<u>評価した工程の代表性及び成功基準の選定の考え方</u>, 燃料取り出しの考え方について

停止時PRAの評価対象とする定期事業者検査工程については,過去の運転実績の中から標準的なものを選定することとし,第14回定期検査を参考として評価 用工程を設定した。

【停止時PSA学会標準より抜粋】 「5.4 POSの継続時間の設定 …停止時における炉心損傷頻度を概略的に算 出することが目的である場合には,過去の運転実績を統計処理してPOSごと の時間設定を行う方法,又は,代表的な定期検査工程を対象とする方法を使用 する。」

定期事業者検査工程の策定に当たっては、保安規定を満足することを前提とし、 必要な予防保全工事を盛り込んだ上、可能な限り合理的な工程としている。また、 定期事業者検査中に判明した不具合への対策により、当初の計画に無い工事を新 たに計画し延長する場合もある。

また,過去の定期検査において実施されたことのない特異な工事については, 計画時に作業内容を入念に検討の上,作業実施時には要領書等により適正に管理 されることから,代表的な定期検査工程の選定に当たっては考慮していない。

以上を踏まえ,停止時 P R A の評価対象とする代表的な工程の選定に当たって は,以下の観点を考慮した。

- 1. 定期事業者検査工程の代表性
 - (1) 燃料取り出し

原子炉停止中において炉心燃料は,通常原子炉内に格納されているが,炉内 点検や水没弁点検などの作業を実施する場合,全炉心燃料を使用済み燃料プー ルへ移動させ,プールゲートを閉鎖する。近年の実績を踏まえて,部分燃料取 り出しではなく,全燃料取り出しを実施している定期検査を選定する。

(2) 工程に大きな影響を及ぼす工事の有無

原子炉ウェル水抜きにより運転停止中の状態が変わり,定期検査工程の長期 化につながる工事がない定期検査を選定する。

(3) 原子炉格納容器/原子炉圧力容器の閉鎖への移行状態における水路点検工 事の有無

過去の定期検査においては,原子炉格納容器/原子炉圧力容器の閉鎖への移 行状態(POS-C)に,水路点検が行われた実績がある。しかし,近年の定

補足 1.1.2.a-1-1

925

期検査では、POS-Cにおける水路点検の実績は少なく、また仮に水路点検 が行われた場合でも、燃料損傷頻度への影響は小さいと考えられる。以上より、 この期間に取水路の点検を実施しない定期検査を選定する。

なお、POS-Cにおいて水路点検工事を行う場合の燃料損傷頻度は 7.0E-06/定期事業者検査となり、本評価における燃料損傷頻度 6.0E-06/定 期事業者検査と比較して増加するが、POS-Cで水路点検を実施する定期事 業者検査は、本評価と比較して短期となることが想定され、その期間に相当す る燃料損傷頻度が低減されることから、水路点検の影響は小さいと考えられる。

以上の観点から,停止時PRAの評価対象とする工程として,第14回定期検 査を選定した。これまでの各定期検査実績工程について,代表工程の選定に当た っての分析結果を表1に示す。

2. 成功基準の選定

炉心損傷の判定条件は、「燃料集合体の露出」とした。

設定した代表工程におけるプラント状態(炉心燃料取り出し・プールゲートの 開閉)によって対象とする燃料やその配置場所が異なるため,炉心損傷の判定条 件は2ケースに分類してそれぞれに燃料集合体の露出の水位を設定した。

- ・ 炉心燃料と使用済燃料プールの使用済み燃料がプールゲートで隔てられている場合
- ・炉心燃料と使用済燃料プールの使用済み燃料がプールゲートで隔てられていない場合

定期検査 回数	解列日 ~並列日	停止日数	①燃料取 替工事	 ②工程に影響 を及ぼす工事 (原子炉ウェル水 抜き工事内容) 	③原子炉ウェル水抜き 中(POS-C)の水路点検 工事の有無
1	H2. 2. 5 ~4. 18	73	部分 取出	_	不明
2	H3. 5. 7 ∼7. 15	70	部分 取出	_	不明
3	H4. 9. 7 ∼11. 18	73	全燃料 取出	_	有
4	H6. 1. 12 ∼3. 23	71	全燃料 取出	_	有
5	H7. 4. 27 ~7. 10	75	全燃料 取出	_	有
6	H8.9.6 ∼11.8	64	全燃料 取出	_	有
7	H10. 1. 5 ~2. 22	49	全燃料 取出	_	有
8	H11. 5. 11 ~7. 9	60	全燃料 取出	・水没弁点検	無
9	H12. 9. 17 ~10. 29	43	部分 取出	_	有
10	H14. 1. 8 ~ 2.21	45	部分 取出	_	有
11	H15. 4. 15 ~8. 1	109	全燃料 取出	・水没弁点検	無
12	H16. 9. 7 \sim 17. 2. 6	153	全燃料 取出	・原子炉再循環系 配管修理工事	無
13	H18. 2. 28 ~6. 3	96	全燃料 取出	_	無
14	H19. 5. 28 ~7. 22	76	全燃料 取出	_	無
15	H20. 9. 7 ~ H21. 3. 24	199	全燃料 取出	 水没弁点検工事 	無
16	H22. 3. 18 ~12. 6	264	全燃料 取出	・原子炉再循環系 配管他修理工事	無

表1 定期検査実績工程分析結果

プラント状態の分類の考え方について

島根原子力発電所2号炉において評価対象とする定期事業者検査工程を図1 に示す。以下に各POS分類の考え方について述べる。

1. 原子炉冷温停止への移行状態(POS-S)

通常のプラント停止では,残留熱除去系の停止時冷却モードで除熱可能な圧 力に減圧するまでは,主蒸気系を介して,復水器によって原子炉は除熱される。 残留熱除去系の停止時冷却モードの運転による除熱を開始した後,復水器を真 空破壊し,復水器による除熱を停止する。プラント停止直後は,停止時冷却モ ード運転中の残留熱除去系1系統のほかに,残りの残留熱除去系1系統が待機 状態にある。復水器真空破壊から原子炉圧力容器開放工程へ移行するまでの期 間を,原子炉冷温停止への移行状態(POS-S)として分類する。

2. 原子炉格納容器/原子炉圧力容器開放への移行状態(POS-A)

原子炉格納容器/原子炉圧力容器の開放開始から原子炉ウェルの水張り完了 までの期間は、崩壊熱がまだ比較的大きく、原子炉内のインベントリ(水位) も運転中とほぼ変わらない。この期間は、停止時冷却モード運転中の残留熱除 去系1系統の他に、残りの残留熱除去系1系統が待機状態にある。この期間を、 原子炉格納容器/原子炉圧力容器の開放状態(POS-A)として分類する。

3. 原子炉ウェル満水状態(POS-B)

原子炉圧力容器開放完了から原子炉圧力容器閉鎖開始までの期間は,原子炉 ウェルが満水の状態にある。この期間は,原子炉内のインベントリ(水位)が 多く,残留熱除去系による除熱が喪失しても原子炉冷却材の温度が短時間に上 昇することはない。この期間を原子炉ウェル満水状態(POS-B)として分 類する。さらに,POS-Bの期間において,保守点検に伴い使用可能な設備 の組合せ等が変化するため,POS-B-1,B-2,B-3及びB-4の4 つの期間に分類する。

4. 原子炉格納容器/原子炉圧力容器の閉鎖への移行状態(POS-C)

原子炉ウェル水抜き開始から起動準備に入るまでの期間は,設備の保守点検 は継続中であるが,原子炉内のインベントリ(水位)は運転中とほぼ同じであ る。しかし,炉心の崩壊熱は,停止直後の約1/10に低下している。原子炉圧 力容器閉鎖開始から起動準備に入るまでの期間を,原子炉格納容器/原子炉圧 力容器の閉鎖への移行状態(POS-C)として分類する。 5. 起動準備状態(POS-D)

原子炉格納容器/原子炉圧力容器閉鎖が終了後,プラントの再起動までに設備の機能確認などの起動準備が実施される。この期間中は,設備の保守点検が 終了しており,タービン駆動の注水機能を除き,緩和設備の多くが待機状態と なっている。原子炉格納容器/原子炉圧力容器閉鎖終了から制御棒引き抜き開 始までの期間を,起動準備状態(POS-D)として分類する。

上記を踏まえ,停止時PRAの評価を実施するため,定期事業者検査期間中の主要工程と,系統の除熱及び注水能力を整理し,評価対象とするPOSを以下のとおり設定した。

- ・POS-S : 原子炉冷温停止への移行状態
- POS-A : 原子炉格納容器/原子炉圧力容器開放への移行状態
- POS-B-1:ウェル満水1の期間
- POS-B-2:ウェル満水2の期間
- POS-B-3:ウェル満水3の期間
- POS-B-4:ウェル満水4の期間
- POS-C : 原子炉格納容器/原子炉圧力容器閉鎖への移行状態
- ・POS-D :起動準備状態

	브와				定検日数				
	цĶ	1 2 3 4 5 6	7 8 9 10 11 12	13 14 15 16 17 18 19 20 21 22 23 24 25 26	27 28 29 30 31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58	59 60 61 62 63 64 65 66 6	7 68 69 70 71 72 73
Ц Л	ソト状態	SA	B-1	-B	2	B-3	B-4	o	D
		PCV・RPV開放		Them	取替, CRD点 検		燃料装荷		起動試験·起動準備
71	ティカル 工程								
	<u>!</u>		燃料移動	_		C RD機能試験		RPV復旧・漏洩テヌト	1
				A 一水路点検					
第7.	长系点 検			C一水路点被		日 一水路点後			
4	1				ウェル満水				
¥	表亦位	通常水位							通常水位
L A-RH	в								
馬 王 王 王 王 王	в								
S CON									
条 未 FPC									
た 仕替	除熱	B-RHR	I			-	-	A–RHR	A-RHR
HPCS	*1								
LPCS	*1								
å LPCI	(C-RHR) 3	K 1							
术 A-CW	1 %2								
m B−CM ≭	1 %2								
C-CW	1 %2								
FMN									
A	9								
篇 8-D/	9								
-/O-H	6 ※1								
余	裕時間	a.m. 5.3h	80h	110	40	160h	190h	26h	27h
	A-RHR:海 B-RHR:線晶 S-RHR:線晶 CUW:原子 S-UW:源子 F-PC:線子 子-PCS: 加 合 子 子 子	留際族太A系 留際族太B系 子炉浄化系 科ノーレド約3 戦用ディーセル発電機 王府心ス ブレイ糸	LPCS : 低压及 LPC1 : 低压过 A-CWT : 微水霉 B-CWT : 微水霉 C-CWT : 微水電	10.スプレイ系 PCV :原子伝格納容器 10.5.ズブレイ系 PCV :原子炉圧力容器 16.茶.A.ポンプ LPRM :局部出力領域モニタ 16.茶.A.ポンプ CRD :制御棒覧動機構 11.茶.R.ポンプ CRD :制御棒覧動機構	※1 今回の PRAでは朝待していない設備(RHRは ※2 定期事業者検査に先行して点検を実施	(低圧注水モードを募得せす)		- 1993年1993年 - 1993年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995年 - 1995 - 19	「用いている系統統

図1 主要工程と使用可能な除熱及び補給系統

補足 1.1.2.a-2-3 **930**

運転停止中には原則として全制御棒が挿入されており,制御棒駆動機構の試験 を行う場合でも,厳格な管理等により1体毎にしか行えない。また,万一,制御 棒が誤って引き抜かれた場合でも,その影響は引き抜かれた制御棒等の周辺のみ に限られるため,局所的な事象で収束し,過大な炉心の損傷には至らない。した がって,本事象から除外する。

また,過去にBWRプラントにおいて,運転停止中に制御棒が誤って引き抜か れた事象が発生している。本プラントでは,従前からHCU隔離時には制御棒駆 動系はリターン運転とする手順としていたが,本事象に対する対策として,制御 棒駆動水差圧高の検知の明確化を図るとともに,差圧が更に高くなった場合には 制御棒駆動水ポンプをトリップさせるインターロックを設置する等の再発防止対 策をとり,同様の事象発生を防止している。また,仮に同様の事象が発生したと しても,中性子束異常高による原子炉スクラムにより制御棒の引き抜きが停止す ることから燃料は健全性を失うことはない。

なお,制御棒の引き抜き事象が発生する頻度を評価すると,発生頻度は と十分小さく,頻度の観点からも起因事象から除外しても

問題ない。

(補足資料)

・制御棒の誤引き抜きが発生する頻度について

制御棒の誤引き抜きが発生する頻度について

1. 運転停止中のHCU隔離操作の回数

運転停止中におけるHCU隔離操作は、以下の時期に2回実施される。

- ・燃料取り出し作業前
- ・PCV漏えい試験前
- 2. HCU隔離時の制御棒駆動系リターン運転の確認

3. 制御棒駆動水差圧高時の制御棒駆動水ポンプトリップ回路

4. 制御棒駆動水差圧高時の運転員緩和操作

5. 制御棒誤引き抜き発生頻度

残留熱除去系運転中のLOCAについて

残留熱除去系運転中のLOCAは,残留熱除去系停止時冷却モードで運転中の 残留熱除去系から,主に弁の損傷を起因として冷却材が流出する事象である。一 方,残留熱除去系切替時のLOCAは,残留熱除去系切替時に主に人的過誤を起 因として冷却材が流出する事象であるが,残留熱除去系運転中のLOCAは,事 象発生後の事故シーケンスの展開としては残留熱除去系切替時のLOCAとほぼ 同様となる。

また,残留熱除去系運転中のLOCAの発生頻度は,残留熱除去系切替時の LOCAの2.9E-04/定期事業者検査より

である。残留熱除去系運転中のLOCAの発生頻度の評価を補足資料に示す。

また,流出経路となる系統の最高使用圧力に対し,評価期間中の残留熱除去系 停止時冷却モードにおけるRHRの系統圧力は十分に低く,弁の破損が発生する 可能性は十分に低いと考えられる。

以上より,残留熱除去系運転中のLOCAは,人的過誤が起因となる残留熱除 去系切替時のLOCAで代表できるとし,起因事象から除外している。

(補足資料)

・残留熱除去系運転中のLOCAが発生する頻度について

残留熱除去系運転中のLOCAが発生する頻度について

1. 評価対象とするPOS

残留熱除去系が運転する期間のうち,燃料が燃料プールに搬出されている期間 (POS-B-2~3)については,RHRポンプの吸込がスキマサージタンク となり,冷却材の流出が発生しても流出量はスキマサージタンクの容量のみに限 定される。以上のことから,POS-B-2~3を除く全てのPOSを評価対象 とする。図1にPOS-B-2~3における残留熱除去系の系統概要について示 す。

2. 冷却材の流出経路及び要因の特定

冷却材の流出経路の特定に際しては次の選定条件を設定した。

- ・残留熱除去(RHR)系の停止時冷却モード運転中に冷却材バウンダリを 構成する弁の故障を対象とする。
- ・流出先が原子炉となる弁の故障は除く。
- ・ 冷却材の流出に2 弁以上の弁の故障が必要となる経路は除く。

上記の選定条件に適合する弁の故障を以下に示す。

- ・サプレッション・チェンバからの吸込弁の破損
- ・ミニマムフロー弁の破損
- ・テストラインの弁の破損
- ・格納容器スプレイライン(サプレッション・チェンバ側)の弁の破損

対象とした4弁を図2に示す。

3. 発生頻度

本評価においては、電動弁(純水)内部リークの国内一般機器故障率 4.1E-09 (/時間)を対象弁の内部破損による冷却材流出頻度とした。

1系統の残留熱除去系が評価対象期間中運転するとした場合,残留熱除去系運転中のLOCAの発生頻度は、以下のとおりとなる。

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.1.2.b-2-2

補足 1.1.2.b-2-3 **935**

図2 残留熱除去系(原子炉停止時冷却モード)系統概要図

起因事象発生頻度の評価における考え方

内部事象停止時レベル1PRAに用いる起因事象の発生頻度の評価方法は①~ ④の優先順位に基づいて評価している。

内部事象運転時レベル1PRAの考え方と基本的に同様であるが,運転日数や 総点検回数,トラブル事例等の適切なデータの入手が困難である場合は④に示す 論理モデルを用いた評価等を使用する。

①国内の運転経験データを確認し、発生が報告されている事象については、発生件数を国内プラントの総運転炉年等で除した値とした。

【対象事象】残留熱除去系機能喪失(フロントライン),外部電源喪失の発生頻 度

- ②国内の運転経験データを確認し、発生が報告されていない事象であっても、発 生頻度について十分検討が行われており評価に活用可能な文献等が参照できる 事象については、それらを参照・検討し、値を設定した。 【対象事象】本PRAでの対象なし
- ③国内の運転経験データでは発生が報告されておらず、発生頻度の評価に活用可能な文献等が確認できない事象については、運転日数等のデータが十分に収集されていることを確認後、国内での発生件数を0.5件とし、これを国内プラントの総運転炉年等で除した値として評価に用いた。

【対象事象】補機冷却系機能喪失の発生頻度

④運転日数や総点検回数、トラブル事例等の適切なデータの入手が困難であり、
 ②、③による算出が出来ない場合は、イベントツリーを用いた論理モデルによる信頼性解析を行い、値を設定した。

なお,イベントツリーを用いた論理モデルでは保守性を持つ仮定等により発生 頻度が大きく,また故障率の不確実さが大きくなる傾向がある。そのため,その 他の適切な推定手段がある場合にはそちらを用いる。

【対象事象】原子炉冷却材の流出

冷却材流出事象の発生頻度の算出方法について

運転停止中のLOCAの起因事象として,制御棒駆動機構点検時,局部出力領 域モニタ交換時,残留熱除去系運転切替時,原子炉浄化系ブロー運転時を想定し ている。これらの起因事象の発生頻度算出モデル及び仮定条件について以下に述 べる。

1. 制御棒駆動機構点検時のLOCAの発生頻度

制御棒駆動機構点検時のLOCAの発生頻度は,制御棒駆動機構点検本数及び 機器点検手順から,LOCAが発生する可能性がある事象に対して,操作失敗時 の人的過誤確率及び機器故障率を考慮したイベントツリーを作成して評価した。 評価では,定期事業者検査当たり19個のCRDを点検し,点検時にカップリン グ又はフランジから冷却材が漏えいすることを想定している。イベントツリーを 図1に示す。カップリングシール確保失敗は,配管破損の国内一般機器故障率を 考慮して設定している。カップリング漏えい認知,CRDフランジ取付及びオペ フロ側の操作誤りは,それぞれ図5より設定している。図1より,発生頻度は 6.5E-07/定期事業者検査となった。

2. 局部出力領域モニタ交換時のLOCAの発生頻度

局部出力領域モニタの交換の発生頻度は,局部出力領域モニタ交換本数及び機器点検手順から,冷却材の流出が発生する可能性がある以下の事象に対して,操作失敗の人的過誤確率,機器故障確率を考慮したイベントツリーを作成して評価した。評価では,定期事業者検査当たり6個の局部出力領域モニタを交換し,交換時のフラッシング装置等からの冷却材喪失を想定している。イベントツリーを図2に示す。LPRMシール確保失敗は,配管破損の国内一般機器故障率を考慮して設定している。シール漏えい認知,フラッシング装置取付及びオペフロ側の操作誤りは,それぞれ図5より設定している。図2より,発生頻度は3.7E-07/定期事業者検査となった。

3. 残留熱除去系運転切替時のLOCAの発生頻度

残留熱除去系切替時の冷却材流出の発生頻度は、ミニマムフロー弁の閉め忘れ を対象としてHRAイベントツリーを作成し、人的過誤確率を求めることにより 評価した。図3にHRAイベントツリー、表3に各人的過誤の確率を示す。

表3の人的過誤確率を求める上での仮定条件として,運転員の弁の閉め忘れは, 手順書(10頁以下)中の1項目を省いてしまう過誤率を用いた。管理者の閉チェ ックの失敗は,手順書を用いて行う慣例的な点検(作業)の作業ミスの発見に失 敗する人的過誤確率を用い,これに低従属を考慮した。なお,ミニマムフロー弁 を閉とした後,安全措置としてミニマムフロー弁の電源を切とする運用について は、その確認が弁閉操作を行う運転員と同一の運転員により行われる可能性が高いことから、確認の失敗は弁の閉め忘れに完全従属するものとした。図3及び表3より、発生頻度は2.9E-04/回となった。

4. 原子炉冷却材浄化系ブロー時のLOCAの発生頻度

原子炉浄化系ブロー時の冷却材流出の発生頻度は,原子炉浄化系ブロー時の弁の閉め忘れを対象としてHRAイベントツリーを作成し,人的過誤確率を求めることにより評価した。図4にHRAイベントツリー,表4に各人的過誤の確率を示す。表4の人的過誤のうち,運転員の弁の閉め忘れは図5をもとに設定している。

表4の人的過誤を求める上での仮定条件として,運転員の弁の閉め忘れに対 してレベル3を設定している。図5の項目ではレベル4となるが,原子炉冷却 材浄化系ブローは高度な管理下で実施される作業であるものの,時間が経過し た後で実施する操作のため,工学的判断により保守的にレベル3の確率とした。 また,管理者の閉操作チェック失敗は,日常的なものではなく特に要求され た点検(作業)の作業ミスの発見に失敗する人的過誤率を用い,これに低従属

を考慮した。図4及び表4より,発生頻度は1.3E-04/回となった。

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。 補足 1.1.2.b-4-3

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。 補足 1.1.2.b-4-4

図3 残留熱除去系運転切替時のLOCAのHRAイベントツリー

表3 残留熱除去系運転切替時のLOCAのHRAイベントツリーの分岐確率

人的過誤	中央値	平均值	備考

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.1.2.b-4-5

図4 原子炉冷却材浄化系ブロー時のLOCAのHRAイベントツリー

表4	原子炉冷却材浄化系フ	ロー時のHRAイベン	ノトツ	/リーの分岐確率
----	------------	------------	-----	----------

人的過誤	中央値	平均值	備考

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.1.2.b-4-6

佣疋 1.1.2.0-4-1	補足112h-4-
----------------	-----------

燃料損傷条件について

停止時PRAにおいては、燃料損傷の判定条件を"燃料有効長頂部が露出した 状態"としている。このため、POSによって対象とする燃料の配置場所が異な るため、燃料損傷の判定条件を以下のようにPOSにより分類している。表1に 燃料損傷の判定条件、表2に対象設備動作までの余裕時間、図1に保有水のエリ ア分割を示す。

