCCIに対して保守的な評価条件を設定した上で,	た記載としている。
 客融炉心・コンクリート相互作用」に示すとおり,コリウム		初期水張りの有効性を感度解析によって確認している。初期	
ノールド設置後の格納容器下部の面積がより小さくなる 6 号		水張りの水位を2.4mとした場合について,溶融炉心は全量落	
Fの設計をもとにした格納容器下部の床面積において MCCI		 下するものとし,上面熱流束を格納容器圧力への依存性を考	
こよる侵食量の評価を行っている。 また,MCCI に対して保守		慮しない800kW/m²一定とした場合であっても,MCCIによ	
的な評価条件を設定した上で,初期水張りの有効性を感度解		る侵食量は数cm <u>(800kW/m²(圧力依存あり)の場合,床面0</u>	・評価方針の相違
折によって確認している。初期水張りの水位を <u>2m</u> とした場合			【柏崎 6/7】
こついて、溶融炉心は全量落下するものとし、上面熱流束を		<u>面 O cm, 壁面約13cm)</u> に留まることを確認していることから,	島根2号炉は,コリ
各納容器圧力への依存性を考慮しない800kW/m²一定とした場		現状の初期水張りの水位の設定に問題はないものと考える。	ムシールドによる MCC
合であっても,MCCI による侵食量は数 cm <u>(床面約 9cm,壁面</u>		感度解析の結果を <u>図4</u> に示す。	抑制に期待しており,
約 8cm)であり,初期水張りが遅れた場合を想定し,初期水			た初期水張りの開始が
張りの水位を 1m とした場合であっても MCCI による侵食量			ら溶融炉心が落下する
は数 cm (床面約 12cm,壁面約 11cm) に留まることを確認し			時点までには十分ない
ていることから,現状の初期水張りの水位の設定に問題はな			間余裕があることから
いものと考える。感度解析の結果を <u>図4</u> に示す。			水位が低い場合を仮え
			した評価を実施してい

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			ない。
		※ デブリが水面から露出する状態の悪影響として、以下が考えられることから、これらの影響を防止するためデブリの冠水状態を維持する。 ① FP 放出に関する悪影響 水面から露出した部分のデブリは冷却されにくく高温状態を維持するため、その下に堆積するデブリの除熱も悪くなり、デブリの平均温度が上昇する。この結果、高温のデブリからの FP 放出が継続する。また水面から露出しているデブリから放出された FP については、水中で除去される効果を期待できないことから、格納容器への FP 放出量が増加する。② 格納容器過温に対する悪影響 水面から露出した部分のデブリは高温状態を維持するため、輻射や対流によりペデスタル雰囲気や格納容器バウンダリを直接加熱する要因となる。この結果、格納容器の健全性に影響を与える可能性がある。 ③ MCCI に対する悪影響 水面から露出した部分のデブリは高温状態を維持するため、その下に堆積するデブリの除熱も悪くなり、デブリの平均温度が上昇する。この結果、ペデスタル床面のコリウムシールドやコンクリートの侵食量が増加し、格納容器の健全性に影響を与える可能性がある。	
c. まとめ FCI については、これまでの試験結果から、実機において		c. まとめ FCIについては、これまでの試験結果から、実機において原子炉格納容器の破損に至るような大規模な原子炉圧力容器外での水蒸気爆発の発生の可能性は小さいと考える。なお、FCIの発生を前提とした評価においても、ペデスタルの構造損傷に伴う原子炉格納容器の破損には至らず、十分な余裕があることを確認しており、その水位が原子炉格納容器の健全性に影響を与えるものではないと判断している。また、溶融炉心の粒子化の効果等によるMCCIの影響緩和にも期待できる。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
上記を踏まえ、格納容器下部ドライウェルに溶融炉心が落下する状況に対しては、格納容器下部ドライウェルに 2m の初期水張りまで注水を実施する運用としている。		上記を踏まえ、ペデスタルに溶融炉心が落下する状況に対しては、ペデスタルに 2.4m の初期水張りまで注水を実施する運用としている。	

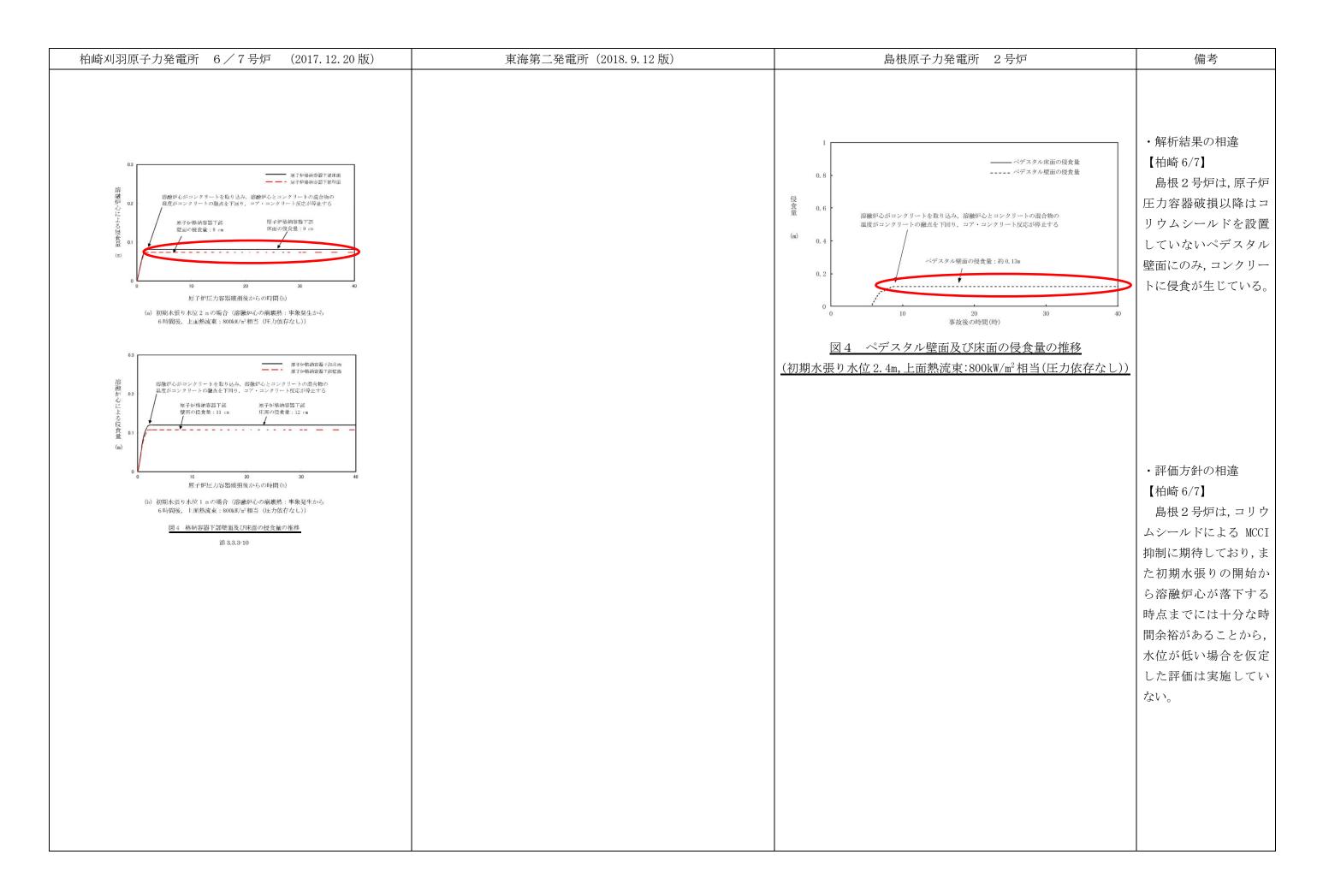
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版) 東海第二発電所 (201	8. 9. 12 版) 島根原子力発電所 2 号炉 備	備考
4. 格納容器下部の水位上昇の影響	4. ペデスタルの水位上昇の影響	
事故対応の中で格納容器スプレイを実施すると, リターンラ	炉心損傷後の事故対応として,ペデスタルへの初期水張り運 ・設備設計	の相違
インを通じたサプレッション・チェンバ・プールからの流入や	用の手順を定め、またペデスタル内外には、重大事故等発生時 【柏崎 6/7	1
ベント管を通じた流入によって冷却材が格納容器下部ドライ	における <mark>貯</mark> 水状況を把握するための計測設備を設けていること	