原子炉通常水位における評価(POS-S, A, C, D)
 炉心燃料が炉心に全数装荷された状態を評価する。

崩壊熱による冷却水温度上昇の余裕時間算出においては,原子炉通常水位から圧力容器底部までを保有水量(a+b+c)として考慮する。また,原子炉水の蒸発による余裕時間算出においては,原子炉通常水位からTAFまでの保有水量(c)の蒸発時間を考慮する。

2.原子炉ウェル満水時の燃料移動中における評価(POS-B-1, B-4) 炉心燃料が炉心から燃料プールに移動中の評価については,燃料が炉心に全 数装荷されている状態において,原子炉側の保有水量のみを考慮する。プール ゲートが開いている期間であるため,燃料プールの保有水量も考慮することが できるが,保有水量を少なく見積もるために考慮しないこととする。これらは, 炉心燃料と使用済燃料の両方に対し原子炉側と使用済燃料プールの両方を保有 水量とするよりも保守的な評価となっている。

上記を踏まえ,崩壊熱による冷却水温度上昇の余裕時間算出においては,原 子炉側を保有水量(a+b+c+d+e)として考慮する。原子炉水の蒸発による余裕時 間算出においては,原子炉ウェル満水からTAFまでを保有水量(c+d+e)とし て考慮する。

 原子炉ウェル満水時の全炉心燃料取り出し後における評価(POS-B2, B3)

全炉心燃料及び使用済燃料が燃料プールにある状態を評価する。プールゲートが開いている状態のため、原子炉側の保有水量も考慮することができるが、 保有水量を少なく見積もるために考慮しないこととする。

上記を踏まえ,崩壊熱による冷却水温度上昇時の余裕時間算出においては, 燃料プールの保有水量(f+g)を考慮する。また,燃料プール水の蒸発による余 裕時間においては,原子炉ウェル満水からTAFまでの保有水量(g)を考慮す る。

POS	原子炉 水位	余裕時間評価に 使用する水量の範囲	余裕時間評 価に使用す る保有水量	余裕時間評価 に使用する燃 料の位置	考慮で きる保 有水量	崩壊熱を考 慮する燃料
S, A	通常	崩壊熱により水温が 上昇する範囲	a, b, c	炉心	a, b, c	炉心
C, D	水位	崩壊熱により冷却材 が蒸発・流出する範囲	С	炉心	С	炉心
В — 1		崩壊熱により水温が 上昇する範囲	a, b, c, d, e	炉心	a, b, c, d , e, f, g	移動中 (炉心, 燃料プール)
В-4		崩壊熱により冷却材 が蒸発・流出する範囲	c, d, e	炉心	e, g	移動中 (炉心, 燃料プール)
B - 2 B - 3	原子炉 ウェル 満水	崩壊熱により水温が 上昇する範囲	f, g	燃料プール	a, b, c, d , e, f, g	燃料プール
		崩壊熱により冷却材 が蒸発・流出する範囲	g	燃料プール	e, g	燃料プール

表1 燃料損傷の判定条件

表2 対象設備動作までの余裕時間	対象設備	注水機能 法 人名法格伦 医子宫的 医子子 化化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合	POS PUSDIUS 残留熱除去系 原子炉浄化系 燃料プール冷却系 復水輸送系 燃料プール (A表時間 (A系/B系) 原子炉浄化系 燃料プール冷却系 復水輸送系 補給水系	条裕時間(時間) 条裕時間(時間) 条裕時間(時間) 条裕時間(時間) 条裕時間(時間) 条裕時間(時間) (TAFまで) (TAFまで) (TAFまで) (TAFまで)	S 0.25日後 3.7 - 3.7 -	A 1 日後 5.3 - 5.3 - 5.3 -	B-1 6日後 80 - 80 80 80	B-2 12日後 110 - 110 110	B-3 40日後 160 - 160 160	B-4 50日後 190 - 190 190	C 58日後 26 - 26 - 26 -	D 67日後 27 - 27 - 27 -	B-2	B-2	B-3	
					0.25日後 (6時間後)	1日後	6日後	12日後	40日後	50日後	58日後	67日後	I	I	I	
		Pos				A	B-1	B-2	B - 3	B-4	С	D	B-2	B-2	B-3	1
			起因事象				残留熱除去系 (フロントコント) セイング) 極急調子	ノイノボノ猿肥沢大産の雄怒士亥(生ま)	20日然がカホ (ツネート) ライン系)機能喪失	外部電源喪失			制御棒駆動機構点検時	局部出力領域モニタ交 換時	残留熟除去系切替時	

補足 1.1.2.c-1-3 **947**

燃料損傷防止の成功に必要な安全機能について

停止時レベル1PRAにおいて炉心損傷防止のために必要な緩和機能は下の2 つを設定しており,それらに必要なフロントライン系(非常用炉心冷却系,復水 輸送系等)やサポート系(電源設備,原子炉補機冷却系等)を設定している。

・除熱機能又は原子炉注水機能(崩壊熱除去機能喪失及び外部電源喪失時)

・原子炉注水機能(原子炉冷却材の流出時)

この時,注水等の機能維持に必要な機能であるが,評価の対象としない原子炉 減圧及び原子炉格納容器除熱機能について,その取り扱いの考え方を整理した。

1. 原子炉の減圧機能

POS-S, A, C, Dにおいて原子炉が未開放の状態であり, 崩壊熱除去機 能が喪失した場合の冷却材の沸騰や原子炉圧力容器漏えい試験時の制御棒駆動 機構による加圧時には, 運転停止中であっても原子炉の圧力は上昇する。これら の場合においては原子炉の低圧維持と注水系による注水が必要となるため, 減圧 を実施する必要がある。ただし, 下の整理により成功基準の設定は不要としてい る。

・原子炉圧力容器漏えい試験(POS-Cの期間内)

漏えい試験は原子炉圧力容器トップベント弁や逃がし安全弁を閉鎖し,制御棒 駆動機構等により注水することで原子炉圧力容器を約6.93MPa以上まで上昇させ, 漏えいの有無を確認するものである。仮に試験実施中に崩壊熱除去機能の喪失や 全交流動力電源の喪失が発生した場合はトップベント弁の開放や逃がし安全弁 の開放,主蒸気隔離弁の強制開等の手段で原子炉圧力容器を減圧する必要がある。

しかし漏えい試験に伴い,原子炉水位は十分高く維持させているため,試験前の状態と比べて時間余裕^{*1}は長くなり,これらの減圧操作の成功は十分期待できる。

以上より,本評価では試験実施時間の長さと余裕時間,減圧手段を考慮して POS-Cでは原子炉圧力容器漏えい試験の状態は評価不要としている。

※1 漏えい試験では保有水量が多いため,崩壊熱除去機能が喪失した場合, POS-Cの崩壊熱における大気圧下での沸騰を想定しても,事象発生 から2日以上の余裕がある。

・原子炉圧力容器未開放時の冷却材沸騰による加圧(POS-S, A, C, D) 原子炉圧力容器未開放状態において崩壊熱除去機能の喪失や全交流動力電源 の喪失が発生した場合,徐々に原子炉内の圧力が上昇するため,いずれは減圧が 必要となる。

ただし,崩壊熱が大きな原子炉停止後初期(POS-S,A)においては,逃 がし安全弁や主蒸気隔離弁などが機能維持されており,これらを用いた減圧が可

949

能である。また、崩壊熱が小さな定期事業者検査時後半(POS-C, D)においては原子炉圧力容器のトップベント弁等より蒸気を格納容器へと逃がすことができるため、この減圧機能により低圧の維持は可能である。

そのため、本評価においてはこれらの減圧機能が十分信頼性が高いこと及び時 間余裕が十分にあることを持って評価不要としている^{*2}。

- ※2 逃がし安全弁1弁あたりの開失敗確率(デマンド)(2.7E-04, EF=13) であり,島根原子力発電所2号炉では逃がし安全弁が12弁あるため,十 分信頼性は高い。
- 2. 原子炉格納容器除熱機能

「1.原子炉の減圧機能」で示した原子炉減圧が必要なプラント状態において, 逃がし安全弁開放等により原子炉圧力を低下させた際,崩壊熱の熱量は原子炉格 納容器へと移行する。この時,原子炉格納容器は徐々に圧力が上昇するが,十分 時間余裕があり,またフィルタベント等を用いることで圧力を低下させることが 可能であるため,成功基準の設定は不要としている^{*3}。

※3「添付資料 5.1.5 原子炉停止中における崩壊熱除去機能喪失時の格納容器の影響について」にて示すとおり、炉心損傷前ベントの基準となる1 Pdに到達する時間は約50時間程度と崩壊熱除去機能復旧の時間余裕は充分確保される。なお、停止中の場合、所員用エアロック等開放により格納容器が開放されている場合も考えられるが、所員用エアロック等を速やかに閉止することで未開放時と同様の操作となる。また、原子炉圧力容器を開放している場合は原子炉内から放出された熱量は蒸気に伴い原子炉建物内に放出され、原子炉建物壁面への吸熱、又は環境へ放熱されるが、この場合は崩壊熱量がさらに低下していること、原子炉ウェルが水張りされているなど冷却材の量が増加していることから事象進展はより緩慢となる。 冷却材流出事象の流出量及び余裕時間の算出方法について

停止時PRAにおいては,制御棒駆動機構点検時,局部出力領域モニタ交換時, 残留熱除去系切替時及び原子炉浄化系ブロー時の冷却材流出が想定される。各事 象における余裕時間を表1に示す。

運転停止中のLOCAにおける余裕時間は、以下に示すとおり、冷却材の流出 流量により燃料露出までの時間を計算することにより求めている。

1	. 制御棒駆動機構点検時の冷却材流出
	制御棒駆動機構点検時は,
	冷却材流出を想定し,ウェ
	ル満水からの水位低下を評価している。
_	原子炉ウェル満水から <u>TAFま</u> での水量(約1.0E+3m ³)及び流出流量(
	から、余裕時間はした。
-	

2.局部出力領域モニタ交換時の冷却材流出
 局部出力領域モニタ交換時の中性子束計測案内管からの冷却材流出を想定し、
 ウェル満水からの水位低下を評価している。
 原子炉ウェル満水からTAFまでの水量(約1.0E+3m³)及び流出流量(
 から、余裕時間は

3. 残留熱除去系切替時の冷却材流出

残留熱除去系切替時のミニマムフロー弁閉操作忘れを想定し,ウェル満水から の水位低下を評価している。

原子炉ウェル満水からTAFまでの水量(約1.0E+3m³)及び流出流量(94m³ /h)から,余裕時間は_____とした。

4. 原子炉浄化系ブロー時の冷却材流出

原子炉浄化系ブロー時のブローライン止弁の閉失敗による流出を想定し,通常 水位からの水位低下を評価している。

以上より,各事象における燃料露出までの余裕時間は約2時間以上あり,緩和 系作動までの余裕時間を保守的に1時間としている。

なお、出力運転時PRAにおけるLOCA時の原子炉減圧の手動操作の余裕時

本資料のうち,	枠囲みの内容は機密に係る事項のため公開できません。
補足 1.1.1	2. c - 3 - 1

間については、LOCAが発生していることを必ず認知できると想定されるが、 保守的に過渡時の原子炉減圧の余裕時間を設定している。

冷却材流出事象	想定する水位	流出流量(m ³ /h)	燃料露出までの 時間(時間)
制御棒駆動機構 点検時の冷却材流出	ウェル満水		
局部出力領域モニタ 交換時の冷却材流出	ウェル満水		
残留熱除去系 切替時の冷却材流出	ウェル満水		
原子炉浄化系 ブロー時の冷却材流出	RPV 通常水位		

表1 冷却材流出時の余裕時間

緩和操作に必要な余裕時間等の算定根拠について

1. 崩壞熱評価条件

発生する崩壊熱の計算には、炉心にUO₂燃料のみが装荷されている場合について停止時PSA学会標準に記載のMay-Wittの式で評価し、MOX燃料が含まれる場合においてはORIGEN2コードを用いて評価している。

また、炉心部には燃料が 560 体全数装荷されていることとし、使用済燃料プ ールに保管されている燃料については使用済み燃料ラックに貯蔵可能である燃 料 3518 体が貯蔵されていることとする。評価条件を表1に示す。

上記で算出した崩壊熱の評価に基づき,緩和操作に必要な余裕時間を算出した。

	UO ₂ 燃料	MOX燃料を含む場合			
		UO ₂ 燃料	MOX燃料		
崩壊熱評価	May-Witt	OR I GEN2コード			
100%炉心	560 体	332 体	228 体		
燃料プール (630%炉心相当)	3, 518 体				

表1 崩壊熱評価条件

2. 余裕時間に用いる崩壊熱

原子炉停止後一定期間(数日程度)までは、UO₂燃料の方が崩壊熱は大きくなるが、その後はMOX燃料を含む方が崩壊熱は大きくなる。余裕時間の評価では、炉心にUO₂燃料のみが装荷されている場合とMOX燃料を含む場合の比較を行い、崩壊熱が大きくなる方を用いることとした。冷却材初期温度は 52° を設定している。表2に各POSの代表時間における崩壊熱について示す。

補足 1.1.2.c-4-1

DOS	各POSの代表時間	崩壊熱量
P05	(解列からの日数)	(MWt)
S	0.25日後	23
	(6時間後)	
А	1日後	16
B - 1	6日後	9.3
B - 2	12日後	7.5
B - 3	40日後	5.1
B - 4	50日後	4.8
С	58日後	3.2
D	67日後	3.0

表2 各POSの代表時間における崩壊熱量

島根原子力発電所2号炉 内部事象停止時レベル1PRA イベントツリー集

補足 1.1.2.d-1-1

955

図1 POS-S RHRフロント系機能喪失に対するイベントツリー 図2 POS-S RHRサポート系機能喪失に対するイベントツリー 図3 POS-S 外部電源喪失に対するイベントツリー 図4 POS-A RHRフロント系機能喪失に対するイベントツリー 図5 POS-A RHRサポート系機能喪失に対するイベントツリー 図6 POS-A 外部電源喪失に対するイベントツリー 図7 POS-B1 RHRフロント系機能喪失に対するイベントツリー 図8 POS-B1 RHRサポート系機能喪失に対するイベントツリー 図 9 POS-B1 外部電源喪失に対するイベントツリー 図 10 POS-B2 RHRフロント系機能喪失に対するイベントツリー POS-B2 RHRサポート系機能喪失に対するイベントツリー 図 11 図 12 POS-B2 外部電源喪失に対するイベントツリー POS-B2 冷却材流出(CRD点検)に対するイベントツリー 図 13 図 14 POS-B2 冷却材流出(LPRM交換)に対するイベントツリー POS-B3 RHRフロント系機能喪失に対するイベントツリー 図 15 図 16 POS-B3 RHRサポート系機能喪失に対するイベントツリー 図 17 POS-B3 外部電源喪失に対するイベントツリー 図 18 POS-B3 冷却材流出(RHR切替)に対するイベントツリー POS-B4 RHRフロント系機能喪失に対するイベントツリー 図 19 図 20 POS-B4 RHRサポート系機能喪失に対するイベントツリー 図 21 POS-B4 外部電源喪失に対するイベントツリー POS-C RHRフロント系機能喪失に対するイベントツリー 図 22 図 23 POS-C RHRサポート系機能喪失に対するイベントツリー 図 24 POS-C 外部電源喪失に対するイベントツリー 図 25 POS-C 冷却材流出(CUWブロー)に対するイベントツリー 図 26 POS-D RHRフロント系機能喪失に対するイベントツリー 図 27 POS-D RHRサポート系機能喪失に対するイベントツリー 図 28 POS-D 外部電源喪失に対するイベントツリー

【PDS#凡例】

【略語】

DRF:崩壊熱除去機能喪失(フロントライン系)	RHR	: 残留熱除去系
DRS:崩壊熱除去機能喪失(サポートライン系)	LPRM	:局部出力領域モニタ
DLP:全交流動力電源喪失	CRD	: 制御棒駆動機構
DLC:原子炉冷却材の流出	CUW	:原子炉浄化系
OK : 事象収束		

用疋 1. 1. 2. d−1−1

補足 1.1.2.d-1-11

補足 1.1.2.d-1-13

補足 1.1.2.d-1-14

補足 1.1.2.d-1-18

補足 1.1.2.d-1-20

補足 1.1.2.d-1-21

補足 1.1.2.d-1-24

補足 1.1.2.d-1-25

補足 1.1.2.d-1-27

補足 1.1.2.d-1-28

補足 1.1.2.d-1-29

補足 1.1.2.d-1-30

補足 1.1.2.d-1-31

補足 1.1.2.d-1-32

補足 1.1.2.d-1-40

補足 1.1.2.d-1-41

補足 1.1.2.d-1-49

補足 1.1.2.d-1-52

補足 1.1.2.d-1-55

補足 1.1.2.d-1-58

補足 1.1.2.d-1-62

補足 1.1.2.d-1-70

<u>停止時PRA及び出力運転時PRAにおける</u> 余裕時間を考慮した診断操作失敗確率の設定について

停止時PRAにおいて,原子炉ウェル満水時又は点検により作業員が直接バウンダリから冷却材を流出させる冷却材流出事象の認知失敗確率はその診断が容易であり認知に失敗することが考え難い*ことから,

停止時PRAにおける他の診断操作や出力運転時PRAにおける診断操作は余裕時間が比較的長いものも存在するが、認知が確実に行われるとは言い難いため、 THERPの標準診断曲線を参照して失敗確率を設定している。

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.1.2.e-1-1

システム信頼性解析の結果について

各緩和設備の代表的なフォールトツリーのモデル化内容を表1~表2に示す。 また,各緩和設備のシステム信頼性解析結果を表3に示す。

- 1. 高圧炉心スプレイ系,低圧炉心スプレイ系,低圧注水系 本PRAでは期待していない。
- 2. 残留熱除去系
 - (1) 崩壞熱除去機能喪失

起因事象発生により,運転中の残留熱除去系が機能喪失した際の待機中の残 留熱除去系の起動失敗をモデル化しており,ポンプの起動や必要な弁操作を考 慮している。

(2) 外部電源喪失

待機中の残留熱除去系の起動失敗をモデル化している点では(1)と同様だが, 非常用ディーゼル発電機によって電源を確保することで残留熱除去系の再起 動に期待できる。

- 3. 復水輸送系
 - (1) 崩壊熱除去機能喪失, 原子炉冷却材の流出

待機中のポンプの起動失敗をモデル化しており,ポンプの起動や必要な弁操 作を考慮している。

(2) 外部電源喪失

電源の状態については,事故シーケンスの定量化時に別途イベントツリー内 で考慮しているため,(1)と同じFTを用いて評価している。

表1 残留熱除去系のフォールトツリーのモデル化範囲

却田重色	フロント	サポート系					
起囚争家	ライン	空調機	補機冷却系	交流電源	直流電源		
崩壊熱除去機能喪失	\bigcirc^{*1}	_ * 3	\bigcirc^{*1}	0	0		
外部電源喪失	○*1, 2	*3	○*2	0	0		

※1 待機中の残留熱除去系の起動をモデル化

※2 非常用ディーゼル発電機起動による再起動を考慮

※3 運転停止中はポンプ室温度はポンプに影響を及ぼすほどまでは上昇しないと考えモデル化 していない

表2 復水輸送系の代表的なFTのモデル化範囲

却四声布	フロントライン	サポート系			
此囚争家	ノロントワイン	交流電源			
崩壊熱除去機能喪失 原子炉冷却材の流出	O**1	Ο			
外部電源喪失	○*1, 2	○*2			

※1 待機中の復水輸送系の起動をモデル化

※2 非常用ディーゼル発電機起動による再起動を考慮

機能	システム(系統)	非信頼度(点推定値)	備考
	残留熟除去系 (A-RHR)	2.2E-03	
	残留熱除去系(B-RHR)	2. 2E-03	
崩遽熱除去	原子炉浄化系(C U W)	I	
	※料プール冷却系(A-FPC)	I	
	(コート) 多日子 (BートトC)	-	
	復水輸送系 (A-CWT)	1.6E-04	
	復水輸送系(B-CWT)	1.8E-04	
	復水輸送系 (C-CWT)	1.8E-04	
	(MM J) 迷氷 料 いー よ 林 湖	5.6E - 04	LOCA時に期待しない
	送 年 以 報 報 史 道 王 道 · · · · · · · · · · · · · · · · ·	1.0E-04	残留熟除去系冷却時
۲ میں اور میں ا مور میں اور میں	$(A - R C W \nearrow R S W)$	6. 6E-05	非常用ディーゼル発電機冷却時
<u>米」</u>	送 年 以 報 報 訳 4 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年 5 年	1.0E-04	残留熱除去系冷却時
	$(B - R C W \nearrow R S W)$	6. 6E–05	非常用ディーゼル発電機冷却時

表3 システム信頼性評価結果

補足 1.1.2.e-2-3

1028

起因事象発生前の操作に係る人的過誤の選定の考え方について

1. 起因事象発生前の人的過誤の抽出

停止時PRAでは、停止時特有の起因事象発生前の人的過誤について、以下 に示す考えに基づきスクリーニングアウトしており、起因事象発生前の人定過 誤として出力運転時PRAの選定結果を適用している。

- 各緩和設備が定期点検後、待機除外状態から待機状態に復旧する前に必ず機
 能試験を行うことから、停止時特有の起因事象発生前の人的過誤を検知する
 ことができると考えられる。
- 2. 起因事象発生前の人的過誤を考慮する場合の感度解析
- (1) 感度解析の条件 感度解析の評価対象として「非常用D/Gガバナの調整忘れ」を想定し、人 的過誤確率は8.0×10⁻⁵とした。

なお、人的過誤の評価についてはTHERP手法(NUREG/CR-1278)を用いて評価した。

(2) 感度解析結果

表1及び図1に事故シーケンスグループ別の感度解析結果の比較を示す。

全炉心損傷頻度は、ベースケースの6.0×10⁻⁶/定期事業者検査に対し、感度 解析ケースでは6.1×10⁻⁶/定期事業者検査であり、ベースケースとの差はわず かであった。また、各事故シーケンスグループの炉心損傷頻度についてもベー スケースとの差はわずかであった。

したがって,停止時特有の起因事象発生前の人的過誤の選定について,重要 事故シーケンスの選定に影響はないと考えられる。

事故シーケンスグループ	ベースケース	感度解析ケース
崩壞熱除去機能喪失	2.7E-10	2.7E-10
全交流動力電源喪失	6.0E-06	6.1E-06
原子炉冷却材流出	3.5E-10	3.5E-10
合計	6.0E-10	6.1E-06

表1 事故シーケンスグループ別の感度解析の比較

図1 事故シーケンスグループ別の感度解析結果の比較

停止時PRAと出力運転時PRAとのストレスファクタ設定の考え方について

停止時PRAで評価対象とした人的過誤の項目及び評価結果を表1に示す。人間信頼性解析は、ヒューマンエラーハンドブック(NUREG/CR-1278)の THERP手法(Technique for Human Error Rate Prediction)を使用しており、 評価に当たっては、運転操作に係る余裕時間及び運転員のストレスレベルについ て考慮している。

1. 余裕時間について

余裕時間は,診断失敗確率を評価する際に考慮する。表1に示すとおり,「原 子炉浄化系ブロー時の水位低下の認知失敗」については,原子炉通常水位から 燃料露出までの1時間で実施する必要があるため,余裕時間を1時間としてい る。「短時間による系統起動の判断失敗」は,炉水が100℃又はプール水が66℃ に到達するまでの時間を考慮している。

また,一部の人的過誤項目については,操作に係る余裕時間が十分にあり,そ の失敗確率が十分に低いと考えられ,又は作業員が直接バウンダリから冷却材 を流出させる事象においては確実に認知できると想定し,余裕時間を考慮して いない。

2. ストレスレベルについて

ストレスレベルは,表2に示すストレスレベルに関する補正係数を参照して設 定している。停止時PRAにおいては,異常時対応に関する訓練等を積んだ運転 員が対応することを前提として,ストレスレベルは熟練者(Skilled)の列から選 択することとしている。

起因事象発生後の人的過誤に対しては,異常時の操作であり,事象進展によっては,運転員の作業負荷が高くなることも考えられることから,ストレスレベル「作業負荷がやや高い(段階的操作)」のストレスファクタ2を設定した。

ただし、プラント状態の診断失敗は、起因事象発生後の人的過誤であるが、プ ラントの異常を運転員が認知していない段階での診断であり、高いストレス状態 には至らないと考えられるため、ストレスレベル「作業負荷が適度(段階的操作)」 のストレスファクタ1を設定した。なお、余裕時間の人的過誤への影響について は、THERPの標準診断曲線により評価に反映している。

出力運転時レベル1PRAのストレスファクタについても,事象進展によって は運転員の作業負荷が高くなることも考えられることから,起因事象発生後の人 的過誤に対してストレスレベル「作業負荷がやや高い(段階的操作)」のストレ スファクタ2を設定した。

アクタ及び過誤確率 (運転停止中)	 	平均値) L L イトレイノアノタ 選 に 注 H 大 L L A A A A A A A A A A A A A A A A A	5E-03 10	6E-04 10	8E-04 30	3E-04 30	5E-04 30	6E-04 30 プラントの異常を運転員が認知していない	1E-04 30 診断であり、高いストレス状態には至らな	0E-04 30 られるため, ストレスファクタ1を設定。	. 2E-07 10	- 0.≒	.3E-02 10 異常時の操作であり、事象進展によっては (デザムセンジャントン・エン・メント	11年末月旬が高くぶるしとももたられるに必 3E-03 10 スファクタ2を設定。
具のストレスフ	メトレメ 過	7773 ($\overline{2}$	1 1.	1 5.	1 4.	1 3.	1 2.	1 2.	1 3.	1 3.	1 7.	I	2	2 5.
1 人的過息	余裕時間	(時間)	0.6	0.8	2.2	3.7	5.4	5.1	4.0	4.3	1. 0	I	I	-
表		LG MB	POS S 短時間診断失敗	POS A 短時間診断失敗	POS B-1 短時間診断失敗	POS B-2 短時間診断失敗	POS B-3 短時間診断失敗	POS B-4 短時間診断失敗	POSC 短時間診断失敗	POSD 短時間診断失敗	原子炉浄化系ブロー時の水位低下の 認知失敗	制御棒駆動機構点検,局部出力領域 モニタ交換及び残留熱除去系切替時 の水位低下の認知失敗	制御棒駆動機構点検及び局部出力領 域モニタ交換時の冷却材流出の隔離 失敗	残留熱除去系切替及び原子炉浄化系 ブロー陸の冷却は添用の隔離生盼

ì ロゴロハシア F 1 -1 442,11,41

補足 1.1.2.g-2-2 **1032**
1 8	Stress Level	Modifiers for N Skilled**	Novice**
Item	· · · · · · · · · · · · · · · · · · ·	<u>(a)</u>	<u>(b)</u>
(1)	Very low (Very low task load)	x2	x2
	Optimum (Optimum task load):	ч.	
(2)	Step-by-step	x 1	x 1
(3)	Dynamic [†]	x1	x2
	Moderately high (Heavy task load):		
(4)	Step-by-step [†]	x2	x 4
(5)	Dynamic [†]	x 5	x10
	Extremely High (Threat stress)		
(6)	Step-by-step [†]	x 5	x10
(7)	Dynamic [†] Diagnosis	.25 (EF = 5) These are the a with dynamic ta they are NOT mo	.50 (EF = 5) actual HEPs to use asks or diagnosis- odifiers.

Table 20-16 Modifications of estimated HEPs for the effects of stress and experience levels (from Table 18-1) <u>地震PRAプラントウォークダウンのチェックシートの項目について</u>

地震PRAプラントウォークダウンのチェックシートの項目は,地震PSA学 会標準及び海外文献⁽¹⁾を参考に設定した。

地震PSA学会標準では、実効性の観点から「耐震安全性の確認」として対象 機器の基礎部分の調査・確認を重点的に行うこと、また、「二次的影響の確認」と して大地震時に機能的に従属関係にある設備の損傷による変形、離脱、移動など に起因して生じる干渉や衝突などの二次的影響を重点的に確認することが記載さ れている。また、海外文献では、固定部の状況の確認、波及的影響の確認に焦点 を当てて実施するよう記載されている。

島根原子力発電所2号炉の地震PRAプラントウォークダウンのチェックシー トは、「耐震安全性の確認」と「波及的影響の確認」を確認項目としている。具体 的には、「耐震安全性の確認」として、地震に対して耐力の低下につながる要因は ないかという観点から、海外文献のチェック項目を参考に機器の固定部の状況を 重点的に確認するチェック項目としている。また、「波及的影響の確認」として、 低耐震クラス機器の落下、衝突、転倒等によりSクラス機器が破損することがな いか確認するチェック項目としている。

(1) NRC (2012) : NRC INSPECTION MANUAL TEMPORARY INSTRUCTION 2515/188

起因事象の網羅性及びスクリーニングの考え方について

起因事象の選定の際には、地震PSA学会標準を参考に、広範な事故シナリオ の分析を行っており、事故シナリオの選定に当たっては、地震起因による安全機 能を有する建物・構築物及び機器への直接的影響だけでなく、安全機能への間接 的影響、余震による地震動の安全機能への影響及び経年劣化を考慮した場合の影響を考慮している。

また、選定された事故シナリオの分析を行い、スクリーニングを行っている。

1. 広範な事故シナリオの選定

地震PSA学会標準に基づき,地震時に特有の事故シナリオの主要因として, 地震動の形態(本震,余震),経年劣化の有無に着目し,本震による事故シナ リオについては,さらに事故進展の形態や影響の形態による細分化を行った上 で,収集したプラント情報及びプラントウォークダウン(以下「PWD」とい う。)によって,事故シナリオを広範に選定した。

図1に地震時に特有な事故シナリオ選定のフロー,図2に起因事象の抽出フ ローを示す。

a. プラント情報を用いた机上検討

プラントの耐震設計やプラント配置の特徴等の地震特有に考慮すべき関連 情報を用いて,机上検討により事故シナリオの検討を行った。机上検討では, 耐震重要度B, Cクラス機器が損傷することによるSクラス機器への波及的 影響についても考慮した。事故シナリオの検討に当たっては,地震PSA学 会標準に記載の事故シナリオを参考とした。

b. プラントウォークダウン

PWDでは,耐震安全性や波及的影響の確認により,机上検討の結果に追加すべき地震時特有の事故シナリオを見落としなく選定するため,班構成員を以下の専門的な知識・技術及び経験を有する者より選定し,実効的なPW Dとなる体制とした。

- ・評価対象のプラントシステム,安全設計,耐震設計に関する専門的な知識・ 技術及び経験
- ・地震動下での設備の挙動及び損傷部位・損傷モードに係わる振動試験及び 地震被害調査に関する専門的な知識・技術及び経験
- ・地震 PSAにおける地震ハザード評価,フラジリティ評価,事故シーケン ス評価に関する専門的な知識・技術及び経験
- ・評価対象設備の設計・運転・保守管理に関する専門的な知識・技術及び経 験

PWDの結果,本評価で考慮すべき耐震安全性上の問題点はなく,波及的 影響の確認においても,仮置物品の固縛等で対応可能な軽微なものであった ため、新たに考慮すべき事故シナリオはなかった。

c. 国内震害事例の確認

地震による原子力発電所への影響に関する国内震害事例を参照し,「地震時の波及的影響」及び「地震随伴事象」について,以下のとおり確認した。

- (a) 地震時の波及的影響
 安全上重要な設備に対する波及的影響については、図1で抽出した「B,
 Cクラス機器の損傷に伴うSクラス機器の損傷」に含まれており、事故シ ナリオとして選定されていることを確認した。
- (b) 地震随伴事象 地震随伴の津波,火災及び溢水に関する事例も示されているが、これらの事故シナリオについては、現段階では評価手法が確立していないため、本評価の対象外とした。

以上より,広範な分析により設定した事故シナリオは網羅性を有していると 考える。

2. 広範な事故シナリオのスクリーニング

選定した事故シナリオのうち、本震による炉心損傷事故に直接的につながり うる事故シナリオについては、図2のとおり起因事象として考慮している。そ れ以外の事故シナリオについては、表1に示すとおり、分析によるスクリーニ ングを行っている。

|--|

地震による事故シナリオのスクリーニング(1/4)

補足 1.2.1.a-2-3 **1037**

	表1 地震による事故シナリオのスクリーニング (2/4)	
事故シナリオ	分 析	スクリーニング結果
地震による安全機能への間接的影響		
② 安全機能を有する建物・構築物	・機器以外の屋外設備の損傷	
排気筒の転倒による原子炉建物又 は周辺構造物への影響	排気筒の転倒による原子炉建物及び周辺構造物への影響は、以下のとおり極めて小さいと考えられる。 ・排気筒は、条件付炉心損傷確率が1となる地震動レベルを超える ・排気筒は、条件付炉心損傷確率が1となる地震動レベルを超える 1200ga1相当の地震動に対して、各部材が損傷しないことを確認している。 ・他プラントにおいて地震により排気筒と排気ダクトを接続しているべローズに亀裂が確認されているが、排気筒は健全であったことが確認されている。 	工学的判断によりスクリーニングアウト
斜面崩壊による原子炉建物又は周 辺構造物への影響	原子炉建物周辺の斜面を評価した結果,基準地震動による地震力に対し て十分な安全性を有していることが確認された。	工学的判断によりスクリ ーニングアウト
送電網の鉄塔などの損傷に伴う外 部電源喪失への影響	外部電源系のフラジリティは、耐力の小さいセラミックインシュレータ で代表させており、送電網周りの影響を包絡していると判断。	地震レベル1PRAで考 慮
安全上重要な設備の冷却に使用可 能な給水源の停止に伴う冷却水枯 渇の影響	原子炉注水から除熱を含めた長期冷却のための水源については、サプレッション・チェンバに期待することで炉心冷却に成功するモデルとしており、外部水源に期待していない。	工学的判断によりスクリ ーニングアウト

補足 1.2.1.a-2-4

	表1 地震による事故シナリオのスクリーニング (3/4)	
事故シナリオ	分析	スクリーニング結果
地震による安全機能への間接的影響		
③ 運転員操作の阻害による波及的	たい たいしょう たいしょう たいしょう たいしょう たいしょう 赤谷 (11) (11) (11) (11) (11) (11) (11) (11	
施設の計画,設計,材料選定,製作、組立,完成検査までのミス	施設の計画、設計、材料選定、製作、組立、完成検査までのミスがプラントに与える影響を、定量的に評価する手法は確立されていないが、設備の設計・製作・施工の各段階における品質保証活動で適正に管理されているため、評価への影響は小さいと考えられる。	工学的判断によりスクリ ーニングアウト
地震後の運転員による操作において、地震による高ストレスを受けた、地震による高ストレスを受けた条件下で引き起こされる操作失敗	地震後の混乱に伴う高ストレス状態は運転員操作の阻害要因となりえ る。	地震レベル1PRAで考 慮
変圧器等碍子類の損傷によるサイ ト停電に伴うバックアップ操作の 支障	地震要因による設備の損傷状態は様々であり、地震後の初期段階で機器 そのものの復旧に期待することは現実的ではないと考えられる。 また、複数基同時被災の影響並びに損傷の相関性を考慮すると、他号機 においても同様な事象が発生している可能性がある。	損傷機器の復旧や他号機 からの電源融通には期待 しない。
地盤液状化,よう壁損傷による構 内通行支障	地震発生後、原子力発電所構内の道路に陥没、段差、亀裂等の損傷が発生し、構内通行に支障が出る可能性があるが、本評価では現場操作に期待していないため、構内通行支障による影響はない。	工学的判断によりスクリ ーニングアウト
二次部材損傷による運転員等従業 員への影響	施設内の損壊物や地震動による飛来物が運転員等を傷付け、操作を妨げる可能性があるが、中央制御室付近において、運転員操作を著しく妨げるような物体は基本的にはないものと考えられる。	工学的判断によりスクリ ーニングアウト

補足 1.2.1.a-2-5

牧シナリオ	表1 地震による事故シナリオのスクリーニング(4/4) 分析 分析	スクリーニング結果
機能への長		
_建 露猪(地震PSA学会標準では余震の評価手法が例示されているが、系統的な評価手法は確立されておらず、余震による影響は今後の課題と考えるが、以下のとおり評価への影響は小さいと考えられる。 ・本震を上回るような余震は稀有である。 ・本震による地震力を下回る余震による地震力による施設の損傷モードとしては、疲労破損が挙げられる。配管系は旧独立行政法人原子力安全基盤機構の配管系終局強度試験において、低サイクル疲労強度は設計疲れ線図を上回る強度であり、破損に対して非常に大きな安全裕度を有している。 ・動的機器の機能維持を確認する試験は、試験体に対して段階的に加振レベルを上げながら繰り返し試験を実施している。 ・動的機器の機能維持を確認する試験は、試験体に対して段階的に加振してかを上げながら繰り返し試験を実施している。 ・あの機器の機能維持を確認する試験は、試験体に対して段階的に加振したのを 	工学的判断によりスクリ ーニングアウト (今後の課題)
る影響		
場合の	建物については経年変化による強度低下の可能性は小さいと考えられ、定 期的な点検と保全を計画的に実施していることから経年劣化が構造物の 耐震性に与える影響は小さいものと考えられる。 また、機器については保全により、耐震上大きな影響が生じないよう管 理・対処することとしている。	工学的判断によりスクリ ーニングアウト

補足 1.2.1.a-2-6

図1 地震時に特有な事故シナリオの選定フロー

図2 起因事象の抽出フロー

補足 1.2.1.a-2-7 1041

国内震害事例及び海外文献調査について

本資料は、国内で発生した地震による原子力発電所への影響の事例及び海外文 献調査結果を示す。

1. 国内で発生した地震による発電所への影響の事例

国内で発生した地震による発電所への影響として、次に挙げる地震に対し、 施設に影響した地震規模、安全上重要な設備への影響(AM設備への影響及び 波及的影響を含む)、外部電源への影響及び復旧操作へのアクセス性の観点で事 例を抽出した。

- 一宮城県沖地震(2005年8月)による女川原子力発電所に対する影響
- 能登半島地震(2007年3月)による志賀原子力発電所に対する影響
- 一新潟県中越沖地震(2007年7月)による柏崎刈羽原子力発電所に対する影響
 一駿河湾の地震(2009年8月)による浜岡原子力発電所に対する影響
- -東北地方太平洋沖地震(2011年3月)による福島第一原子力発電所,福島第 二原子力発電所,東通原子力発電所,女川原子力発電所,及び東海第二発電 所に対する影響

上記の震害事例を調査した結果,一部の地震において,地震観測記録が発電 所設計時に設定された基準地震動S₂若しくは耐震安全性評価で設定された基 準地震動Ssを上回ることが確認されたが,安全上重要な設備に対する地震に よる直接的な異常は確認されなかった。

また,波及的影響の可能性としては,点検及び仮置き中の重量物の移動又は 遮へいブロック崩れによる安全上重要な設備への接触,低耐震クラス配管の損 傷による溢水,又は津波による浸水,並びに,電気盤火災による波及的影響が 確認されている。

地震随伴溢水及び火災については、今回の評価では評価技術の成熟度から随 伴事象の影響評価は困難であると判断し、評価対象外としている。

(1) 宮城県沖地震(2005年8月)による女川原子力発電所に対する影響

地震発生時に運転中であった1号機,2号機及び3号機は、地震に伴い自動停止。発電所敷地内で観測した地震データを解析した結果、一部の周期で 発電所設計時に設定された基準地震動S₂を上回ることが確認されたが、耐震 安全性の評価によって健全性が確保されていることが確認されており、安全 上重要な設備に対する影響はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表1に 示す。

(2) 能登半島地震(2007年3月)による志賀原子力発電所に対する影響

敷地地盤や1,2号機原子炉建屋において観測された地震記録を分析した 結果,観測した地震動の応答スペクトルが基準地震動S₂を長周期側の一部の 周期帯において超えている部分があったが,耐震安全性の評価によって健全 性が確保されていることが確認されており,安全上重要な設備に対する影響 はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表2に示 す。

(3) 新潟県中越沖地震(2007年7月)による柏崎刈羽原子力発電所に対する 影響

地震発生時に運転中又は起動中であった2号機,3号機,4号機及び7号 機は、地震に伴い自動停止。(1号機,5号機及び6号機は定期検査のため停 止中)発電所敷地内で観測した地震データを解析した結果、耐震設計上考慮 すべき地震による地震動の周期帯のほぼ全域にわたって発電所設計時に設定 された基準地震動S₂を上回ることが確認され、機器によっては構造強度や機 能維持に影響を与えると考えられる異常が確認されているものの、重大な損 傷をもたらしたものではなく、原子炉の安全性を阻害する可能性のない軽微 な事象であった。

安全上重要な設備への影響については、点検及び仮置き中であった重量物 の移動又は遮へいブロック崩れによる安全上重要な設備への接触事例や、地 震に伴う消火系配管の損傷による一部AM設備の浸水事例が確認されたもの の、地震による直接的な異常は確認されなかった。なお、3号機の所内変圧 器のダクトの基礎が不等沈下したことによって火災が発生した。

施設に影響した地震規模及び原子力発電所に対する影響について表3に示 す。

(4) 駿河湾の地震(2009年8月)による浜岡原子力発電所に対する影響

地震発生時に運転中であった4号機及び5号機は、地震に伴い自動停止。 (3号機は定期検査のため停止中。1号機及び2号機は廃止措置準備中。)発 電所敷地内で観測した地震データを解析した結果、3号機及び4号機につい ては、発電所設計時に設定された基準地震動S₁による床応答スペクトルを超 えるものではなく、設備の健全性が確保されていることが確認されている。 5号機については、観測された地震データによる床応答スペクトルが一部の

補足 1.2.1.a-2-9

周期帯において基準地震動S₁による床応答スペクトルを上回っていたが,主 要な耐震設計上重要な機器及び配管の固有周期では下回っていたこと,また 床応答スペクトルの一部が超えたことについては観測記録による地震応答解 析結果によって全ての設備が弾性状態にあったことから,設備の健全性が確 保されていることが確認されている。

以上のことから、安全上重要な設備に対する影響はなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表4に示 す。

- (5) 東北地方太平洋沖地震(2011年3月)による原子力発電所に対する影響
 - a. 福島第一原子力発電所に対する影響

地震時,運転中であった1号機,2号機,3号機は,地震に伴い自動停止(4号機,5号機,6号機は定期検査中)した。原子炉建屋及び原子炉 建屋に設置されている安全上重要な設備(原子炉格納容器,残留熱除去系 配管など)について,地震観測記録及び基準地震動Ssそれぞれによる応 答解析を比較した結果,基準地震動による地震荷重より耐力の方が大きく, 地震直後,各安全機能は保持されていたものと評価されている。

しかし、1~5号機については、地震後の津波によって、非常用ディー ゼル発電設備、電源設備などが被水、機能喪失したことで全交流電源喪失 に至り、1~3号機については最終的に炉心損傷に至った。5号機及び6 号機については、原子炉に燃料が装荷されている状態で、1~3号機同様、 津波による影響によって海水系が機能喪失に至ったものの、6号機の空冷 式ディーゼル発電設備による電源確保(5号機については、6号機から電 源融通実施)を行うとともに、仮設海水系ポンプによる冷却機能確保等の 復旧措置によって冷温停止状態への移行及び維持が図られた。

また,全燃料が使用済燃料プールへ取り出されていた4号機をはじめと する,各号機の使用済プール内燃料については,注水又は冷却によって使 用済燃料プール水位を確保し,燃料損傷防止が図られた。

施設に影響した地震規模及び原子力発電所に対する影響について表5に 示す。

b. 福島第二原子力発電所に対する影響

地震時,1~4号機は運転中であったが,地震に伴い全号機自動停止。 原子炉建屋及び原子炉建屋に設置されている安全上重要な設備(原子炉格 納容器,残留熱除去系配管等)について,地震観測記録及び基準地震動S s それぞれによる応答解析を比較した結果,基準地震動Ssによる地震荷 重より耐力の方が大きく,地震後,各安全機能は保持されていたものと評

価されている。

3号機を除く、1号機、2号機及び4号機については、地震後の津波に よって、海水系設備が被水することでヒートシンク喪失に至ったものの、 外部電源及び3号機非常用ディーゼル発電設備、電源車による電源確保、 海水系ポンプの取り替えなどの復旧措置によって、冷却機能を確保するこ とで、各号機とも冷温停止状態への移行、維持が図られた。