ウェルに流れ込み, 下部ドライウェル水位を上昇させる場合が	から、ペデスタル水位は適切に管理可能であるが、ここでは、	
<u>ある。</u> ここでは,FCI の有効性評価で設定した原子炉圧力容器	FCIの有効性評価で設定した原子炉圧力容器破損に至るシナ	
破損に至るシナリオにおいて, <u>格納容器下部ドライウェル</u> への	リオにおいて, ペデスタルへの初期水張りの水位が高い場合を	
初期水張りの水位が上昇していた場合を想定し,その際の FCI	想定し、その際のFCIへの影響を評価した。	
への影響を評価した。		
a. 溶融炉心落下前の下部ドライウェル水位上昇の可能性	<u>a. 原子炉圧力容器破損前のペデスタル水位上昇の可能性</u> ・設備設計	か相違
溶融炉心落下前の格納容器下部ドライウェルへの初期水張り	格納容器スプレイによるペデスタルへの注水操作(原子炉圧 【柏崎 6/7	1
の他に格納容器下部ドライウェルの水位を増加させる要因とし	力容器破損前の初期水張り)は、スプレイ水がペデスタル開口	
ては、格納容器スプレイによる冷却材が格納容器下部ドライウ	部である制御棒駆動機構搬出入口よりペデスタル内に流入する	
ェル壁面の連通孔とベント管の間から流入する場合が考えられ	ことによって貯水し、ペデスタル水位計にて水位 2.4m を確認し	
る。連通孔とベント管は、その間に隙間があるものの、上下に	た後、注水を停止する手順としている。この流路において、原	
連続して設置されているため、格納容器スプレイによる冷却材	子炉格納容器内の上階フロアの床はグレーチングとなってお	
は、基本的には連通孔からベント管に流れ落ちると考えられる	り、スプレイ水が滞留するような機器や堰はない。ペデスタル	
が、仮に格納容器スプレイの水が全て格納容器下部ドライウェ	<u>開口部とドライウェル床面の間には堰があるものの、ドライウ</u>	
ルに流入したとしても、今回の申請において示した解析ケース	ェル床面に溜まった水は一様に上昇し、制御棒駆動機構搬出入	
において,格納容器下部ドライウェルに形成される水位は 4m	口は比較的大きな開口部であることから、スプレイ水はこの開	
以下である。ただし、初期水張り操作による注水と格納容器ス	口部を通じて、遅滞なくペデスタルに流れ込むと考えられるた	
プレイの水の流入を合わせて形成される格納容器下部水位が	<u>め、スプレイ水の原子炉格納容器内における滞留による影響は</u>	
2m に到達した時点で格納容器下部ドライウェルへの初期水張	<u>考えにくい。</u>	
り操作を停止するものとした。	<u>この操作においてペデスタル水位を上昇させる要因として</u>	
また,LOCA を伴う場合には,破断口から流出した冷却材が格	は、停止操作判断による時間遅れ及び操作実施後のスプレイ弁	
納容器下部ドライウェルに流入する可能性,及び,格納容器ス	全閉までの間、格納容器スプレイによる注水量が増加する可能	
プレイによる冷却材の流入の可能性が考えられるが,LOCA によ	性がある。この場合、注水停止後もオーバーフローを続けるこ	
って原子炉圧力容器から流出する冷却材は飽和蒸気であり、サ	とでペデスタル水位は上昇するが、ペデスタル水位が制御棒駆	
ブクール度が小さい。このため、LOCA によって流出した冷却材	動機構搬出入口下端位置までの高さ(約3.8m)よりも高くなる	
	には、ドライウェル床面全体を拡がりながら水位が形成される	
気爆発の発生を仮定しても、発生する運動エネルギは小さいも	必要があり、その水位上昇は緩やかであることから、実際の事	
のと考えられる。_	故対応において、制御棒駆動機構搬出入口下端位置までの高さ	
	(約3.8m) よりも高い水位となることはない。	
	また、その他ペデスタル水位を増加させる要因としては、注	
	水の停止後にドライウェルサンプに貯まったスプレイ水が、ド	
	ライウェルサンプとペデスタル床を接続するドレン配管及びコ	
	リウムシールドスリットを通じて、ドライウェルサンプからペ	

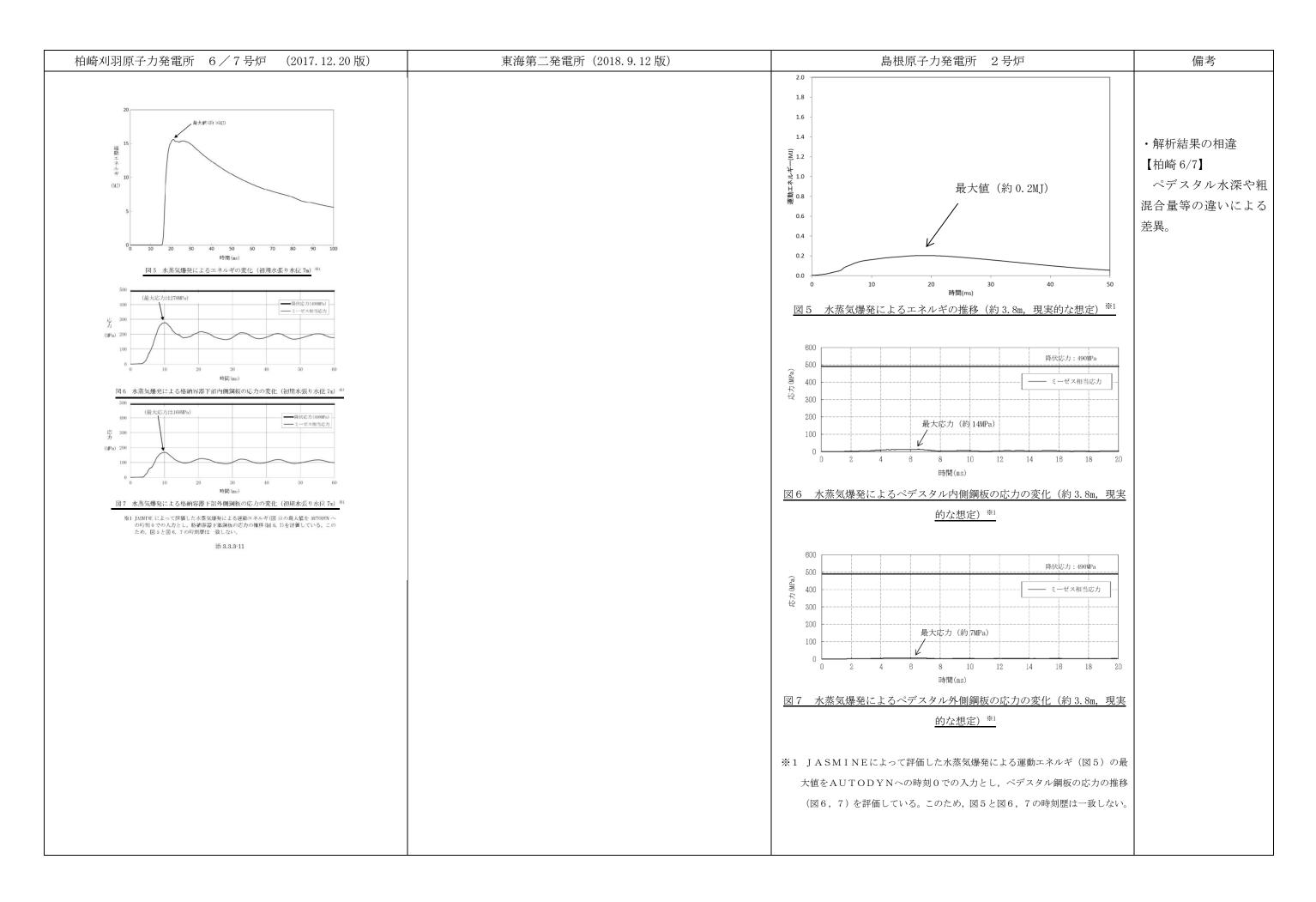
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		デスタルに流入する場合(逆流)が考えられる。ただし、この	
		経路を通じて流入する流量は最大で約 1.5m³/h, ペデスタルの	
		水位上昇率は約0.06m/hであり、注水を停止した後の原子炉圧	
		力容器破損までの逆流による水位上昇分は約3cm であること	
		から、FCIに対して与える影響は小さいと考える。なお、逆	
		流を続けたとしても水頭圧の関係から、制御棒駆動機構搬出入	
		ロ下端位置までの高さ(約3.8m)となることはない。	
b. 評価条件		b . 評価条件	
※ 溶融炉心が格納容器下部ドライウェルに落下する前に,格納		溶融炉心がペデスタルに落下する前に,ペデスタルに <u>制御棒</u>	 ・設備設計の相違
容器下部にリターンラインまでの高さ (7m) の水位が形成され		<u>駆動機構搬出入口下端位置までの高さ(約3.8m)</u> の水位が形成	
ているものとした。 <u>この水位は上記「a. 溶融炉心落下前の下部</u>		されているものとした。	THUM S/ VI