施設に影響した地震規模及び原子力発電所に対する影響について表6に 示す。

c. 東通原子力発電所に対する影響

地震時において1号機は定期検査のため停止中であった。発電所敷地内 で観測された地震加速度は17galであり、地震による設備への影響はなかっ た。また、地震後に外部電源がすべて喪失したが、非常用ディーゼル発電 機が自動起動し全交流電源喪失には至らなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表7に 示す。

d. 女川原子力発電所に対する影響

地震時に運転中又は起動中であった1号機,2号機及び3号機は,地震 に伴い自動停止した。発電所敷地内で観測した地震データを解析した結果, 観測された地震データによる床応答スペクトルが一部の周期帯において発 電所設計用の基準地震動Ssによる床応答スペクトルを上回っていたが, 地震観測結果に基づく原子炉建屋及び耐震安全上重要な主要設備の地震時 における機能を概略評価(建屋については最大応答せん断ひずみ及び層せ ん断力,設備については影響構造強度評価及び動的機能維持評価)した結 果,機能維持の評価基準を下回っていることが確認されている。今後は詳 細なシミュレーション解析によって健全性を確認するとともに主要設備以 外の耐震安全上重要な設備を含め設備の健全性を確認することとしている。

安全上重要な設備への影響については次のとおりである。1号機におい て常用系の高圧電源盤火災によって地絡した同期検定器の出力回路ケーブ ルから非常用母線と予備変圧器の連絡しゃ断器投入コイルに電圧が印加さ れ,非常用母線電圧が瞬時低下したため,同母線から受電していた残留熱 除去系ポンプ2台の自動停止が確認された。

2号機において海水ポンプ室に流入した海水が地下トレンチを通じて原 子炉建屋の一部に流入し,原子炉補機冷却水系の一系統及び高圧炉心スプ レイ補機冷却水系の機能喪失が確認された。同冷却水系の喪失によって非 常用ディーゼル発電機一系統及び高圧炉心スプレイ系ディーゼル発電機の 自動停止が確認された。さらに、常用系の高圧電源盤火災の影響により、 非常用ディーゼル発電機が起動していない状態でしゃ断器投入が発生し、 非常用ディーゼル発電機界磁回路損傷が確認されたものの、地震による直 接的な異常は確認されなかった。

施設に影響した地震規模及び原子力発電所に対する影響について表8に 示す。

e. 東海第二発電所に対する影響

地震時に運転中であった東海第二発電所は,地震に伴い自動停止した。 発電所敷地内で観測した地震データを解析した結果,観測された地震デー タによる原子炉建屋の最大応答加速度は,設計時に用いた最大応答加速度 及び新耐震指針に基づく耐震安全性評価で設定した基準地震動Ssの最大 応答加速度以下であった。また,観測された地震データによる原子炉建屋 の床応答スペクトルが一部の周期帯において発電所設計時に用いた床応答 スペクトルを上回っていたが,主要な周期帯で観測地震記録が下回ってい ることが確認されている。安全上重要な設備への影響については,津波対 策工事が完了していなかった一部の海水ポンプ室に海水が浸水し3台ある 非常用ディーゼル発電機用海水ポンプのうち1台が停止したこと,並びに, 125V蓄電池2B室のドレンファンネルからの逆流によって床面に3cmの 深さで溢水が確認されたものの,地震による直接的な異常は確認されなか った。

施設に影響した地震規模及び原子力発電所に対する影響について表9に 示す。

以 上

表1 2005年8月に発生した宮城県沖地震による女川原子力発電所に対する影響

確認項目	確認結果
①施設に影響した地震規模	女川原子力発電所1,2,3号機は、定格熱出力運転中のところ
(地震観測記録と基準地震動	平成17年8月16日に発生した宮城沖を震源とするマグニチュード
の関係)	7.2 (震源深さ72km, 震央距離73km, 震源距離84km)の地震の影響に
	よって,11時46分に1号機,2号機,3号機は地震加速度大信号に
	よって原子炉自動停止した。なお, 観測された保安確認用地震動は,
	最大で251.2ガルであった。
	1 号機, 2 号機, 3 号機の原子炉建屋で観測された地震動から求
	めた加速度応答スペクトル(周期ごとの加速度の最大値)は、機器
	の設置されていない屋上を除き,全ての周期において基準地震動S ₂
	による応答スペクトルを下回っていることを確認した。また、岩盤
	上で観測された地震データから上部地盤の影響を取り除いたデータ
	を解析したところ、一部周期において基準地震動S ₂ を超えている部
	分があることを確認した。今回の地震で、一部の周期において基準
	地震動の応答スペクトルを超えることとなった要因分析及び評価を
	行った結果, これは, 宮城県沖近海のフレート境界に発生する地震
	の地域的な特性によるものと考えられるとの結論か侍られた。
②-1 安全上重要な設備への	無し
影響(波及影響も含む)	今回観測された地震データを用いて、安全上重要な設備(建屋及び
	機器)の耐震安全性の評価を実施し、耐震安全性が確保されている
	ことを確認した。
②-2 既存の AM 設備への影響	無し
(波及影響も含む)	
③-1 外部電源への影響	無し
③-2 D/G への影響	無し
 ③-3 補機冷却系への影響 	無し
③-4 電源融通の可能性	可能
③-5 復旧操作へのアクセス	重大な影響無し。ただし、構内道路アスファルト亀裂、波うち及び
	技差が死生した。
④その他(安全機能には影響	無し
しないもの、留意しておく必	
要のある事項)	

表2 2007年3月に発生した能登半島地震による志賀原子力発電所に対する影響

確認項目	確認結果
 ①施設に影響した地震規模 	【志賀1, 2号機】
(地震観測記録と基準地震動	敷地地盤や1,2号機原子炉建屋において観測された地震記録を
	分析した結果, 観測した地震動の応谷スペクトルが基準地震動5 ₂ を長周期側の一部の周期帯において超えている部分があったが
	の周期帯には、安全上重要な施設がないことを確認した。
	また,1,2号機の原子炉建屋で観測された地震記録に基づいて
	原子炉建屋及び同建屋内の安全上重要な機器について検討した結
	未, 谷肥設とも弾性範囲内に十分収まつくわり, 肥設の健生性が十 分確保されていることを確認した
	タービン建屋内及び海水熱交換器建屋内の安全上重要な機器及び
	配管、並びに排気筒について、敷地地盤で観測された地震記録に基
	づいて検討した結果,各施設とも弾性範囲内に十分収まっており,
	施設の健生性が確保されていることを確認した。 さらに 今回の地震において長周期側の一部の周期帯で基準地震
	動S ₂ を上回ったことから,長周期側で今回の地震動を上回る地震
	動(検討に用いた地震動)を想定し、長周期側の主要施設であるタ
	ービン建屋基礎版上の原子炉補機冷却水系配管及び排気筒の耐震安
	全性についく確認した結果, 脳長女生宗俗を有していることを確認 した。
	以上、安全上重要な施設や長周期側の主要施設に関する一連の耐
	震安全性確認結果から、能登半島地震を踏まえても耐震安全性は十
	分確保されていることか確認でさたと考えられる。
②-1 安全上重要な設備への 影響(波及影響も含む)	【志賀1,2号機】無し
②-2 既存の AM 設備への影響 (波及影響も含む)	【志賀1,2号機】無し
③-1 外部電源への影響	【志賀1,2号機】
	供用甲の3回線すべてか喪失し外部電源喪失となったか,事象発 なの6分後に復回した
③-2 D/G への影響	【志賀1,2号機】無し
	【志賀1,2号機】無し
	【志賀1.2号機】可能
 ③-5 復旧撮作へのアクセス 	
世	
④その他(安全機能には影響	■水銀灯の落下
しないもの、留意しておく必	1号機タービン建屋運転階の水銀灯が7個,また2号機原子炉建
安のめる事項)	至連転階の水銀灯か2個洛下した。 また 2号機で落下した水銀灯の破片は 約97%を運転階床上から
	回収したが、残りの破片については使用済燃料貯蔵プールなどへ落
	下した可能性があったため、これらの箇所での点検及び清掃を行っ
	■2号機低圧タービン組み立て中のタービンロータの位置ずれ
	組み立て中の低圧タービンロータを仮止めしていた治具が変形
	したところ、動翼に微小な接触痕が複数確認された。
	■1号機使用済燃料貯蔵ブールからの水飛散 毎田済燃料貯蔵プールの水約4511ットル(お射能量約750万ベクレ
	ル)が使用済燃料貯蔵プール周辺に飛散した。そのうち、養生シー
	ト外には約8リットル(放射能量約130万ベクレル)の水が飛散した。
	飛散した水については速やかに拭き取った。外部への放射能の影響
	1 x x x し。

補足 1.2.1.a-2-14

表3 2007年7月に発生した中越沖地震による柏崎刈羽原子力発電所に対する影響

確認項目	確認結果							
 ①施設に影響した地震規模 (地震観測記録と基準地震動の関係) 	【柏崎刈羽1~7号機】 新潟県中越沖においてマグニチュード6.8の地震が発生,震央距離 16km,震源距離23kmに位置している柏崎刈羽においては,全号機(1 ~7号機)にて基準地震動を超える加速度を確認,原子炉建屋基礎 版上での最大加速度のものは,1号機での680gal(設計時の最大加 速度応答値273gal)であった。各号機で原子炉建屋基礎版上での最 大加速度(観測値,設計時応答値)は下表の通り							
			南	北	東	西	Ŀ	下
	観	測値	観測	設計	観測	設計	観測	設計*
	1 号機	最下階	311	274	680	273	408	(235)
	2 号機	最下階	304	167	606	167	282	(235)
	3 号機	最下階	308	192	384	193	311	(235)
	4 号機	最下階	310	193	492	194	337	(235)
	5 号機	最下階	277	249	442	254	205	(235)
	6 号機	最下階	271	263	322	263	488	(235)
	7 号機	最下階	267	263	356	263	355	(235)
	 1表地号設えも軽安て震失て *~面震機備るた微全いににいま 	「号原」を約検考し事重がうっい」の機子推2.のえた象要、消た。	い則屋た8~5でっ備(記が)、さ基と倍地異はたに仮管原(はたゆこ,震常な。つ置の因・	、「地上、、一家で、「「「「「「」」、「」、「」、、、「」、、、、「」、、、、、、、、、、、、	内測係地機よれ炉 1 た部地の記を震でるての 号たの震値録参動.1構は安 機め損に	をに照S2~造い全にこ傷よ一部基し(450作業)、1.7度がをいり、1.7度がをいり、半面にるので、1.7度がをいり、半面で、1.7度がをいう。そので、1.7度がたい、1.5度がをいう。1.5年の	を解gal)結能器す て損浸的 して 損浸的 で 設基に 果維の る が ご に 異 集 派 な な し 新 た 、 放 し 結 能 器 す 常 に れ し 新 た 、 か し 、 前 に 、 か し 、 前 に 、 か し 、 前 に 、 、 か し 、 、 か し 、 、 か し 、 、 か 、 、 か 、 、 か 、 、 か 、 、 か 、 、 か 、 、 か 、 、 か 、 、 、 、 、 、 、 、 、 、 、 、 、	用時表対で持重可数でよ常の面しあに大能例たってっ影な性確こて、したいで、したでで、ないない、ないで、ためで、たいで、たいで、たいで、たいで、ないで、たいで、ないで、ないで、ないで、ないで、ないで、ない
②-1 安全上重要な設備への 影響(波及影響も含む)	【柏崎刈 無し	羽1~7号	号機 】					
 ②-2 既存のAM設備への影響(波及影響も含む) 	【柏崎刈 無し	羽1~7ち	号機】					
③-1 外部電源への影響	【柏崎刈 4回線	羽1~7+ 中,2回約	号機】 泉が機能	喪失				
③-2 D/Gへの影響	【柏崎刈	羽1~75	寻機】					
③-3 補機冷却系への影響	【柏崎刈	羽1~7岁	号機 】					
③-4 電源融通の可能性	 【柏崎刈 無し	羽1~75	号機 】					
③-5 復旧操作へのアクセス 性	 ・土捨て の影響 	場北側斜面 揺し。)	面の一部	が崩落。	(復旧	操作の†	こめのア	クセス性へ

確認項目	確認結果
 ④その他(安全機能には影響 しないもの,留意しておく必 要のある事項) 	■3号機 原子炉建屋地下2階にあるSLC系注入ライン配管(格納容器外 側貫通部)の近傍に置いてあったISI用RPV模擬ノズルが地震によっ て移動し,配管の板金保温材に衝突したと思われるへこみを確認。 配管及びサポートには損傷は無かったものの,安全上重要な設備に 影響が及ぶ可能性があったことを踏まえ,室内にて床に固定されて いない重量物を固定及び固縛する対策を講じた。 なお,所内変圧器のダクトの基礎が不等沈下したことによって火
	 ■1号機 不等沈下によって消火配管が破断し,漏水及び消火系の機能喪失 に至ったものと推定。 地震による建屋周辺の地盤沈下等のため,消火系配管が破断(消火系の機能喪失)。 さらに,原子炉複合建屋とモニタ建屋(屋外)間のトレンチの沈 下によって生じた接続部の隙間及びトレンチ本体のひび割れ損傷部 を通じ,消火系から漏れた水が原子炉複合建屋内に流入。 その結果,機能要求は無かったものの主蒸気放射線モニタ検出器 が浸水によって損傷するとともに,復水補給水ポンプ(AM設備) についても浸水による被害を受けた。

表4 2009年8月に発生した駿河湾の地震による浜岡原子力発電所に対する影響

確認項目	確認結果
 確認項目 ①施設に影響した地震規模 (地震観測記録と基準地震動の関係) 	確認結果 【浜岡3,4号機】 地震観測記録と基準地震動S ₁ による応答を比較した結果,地震観 測記録は基準地震動S ₁ による応答を比較した結果,地震観 測記録は基準地震動S ₁ による応答を十分下回っており,地震時に耐 震設計上重要な設備が弾性状態にあったことから,設備の健全性が 確保されていることを確認した。 【浜岡5号機】 耐震設計上重要な設備について,地震観測記録と基準地震動S ₁ による応答を比較し,原子炉建屋の一部の階において地震観測記録 における最大加速度が基準地震動S ₁ による最大応答加速度をわず かに上回っている以外は,地震観測記録における最大加速度が基準 地震動S ₁ による最大応答加速度を下回っていることを確認した。 原子炉建屋の地震観測記録の床応答スペクトルは,一部の周期帯 において基準地震動S ₁ の床応答スペクトルな上回っているが,主 な耐震設計上重要な機器及び配管系の固有周期では下回っており, 地震時に弾性状態にあったことから,これらの機器及び配管系の健 全性が確保されていることを確認した。 5号機については,主要な設備は弾性状態にあり,健全性は確保
②-1 安全上重要な設備への	されていることを確認していたか、一部の観測記録で基準地震動S ₁ による応答加速度を超えたことから、地震観測記録を入力とした地 震応答解析を行い、設備の健全性評価の結果は、全ての設備が弾性 状態にあったことから、設備の健全性が確保されていることを確認 した。 【浜岡3~5号機】無し
影響(波及影響も含む)	
 (2)-2 既存の AM 設備への影響 (波及影響も含む) 	【浜岡3~5号機】無し
③-1 外部電源への影響	 【浜岡3~5号機】 3,4号機:3ルート6回線すべてが健全 5号機:2ルート4回線すべてが健全
③-2 D/G への影響	【浜岡3~5号機】無し
 ③-3 補機冷却系への影響 	【浜岡3~5号機】無し
③-4 電源融通の可能性	【浜岡 3 ~ 5 号機】可能
 ③-5 復旧操作へのアクセス 性 	【浜岡5号機】 タービン建屋の東側屋外エリアの地盤沈下(15m×15m, 10cm程度) を確認した。
 ④その他(安全機能には影響しないもの,留意しておく必要のある事項) 	■5号機"補助変圧器過電流トリップ"(常用系):地震の振動でト リップ接点の接触による保護継電器の誤動作(リレーチャター発生) ⇒より強い耐震性を有する保護継電器への取替を検討した結果,水 平3G,上下1G程度の実力のある保護継電器に取替。
	■5号機制御棒駆動機構モータ制御ユニットの故障警報点灯:5号 機"補助変圧器過電流トリップ"(常用系)との従属性。
	■原子炉建屋管理区域区分の変更,原子炉建屋5階(放射線管理区域内)燃料交換エリア換気放射線モニタ指示の一時的な上昇:地震の 揺れによって,燃料集合体表面の放射性物質を含んだ鉄錆びなどが, プール水に遊離し,プール表面からの放射線線量率が上昇したもの と推定。
	■主タービンスラスト軸受摩耗トリップ警報点灯及びタービン開放 点検:各種接触痕,変形,ネジ損傷などが見られた。

表5 2011年3月に発生した東北地方太平洋沖地震による福島第一原子力 発電所に対する影響

調査項目			調	間査結果			
画直張日 調査結果 ①施設に影響した地震規模 (地震観測記録と基準地震動の関係) 【福島第一1~6号機】 の関係) 平成23年3月11日,東北地方太平洋沖均 力発電所1~6号機の原子炉建屋基礎版」 加速度と基準地震動Ssから求めた基礎版」 した結果,2,3,5号機の東西方向の Ssによる最大応答加速度を上回っていた						^発 生,福 いて観測 た応答加 記録が,基 号機で原 ⁻	島第一原子 された最大 速度を比較 基準地震動 子炉建屋基
	礎版上での最	大加速度	〔(観測値	1,設計時	寺応答値)	は下表の	の通り <u>。</u>
	観測値	南	北	東	西	上	下
		観測	設計	観測	設計	観測	設計
	1 号機	460 💥	487	447	489	258	412
	2 号機	348💥	441	550	438	302	420
	3 号機	322💥	449	507	441	231	429
	4 号機	281💥	447	319	445	200	422
	5 号機	311💥	452	548	452	258	427
	6 号機	288💥	445	444	448	244	415
	「「「「」」」」では、「」、「」では、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	(没系制管析果重な観び慮た確の器とにでの配御、と、の状測配す応認有及かある)原管棒原基は方態記管る答が無びらっていた。	・炉原挿炉地ん大あをにど析能どの地も、「健子入再震どきっ用つのにな、周震のくたいい解よ5現辺時としに格)。環を榜、とたて材を号場の及割に、	「設納等系用器を完成したの時間の変化」「設納等系用器を評応したの時間のです。「「たい」のないので、「一般」のです。「ない」のないで、これ、「ない」では、「ない」では、「ない」では、「ない」では、してい	い。 口存に容管ついていり見いて軽いて、 なので、 、 、 、 、 、 、 、 でので、 で 、 、 、 、 、 、 、 、 、 、 、 、 、	た余号ででおす。他直を大言をない、重去機,得い地(震を行き視し損て要系に地らて震(荷評っくに,傷もな配つれ基直(重価た評よ主な安全	幾管ハ硯た準後のす店面っ要ど全能,て測地地に 方る果さてなは機及炉は記震震安 がた,れ,弁認能び心非録荷動全 大め基た可,めを配支常を重SS機 き実準。能ポら保
②-1 安全上重要な設備への 影響(波及影響も含む)	【福島第一1 無し(推定	~6 号機 [)					
 ②-2 既存のAM設備への影響(波及影響も含む) 	【福島第一1~6号機】 不明(消火系配管に損傷が確認されているが,津波(漂流物含む) による影響と考えられる。)						〔流物含む)
③-1 外部電源への影響	【福島第一1 全6回線中 ※1回線は	~6 号機 , 5 回 , 工事の	記 機能喪失 ため受電	天 【停止中			
③-2 D/G への影響	【福島第一1 影響無し(は,津波襲	~6 号機 津波によ <u>来後も機</u>	】 って喪失 能維持 <u>)</u>	。ただし	,一部空	冷式D/0	Gについて
③-3 補機冷却系への影響	【福島第一1 影響無し(~6 号機 (津波によ	】 って喪失	Ę)			

調査項目	調査結果
③-4 電源融通の可能性	 【福島第一1~6号機】 影響無し(津波によって喪失) 5-6号機間については,仮設ケーブル敷設によって電源融通実施
③-5 復旧操作へのアクセス 性	 ・道路に割れ、段差など有り。 ・防災道路ではないが斜面崩落による道路閉鎖箇所有り。
④その他(安全機能には影響 しないもの,留意しておく必 要のある事項)	【福島第一1~6号機】 詳細確認不可

表6 2011年3月に発生した東北地方太平洋沖地震による福島第二原子力発電所 に対する影響

にパアの形音								
調査項目	調査結果							
①施設に影響した地震規模	【福島第二1~4号機】							
(地震観測記録と基準地震動	平成23年3月11日,東北地方太平洋沖地震が発生,福島第二原子力							
の関係)	発電所1~4号機の原子炉建屋基礎版上において観測された最大加							
	速度と基準地震動 Ss から求めた原子炉建基礎版上の最大応							
	度け下表の通り)	& 原子作	「基礎版」	- (最十)	下陸) で往	星られた	昰
	大加速度け 其	/。工///》 淮 圳 雪勈	くっに対	立る最大	- 広	旧/ く	ヨってい	ス
	八川座皮は,							
	ことが唯裕され							
	観測値	観測値 開北 東西 上下						_
	影响和自	観測	設計					
	1 号機	254	434	230💥	434	305💥	512	
	2 号機	243	428	196💥	429	232💥	504	
	3 号機	277💥	428	216💥	430	208💥	504	
	4 号機	210💥	415	205🔆	415	288🔆	504	
	※記録開始	台から130	~150秒種	呈度で記録	禄は中断			
	原子炉建屋及	をび原子炸	戸建屋に	設置され	る安全上	:重要な機	と能及び	配
	管系(主蒸気系	、配管,原	〔子炉格》	内容器, 列	鼠翻線: 日本 田本 日本 日本	去系配管,	炉心支	持
	構造物及び制御	棒(挿ノ	、性) など)につい	て地震権	見測記録を	を用いた	応
	答解析と基準期	h震動S	sを用い	た応答解	析で得ら	れた地震	豪荷重 を	ŧł.
	較した結果 一	部の機器	及7%配管	系を除き	其淮州會	፪動 S s li	てよろ地	震
	(秋じに加水) 荷重の方が大き	トレーション スト	たについ	ホモ床と	金平地加 客径に安く	と総能けせ	こちった。	12
	何里の方が入る	、示にない	ワにフィ	、立725月	1111日日11日日日11日日日日11日日日日11日日日11日日日11日日日11日日日11日日日11日日日11日日日11日日日11日日日11日日日日	日夜記(より	、たらが	・よ <i></i> 毎万
	仏態でのつたと	こ計価です	シレチン	一司),坦	していません	C-球ど用V エレーン	「た心合」	月牛 コー
	析による地震症	可里の方が	い大さかく	った機器	とい配官	糸につい	ても,週	切
	な応答値を評価するため実物の構造を考慮するなどの解析モデルの							
	見直しを行った結果,基準地震動を用いた応答解析による地震荷重の							
	方が大きいこと	が確認さ	ちれており),地震後	に安全機	態能は保持	寺可能な:	状
	態であったと評価されている。							
②-1 安全上重要な設備への	【福島第二1~4号機】							
影響(波及影響も含む)								
②-2 既存のAM設備への影						-		
響(波及影響も会す。)								
音(仮仄影音0日13)	む)による影響	『大木記』 『と考えり	っれる。)			5,伴议	(1371)11199	
③-1 外部電源への影響	【福島第二1~4号機】							
	4回線中,1	回線機能	と 停止					
	※1回線は停	事止点検中	っさらに	1回線に	は,避雷暑	骨の損傷だ	が確認さ;	れ
	たため、被	害拡大防	正を目的	しして受	電停止の	の上. 復日	日作業を	実
	施。							-
③-2 D/G への影響	【福島箆一1~	~ 4 号機】						
	影響無し(3)	3 号機を隊	余き,津波	支によっ	て機能喪	失)		
 ③-3 補機冷却系への影響 	【福島第二1~	~4 号機】						
	影響無し(3	3 号機を隊	余き,津涧	支によっ、	て機能喪	失)		
③-4 電源融通の可能性	【福島第二1~ 影響無し(津	~ 4 号機】 津波によ~	って喪失)					
③-5 復旧操作へのアクセス	 道路に割れ、 	段差なと	生じる	影響無	L.			
性	,							
	【垣皀笠一1-	→ 小 旦 松						
したい他 (女王) 能には影響	11日回 - 日へ - 日へ	- 4 ケ (茂)						
しないもの、留思してわく必	村に影響悪し	/						
安いめる争惧	1							

表7 2011年3月に発生した東北地方太平洋沖地震による東通原子力発電所 に対する影響

確認項目	確認結果
 ①施設に影響した地震規模 	発電所において観測した地震加速度は17ガルであり、設備への影響
(地震観測記録と基準地震動	はなかった。
の関係)	
②-1安全上重要な設備への影	無し
響(波及影響も含む)	
②-2既存のAM設備への影響	無し
(波及影響も含む)	
③-1 外部電源への影響	むつ幹線(2回線),東北白糠線の停止に伴い,外部電源が喪失した。
	同日 23 時 59 分に東北白糠線が復旧した。
③-2D/Gへの影響	外部電源喪失に伴い、非常用ディーゼル発電機が自動起動した。
③-3 補機冷却系への影響	無し
③-4 電源融通の可能性	可能
③-5復旧操作へのアクセス性	無し
④その他(安全機能には影響	■8台あるモニタリングポストのうち4台がバッテリ切れによって
しないもの、留意しておく必	停止した。
要のある事項)	

表8 2011年3月に発生した東北地方太平洋沖地震による女川原子力発電所

唯砂頃日		催認結果 								
①地設に影響した地展焼候										
の関係)			よた,25000000000000000000000000000000000000							
121210			した	、観測さ	れた地震	加速度は	567.5ガノ	レ(保安確	》 認用地震	計:1号
			機原	子炉建屋	地下2階)であり	,全号機	とも、原	子炉保護	系が設計
			どお	り作動し	たことに	よって自	動停止し	た。		
			最	大応答加	速度につ	いて基準	些地震動	と観測記録	録の関係	は次の通
			り。							
F										
原	╈	き座の取り	ᄾᄱᇩ	以度1但	観測記録					
				_			基準地震動Ssに対する			
		観測112直		- 最フ	大加速度値(た	1ル)	取八/	取入心合加述度値(カル)		
				NS方向	EW方向	UD方向	NS方向	EW方向	UD方向	
		屋上		2000*1	1636	1389	2202	2200	1388	
	1号機	燃料取替床	(5階)	1303	998	1183	1281	1443	1061	
	אורניי	1階		573	574	510	660	717	527	
		基礎版.	F	540	587	439	532	529	451	
		屋上		1755	1617	1093	3023	2634	1091	
	つ日本	燃料取替床	(3階)	1270	830	743	1220	1110	968	
	∠亏1成	1階		605	569	330	724	658	768	
		基礎版.	F	607	461	389	594	572	490	
		屋上		1868	1578	1004	2258	2342	1064	
		燃料取替床	(3階)	956	917	888	1201	1200	938	
	3号機	1階		657	692	547	792	872	777	
		基礎版.	F	573	458	321	512	497	476	
					※1 当該地)	震計の最大設	定値(2000ガ	ル)を上回って	いるため参考	直
					※2 網掛は	基準地震動Ss	に対する最大	:応答加速度値	を超えている	ことを示す
 	舌西か	設備への	[<i>+</i> r	1 早】						
② ⁻¹ 女王工 影響(油及影	里女な 郷む会	(1) (1)	↓ 女/ ● タ、	mェゟ』 ービン建	屋	陇直圧雷	酒般 水災			
永音 (収入永)	Т 0 П	<u>ل</u>	• / ター	ビン建屋	迎地「1 地下1階)	間周圧電	高圧電源	、 般 6 一 1	Aからの	発煙が発
			生し	た。また、	,高圧電源	原盤 6 一	1 Aの火	災の影響に	こよって、	S/P水冷
			却のために手動起動したRHRポンプ(A)及び(C)号機が自動							
			停止した。							
②-2 既存の	AM設	備への影	無し							
響(波及影響	も含む)								
ি 1 দা কালেক	f o me	北京		司伯中国	日本はないまた	七市上				
③-1 外部電源	泉への第	び響	5 ⊫ ++	山稼甲 4 百ヱ 五	凹線か機 1 惑電話に	肥設大 け め 部	雪酒しい	イト同雄	急 (船) 曲者	◆ 須 1 0
				田原丁刀発電所には、外部電源としても回線(牧鹿幹線 1, 2) 日線(275bV ≤) 松良幹線1 9 円線(275bV ≤) 伝派支値(ccbv)						
			5/mx (210KV ボ), 14回料/w1, 25隊 (210KV ボ), (00KV							
			系統保護回路の動作によって、松島幹線2号1回線のみとなったが							
			3月	12 日 20	時 12 分(こ牡鹿幹線	線1号,	同日 20 時	· 与 15 分に	牡鹿幹線
			2号,3月17日10時47分に松島幹線1号,3月26日15時41分							
			に塚浜支線がそれぞれ復旧している。							
				【牡鹿1,2号線避雷器の損傷】						
				地震の揺れによると思われる影響によって、避雷器内部に部分放電						
			が発	生した。	(地震に伴	ら牡鹿戟	≩線1,2	2	の原因は	,避雷器
	の損傷によるものと考えられる。)									

補足 1.2.1.a-2-22 **1056**

確認項目	確認結果		
③-2 D/G への影響	【女川1号】		
	●非常用DG(A)界磁回路の損傷		
	DG (A)の同期検定器が動作せず、しゃ断器を手動で投入するこ		
	とができなかった。また、DG(A)が起動していない状態で		
	DG(A)のしや断益か自動投入される事家か発生した。 →メタカラ6-1Aで発生したルヅの影響によって判御を一づれた		
	→ / クク / 0 - 1 A C 光生した / 火の 影 睿によう (前仰 / 一 / ル に ※ お と が な が よう (前仰 / 一 / ル に		
	【女川2号】		
	●浸水によるDG (B) 及びDG (H) の停止		
	海水ポンプ室の取水路側から流入した海水が地下トレンチを通じて		
	原子炉建屋内の一部に浸水し, RCW(B)系及びHPCWの二系統		
	が機能喪失したことによって、DG(B)並びにDG(H)が自動		
	停止となった。(DG (A) は健全)		
(3)-3 補機冷却糸への影響	【女川2号】 ● 温水にたるDC (D) ひびDC (U) の信止		
	●浸水によるDG(B)及びDG(H)の停止 海水ポンプ室の雨水欧側から海入した海水が地下トレンチを通じて		
	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		
	新了》, 定進行の一部に役水で, KOW (D) 未及り目在しての2米 統が機能喪失した。		
	女川1号にて、地震又は火災の影響によって一部しゃ断器に不具合		
	が生じた。		
③-5 復旧操作へのアクセス	無し		
(4) ての他(女全機能には影響)	【女川1方】 ●真正雪酒般しゃ断哭の恐れて可		
一 更のある事項)	●同二电源盈しや阿福の投入下引 主に定検時に使用する高圧電源般(1号機所内電源を2号機から受雷		
	する際に使用)において、電源盤内に設置しているしゃ断器が地震		
	の振動によって傾き、投入スイッチを入切するためのインターロッ		
	クローラーが正常位置から外れた。		
	●母連しや断器制御電源喪失		
	火災が発生した高圧電源盤の制御電源回路の溶損による地絡や短絡		
	の影響によって、前御竜源回路か按続されているしや断畚用前御竜 酒回牧の電圧が亦動し "判御電酒転生" 数据が発生した		
	原回路の电圧が変動し、 前仰电原氏大 言報が先生した。 ●125V直流主母線般の地絡(計9件)		
	●1267 世紀上母派温の地相(計211) 高圧電源盤の火災によって、配線に地絡が発生し、地絡警報が発生		
	【女川2号】		
	特に無し		
	【女川3号】		
	●使用済燃料プールゲート押さえ脱落		
	使用済燃料フールと原子炉ワエル間の通路部に設置している使用済 燃料プールビート(N-1 H T T N-0) た田宮レズいてだ。 し 押さき		
	燃料ノールクート (No.1及びNO.2) を固定しているクート押さん 会目計4個のうた3個のスイングボルトがぬれていた		
	●HPCS圧力抑制室吸込弁自動での全開動作不能		
	4月7日の余震の揺れによる影響と推定される圧力抑制室の水位		
	変動時に、本来全開するはずのHPCS圧力抑制室吸込弁が、地震によ		
	る弁の開閉指示を行うスイッチなどの誤動作(推定)によって、全		
	開にならなかった。(手動での全開は可能)		
	【各号機共通】		
	●刑卿倖駆動糸ハリンンク文持金具サホートバーのすれ 制御捧販動機構たらジンガのたらジンガオセム目(ガリビ)ぶ		
	町町町神邸町城冊ハワシンクのハワシンク又村金具(クリツト)が, 1 号機で1カ所 - 9 号機で9カ所 - 3 号機で1カ所ずれていストレ		
	を確認した。これによる制御棒駆動機構ハウジングの落下防止機能		
	への影響はなかった。		

表9 2011年3月に発生した東北地方太平洋沖地震による東海第二発電所 に対する影響

調査項目	調査結果
 ①施設に影響した地震規模 (地震観測記録と基準地震動 の関係) 	 ・観測記録に基づく各階の最大応答加速度は、建設時の当初設計時に用いた最大応答加速度及び新耐震設計審査指針に基づく耐震安全性評価で設定した基準地震動Ssの最大応答加速度以下であることを確認した。 ・原子炉建屋の地震観測記録による床応答スペクトルは、一部の周期帯(約0.65秒から約0.9秒)で建設時の設計に用いた床応答スペクトルを上回っているが、耐震設計上重要な機器及び配管系のうち主要な設備の固有周期では、地震観測記録が工認設計波による床応答スペクトル以下であることを確認した。
②-1 安全上重要な設備への 影響(波及影響も含む)	地震による影響は無し
②-2 既存のAM設備への影響(波及影響も含む)	地震による影響は無し
③-1 外部電源への影響	3回線中3回線が機能喪失 (13日12:32 154kV系東海原子力線復旧)
③-2 D/Gへの影響	地震による影響は無し(津波によってDGSW-2Cが水没したため, DG-2Cは手動停止)
③-3 補機冷却系への影響	地震による影響は無し
③-4 電源融通の可能性	可能(HPCS-DGから 6.9kV の交流電源融通,予備充電器を介 して直流電源融通)
 ③-5 復旧操作へのアクセス 性 	地震による影響は無し
 ④その他(安全機能には影響 しないもの,留意しておく必 要のある事項) 	タービン設備などの一部で,耐震クラスB,Cクラスの設備が損傷 を受けた。 【蒸気タービン】 ・低圧タービン及び高圧タービンの動翼と隔板の一部に接触による 摺動痕 ・高圧タービンと低圧タービンの中間軸受け基礎グラウト部の割れ, 基礎ボルトの緩み(10本中3本) 【主発電機関係】 ・主発電機軸受及び励磁機及び副励磁機廻りに接触痕,間隙拡大な どの損傷

出典:「原子力発電所に対する地震を起因とした確率論的リスク評価に関する実施 基準:2015 (AESJ-SC-P006:2015)」附属書D 2. 海外のPRA関連文献調査

海外文献についての調査結果をまとめたものを表10に示す。海外の地震 P R A 関連文献を調査した結果,他にモデル化すべき起因事象は存在しなかった。

海外文献では原子炉冷却材喪失(LOCA)についてサイズや場所を分類し た評価を例示している文献があったが、今回の評価ではLOCAを1つの起因 事象として選定した。これは次の2つの理由による。1つは、同一の地震動に よる複数の配管損傷の相関性を考慮すると、事故シナリオを詳細に分析するこ と(緩和系にどの程度期待できるかを判断すること)が困難で、破断の規模に よる分類が厳密には難しいこと、もう1つは、相関を持つ配管を同定し、損傷 の相関係数を全ての配管に対して適切に算定することは現状の評価技術では困 難が伴うことである。このため、地震PRA標準に許容されている取り扱いと して、これらの事象はより厳しい条件となる起因事象に包含させ、この起因事 象は格納容器内にある一次系配管の大規模な破断によりECCS性能を上回る 大規模な原子炉冷却材喪失(ExcessiveLOCA)が発生するものと 想定し、緩和系によって事象の進展を抑制することができずに炉心損傷に至る 可能性があるため、保守的に直接炉心損傷に至る起因事象で代表させた。

地震随伴溢水については、今回の評価では評価技術の成熟度から随伴事象の 影響評価は困難であると判断し、評価対象外としている。

表 10	海外文献調杳結果	(1)	(2)
1 10		$\langle \perp \rangle$	

		我 10 一两八 六 前 西 加 木 (1/ 2/	
	文献名	記載内容	確認結果
1	ASME標準(i	地震PRAで考慮される起因事象は例え	左記の例は, すべて評価
	(239 ページ)	ば以下を含める。	上考慮していることを
	(,	(a) RPVやその他の大型機器 (steam	確認した※1
		generator recirculation num	
		generator, recirculation pump,	
		pressurizer)の損防 (1) 塔たわみイブト相応でのLOCA	
		$ (b) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (b) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (b) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \langle \mathbf{y} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{y} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \langle \mathbf{x} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle \\ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle $ (c) \overline{\mathbf{k}} \langle \mathbf{x} \rangle \wedge \mathbf{z} \rangle	
		(c) トフンシェント(LOPAは特に チェン	
		重要)	
		PCSやヒートシンクが地震要因で使用	
		できない場合(例えば、LOPA)と使	
		用できる場合の両方のトランジェントを	
		考慮すべきである。	
		また,他のトランジェントの例として,	
		service water のような重要なサポート	
		系の喪失や直流電源の喪失がある。	
2	I A E A Safety	特に、以下のタイプのシナリオに至る起	左記の例は、すべて評価
_	Guide	因事象はモデル化すべきである	上老庸していろことを
	(SSG-3) (ii	(a) 大型機器の損傷(例・reactor	正 引起して 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	(108 ページ)	nrossura vossal staam gonorators	
	(100)	pressure vesser, steam generators,	
		pressurizer) (1) 控ちなみイズト担託のIOCA	
		(0)	
		(c) LOPA	
		(d) 様々なサホートシステムの喪失を	
		含むトランジェント(PCSが失敗する	
		シナリオと失敗しないシナリオ)	
3	E P R I 地震 P	"initiator"は例えば以下を含める。	左記の例は、すべて評価
	RA 実	(a) R P V やその他の大型機器 (steam)	上考慮していることを
	施ガイド(iii	generator, recirculation pump,	確認した※1。
	(5~7 ページ)	pressurizer 等)の損傷	
		(b) 様々なサイズと場所のLOCA	
		(c) サポートシステム故障 (service	
		water や直流電源)	
		(d) トランジェント(LOPAは特に	
		重要)	
		PCSやヒートシンクが地震要因で使用	
		できない場合(例えば、LOPA)と使	
		田できる場合の両方のトランジェントを	
		老庸すべきである。外雷が使用可能だが	
		4の地震亜田指復があるシーケンスも考	
		「他の地展安囚頂防がのるシークシハもち 唐」わけれげわらわい (わぜわらー」 F	
		思しはり40はよりはい。(はせはり、LEDEも去らた担合の最のエムジンドす	
		 	
		大りると似たりることか, 必り休寸的と	
		は限りないかりじめる。例えは俗納谷希 原飲会ぶり東京生めエム東生で広く加い	
		隔離开かりや電影大マ1A 影大で女全側に 開動作したこう	
		闭則作となる。)	
		Lxcessive LOCAやリレー	
		ナヤダリンクも考慮しなけれはならな	

※1 様々なサイズと場所のLOCA(極小LOCAを含む)については、本評価 においては完全相関を仮定しているため、保守的に極大LOCAとしてまとめて 評価している。

	文献名	記載内容	確認結果
4	スイス連邦原子力	以下のように起因事象を定義しなければ	左記の起因事象数を,評
	安	いけない。	価において満足してい
	全検査局(ENS	・最小のHCLPF値とスクリーニング	ることを確認した。ま
	Ι)	値の間の地震加速度範囲に、少なくとも	た, スクリーニング値を
	PSAガイド(iv	7 つの起因事象が含まれないといけな	超える地震加速度では,
	(25 ページ)	$\langle \mathcal{V}_{\circ}$	起因事象「原子炉建屋損
		・スクリーニング値を超える地震加速度	傷」「格納容器損傷」が
		で,1 つの起因事象を定義しないといけ	支配的である。
		ない。	
5	Surry 発 電 所	(イベントツリーにおいて以下のヘディ	左記の例は, すべて本評
	Seismic	ングがモデル化されている。)	価において考慮してい
	P R A Pilot	・直接炉心損傷(T/B 建屋損傷など)	ることを確認した※2。
	Plant	・溢水(タービン建屋溢水発生時,隔離	(地震随伴溢水につい
	Review(EPRI)	失敗で非常用電気品室流入を想定)	てはスコープ対象外)
	(v	• LLOCA	
	(7~9 ページ)	・ATWS(即時ATWS 緩和あり)	
		・ RCP シールLOCA	
		· LOPA	

表10 海外文献調查結果(2/2)

※2 様々なサイズと場所のLOCA(極小LOCAを含む)については、本評価 においては完全相関を仮定しているため、保守的に極大LOCAとしてまとめて 評価している。 <調查対象文献一覧>

- (i ASME/ANS RA-Sa-2009, "Addenda to ASME/ANS RA-S-2008: Standard for Level1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications, an American National Standard." American Society of Mechanical Engineers, New York, NY. 2009.
- (ii IAEA Safety Guide SSG-3, "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants." International Atomic Energy Agency, Vienna, Austria, 2010.
- (iii Seismic Probabilistic Risk Assessment Implementation Guide. EPRI, Palo Alto, CA:2003. 1002989.
- (iv Probabilistic Safety Assessment (PSA) : Quality and Scope, Guideline for Swiss Nuclear Installations. Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland: 2009.ENSI-A05/e.
- (v Surry Seismic Probabilistic Risk Assessment Pilot Plant Review. EPRI, Palo Alto, CA: 2010. 1020756.