ドライウェル水位上昇の可能性」に照らして十分に高いと考え		また、ここでは現実的な溶融炉心の落下様態を想定した条件	 ・評価条件の相違
る。その他の解析条件は、添付資料3.3.2において設定した評		を適用し、その他の解析条件は、添付資料 3.3.2 において設定	
価条件と同様とした。		した評価条件と同様とした。	
			な評価条件で水蒸気爆
			発評価を実施。
			元可順で天地。
2. 評価結果		c. 評価結果	
圧力スパイクに加え、水蒸気爆発による影響についても評価		圧力スパイクに加え、水蒸気爆発による影響についても評価	
を実施した。以下にその結果を示す。		を実施した。以下にその結果を示す。	
(1) 圧力スパイク		(1) 圧力スパイク	
格納容器圧力の評価結果を図9 に示す。原子炉圧力容器		格納容器圧力の評価結果を図9に示す。原子炉圧力容器が	
が破損して、溶融炉心が <u>格納容器下部ドライウェル</u> の水中		破損して、溶融炉心がペデスタルの水中に落下する際に圧力	
に落下する際に圧力スパイクが生じているが,圧力スパイ		スパイクが生じているが、圧力スパイクのピーク圧力は <u>約</u>	
クのピーク圧力は <u>約 0.26MPa</u> であり, <u>水位 2m の場合の約</u>		<u>216kPa[gage]</u> であり, <u>水位 2.4m の場合の約 193kPa[gage]</u> よ	・解析結果の相違
0.51MPa よりも低くなっている。		りも高くなっている。	【柏崎 6/7】
この理由としては、初期水張り水位の上昇によって <u>格納</u>		この理由としては、初期水張り水位の上昇によってペデス	
容器下部ドライウェルの水量が多くなり、溶融炉心の粗混		タルの水量が多くなり、溶融炉心の粗混合量が増加し、水へ	
合量が増加し、水への伝熱量が増加したものの、落下した		の伝熱量が増加したために,圧力スパイク評価は厳しくなっ	・解析結果の相違
		<u></u> たものと考えられる。	【柏崎 6/7】
よる効果が、溶融炉心落下時の水温上昇とそれに伴う蒸気			
発生を緩和する側に作用し、ピーク圧力が抑制された可能			
性が考えられる。			
(2) 水蒸気爆発		(2) 水蒸気爆発	
水蒸気爆発によって格納容器下部の水に伝達される運動		水蒸気爆発に伴うエネルギ、ペデスタル内側及び外側の応	 ・解析結果の相違
エネルギの評価結果を図5に示す。最大値は約16MJであ		力の推移を図5,図6及び図7に示す。水蒸気爆発の発生を	【柏崎 6/7】
		//・/川田/グと回り、回り及り回しにかり。小無风像光り光土を	TITEM O/ T

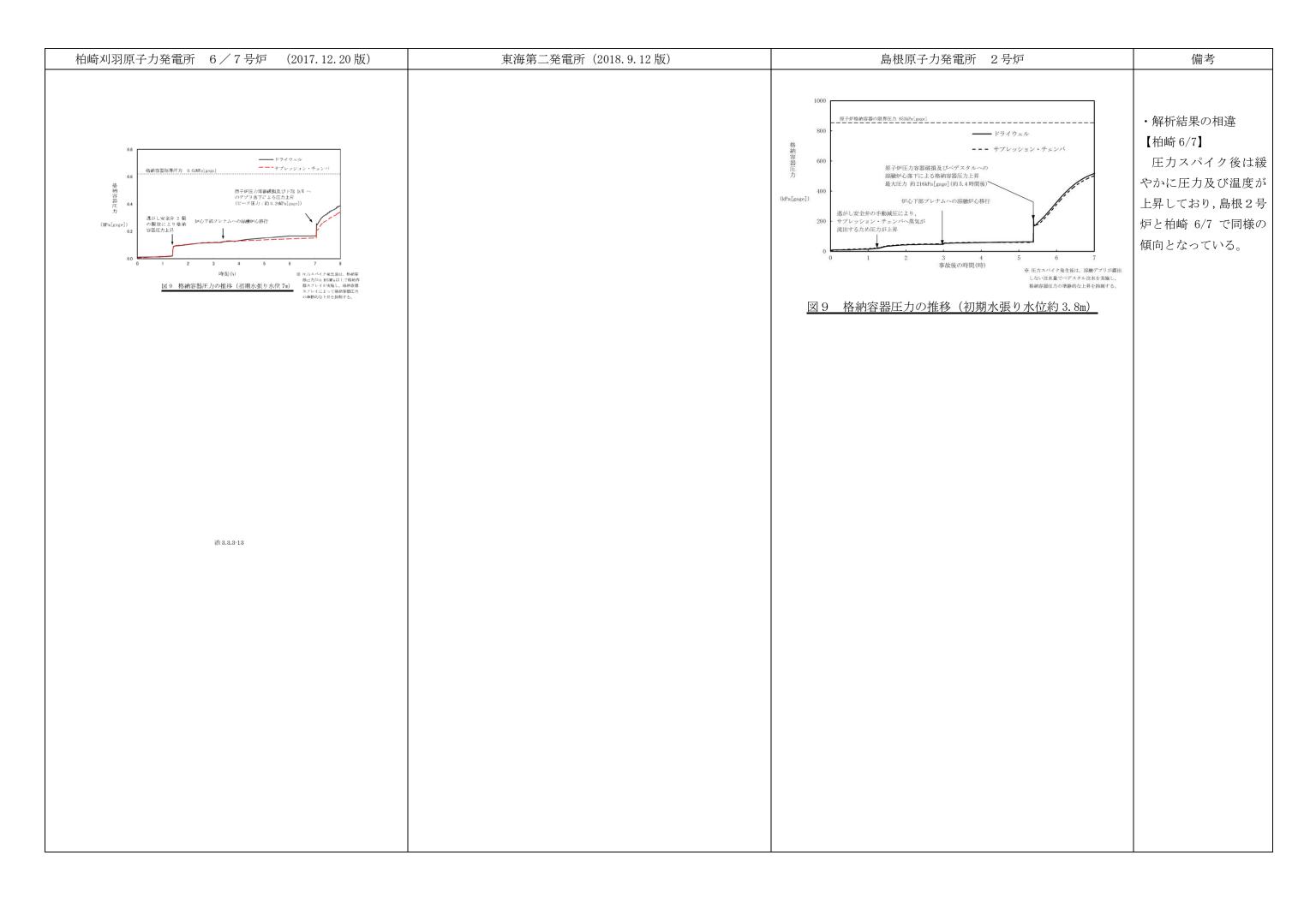

の圧力波によって原子炉圧力容器が損傷に至ることは想定

る。0.30MPa 程度の圧力波によって原子炉圧力容器が損傷

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018. 9. 12 版)	備考
に至ることは想定し難いことから, 圧力波による原子炉圧	し難いことから、圧力波による原子炉圧力容器への影響は無	
力容器への影響は無視できる程度と考える。原子炉格納容	視できる程度と考える。原子炉格納容器への影響について	
器への影響については,原子炉格納容器の構造上,原子炉	は、原子炉格納容器の構造上、ペデスタルにおいて発生した	
格納容器下部において発生した圧力波が減衰されないまま	圧力波が減衰されないまま原子炉格納容器上部に到達する	
原子炉格納容器上部に到達することは考えにくいが,仮に	ことは考えにくいが,仮に 0.30MPa 程度の圧力波が <u>原子炉格</u>	
0.30MPa 程度の圧力波が <u>原子炉圧力容器上部</u> の壁面に到達	<u>納容器上部</u> の壁面に到達しても,原子炉格納容器の限界圧力	
しても,原子炉格納容器の限界圧力(<u>0.62MPa[gage]</u>)未満	(<u>0.853MPa[gage]</u>) 未満であることから,原子炉格納容器が	・設備設計の相違
であることから,原子炉格納容器が破損に至ることはない。	破損に至ることはない。	【柏崎 6/7】
以上の結果から, 格納容器下部ドライウェルの水位を現状の	以上の結果から、ペデスタルの水位を現状の初期水張り水位	
初期水張りの水位である 2m 以上に上昇させた場合であっても,	である <u>2.4m</u> 以上に上昇させた場合であっても, FCIによって	・運用の相違
FCI によって <u>格納容器</u> が破損に至るおそれはないと考える。こ	<u>原子炉格納容器</u> が破損に至るおそれはないと考える。このこと	【柏崎 6/7】
のことから事故対応におけるドライウェルスプレイ等の運転操	から事故対応におけるドライウェルスプレイによるペデスタル	初期水張り深さの相
作に対して、FCI の観点からの制約は生じない。	への初期水張り運用に対して、FCI の観点からの制約は生じな	違。
	٧٠°	
5. 結論	5. 結論	
柏崎刈羽原子力発電所 6 号及び 7 号炉においては, FCI が発	島根原子力発電所2号炉においては、FCI が発生した場	
生した場合の影響を低減しつつ、溶融炉心の粒子化の効果等に	合の影響を低減しつつ、溶融炉心の粒子化の効果等によるMC	
よる MCCI の影響緩和を期待できる水位として、初期水張り水	CIの影響緩和を期待できる水位として、初期水張り水位を	・運用の相違
位を <u>2m</u> に設定している。また, <u>事故対応におけるドライウェ</u>	<u>2.4m</u> に設定している。また, <u>ペデスタル</u> の水位が上昇した場合	【柏崎 6/7】
ルスプレイ等の運転操作により、格納容器下部ドライウェルの	であっても原子炉格納容器が破損に至るおそれはない。	初期水張り深さの相
水位が上昇した場合であっても格納容器が破損に至るおそれは		違。
ない。	以上	
以上		


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考	
参考文献		参考文献		
[1] V. Tyrpekl, Material effect in the nuclear fuel - coolant		[1] V. Tyrpekl, Material effect in the nuclear fuel - coolant		
interaction : structural characterization of the steam		interaction : structural characterization of the steam		
explosion debris and solidification mechanism, 2012		explosion debris and solidification mechanism, 2012		
[2] J.H.Kim, et al, The Influence of Variations in the Water		[2] J.H.Kim, et al, The Influence of Variations in the Water		
Depth and Melt Composition on a Spontaneous Steam		Depth and Melt Composition on a Spontaneous Steam Explosion		
Explosion in the TROI Experiments, Proceedings of ICAPP'04		in the TROI Experiments, Proceedings of ICAPP'04		
[3] J. H. Song, Fuel Coolant Interaction Experiments in TROI		[3] J.H. Song, Fuel Coolant Interaction Experiments in TROI		
using a U02/Zr02 mixture, Nucl. Eng. Design. 222, 1-15,		using a UO2/ZrO2 mixture, Nucl. Eng. Design. 222, 1-15,		
2003		2003		
[4] J. H. Kim, Results of the Triggered Steam Explosions from		[4] J.H.Kim, Results of the Triggered Steam Explosions from		
the TROI Experiment, Nucl. Tech., Vol. 158 378-395, 2007		the TROI Experiment, Nucl, Tech., Vol. 158 378-395, 2007		
[5] D. Magallon, "Characteristics of corium debris bed		[5] D. Magallon, "Characteristics of corium debris bed		
generated in large-scale fuel-coolant interaction		generated in large-scale fuel-coolant interaction		
experiments," Nucl. Eng. Design, 236 1998-2009, 2006		experiments," Nucl. Eng. Design, 236 1998-2009, 2006		
[6] M. Kato, H. Nagasaka, "COTELS Fuel Coolant Interaction		[6] M. Kato, H. Nagasaka, "COTELS Fuel Coolant Interaction		
Tests under Ex-Vessel Conditions," JAERI-Conf 2000-015,		Tests under Ex-Vessel Conditions," JAERI-Conf 2000-015,		
2000		2000		
[7] (財)原子力発電技術機構(NUPEC),「重要構造物安全評価		[7] (財)原子力発電技術機構(NUPEC),「重要構造物安全評価		
(原子炉格納容器信頼性実証事業)に関する総括報告書」2003		(原子炉格納容器信頼性実証事業) に関する総括報告書」2003		