<u>Excessive</u> LOCAのモデル化について

地震レベル1PRAでは, 階層イベントツリーのヘディングに冷却材喪失(Excessive LOCA)を設けている。冷却材喪失(Excessive LOCA)の評価では, 複数の配管損傷時の配管破断の大きさ等を明確に区別することが困難であるため,大破断LOCAを上回る規模のLOCA(Excessive LOCA)が発生するものと想定し,保守的に緩和手段の無い起因事象として代表させている。以下では格納容器内配管損傷によるExcessive LOCAのモデル化及び保守性等の考え方を示す。

1. モデル化の概要

格納容器内配管の破損によるExcessive LOCAは,格納容器内 の複数配管の損傷により発生する可能性のある事象であるが,以下に示す格納 容器内配管の中で決定論的耐震性評価を行い,耐震バックチェック評価用地震 動Ss-1に対し設計裕度が最も小さい原子炉再循環系配管について,配管本 体及び配管支持構造物のフラジリティ評価を実施している。このとき,格納容 器内の配管の地震による損傷は完全相関すると仮定し,原子炉再循環系配管が 地震により破損する場合に格納容器内配管が全て損傷するとして,Exces sive LOCAの発生頻度を算出している。

- ・主蒸気配管
- 残留熱除去系配管
- · 給水系配管
- ·原子炉再循環系配管
- ·原子炉隔離時冷却系配管
- ·原子炉浄化系配管
- ・高圧炉心スプレイ系配管
- ・低圧炉心スプレイ系配管
- ・ほう酸水注入系配管
- 2. 評価の保守性等

格納容器内配管破損によるExcessive LOCAの評価に係る解析の保守性等を以下に示す。

- ・格納容器内配管のうち耐震バックチェック評価用地震動Ss-1に対し設計 裕度が最も小さい原子炉再循環系配管の一次応力を用いてフラジリティ曲線 を作成。
- ・既往研究において、地震による配管の破損モードは疲労であり塑性崩壊は起きないこと、「平成15年配管系終局強度試験」(図1参照)において、実機配管バウンダリの設計裕度は設計レベルの10倍以上あることが確認されている。

補足 1. 2. 1. d-1-1 **1063**

- ・さらに、格納容器内配管が地震により疲労破損した場合においても、大口径 配管が全周破損に至る可能性は小さく、その場合、一次冷却材の流出量はL OCAで想定している流出量を大きく下回る。
- 3. 原子炉再循環系配管フラジリティを用いた完全相関モデルについて
 - 地震によるLOCAにおいては、損傷する配管の数、組み合わせ、損傷の規 模を同定し、成功基準を設定することは現状の評価技術では困難であるため、 ベースケースでは格納容器内配管に完全相関を仮定し、耐震バックチェック評 価用地震動Ss-1に対し設計裕度の最も少ない原子炉再循環系配管が破損す ることをもって格納容器内配管が全て損傷するものと扱っている。

上記の評価モデルが非保守的な評価になっていないことを確認するため,格納容器内配管に完全独立を仮定し,「(1) 感度解析条件」に示す条件にて格納容器内配管がそれぞれ独立に破損することでExcessive LOCAに至る頻度を評価し,ベースケースの頻度と比較した。

(1) 感度解析条件

Excessive LOCAを「設計基準事故で考慮する大破断LOC Aを上回る規模のLOCA」として,以下の基準を設定した。

- ・全周破損時に、断面積の合計が大破断LOCA相当(0.21m²)を上回る複数 の液相配管の破損
- ・原子炉再循環系配管(液相配管のうち最大断面積)と主蒸気系配管(気相 配管のうち最大断面積)の破損の重畳
- ・複数のECCS配管の破損

上記の基準に照らし合わせ,配管2本の破損によってExcessive LOCAに至るような組合せを同定し,各系統の配管の完全独立を仮定した 感度解析を行った。感度解析で考慮した配管を表1及び図2に,考慮した配 管2本の組合せを図3に示す。

(2) 感度解析結果

地震加速度区分別の全炉心損傷頻度を図4に,事故シーケンスグループ別 の炉心損傷頻度を図5に示す。

図4に示すように、感度解析ケースの全炉心損傷頻度は7.8E-06/炉年であり、ベースケースの全炉心損傷頻度(7.9E-06/炉年)を下回る結果となった。 また、図5に示すように、事故シーケンスグループ別に炉心損傷頻度をみる と、Excessive LOCAの炉心損傷頻度は感度解析ケースで 2.8E-07/炉年であり、ベースケースの炉心損傷頻度4.2E-07/炉年を下回る 結果となった。

以上より,原子炉再循環系配管のフラジリティで代表させた評価は,非保 守的な評価にはなっていないことを確認した。なお,完全相関を仮定するこ とによる保守性を排除し,現実的な評価を実施する手法の構築については, 今後の課題と認識している。

NT	m友 千年	不外口	中央値	HCLPF
No.	略 你 	<u> </u>	(G)	(G)
1	A – P L R	原子炉再循環系	1.68	0.75
2	B – P L R	原子炉再循環系	1.68	0.75
3	A - R H R (S D C)	残留熱除去系	2.10	0.88
4	B - R H R (S D C)	残留熱除去系	2.10	0.88
5	RHR (S)	残留熱除去系	2.10	0.88
6	SLC	ほう酸水注入系	2.10	0.88
$\overline{\mathcal{O}}$	CUW	原子炉浄化系	2.10	0.88
8	A - F W	給水系	2.10	0.88
9	B - F W	給水系	2.10	0.88
10	A-MS	主蒸気系	1.76	0.78
(11)	B-MS	主蒸気系	1.76	0.78
(12)	C-MS	主蒸気系	1.76	0.78
(13)	D-MS	主蒸気系	1.76	0.78
14	RHR (H)	残留熱除去系	2.10	0.88
(15)	RCIC	原子炉隔離時冷却系	2.10	0.88
(16)	H P C S	高圧炉心スプレイ系	2.10	0.88
(17)	LPCS	低圧炉心スプレイ系	2.10	0.88
(18)	A - R H R (L P C I)	残留熱除去系	2.10	0.88
(19)	B - R H R (L P C I)	残留熱除去系	2.10	0.88
20	C - R H R (L P C I)	残留熱除去系	2.10	0.88

表1 完全独立を想定する格納容器内配管

図1 平成15年配管系終局強度試験(出典:JNES HP)

図2 格納容器内配管と破断想定箇所の概要

補足 1.2.1.d-1-5 **1067**

図3 Excessive LOCAを想定する配管の組合せ

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1. 2. 1. d-1-7 **1069** 地震レベル1PRA評価に用いる階層イベントツリーにおいては,地震を起因 に外部電源が喪失することを起点とし,その後に起きる事象を影響の大きさで整 理してイベントツリーのヘディングとしている。外部電源喪失を起点とするのは, 外部電源受電設備が,その他の建物・構築物・機器と比較して極めて脆弱であり, 外部電源系が健全な場合は他の系統も健全であると考えられるためである。表1 及び図1に階層イベントツリー及び緩和系イベントツリーの各ヘディングに対応 する起因事象及び緩和機能において,HCLPFが最も低い建物・構築物・機器 のフラジリティの損傷加速度中央値及びHCLPFを整理して示す。

ここで、地震加速度大スクラムに至る地震動加速度以上では外部電源喪失以外 の起因事象が発生している状態と考えることができるが、上述のとおり、脆弱な 外部電源受電設備が健全な場合において、他の緩和機能が地震により喪失してい ることは考えにくく、ランダム故障による緩和機能の喪失が主要な要因となる。

地震加速度大スクラムに至る地震動加速度以上を起点とした場合の階層イベン トツリーを図2に示す。感度解析の結果を図3及び図4に示す。

ベースケースとの比較において、ランダム故障が主な要因となり 0.1G~0.8G で炉心損傷頻度が増加している。

また,全ての事故シーケンス及び全炉心損傷頻度が増加するが,炉心損傷頻度 の増加はほぼ一様であり,各事故シーケンスにおけるリスク分布としては大きな 差が無いことが確認された。

以上より,重要事故シーケンスグループを抽出する観点からは,起因事象とし ての外部電源喪失へディングの変更に伴う影響はなく,地震により外部電源が喪 失することを起点として,その後に起きる事象を影響の大きさで整理した階層イ ベントツリーを用いることは妥当であると考える。

起因事象/	⇒ <u>⊓</u> , /#±	中央値	HCLPF
影響緩和機能	行 1用 1	(G)	(G)
外部電源	セラミックインシュレータ	0.50	0.18
原子炉建物損傷	原子炉建物	3.23	1.39
原子炉格納容器	原子炉格納容器スタビライザ	1.74	0.87
原子炉圧力容器	原子炉圧力容器スタビライザ	2.25	1.07
格納容器バイパス	主蒸気隔離弁	4.95	2.06
Excessive LOCA	格納容器内配管	1.68	0.75
制御室建物損傷	制御室建物	6.48	1.85
廃棄物処理建物損傷	廃棄物処理建物	4.37	2.62
計装・制御系喪失	ケーブルトレイ	2.26	0.96
直流電源喪失	充電器盤	3.95	1.82
交流電源喪失	燃料移送系配管	1.52	0.67
補機冷却系	原子炉補機海水系配管	1.60	0.68
スクラム系	シュラウドサポート	2.11	0.91
逃がし安全弁開	逃がし安全弁	9.01	3.76
原子炉隔離時冷却系	原子炉隔離時冷却系電動弁 (グローブ)	1.72	0.73
高圧炉心スプレイ系	高圧炉心スプレイ系配管	1.41	0.63
減圧	逃がし安全弁窒素ガス供給系 配管	5.14	2.30
低圧注水系	残留熱除去系電動弁 (ゲート)	2.02	0.84
残留熱除去系	残留熱除去系電動弁(グローブ)	1.88	0.77

表1 起因事象/影響緩和機能の主な建物・構築物・機器フラジリティ

図1 起因事象/影響緩和機能の主な建物・構築物・機器フラジリティ

よー <i>ル</i> ダ ン <i>ペムー</i> へ猝車	炉心損傷なし	過渡事象へ	全交流動力電源喪失へ	全交流動力電源喪失	*2	*2	*2	※ 2	* 2	*2	*2	%	
事故シーケンス	炉心損傷なし	過渡事象	過渡事象 十交流電源,補機冷却系喪失	- 過渡事象+直流電源喪失	計装・制御系喪失	廃棄物处理建物損傷	制御室建物損傷	Excessive LOCA	格納容器バイパス	原子炉圧力容器損傷	原子炉格納容器損傷	原子炉建物損傷	
交流電源・ 補機冷却系 喪失													
直流電源 喪失													
計制 報御費 ・系大													町
廃棄物 処理建物 損傷													真直結で整
制御室 建物 損傷													炉心捐修
冷却材喪失 (E-LOCA ^{%1})													ざあるため.
格約容器 バイパス													5可能性力
原子炉 圧力容器 損傷													, O C A : つながえ
原子炉 格納容器 損傷													v e L な喪失に
原 神 御 御 御 御													e s s i 備の広範
地震 加速度大													Exc 緩和設
地震													× ×

緩和設備の広範な喪失につながる可能性があるため、炉心損傷直結で整理

図4 感度解析結果(地震加速度大考慮:事故シーケンスグループ別)

補足 1.2.1.d-2-5 **1074** イベントツリーにおける福島第一原子力発電所事故の知見について

各PRA(内部事象,地震,津波)のイベントツリーにおいて,福島第一原 子力発電所事故の事故シーケンス(以下「1F事故シーケンス」という。)が考 慮されていることを確認した。

1. 福島第一原子力発電所事故における事故進展について

「福島第一原子力発電所1~3号機の炉心・格納容器の状態の推定と未解明 問題に関する検討 第3回進捗報告」(以下「1F第3回進捗報告」という。) において,福島第一原子力発電所事故のイベントツリー分析がなされている (図1)。

【1F第3回進捗報告 7.1より抜粋】 まず,起因事象は地震(東北太平洋沖地震)であり,これにより最初の地震 スクラムによる分岐点に到達する。1~3号機は全て地震スクラムが成功して いることから,全ての号機で上側(成功)に分岐する。その後,福島第一原子 力発電所全体が外部電源の喪失(E:地震により)および非常用ディーゼル発電 機の機能喪失(T:津波による浸水により)が発生し交流電源を喪失することか ら,全ての号機で下側(失敗)に分岐する。

1,2号機は津波の影響によって、交流電源の喪失と同時期に直流電源を喪 失するが、3号機の直流電源は津波の影響を免れる事ができたため、1,2号 機は下側(失敗)に分岐するが、3号機は上側(成功)に分岐する。

1号機は直流電源の喪失により,直前に停止状態であったICを再起動する ことが出来なくなったために高圧条件での原子炉冷却が出来ない状態に陥った が、2、3号機はRCIC(2、3号機)及びHPCI(3号機)を用いて, 原子炉冷却を継続した。

これらより、3号機においては交流電源が喪失する長期TB、1、2号機は 交流電源に加え直流電源も喪失するTBDが抽出されている。より厳しいTB Dが発生した1、2号機に着目すると、1F事故シーケンスは以下のとおりで ある。

<u>過渡事象</u>+<u>直流電源喪失</u>+<u>交流電源喪失</u>+高圧炉心冷却失敗 地震 津波 津波

> 補足 1.2.1.d-3-1 **1075**

2. 島根原子力発電所2号炉PRAにおける福島第一原子力発電所事故の事故シ ーケンスの考慮について

同様の事象が,島根原子力発電所2号炉の設備で起きた場合は,地震による 原子炉停止及び外部電源喪失,原子炉隔離時冷却系起動後に津波による直流電 源喪失及び交流電源喪失が起き,炉心冷却機能が喪失することにより炉心損傷 に至ることが想定される。

a. 内部事象 P R A

図2に示すように、内部事象PRAにおいては、この事故シーケンスは、 直流電源喪失により交流電源や原子炉隔離時冷却系、減圧機能の喪失が生じ るとともに、高圧炉心スプレイ系も機能喪失するという、TBDシーケンス で整理している。

b. 地震PRA

図3に示すように、地震PRAにおいては、この事故シーケンスは直流電 源喪失により交流電源や原子炉隔離時冷却系、減圧機能の喪失が生じるとと もに、高圧炉心スプレイ系も機能喪失する、直流電源喪失事象で整理してい る。

c. 津波PRA

図4に示すように、津波PRAでは津波高さ EL20m 以下では炉心損傷に至る事故シーケンスは抽出されず、津波高さ EL20m 超過では1F事故シーケン スを含む直接炉心損傷に至る事象が発生すると整理している。

以上により,島根原子力発電所2号炉PRAにおいて,1F事故シーケンス が考慮されていることを確認した。

図1 福島第一原子力発電所1~3号機のイベントツリー分析結果*
 ※1F第3回進捗報告 P.5より抜粋

補足 1.2.1.d-3-3 **1077**

事故シーケンスグループ	過渡事象へ	全交流動力電源喪失 崩壞熱除去機能喪失	全交流動力電源喪失	崩壞熱除去機能喪失	全交流動力電源喪失	崩壞熱除去機能喪失	全交流動力電源喪失
事故シーケンス	過渡事象へ	外部電源喪失+交流電源失敗	外部電源喪失+交流電源失敗+高圧炉心冷却失敗	- 外部電源喪失+交流電源失敗+圧力バウングリ健全性失敗	外部電源喪失+交流電源失敗+圧カバウングリ健全性失敗+高圧炉心冷却失敗	- 外部電源喪失+直流電源失敗	外部電源喪失+直流電源失敗+高圧炉心冷却失敗
高圧炉心冷却							
圧力バウンダリ 健全性							
交流電源							
直流電源				-			
外部電源喪失							

事故シーケンス グループ	炉心損傷なし	外部電源喪失へ	全交流動力電源喪失へ	全交流動力電源喪失	% 2	*2	*2	*2	*2	*2	*2	※ 2	
キャント	炉心損傷なし	外部電源喪失	外部電源喪失 十交流電源,補機冷却系喪失	外部電源喪失+直流電源喪失	計装・制御系喪失	廃棄物処理建物損傷	制御室建物損傷	Excessive LOCA	格納容器バイパス	原子炉圧力容器損傷	原子炉格納容器損傷	原子炉建物損傷	
交流電源 · 補機冷却系 喪失													
直流電源 喪失													
計装・ 制御系 喪失													
廃棄物 処理建物 損傷													
制御室 建物 損傷													「敷油」
冷却材喪失 (E-LOCA ^{%1})													恒心相傷直結
格納容器 バイパス													あるため
原子炉 圧力容器 損傷													ろ可能性が
原子炉 格納容器 損傷													LOCA 朱につたが、
原子炉 建物 損傷													s s i v e ∩広範 注軸→
外部電源 喪失													Exce; 緩和設備の
地震													* * 2 1 0

最終狀態	炉心損傷なし	*			
事故シーケンス	炉心損傷なし	直接炉心損傷に至る事象	いため、炉心損傷直結事象として整理す 		
直接炉心損傷に至る事象	津波高さ EL20m 以下	津波高さ EL20m 超過	帯の広範な喪失につながる可能性がある		
津波			※ 緩和設備		

津波 P R A における福島第一原子力発電所事故の事故シーケンスの整理 义 4

原子炉停止機能喪失事象のモデル化について

地震レベル1PRAでは,階層イベントツリーのヘディングに原子炉停止を設 けている。原子炉停止の評価では,炉内支持構造物,制御棒駆動系,燃料集合体 (地震時に生じる変位を考慮した制御棒挿入性)といった機器を考慮し,制御棒 の挿入に失敗する事象を評価している。以下では原子炉停止機能喪失事象のモデ ル化の考え方を示す。

1. モデル化の概要

原子炉停止系は,原子力発電所に発生した異常を検出して制御棒を緊急挿入 し,原子炉を停止する系統であり,異常を検出した後,各制御棒にスクラム信 号を発する原子炉保護系(RPS)やスクラム排出容器(SDV),制御棒の駆 動系から構成される。

地震によるスクラム系の故障に伴う制御棒挿入の失敗については制御棒駆動 機構及び炉心支持構造物を構成する機器のフラジリティを評価している。制御 棒駆動機構を構成するCRD関連機器としては,水圧制御ユニット,制御棒案 内管,制御棒駆動機構ハウジング,制御棒駆動機構ハウジングレストレントビ ーム及び制御棒駆動機構系配管を考慮する。炉心支持構造物としては,シュラ ウドサポート,上部格子板,炉心支持板及び炉心シュラウドを考慮する。これ らの機器のフラジリティ評価結果を表1に示す。

これらの損傷確率及び挿入失敗確率を評価し,図1の通りフォールトツリー を構築することで原子炉停止機能喪失事象の発生確率を評価している。ランダ ム故障は内的事象PRAによるスクラム系全体の非信頼度を元に設定している。

2. 燃料集合体への制御棒挿入性について

地震による制御棒挿入失敗としては,地震時の燃料集合体の変位又は炉心支 持構造物の損傷により燃料集合体周りのクリアランスが確保されないことによ り,規定の速度で制御棒が挿入できないこと,又は制御棒を駆動する機能が喪 失することを考慮したフラジリティ評価を実施している。

燃料集合体の変位による挿入失敗については、地震による時間応答といった 経時的な変化ではなく、地震によって生じる最大変位を考慮している。ここで、 スクラム時に制御棒挿入が遅れた解析例として、重大事故等対処設備の代替制 御棒挿入機能(ARI)による原子炉停止機能を評価した際の解析条件及び結 果を表2に示すが、反応度投入の観点で厳しい主蒸気隔離弁閉鎖発生時にも、 トリップ設定点(原子炉圧力高)到達から25秒以内に制御棒の全挿入が完了す れば事象は収束する結果となっている。このことからも分かるとおり、スクラ ム時の多少の制御棒挿入時間遅れは、炉心損傷の防止という観点では問題とな らないと考えらえることから、地震PRAのフラジリティ評価においては、制

補足 1.2.1.d-4-1

1081

御棒挿入時間は考慮していない。

起因事象/ 影響緩和機能	設備	損傷モード	評価部位	中央値(G) βr βu	HCLPF (G)
スクラム系	炉心支持板	構造損傷	支持板	2.66 0.20 0.22	1.34
スクラム系	燃料集合体	機能損傷	燃料集合体	3.73 0.24 0.25	1.66
スクラム系	制御棒案内管	構造損傷	長手中央部	2.34 0.22 0.23	1.11
スクラム系	水圧制御ユニット	構造損傷	フレーム	4.40 0.25 0.25	1.93
スクラム系	制御棒駆動機構 ハウジング	構造損傷	貫通孔	3.22 0.24 0.34	1.24
スクラム系	制御棒駆動系配管	構造損傷	サポート	2.77 0.27 0.26	1.16
スクラム系	炉心シュラウド	構造損傷	下部胴	2.51 0.22 0.23	1.19
スクラム系	シュラウドサポート	構造損傷	サポートレグ	2.11 0.23 0.28	0.91
スクラム系	上部格子板	構造損傷	グリッドプレート	3.10 0.20 0.22	1.55
スクラム系	制御棒駆動機構ハウ ジングレストレント ビーム	構造損傷	一般部	6.15 0.20 0.22	3.06

表1 原子炉停止機能関連機器のフラジリティ評価結果

表2 代替制御棒挿入機能(ARI)による原子炉停止機能評価の主要解析条件及び結果 (解析条件)

項目	主要解析条件	条件設定の考え方
起因事象	主蒸気隔離弁の誤閉止	炉心への反応度印加の観点で厳しい 過渡事象として設定
代替制御棒挿入機能	原子炉圧力がトリップ設定値(原子炉 圧力高(7.41MPa [gage]))に達して から25秒以内に制御棒の全挿入が完了	代替制御棒挿入機能の設計値として 設定
代替原子炉再循環ポン プトリップ機能	原子炉圧力高(7.41MPa [gage])信号 により原子炉再循環ポンプトリップ	代替原子炉再循環ポンプトリップ機 能の設計値として設定

(解析結果)

項目	解析結果(有効性評価結果)	解析結果(ARIケース)	判定基準
燃料被覆管温度	約 818℃(13 ノード位置)	約 818℃(13 ノード位置)	1,200°C以下
燃料被覆管酸化量	1%以下(14 ノード位置)	1%以下(14 ノード位置)	15%以下

図1 原子炉停止機能喪失事象のフォールトツリー

地震PRAにおけるフラジリティ評価の見直しについて

地震レベル1PRAでは、平均地震ハザード曲線及び一様ハザードスペクトル について、第142回審査会合当時(平成26年9月30日)から見直しを行ってい る。見直されたハザード評価については、第579回審査会合(平成30年6月1日) において、「概ね妥当な検討がなされた」と評価されたものであり、当該ハザード 見直しに伴い地震PRAの再評価を行っているが、併せてフラジリティ評価の見 直しを実施している。フラジリティ評価の見直し前後比較を表1に示す。

1. 地震ハザードの変更に伴う安全係数の見直し

屋外重要土木構造物・機器のフラジリティ評価においては、地震PRAに関 する学会標準に記載されている「応答解析に基づく方法」、「原研法」、「安全係 数法」のうち、「安全係数法」を採用している。

評価に用いる各安全係数のうち,一様ハザードスペクトルと評価用地震動ス ペクトルを入力とする係数F1について,本係数を変更することで地震ハザー ドの見直しをフラジリティ評価に反映した。

2. 評価条件の見直し

地震に対するプラントの脆弱点を詳細に検討するため、炉心損傷頻度への寄 与が大きく、緩和設備に期待できない事象につながる機器で、決定論評価にお いて過度の保守性を含むと判断したものからフラジリティ評価の見直しを実施 した。見直し内容を表2に示すとともに、その詳細について以下に示す。

(1) 評価荷重等の評価条件設定の見直し

ガンマ線遮蔽壁,制御棒駆動機構ハウジングについては,強度係数Fsの算 出において参照する決定論評価において,保守的な条件として設定していた荷 重等を適切に見直すことにより,過度な保守性を見直した。

制御棒駆動機構ハウジングレストレントビーム(以下「レストレントビーム」 という。)については、決定論評価において、従来評価ではフランジボルトが最 弱部位であったが、決定論評価における保守性を見直した結果、一般部が最弱 部位となったため、フラジリティ評価対象を一般部に見直している。

レストレントビームの構造を図1に示す。フランジボルトの耐震評価では、 制御棒駆動機構ハウジングから受ける水平荷重によるせん断荷重の評価を行っ ている。ボルトの耐震評価において、水平荷重を全てボルトの断面で受け持つ として評価しているが、実際にはボルトとスプライスプレートの間に生じる摩 擦力により、ボルトの受け持つ荷重は低減される。ボルトの評価法を表3に示 す。ここで、表3で用いる記号の説明を表4に示す。また、ボルトの評価法見 直し前後でのレストレントビームにおける耐震裕度を表5に示す。表5より、 レストレントビームの最弱部は一般部となることから、フラジリティ評価対象