[8] B. R. Sehgal, et al., "ACE Project Phase C&D: ACE/MCCI and		[8] B.R. Sehgal, et al., "ACE Project Phase C&D: ACE/MCCI and		
MACE Tests", NUREG/CP-0119, Vol. 2, 1991		MACE Tests", NUREG/CR-0119, Vol.2, 1991		
[9] R.E.Blose, et al., "SWISS: Sustained Heated Metallic		[9] R.E.Blose, et al., "SWISS: Sustained Heated Metallic		
Melt/Concrete Interactions With Overlying Water		Melt/Concrete Interactions With Overlying Water Pools,"		
Pools," NUREG/CR-4727, 1987		NUREG/CR-4727, 1987		
[10] R.E.Blose, et al., "Core-Concrete Interactions with		[10] R.E.Blose, et al., "Core-Concrete Interactions with		
Overlying Water Pools - The WETCOR-1		Overlying Water Pools - The WETCOR-1 Test," NUREG/CR-5907,		
Test," NUREG/CR-5907, 1993		1993		
[11] M.T.Farmer, et al., "Status of Large Scale MACE Core		[11] M.T.Farmer, et al. "Status of Large Scale MACE Core		
Coolability Experiments", Proc. OECD Workshop on		Coolability Experiments", Proc. OECD Workshop on Ex-Vessel		
Ex-Vessel Debris Coolability, Karlsruhe, Germany, 1999		Debris Coolability, Karlsruhe, Germany, 1999		
[12] M.T.Farmer, et al., "Corium Coolability under Ex-Vessel		[12] M. T. Farmer, et al., "Corium Coolability under Ex-Vessel		
Accident Conditions for LWRs," Nuc. Eng. and Technol.,		Accident Conditions for LWRs," Nuc. Eng. and Technol., 41,		
41, 5, 2009		5, 2009		
[13] M. T. Farmer, et al., "OECD MCCI Project 2-D Core Concrete		[13] M. T. Farmer, et al., "OECD MCCI Project 2-D Core Concrete		
Interaction (CCI) Tests : Final		Interaction (CCI) Tests : Final		
Report, " OECD/MCCI-2005-TR05, 2006		Report, "OECD/MCCI-2005-TR05, 2006		


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
[14] M.T.Farmer, et al., "OECD MCCI Project Final		[14] M.T.Farmer, et al., "OECD MCCI Project Final	
Report, "OECD/MCCI-2005-TR06, 2006		Report, "OECD/MCCI-2005-TR06, 2006	
[15] M.T.Farmer, et al., "OECD MCCI-2 Project Final		[15] M.T.Farmer, et al., "OECD MCCI-2 Project Final	
Report, OECD/MCCI-2010-TR07, 2010		Report," OECD/MCCI-2010-TR07, 2010	
[16] H. Nagasaka, et al., "COTELS Project (3): Ex-vessel		[16] H. Nagasaka, et al., "COTELS Project (3): Ex-vessel	
Debris Cooling Tests," OECD Workshop on Ex-Vessel Debris		Debris Cooling Tests," OECD Workshop on Ex-Vessel Debris	
Coolability, Karlsruhe, Germany, 1999		Coolability, Karlsruhe, Germany, 1999	
[17] A. Karbojian, et al.," A scoping study of debris bed		[17] A. Karbojian, et al., "A scoping study of debris bed	
formation in the DEFOR test facility," Nucl. Eng. Design		formation in the DEFOR test facility," Nucl. Eng. Design	
239 1653- 1659, 2009		239 1653- 1659, 2009	
[18] F.B.Ricou, D.B.Spalding, "Measurements of Entrainment		[18] F.B. Ricou, D.B. Spalding, "Measurements of Entrainment	
by Axisymmetrical Turbulent Jets," Journal of Fluid		by Axisymmetrical Turbulent Jets," Journal of Fluid	
Mechanics, Vol. 11, pp. 21-32, 1961		Mechanics, Vol. 11, pp. 21-32, 1961	
[19] 中島 他, SAMPSON コードによる ABWR 格納容器ペデスタル			・評価方針の相違
上の炉心デブリの3次元拡がり評価,日本原子力学会「2013			【柏崎 6/7】
<u>年秋の大会」H12, 2013 年 9 月</u>			島根2号炉は,初期水
[20] 稲坂 他「軽水炉のシビアアクシデント時における気泡急成		[19] 稲坂 他「軽水炉のシビアアクシデント時における気泡急成	張り水深に対する評価
長による水撃力の研究」,海上技術安全研究報告書 第4巻 第		長による水撃力の研究」,海上技術安全研究報告書 第4巻 第	方法が柏崎 6/7 と異な
3 号, p. 323-343, 2004.		3 号, p. 323-343, 2004.	ることから,参考文献が
		[20] A. Konovalenko et al., Experimental Results on Pouring and	異なる。
		Underwater Liquid Melt Spreading and Energetic	
		Melt-coolant Interaction, NUTHOS-9, Kaohsiung, Taiwan,	
		<u>September 9-13, 2012.</u>	


柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二列	隆電所(2018.	9.12版)			島根	原子力発電所	2 号炉			備考
	 第2表 PU	JLiMS実!!	験条件と	結果		表1 PU	JLiMS実験纟	条件と結	果[20]		
	Table 1. PULiMS-						iMS-E test matrix with				
	Davameter	E1 E2	PULiMS test		E5	Parameter	E1 E2	PULIMS test E3	E4	E5	
	42.4	O ₃ -WO ₃ B ₂ O ₃ -CaO 54-57.36 30-70	Bi ₂ O ₃ -WO ₃ 42.64-57.36		ZrO ₂ -WO ₃ 15.74-84.26	Melt material Melt mass composition, %	Bi ₂ O ₃ -WO ₃ B ₂ O ₃ -CaO 42.64-57.36 30-70	42.64-57.36		ZrO ₂ -WO ₃ 15.74-84.26	
	Melt jet diameter, mm	ntectic non-eutectic	eutectic 20	eutectic 20	eutectic 20	Melt jet diameter, mm	eutectic non-eutecti	20	eutectic 20	eutectic 20	
	Initial melt volume, L	400 400 3 3	400 10	400 6	400 6	Jet free fall height, mm Initial melt volume, L	400 400 3 3	400 10	400 6	400 6	
	T _{sol} , °C	23.4 7.5 870 1027 870 1027	78.1 870 870	46.9 870 870	41.2 1231 1231	Initial melt mass, kg Tsol, °C	23.4 7.5 870 1027	78.1 870	46.9 870	41,2 1231	
	Molt temperature in the funnel	1006 1350	1076	940	1531	T _{lio} , °C Melt temperature in the funne upon pouring, °C	870 1027 1 1006 1350	870 1076	940	1231 1531	
		200 200 79 78	200 75	200 77	200 72	Water pool depth, mm Water temperature, °C	200 200 79 78	200 75	200 77	200 72	