補足 1.2.1.d-5-1

1085

を一般部に見直している。

(2) 塑性エネルギー吸収係数の考慮による見直し

ケーブルトレイについては、強度係数Fs算出時に引張強さSuの値を用い た評価(以下,「Suを用いた評価」という。)を行っていたが、見直し後では 強度係数Fs算出時に降伏点Syを用い、塑性エネルギー吸収係数F μ を考慮 した評価(以下,「F μ を考慮した評価」という。)を行った。なお、Suを用 いた評価及びF μ を考慮した評価共に日本原子力学会標準に従い評価を実施し ている。ここで、F μ を考慮した評価の考え方を図2に示す。F μ を考慮した 評価では評価対象を弾完全塑性体であるとして評価するため、現実的限界荷重 に対してF μ を考慮した評価は保守的なフラジリティ評価となる。

 $F \mu を考慮した評価を行う際の塑性エネルギー吸収係数<math>F \mu$ は次式のN e wmark式を用いて算出した。

F $\mu = \sqrt{2 \, \mu - 1}$

 μ は塑性率であり、ケーブルトレイサポートの塑性率は、弾塑性サポートを 有する複数の試験体に対する複数の地震波・加速度による加振試験結果^[1]から 設定した。加振試験の試験体を図3に、試験で得られた荷重一変位特性を図4 に示す。また、試験結果として得られた塑性率を表6に示す。表6に示す通り、 標準試験では塑性率 μ =3 程度、大加速度試験においては塑性率 μ =4.5 程度ま で安定な応答が得られていることから、 μ =4.5 を中央値、 μ =3 を 95%下限とし て塑性エネルギー吸収係数F μ を算出した。

(3) 配管のフラジリティ評価法

配管のフラジリティ評価について、代表評価としている配管については、本体配管はより強いが評価結果への影響が小さい配管であり、例えば原子炉補機 冷却系及び残留熱除去系の配管はサポート系で従属しているより弱いフラジリ ティの配管が支配的となること、高圧炉心スプレイ系及び原子炉隔離時冷却系 の配管は注水機能が複数の系統により多重化されているため影響が小さいこと から、個別評価による影響が小さいため代表的な評価結果を用いている。表7 に配管系のフラジリティ評価法を示す。

(4) 水源機能喪失へのモデル化変更による見直し

サプレッション・チェンバ損傷は炉心損傷直結事象ではなく水源機能喪失と して緩和系にてモデル化したことにより,原子炉格納容器についてはRPV支 持機能として評価対象とする機器をサプレッション・チェンバサポートからシ ヤラグに見直した。原子炉格納容器の評価部位を図5に示す。

(5) 逃がし安全弁必要弁数の考慮による見直し

逃がし安全弁1弁が健全であればExcessive LOCAには至らないため,逃がし安全弁のフラジリティ評価対象を最小裕度の逃がし安全弁から 最大裕度の逃がし安全弁に見直した。

(6) 構造変更の反映による見直し

補足 1.2.1.d-5-2 **1086** 水圧制御ユニットについては構造変更の反映による見直しを実施した。

- 評価対象機器の変更
 - 逃がし安全弁窒素ガス供給系空気作動弁(グローブ)については長期的な逃 がし安全弁への窒素供給確保のため新たに追加している。

また,燃料支持金具については,炉心支持板と共に機能するものであり評価 においては炉心支持板のフラジリティで代表されること,また低圧炉心スプレ イ系機器は除熱機能も有する残留熱除去系に完全依存であり,本評価において はこれらのフラジリティを考慮していないためリストから削除している。

4. ハザード見直しによるPRA再評価について

ハザード見直しに伴い地震PRA及び津波PRAの再評価を行った結果の比較表を表8に示す。再評価により地震PRA及び津波PRAの事故シーケンスのCDFが変化しており、見直し前の全CDFが7.7×10⁻⁶/炉年であったのに対し、見直し後の全CDFは1.4×10⁻⁵/炉年と全体のCDFは増加しているものの、事故シーケンスグループのなかでCDFが大きい事故シーケンスは同じであり、また地震津波特有のシーケンスのCDFは10⁻⁷前半程度と十分に小さく、重要事故シーケンス選定の評価に対する影響はない結果となった。

5. まとめ

上述のとおり地震PRAの再評価に際し、地震ハザードの変更の反映及び保 守的評価の見直しのため、フラジリティ評価の見直しを実施した。またハザー ド見直しに伴うPRA再評価について、全体のCDFは増加しているものの、 前後でのシーケンス毎の相対的な大小関係は変わらず、重要事故シーケンス選 定の評価に対する影響はない結果となった。

参考文献

[1]社団法人 日本電気協会電気技術基準調査委員会, "配管系の弾塑性設計法に 関する調査報告書", 平成6年6月

	フラジリティ評価結果							
扫田車 /			変更後		3	变更前*1		
些凶爭家/ 影響緩和機能	機器		中央值(G)	HOLDE		中央値(G)	HOLDE	備考
水/ 首小汉 1 日 1 及 日日		評価部位	βr	HCLPF (C)	評価部位	βr	HCLPF (C)	
			β u	(0)		<i>β</i> u	(0)	
	ヤラミック		0.50			0.61		
外部電源喪失	インシュレータ	セラミック	0.32	0.18	セラミック	0.32	0.22	
			0.29			0.29		
			3.23			1.92		
原子炉建物損傷	原子炉建物	-	0.36	1.39	_	0.24	1.01	
			0.15			0.15		
			2.47			1.77		水源総部市生へのエ
原子炉格納容器	原子炉格納容器	シヤラグ	0.22	1.16	ベース	0.22	0.83	デル化変更による見
損傷			0.24		フレート	0.24		直し
			1 74			1 57		
原子炉格納容器	原子炉格納容器	フランジ	0.20	0.87	フランジ	0.20	0.70	
損傷	スタビライザ	ボルト	0.20	0.07	ボルト	0.20	0.15	
			0.22			0. 22		
原子炉格納容器	原子炉圧力容器		2.55			2.69		
損傷	ペデスタル	円筒部	0.22	1.19	円筒部	0.22	1.26	
			0.24			0.24		
			2.38			2.03		
原子炉上刀容器 指 但	原子炉圧力容器	ボルト	0.22	1.11	ボルト	0.22	0.95	
			0.24			0.24		
			5.10			1.95		
原子炉圧力容器	ガンマ線	洞司	0.20	2.53	胴	0.20	0.98	評価荷重等の評価条
損傷	遮へい壁		0.22			0.22		件設定の見直し
			2 25			1 74		
原子炉圧力容器	原子炉圧力容器		0.00	1.07		0.99	0.01	
損傷	スタビライザ	19 F	0.22	1.07	ロット	0.22	0.81	
			0.24			0.24		
		-	4.95		-	5.21		
格納容器バイパス	主蒸気隔離弁	(水平方向	0.27	2.06	(水平方向	0.27	2.17	
		言乎1曲 <i>)</i>	0.26		計1曲)	0.26		
		_	8.71		_	9.17		
格納容器バイパス	原子炉隔離時	(水平方向	0.27	3.63	(水平方向	0.27	3.82	
	们和小们啊醒开	評価)	0.26		評価)	0.26		
			5.26			5. 52		
格納容器バイパス	原子炉浄化系		0.27	2, 19		0.27	2.30	
	隔離弁	評価)	0.26		評価)	0.26		
			0.20			7.94		
地体空田、シスパッ	体してどころ	-	0.00	0.07	-	1.24	0.00	
格納容器バイバス	給水杀逆止开	(水平万回 評価)	0.27	2.87	(水平万回 評価)	0.27	3.02	
		H I Brith	0.26		H I DW12	0.26		
	盾子后隔離時		2.10			2.21		
格納容器バイパス	冷却系配管	サポート	0.27	0.88	サポート	0.27	0.92	
			0.26			0.26		
			1.68			1.77		
Excessive	原子炉格納容器内 配签 (DID ==================================	配管本体	0.25	0.75	配管本体	0.25	0.79	
		0.24			0.24			
			6.48			3. 29		
制御室建物損傷	制御室建物	_	0.61	1.85	_	0.37	1.39	
			0.15			0.15		

表1 フラジリティ評価の見直し前後比較(1/9)

起田東兔 /			変更後		2	安更前 ^{*1}		
影響緩和機能	機器		中央值(G)	HCI DE		中央値(G)	LICI DE	備考
		評価部位	β r	HCLPF (G)	評価部位	β r	HCLPF (G)	
			<i>β</i> u	(0)		β u	(0)	
			4.37	-		3.36	-	
廃棄物処理建物損傷	廃棄物処理建物	-	0.16	2.62	—	0.23	1.79	
			0.15			0.15		
		_	4.11		_	3.07		
計装・制御系喪失	制御盤	(鉛直方向	0.14	2.16	(鉛直方向	0.14	1.61	
		評価)	0.25		評価)	0.25		
			3.40			2.70		
計基·制御系喪失	計歩ラック		0.22	1.67	一 (水平方向	0.22	1.33	
The MPARK	HT AX / / /	評価)	0.21	1.01	評価)	0.21	1.00	
			2.05			2.05		
刮壮 制御玄南舟	計装用無停電		3.95	1 00		3.05	1 40	
計装・利仰糸喪矢	交流電源設備	(水平方向 評価)	0.22	1.82	(水平万回 評価)	0.22	1.40	
		H 1 (Juni /	0.25		H I IIIII	0.25		
			2.26			2.39		塑性エネルギー吸収
計装・制御系喪失	ケーブルトレイ	サポート	0.26	0.96	サポート	0.26	1.01^{*2}	係数の考慮による見
			0.26			0.26		直し
		_	5.15		_	3.98		
直流電源	直流母線盤	(水平方向	0.22	2.37	(水平方向	0.22	1.83	
		評価)	0.25		評価)	0.25		
			8.97			6.93		
直流電源	蓄電池	ボルト	0.20	4.87	ボルト	0.20	3. 76	
			0.17			0.17		
		_	3.95			3.05		
直流電源	充電器盤	(水平方向	0.22	1.82	(水平方向	0.22	1.40	
		評価)	0.25		評価)	0.25		
			2, 33			2, 45		
交流電源	燃料移送系		0.27	0.97		0.27	1.02	
	逆止弁	評価)	0.26		評価)	0.26		
			0.20			2.02		
六法承诉	非常用ディーゼル	-1 ² n - 1	0.00	9.00	નર્ચતા [0.00	1.64	
父孤电你	光电設備非吊用り イーゼル室送風機	MIC P	0.20	2.06	N/V F	0.20	1.64	
			0.17			0.17		
	非常用ディーゼル		2.10			2.21		
交流電源	発電設備	サポート	0.27	0.88	サポート	0.27	0.92	
			0.26			0.26		
	北帝田风始	_	3.40		_	2.70		
交流電源	チートロロージャー・ション・ション・ション・ション・ション・ション・ション・ション・ション・ション	(水平方向	0.22	1.67	(水平方向	0.22	1.33	
		評価)	0.21		評価)	0.21		
		_	2.72		_	2.16		
交流電源	非常用コント	(水平方向	0.22	1.34	(水平方向	0.22	1.06	
		評価)	0.21		評価)	0.21		
			1.52			1.60		
交流電源	燃料移送系配管	配管本体	0.25	0.67	配管本体	0.25	0.70	
			0.25	1		0.25	1	
				1		1	1	1

表1 フラジリティ評価の見直し前後比較(2/9)

※2 塑性エネルギー吸収係数の考慮前は 0.69(第142回審査会合(平成26年9月30日))

		フラジリティ評価結果						
			変更後			変更前*1		
起因事象/	機器		中止症(c)			中央値		備老
影響緩和機能	1/24 111	評価部位	下天匪(6)	HCLPF	評価部位	(G)	HCLPF	013 3
		H I Ind H I Int	βr	(G)	H.I. Ibri H.I. Tre	βr	(G)	
			βu 1.52			βu 1.72		
大达带酒	非常用ディーゼル	(約古士向	0.14	0.00	(公正七向	0.14	1 01	
父孤电源	光 电 設 傭 於 科 移 送 ポンプ	(距直方向 評価)	0.14	0.90	(距直万向 評価)	0.14	1.01	
			0.18			0.18		
 	非常用ロード	(水平方向	0.22	1 76	- (水亚方向	0. 22	1 40	
又加电际	センタ	評価)	0.21	1.70	評価)	0.21	1. 10	
			3.77			3.00		
交流電源	非常用ディーゼル	胴板	0.20	2.05	胴板	0.20	1.63	
	発電設備空気だめ		0.17	1.00		0.17		
			3, 37			2, 68		
 	非常用ディーセル 発電設備ディーゼ	ボルト	0.20	1.83	ボルト	0.20	1 46	
又加电际	ル燃料デイタンク	NVF 1	0.17	1.05	100 F 1	0.17	1. 10	
			0.17			0.17		
	非常用ディーゼル		1.39			1.73		
交流電源	発電設備燃料貯蔵	ボルト	0.20	0.75	ボルト	0.20	0.94	
	727		0.17			0.17		
	北帝田内伯		5.40			4.30		
交流電源	并吊用 母禄 麥圧器	ボルト	0.20	2.93	ボルト	0.20	2.34	
	, , , , , , , , , , , , , , , , , , ,		0.17			0.17		
	屋外配管ダクト		3.80			3.41		
交流電源	(タービン建物~	-	0.14	2.13	_	0.14	1.91	
排気筒)	排気筒)		0.21			0.21		
			2.66			2.39		
補機冷却系	取水槽	_	0.14	1.49	-	0.14	1.34	
in participation of the			0.21			0.21		
			1 99			1 47		
捕搬冲却灭	な」ビン建物		0.20	0.06		0.97	0.74	
們成行功不	クービン建物	_	0.29	0.90		0.27	0.74	
			0.15			0.15		
	原子炉補機	-	6.30		-	6.63		
補機伶却糸	冷却系逆止弁	(水半万回 評価)	0.28	2.58	(水平万回 評価)	0.28	2.72	
		11 1007	0.26		н і іші /	0.26		
	百子 / 「 補機	-	2.33		_	2.45		
補機冷却系	海水系逆止弁	(鉛直方向	0.27	0.97	(鉛直方向	0.27	1.02	
		計1四)	0.26		青平1四)	0.26		
			2.26			1.80		
補機冷却系	原于炉桶機 冷却系熱交換器	ボルト	0.20	1.23	ボルト	0.20	0.98	
			0.17			0.17		
		_	3.68		_	2.75		
補機冷却系	原子炉補機	(鉛直方向	0.14	2.17	(鉛直方向	0.14	1.62	
	行知小小ノノ	評価)	0.18		評価)	0.18		
			1.42			1.51		
補機冷却系	原子炉補機	- (水平方向	0.22	0.72		0.22	0.78	
	海水ポンプ	評価)	0.18	-	評価)	0.18	-	
<u> </u>			2.33			2 45		<u> </u>
補機冷却玄	原子炉補機	- (水亚士南	0.20	0 02	- (水亚古向	0.20	0.97	
	(ゲート)	(小平))问 評価)	0.29	0.92	(小十万円) 評価)	0.29	0.91	
1		1	0.27	1	I	0.27	1	1

表1 フラジリティ評価の見直し前後比較(3/9)