	Table 2. Measured and estimate	d properties of the	debris beds	s in PULiMS	-E tests.	· · · · · · · · · · · · · · · · · · ·			1 ,,,		
	Parameter	E1	Exploratory P E3	ULiMS tests E4	E5	Table 2. Measured and esti	mated properties of th	e debris bed Exploratory I		S-E tests.	
	Melt release time, (sec) Total size $x \times y$, mm	10 460x440	15 ~750x750	12 740x560	~8.7	Parameter Melt release time, (sec)	E1	E3 15	E4 12	E5 ~8.7	
	Cake size $x \times y$, mm Max debris height, mm	~430x320 93	~750x750 unknown	711x471 106	~400x420 50	Total size $x \times y$, mm Cake size $x \times y$, mm	460x440 ~430x320	~750x750 ~750x750	740x560 711x471	~400x420	
	Area averaged debris bed height, mm Volume averaged debris bed height, mm	31 50	~30 unknown	30 41	22 28	Max debris height, mm Area averaged debris bed height, n	93 nm 31	unknown ~30	106 30	50 22	
	Debris height under injection point, mm Total area occupied by cake, m ²	48 0.14	unknown ~0.44	0.30	39 0.14	Volume averaged debris bed heigh Debris height under injection point	t, mm 50 t, mm 48	unknown unknown	41 50	28 39	
	Measured particulate debris mass, kg Measured particulate debris mass fractio		unknown unknown	2.9 ~6.8% 39.5	-	Total area occupied by cake, m ² Measured particulate debris mass,	0.14 kg ~4	~0.44 unknown	0.30 2,9	0.14	
	Solidified cake mass, kg Measured debris bed volume, L Estimated total cake porosity	~20 ~4.2 0.29	unknown unknown	8.9 0.36	13.6 ~3.1 0.37	Measured particulate debris mass Solidified cake mass, kg	~20	unknown unknown	~6.8% 39.5	13.6	
	Symmetry of the spread Steam explosion	non-sym.	unknown yes	non-sym.	symmetric yes	Measured debris bed volume, L Estimated total cake porosity	~4.2 0.29	unknown -	8.9 0.36	~3.1 0.37	
	Cake formation Measured melt superheat, °C	cake 136	no cake 206	cake 70	cake 300	Symmetry of the spread Steam explosion	non-sym.	unknown yes	non-sym.	symmetric yes	
	Measured melt superheat in the pool, °C Estimated loss of melt superheat due to jo	121	77	48	90	Cake formation Measured melt superheat, °C	cake 136 ol, °C 121	no cake 206 77	70 48	300 90	
	interaction with coolant, °C	15	129	22	210	Measured melt superheat in the po Estimated loss of melt superheat de interaction with coolant, °C		129	22	210	
	【ここまで】										

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017, 12, 20 版) 12	東海第二発電所(2018. 9.12版)	島根原子力発電所 2 号炉	 ・評価方針の相違 【柏崎 6/7 では、ハードクラストが形成され、水がコリウム内に全くデブリの連続層高さをとに、初期水張り水深を決定している。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
(17) (20) (20) (20) (20) (20) (20) (20) (20		1 * * * * * * * * * * * * * * * * * * *	・解析結果の相違【柏崎 6/7】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
	【比較のため,「添付資料 3. 2. 14 別添 2」を記載】		
	別添2	別紙	
	粒子化割合の算出	粒子化割合の算出	・解析結果の相違
			【東海第二】
	粒子化割合は以下のRicou-Spalding相関式によ	RPV破損時における流出する溶融炉心の粒子化割合を以下の	粒子化割合の算出し
	り求めた。	Ricou-Spalding相関式によって評価している。本	ついて,考え方の相違に
	$d^2 - d^2$	相関式は、MAAPにおいても実装されている。	ないが、MAAPの解析
	$\Phi_{ent} = \frac{d_{dj,0}^2 - d_{dj}^2}{d_{dj,0}^2}$	$d_{di,0}^2 - d_{di}^2$	結果のアウトプット
	$u_{dj,0}$	$\Phi_{ent} = \frac{d_{dj,0}^2 - d_{dj}^2}{d_{dj,0}^2}$	用いるため,粒子化割
	()1/2		の数値については相i
	$d_{dj} = d_{dj,0} - 2E_0 \left(\frac{\rho_w}{\rho_{dj}}\right)^{1/2} \Delta H_{pool}$	$d_{dj} = d_{dj,0} - 2E_0 \left(\frac{\rho_w}{\rho_{di}}\right)^{1/2} \Delta H_{pool}$	している。
	$\left(ho_{dj} ight)$	$\left(ho_{dj} ight)$	
	ここで、	ここで、	
	Φ _{ent} : 粒子化割合 [-]	Φ _{ent} :粒子化割合 [-]	
	Eo : エントレインメント係数 [-]	E_0 :エントレインメント係数 $[-]$	
	ΔH _{pool} : プール水深 [m]	ΔH_{pool} :プール水深 [m]	
		d_{di} :プール底部におけるデブリジェット径 $[m]$	
	ddi : プール底部におけるデブリジェット径 [m]	$d_{di.0}$:気相部落下を考慮した水面におけるデブリジェット径 *1 [m]	
	ddj,0: 気相部落下を考慮した水面におけるデブリジェット径*¹ [m]		
	ρ dj : デブリジェット密度 [kg/m³]	$ ho_{dj}$:デブリジェット密度 $[ext{kg/m}^3]$	
	ρw : 水密度 [kg/m³]	ρ _w :水密度 [kg/m³]	
	※1 解析コードMAAPによる破損口径の拡大(アブレーシ	※1 解析コードMAAPによる破損口径の拡大(アブレーシ	
	ョン)を考慮	ョン)を考慮	
	評価条件は以下のとおり。	評価条件は以下のとおり。	
	・プール水深:1m (ペデスタル水位)	・プール水深: 2.4m(ペデスタル水位)	
	・デブリジェット密度: (MAAP計算結果*²)	・デブリジェット密度: kg/m³ (MAAP計算結果^{※2})	
	初期デブリジェット径: 0.15m(CRD案内管径)	初期デブリジェット径:0.20m(CRD案内管径)	
	※2 粒子化割合を大きく見積もる観点から、デブリ密度が小		
	さい過渡事象シーケンスの値を使用	さい過渡事象シーケンスの値を使用	
	以上により評価した結果、粒子化割合は以下のとおり。	以上により評価した結果、粒子化割合は以下のとおり。	
	・エントレインメント係数の場合:約17.3%	・エントレンメント係数 の場合:約 29%	
	(MAAP推奨範囲の最確値 ^{※3})	(MAAP推奨範囲の最確値 ^{※3})	
	・エントレインメント係数の場合:約 22.7%	・エントレンメント係数 の場合:約38%	
	(MAAP推奨範囲の最大値 ^{※3})	(MAAP推奨範囲の最大値 ^{※3})	
	※3 MAAPコードにおけるエントレインメント係数は, F	※3 MAAPコードにおけるエントレインメント係数は、F	

柏崎刈羽原子力発電所 6/7号炉 (201)17. 12. 20 版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2 号炉	備考
		ARO実験のベンチマーク解析の不確かさの範囲から	ARO実験のベンチマーク解析の不確かさの範囲から、	
		からである。また、不確かさの範囲のうち、	およからである。また、不確かさの範囲のうち、	
		そ中間となる を推奨範囲の最確値としており	,A およそ中間となる を推奨範囲の最確値としてお	
		LPHA-MJB実験の検証解析において、最確値を		
		ることで実験結果とよく一致する結果が得られている。		
		【ここまで】	ている。	