		フラジリティ評価結果						
起田東兔 /			変更後			変更前*1]
影響緩和機能	機器		中央值(G)	UCI DE		中央值(G)	UCI DE	備考
		評価部位	β r	(G)	評価部位	β r	(G)	
			<i>β</i> u	(0)		<i>β</i> u	(0)	
	原子炉補機	-	1.72		_	1.81		
補機冷却系	冷却系電動弁	(水平方向	0.27	0.73	(水平方向	0.27	0.77	
	(グローブ)	評価)	0.25		評価)	0.25		
			2 59			2 72		
補機必却玄	尿于炉 佣 機 必 却 玄 空 与 作 動 金	(水亚古向	0.27	1 10		0.27	1 15	
1111/2011 24 71	(バタフライ)	評価)	0.25	1.10	評価)	0.25	1.10	
		h t floot y	1.65		P 1 (Jed)	1 01		
++++++ >> += -5	原子炉補機		1.05	0.74		1.91	0.05	
·帕·威·尔·冯·希	(バタフライ) (バタフライ)	(站直万问 亚価)	0.22	0.74	(距但万円 証価)	0.22	0.85	
	((())))))))	рт Iш//	0.27		рт (щ)	0.27		
	西フレンオンシャン		2.10			2.21		
補機冷却系	原于炉 補機 行 却 杀 配 答	サポート	0.27	0.88	サポート	0.27	0.92	
			0.26			0.26		
			1 60			1.68		
++++++ vA +====	原子炉補機海水系		0.00			0.00	0.71	
相機伶却杀	配管	配官本体	0.26	0.68	配官本体	0.26	0.71	
			0.26			0.26		
			2.60			2.77		
補機冷却系	原子炉補機海水	ボルト	0.20	1.41	ボルト	0.20	1.50	
	~~~)		0.17			0.17		
			2 01			1.60		
LINDING LINE	原子炉補機冷却系	18 - 1	2.01	1		1.00		
補機伶却糸	サージタンク	ホルト	0.20	1.09	ホルト	0.20	0.87	
			0.17			0.17		
	原子炉補機冷却水		8.21			6.53		
補機冷却系	ポンプ熱交換器室	ボルト	0.20	4.46	ボルト	0.20	3.55	
	冷却機		0.17			0.17		
			0.00			9.70		
			2.00	-		2.70	-	
スクラム糸	炉心支持板	支持板	0.20	1.34	支持板	0.20	1.35	
			0.22			0.22		
			3.73			2.48		
スクラム系	燃料集合体	燃料集合体	0.24	1.66	燃料変位	0.24	1.10	
			0.25			0.25	-	
			0.20			0.20		
			_	-		2.70	-	評価に用いていない
スクラム系	燃料支持金具	-	-	-	支持板	0.20	1.35	機器であるためリス
			-			0.22		トから削除
			2.34			2.40		
スクラム系	制御榛案内管	長手中央部	0.22	1, 11	長毛中央部	0.22	1.14	
			0.22			0.22		
			0.23			0.23		
			4.40			2.64		構造亦再の反映によ
スクラム系	水圧制御ユニット	フレーム	0.25	1.93	フレーム	0.25	1.16	得過夏史の反映によ る見直し
			0.25			0.25		
			3.22			2.18		
スクラム系	制御棒駆動機構	貫通习	0.24	1 94	貫通习	0.24	0.84	評価荷重等の評価条
	ハウジング	><~=10	0.04	1		0.04	5.01	件設定の見直し
			0.34	<b> </b>		0.34		
			2.77			2.21	1	副協の個別部にアト
スクラム系	制御棒駆動系配管	サポート	0.27	1.16	サポート	0.27	0.92	配官の値別評価による見直し
			0.26			0.26		
L		1		1	1		1	

表1 フラジリティ評価の見直し前後比較(4/9)

				フラジリテ	ィ評価結果			
<b>扫田東岳</b> /			変更後		2	£更前 ^{**1}		
起囚爭家/ 影響緩和機能	機器		中央值(G)	LICI DE		中央值(G)	LICI DE	備考
水2 首内交1111及6日		評価部位	$\beta$ r	HCLPF (C)	評価部位	$\beta$ r	HCLPF (C)	
			β u	(0)		βu	(0)	
			2.51			2.64		
スクラム系	炉心シュラウド	下部胴	0.22	1.19	下部胴	0.22	1.26	
			0.23			0.23		
			2.11			2.08		
スクラム系	シュラウド	サポート	0.23	0.91	サポート	0.23	0.90	
	サホート	レク	0.28		レク	0.28		
			3.10			3.00		
スクラム系	上部格子板	グリッド	0.20	1.55	グリッド	0.20	1.50	
		プレート	0.22		プレート	0.22	-	
			6.15			1.50		
	制御棒駆動機構	47. Jan	6.15		フランジ	1. 59		評価荷重等の評価条
スクラム糸	ハウジングレスト	一般部	0.20	3.06	ボルト	0.20	0.80	件設定の見直し
			0.22			0.22		
		_	9.01		_	1.73		逃がし安全弁必要弁
逃がし安全弁開放/	逃がし安全弁	(水平方向	0.27	3.76	(水平方向	0.28	0.71	数の考慮による見直
行内政		評価)	0.26		評価)	0.26		L
			2.39			2.51		
原子炉隔離時	原子炉隔離時		0.27	1 00		0.27	1 05	
冷却系	冷却系逆止弁	評価)	0.00	1.00	評価)	0.00	1.00	
			0.20			0.20		
原子炉隔離時	原子炉隔離時	-	2.02		-	2.12		
冷却系	冷却系電動弁	(水平方向	0.27	0.84	(水平方向	0.27	0.88	
	() - ()	計1四)	0.26		計1四)	0.26		
	原子炉隔離時	_	1.72		_	1.81		
原子炉隔離時	冷却系電動弁	(水平方向	0.27	0.73	(水平方向	0.27	0.77	
们孙术	(グローブ)	評価)	0.25		評価)	0.25		
			2.10			2.21		
原子后隔離時冷却系	原子炉隔離時	サポート	0.27	0.88	サポート	0.27	0.92	
四(1)》中如何推出112年2月	冷却系配管	2.45 1	0.21	0.00	2.45 1.	0.21	0.52	
			0.26			0.26		
原子炉隔離時	原子恒隔離時	-	2.92		-	2.18	-	
冷却系	冷却ポンプ	(鉛直方向評	0.14	1.72	(鉛直方向評	0.14	1.29	
		1四)	0.18		1四)	0.18		
	原子炉隔離時冷却	_	2.92		_	2.18		
原子炉隔離時	ポンプ駆動用蒸気	(鉛直方向	0.14	1.72	(鉛直方向	0.14	1.29	
行却杀	タービン	評価)	0.18		評価)	0.18		
			1.68			1 77		
原子炉隔離時	サプレッション・	ベース	0.00	0.70		0.00	0.00	水源機能喪失へのモ
冷却系	チェンバ	プレート	0.22	0.19		0.22	0.05	ブル化変更による兄 直し
			0.24			0.24		
百乙后原離時		-	5.66		-	4.37		
冷却系	230V 直流母線盤	(水平方向	0.22	2.61	(水平方向	0.22	2.01	
		評価)	0.25		評価)	0.25		
			7.68			5.94		
原子炉隔離時	230V 蓄電池	ボルト	0.20	4.17	ボルト	0.20	3.23	
行却杀			0,17	1		0.17	1	
			4 32			3 35		
原子炉隔離時	02010 去電明凱		0.00	1.99		0.00	1.54	
冷却系	2300 兀竜奋盛	(小平力回 評価)	0.22		(小平力回 評価)	0.22		
	1	F 1 (0447)	0.25		F I Heat /	0.25	1	1

表1 フラジリティ評価の見直し前後比較(5/9)

補足 1.2.1.d-5-8 **1092** 

				フラジリテ	ィ評価結果			
<b>却田車缶</b> /			変更後			変更前*1		
起囚 <b>爭</b> 家/ 影纓緩和機能	機器		中央值(G)	LICI DE		中央值(G)	HOLDE	備考
NV ENX TENXIL		評価部位	βr	HULPF (C)	評価部位	βr	HCLPF (C)	
			β u	(0)		<i>β</i> u	(0)	
医乙烷醇醚吐	原子炉隔離時冷却	_	4.78		_	3.80		
原于炉 喃離 吁 冷却系	系直流コントロー	(水平方向	0.22	2.35	(水平方向	0.22	1.87	
	ルセンタ	評価)	0.21		評価)	0.21		
			12.16			9.67		
高圧炉心スプレイ系	高圧炉心スプレイ	ボルト	0.20	6.60	ボルト	0.20	5.25	
	ホンノ重市44機		0.17			0.17		
		_	2.33		_	2.45		
高圧炉心スプレイ系	高圧炉心スプレイ	(水平方向	0.27	0.97	(水平方向	0.27	1.02	
	示逆工开	評価)	0.26		評価)	0.26		
			2.92			2.18		
高圧炉心スプレイ系	高圧炉心スプレイ	(鉛直方向	0.14	1.72	(鉛直方向	0.14	1.29	
	ポンプ	評価)	0.10	1.12	評価)	0.19	1.20	
			0.10			0.10		
	高圧炉心スプレイ	-	2. 22		-	2.34		
局圧炉心スプレイ糸	系電動弁(ゲート)	<ul> <li>(水半方向</li></ul>	0.27	0.93	<ul> <li>(水半方向</li> <li>(水半方向</li> </ul>	0.27	0.98	
		рт (ш)	0.26		рт (щ)	0.26		
	支圧にとっプレノ		1.41			1.48		
高圧炉心スプレイ系	高圧炉心スノレイ系配管	配管本体	0.25	0.63	配管本体	0.25	0.66	
			0.24			0.24		
			1.68			1.77		水源機能車牛へのチ
高圧炉心スプレイ系	サプレッション・	ベース	0.22	0.79	_	0.22	0. 83 ^{**3}	デル化変更による見
	ナエンハ	クレード	0.24			0.24		直し
	高圧炉心スプレイ		8,04			6, 39		
宮田恒心スプレイ系	系ディーゼル発電	ボルト	0.20	4 37	ボルト	0.20	3.47	
	設備非常用ディー	1000	0.17	1.01	NOP 1	0.17	0.11	
	セル主达風機		0.17			0.17		
	高圧炉心スプレイ		2.10			2.21		
高圧炉心スプレイ系	系非常用ディーセル発電設備	サポート	0.27	0.88	サポート	0.27	0.92	
	70元电议师		0.26			0.26		
	高圧炉心スプレイ		3.77			3.00		
高圧炉心スプレイ系	糸井吊用アイーセ ル発電設備空気だ	胴板	0.20	2.05	胴板	0.20	1.63	
	か め		0.17			0.17		
	高圧炉心スプレイ		6.32			5.03		
吉田信とフプレノズ	系非常用ディーゼ	-1 ² at . 1	0.20	0.40	-1 ² 11 . 1	0.20	0.70	
局圧炉心スノレイ糸	ル 免 電 設 備 ア イ ー ゼル 燃料 デ イ タン	ルノレト		3.43	シントト		2.73	
	ク ク		0.17			0.17		
	高圧炉心スプレイ		1.39			1.73		
高圧炉心スプレイ系	系非常用ディーゼ	ボルト	0.20	0.75	ボルト	0.20	0.94	
	ルデ 电 以 畑 然 村 灯 蔵タンク		0.17	1		0.17	1	
	高圧炉心スプレイ		1, 52			1.60		
真圧恒心スプレイ系	系非常用ディーゼ	配签木体	0.25	0.67	配签木体	0.25	0.70	
	ル発電設備燃料移		0.25	0.01		0.20	0.10	
	広 米 配 官 直 広 后 心 フ プ レ ノ		0.20			0.20		<u> </u>
	<ul> <li>同庄 い い へ ノ レ イ</li> <li>系 非 常 用 デ ィ ー ゼ</li> </ul>	=	2.33		=	2.45		
高圧炉心スプレイ系	ル発電設備燃料移	(水半方向 評価)	0.27	0.97	<ul> <li>(水半方向</li> <li>(水平)</li> </ul>	0.27	1.02	
	送系逆止弁	〒〒1四ノ	0.26		〒〒1四ノ	0.26		

表1 フラジリティ評価の見直し前後比較(6/9)

※3 原子炉格納容器の損傷としてモデル化

				フラジリテ	ィ評価結果			
			変更後	-		変更前*1		
起因事象/	機器		中央値(G)			中央値		備考
影響緩和機能		評価部位	0	HCLPF	評価部位	(G)	HCLPF	
			βr	(6)		βr	(6)	
	高圧炉心スプレイ		1.53			1.72		
高圧炉心スプレイ系	系非常用ディーゼ	(鉛直方向	0.14	0.90	(鉛直方向	0.14	1 01	
	ル発電設備燃料移	評価)	0.14	0.00	(鉛色)内 評価)	0.14	1.01	
	医ホンプ		0.18			0.18		
宣に伝しっプレノズ	高圧炉心スプレイ		5.13	9 59		4.07	9.00	
局圧炉 心 ヘ ノ レ イ 赤	ポ 邦 吊 用 母 禄 メ ク クラ	(水平方向 評価)	0.22	2.52	(水平方向 評価)	0. 22	2.00	
		P. 1 (Pert)	0.21		h 1 (het)	0.21		
真圧恒心スプレイ系	高圧炉心スプレイ 玄非党田母線亦正	ボルト	0, 20	7 34	ボルト	0.20	5.83	
	器	10P 1	0.17	1.54	NUP I	0.17	0.00	
			5.49			4, 37		
真圧恒心スプレイ系	高圧炉心スプレイ 玄非党田コントロ		0.22	2 70	- (水亚古向	0.22	2 15	
	ールセンタ	評価)	0.22	2.10	評価)	0.22	2.10	
			0.21			0.21		
	屋外配管ダクト		3.80			3.41		
高圧炉心スプレイ系	<ul> <li>(タービン建物~</li> <li>排気筒)</li> </ul>	_	0.14	2.13	_	0.14	1.91	
	9F风间7		0.21			0.21		
	파니 카/#		2.66			2.39		
高圧炉心スプレイ系	取水設備 (取水槽)	-	0.14	1.49	-	0.14	1.34	
			0.21			0.21		
			1.99			1.47		
高圧炉心スプレイ系	タービン建物	_	0.29	0.96	_	0.27	0.74	
			0.15			0, 15		
			2 33			2 45		
宣圧伝ふっプレノズ	高圧炉心スプレイ		0.97	0.07	- (水亚士向	0.97	1 09	
同圧炉心ヘノレイボ	補機冷却系逆止弁	(水平))同 評価)	0.27	0.97	(水平))同 評価)	0.27	1.02	
			0.26			0.26		
	高圧炉心スプレイ	-	2.33		-	2.45	-	
高圧炉心スプレイ系	補機海水系逆止弁	(水平方向	0.27	0.97	(水平方向	0.27	1.02	
		青十11川)	0.26		計11117	0.26		
	高圧炉心スプレイ		6.47			5.15		
高圧炉心スプレイ系	補機冷却系熱交換	胴板	0.20	3.51	胴板	0.20	2.80	
	器		0.17			0.17		
		_	2.78		_	2.07		
高圧炉心スプレイ系	高圧炉心スプレイ	(鉛直方向	0.14	1.64	(鉛直方向	0.14	1.22	
	補機伶却水ホンフ	評価)	0, 18		評価)	0, 18		
			1 42			1 51		
吉田信とっプレノズ	高圧炉心スプレイ		0.00	0.72		0.00	0.79	
同圧炉心ヘノレイボ	補機海水ポンプ	(水平))同 評価)	0.22	0.75	(水平))同 評価)	0.22	0.78	
			0.18			0.18		
	高圧炉心スプレイ	_	1.47		-	1.71		
高圧炉心スプレイ系	補機海水系電動弁	(鉛直方向	0.21	0.68	(鉛直方向	0.21	0.79	
	(//ダノライ)	計1四)	0.26		音平1四)	0.26		
			1.41			1.48		
高圧炉心スプレイ系	<ul> <li>局 上 炉 心 ス ブ レ イ</li> <li>補機 冷 却 系 配 管</li> </ul>	配管本体	0.25	0.63	配管本体	0.25	0.66	
	8 JIT / 가스터 1001 III		0.24			0.24		
			1.41			1.48		
高圧炉心スプレイ系	高圧炉心スプレイ	配管本体	0.25	0.63	配管本体	0.25	0.66	
	補機海水糸配管		0. 24			0, 24		
1	1	1	~·	1	1	~· = = 1	1	1

表1 フラジリティ評価の見直し前後比較(7/9)

補足 1.2.1.d-5-10 **1094** 

				フラジリテ	ィ評価結果			
			変更後			変更前*1		
起因事象/ 影響緩和機能	機器		中央値(G)	HCLPF		中央値 (G)	HCLPF	備考
		評価部位	βr	(G)	評価部位	βr	(G)	
			<i>β</i> u			<i>β</i> u		
	高圧炉心スプレイ		3.62			3.85		
高圧炉心スプレイ系	補機海水	ボルト	0.20	1.97	ボルト	0.20	2.09	
	ストレーナ		0.17			0.17		
	高圧恒心スプレイ		9.65			7.67		
高圧炉心スプレイ系	補機冷却系	ボルト	0.20	5.24	ボルト	0.20	4.17	
	サージタンク		0.17			0.17		
		_	7.70		_	6.12		
高圧炉心スプレイ系	高圧炉心スプレイ 玄直流母線般	(水平方向	0.22	3.55	(水平方向	0.22	2.82	
	· 元山中/水盈	評価)	0.25		評価)	0.25		
			35.74			28.41		
高圧炉心スプレイ系	高圧炉心スプレイ 玄芸雪油	ボルト	0.20	19.41	ボルト	0.20	15.43	
	小田屯1匹		0.17			0.17		
		_	5.90		_	4.69		
高圧炉心スプレイ系	高圧炉心スプレイ	(水平方向	0.22	2.72	(水平方向	0.22	2.16	
	糸 允 黽 希 盛	評価)	0.25		評価)	0.25		
			9, 01			1, 73		
減圧	冰がし安全弁	(水亚方向	0.27	3 76	- (水亚方向	0.28	0.71	逃かし安全弁必要弁 数の者庫によろ見直
V%/	超初し女王介	評価)	0.26	0.10	評価)	0.20	0.11	し し
			0.20			0.20		
Yer.	逃がし安全弁窒素		0. 32					長期的な窒素ガス供
<i>讽</i> )土	カス供給糸空気作 動弁(グローブ)	(水平方向 評価)	0.27	2.64	_		_	給確保のため追加
			0.26			-		
	逃が し 安全 弁 窒素		5.14	-	サポートの	5.00		配管の個別評価によ
減圧	ガス供給系配管	配管本体	0.25	2.30	損傷	0.25	2.23	る見直し
			0.24			0.24		
	冰がし安全金		109.97			87.44		
減圧	アキュムレータ	胴板	0.20	60.72	胴板	0.20	48.28	
			0.16			0.16		
	低圧炉心スプレイ		-		-	1.81		評価に用いていない
低圧炉心スプレイ系	系電動弁	—	-	-	(水平方向	0.27	0.77	機器であるためリス
	(グローブ)		-		評価)	0.25		トから削除
			-			5.87		評価に用いていたい
低圧炉心スプレイ系	低圧炉心スプレイ	_	_	_	ボルト	0.20	3.19	機器であるためリス
	ホンノ主行却機		_			0.17		トから削除
			_			2.45		
低圧炉心スプレイ系	低圧炉心スプレイ	_	_	_	(鉛直方向	0.27	1.02	評価に用いていない 機器であるためリス
	系逆止弁		_		評価)	0.26		トから削除
			_			2 18		
任国际心スプレイ系	低圧炉心スプレイ	_			(	0.15	1 20	評価に用いていない
国生炉心ヘノレイポ	ポンプ	_			(距直) 问 評価)	0.15	1.29	機器 このるため リストから削除
			_			0.18		
	低圧炉心スプレイ		_		—	2.12		評価に用いていない
低圧炉心スプレイ系  	系電動弁 (ゲート)	-		_	(水半方向 評価)	0.27	0.88	機器であるためリス トから削除
			-		н шил	0.26		אונח כי אי י
	低圧恒心スプレイ		_			1.48		評価に用いていない
低圧炉心スプレイ系	系配管	-	_	_	配管本体	0.25	0.66	機器であるためリス
			-			0.24		トから削除

表1 フラジリティ評価の見直し前後比較(8/9)

				フラジリテ	ィ評価結果			
			変更後	/	C R.L. DWIMENS	変更前*1		1
起因事象/	機 哭		中央値			中央値		備老
影響緩和機能	1752 1117	評価部位	(G)	HCLPF	評価部位	(G)	HCLPF	1/11/25
		21 (141 Hall 14	βr	(G)		βr	(G)	
			βu			βu		
	残留熱除去ポンプ		9.61		N	7.64		
低上注水糸	室冷却機	ホルト	0.20	5.22	ボルト	0.20	4.15	
			0.17			0.17	-	
	残留熱除去系	—	2.33	-	—	2.45	_	
低圧注水系	逆止弁	(水平方向	0.27	0.97	(水平方向	0.27	1.02	
		青平1四)	0.26		青午1四7	0.26		
	残留埶除去系埶		2.09	-		2.20	-	
低圧注水系	交換器	ボルト	0.25	0.92	ボルト	0.25	0.96	
			0.25			0.25		
		—	2.92		—	2.18	_	
低圧注水系	残留熱除去ポンプ	(鉛直方向	0.14	1.72	(鉛直方向	0.14	1.29	
		評価)	0.18		評価)	0.18		
	成切劫险十万	_	2.02		_	2.12		
低圧注水系	残留熱味云赤 雷動弁(ゲート)	(水平方向	0.27	0.84	(水平方向	0.27	0.88	
		評価)	0.26		評価)	0.26		
	who show that is a function		2.10			2.21		
低圧注水系	残留熱除去系	サポート	0.27	0.88	サポート	0.27	0.92	
	HL'E		0.26			0.26		
			1.68			1.77		水源機能喪失へのモ
低圧注水系	サプレッション・	ベース	0.22	0.79	_	0.22	0. 83 ^{**3}	デル化変更による見
	アエンハ	JUHF	0.24			0.24		直し
			9.61			7.64		
残留熱除去系	残留熱除去ポンプ	ボルト	0.20	5.22	ボルト	0.20	4.15	
	至伶却機		0.17			0.17	_	
		_	2.33		_	2.45		
残留熱除去系	残留熱除去系	(水平方向	0.27	0.97	(水平方向	0.27	1.02	
	逆止并	評価)	0.26		評価)	0.26		
			2.09			2.20		
残留埶除去系	残留熱除去系	ボルト	0.25	0.92	ボルト	0.25	0.96	
	熱交換器		0.25	1		0.25		
			2 92			2 18		
残留埶除去系	残留埶除去ポンプ	(鉛直方向	0.14	1.72	(鉛直方向	0.14	1.29	
XHMMAX		評価)	0.11	1. 12	評価)	0.18	1. 20	
			2 02			2 12		
建四執险土玄	残留熱除去系	(水亚方向	0.27	0.84	- (水亚古向	0.27	0.88	
26日杰特公式	電動弁(ゲート)	(水平)5 向 評価)	0.21	0.04	(水平))同 評価)	0.21	0.00	
			2 10			0.20		
砂切劫心士ズ	残留熱除去系	-16-1 ² , 1	2.10	0.00	-14-18, I	0.97	0.09	
戏曲然际云示	配管	9 AV - P	0.27	0.00	94X-F	0.27	0.92	
			0.20			0.20		
砂印軸1公十ズ	残留熱除去系		1.88	0.77		1. 98	0.01	
75日然际去术	電動弁(グローブ)	(小平万円 評価)	0.28	0.77	(小半方円 評価)	0.28	0.81	
		н т риц /	0.26		H 1 ()M(7	0.26		
お印動10ムーズ	サプレッション・	ベース	1.68	0.70		1.77	0.00*3	水源機能喪失へのモ
戏留熟际太杀	チェンバ	プレート	0.22	0.79	_	0.22	0.83**	<ul> <li>アル1L変更による見</li> <li>直し</li> </ul>
			0.24			0.24		ш.U

# 表1 フラジリティ評価の見直し前後比較(9/9)

※1 第244回審査会合(平成27年6月30日) 資料3-4-1にて説明

※3 原子炉格納容器の損傷としてモデル化

No.	見直し内容	該当機器
1	強度係数Fsの算出において参照する決定論評価について,保守的	ガンマ線遮蔽壁,制御棒駆
	な条件として設定していた荷重等を適切に見直すことにより,過度	動機構ハウジングレスト
	な保守性を見直した。	レントビーム, 制御棒駆動
		機構ハウジング
2	強度係数Fsの算出においてSuを用いたフラジリティ評価を行	ケーブルトレイ
	っていたが,Fsの算出にSyを用い, 塑性エネルギー吸収係数F	
	μを考慮することにより,フラジリティ評価の保守性を見直した。	
3	決定論評価において裕度の小さい他の系統の配管のフラジリティ	制御棒駆動系配管
	評価結果で代表していた配管について,当該配管のフラジリティを	逃がし安全弁窒素ガス供
	個別に適用することにより保守性を見直した。	給配管
4	サプレッション・チェンバ損傷は炉心損傷直結事象ではなく水源機	原子炉格納容器
	能喪失として緩和系にてモデル化したことにより,原子炉格納容器	
	についてはRPV支持機能として評価対象とする機器をサプレッ	
	ション・チェンバサポートからシヤラグに見直した。	
5	逃がし安全弁1弁が健全であればExcessive LOCA	逃がし安全弁
	には至らないため,逃がし安全弁のフラジリティ評価対象を最小裕	
	度の逃がし安全弁から最大裕度の逃がし安全弁に見直した。	
6	水圧制御ユニットについては構造変更の反映による見直しを行っ	水圧制御ユニット
	た。	

表2 フラジリティ評価見直し内容

	見直し前	見直し後
評価法	$\tau = \frac{F_{\rm H}}{n  \rm A}$	$\tau = \frac{F_{H} - F'}{nA}$ $F' = \mu F_{f} n$ $F_{f} = 0.8 f_{t} A$
		$f_t = \frac{F}{2}$

表3 ボルトの評価法

### 表4 ボルトの評価に用いる記号の説明

記号	記号の説明	単位
А	ボルトの軸断面積	$\mathrm{mm}^2$
F	JSME S NC1-2005/2007 SSB-3121.1(1)により規定される値	MPa
F'	摩擦力	Ν
F _H	評価対象のボルトが負担する水平荷重	Ν
F _f	ボルトの締付力	Ν
f _t	JSME S NC1-2005/2007 SSB-3131 (1)により規定される値	MPa
n	ボルト本数	本
τ	ボルトのせん断応力	MPa
μ	摩擦係数 (=0.3)	_

# 表5 レストレントビームの耐震裕度

	耐震裕	·度*
評価部位	見直し前	見直し後
	(摩擦力考慮なし)	(摩擦力考慮)
一般部	1.5	7
フランジボルト	1.23	1.67

※(耐震裕度)=(許容応力)/(発生応力)

最大塑性率μ	試験体	入力均	也震波[gal]
		地震波 A	100~700
	アングル鋼 単純な配管系	地震波 B	100~700
		地震波 C	100~1,000
3程度	角型鋼管	地震波 A	100~600
	単純な配管系	地震波 B	100~1,400
	アングル鋼	地震波 A	1,100~2,000
	複雑な配管系	地震波 B	1,100~2,000
4.5	角型鋼管 単純な配管系	地震波 C	1,800
(参考)5.5	アングル鋼 単純な配管系	地震波 A	1, 500

表6 弾塑性サポートを有する配管の加振試験ケース

		フラミ	ジリティ評価約	吉果
=== /== -+->+-			中央值(G)	
評価方法	对家配官	評価部位	βr	HCLPF (G)
			βu	
原子炉補機海水系配管のフ			1.41**	
ラジリティ評価結果で代表	高圧炉心スプレイ系配管	配管本体	0.25*	0.63*
している			0.24**	
			1.41**	
	高圧炉心スプレイ補機冷	配管本体	0.25**	0.63*
	却杀配管		0.24**	
			1.41**	
	高圧炉心スフレイ 補機海	配管本体	0.25**	0.63*
	水糸配官		0.24**	
決定論評価で最も厳しい結			2.10	
果となるサポートのフラジ	原子炉隔離時冷却系配管	サポート	0.27	0.88
リティ評価結果で代表して			0.26	
いる			2.10	
	原子炉補機冷却系配管	サポート	0.27	0.88
			0.26	
			2.10	
	残留熱除去系配管	サポート	0.27	0.88
			0.26	
個別にフラジリティ評価を	百乙后故如 <u>应</u> 兕内 <u>副</u> 逆(D		1.68	
行っている	尿于炉格納谷菇的配官(P I D	配管本体	0.25	0.75
			0.24	
			1.52	
	燃料移送系配管	配管本体	0.25	0.67
			0.25	
			1.60**	
	原子炉補機海水系配管	配管本体	0.26**	0.68*
			0.26**	
			2.77	
	制御棒駆動系配管	サポート	0.27	1.16
			0.26	
	高圧炉心スプレイ系非常		1.52	
	用ディーゼル発電設備燃	配管本体	0.25	0.67
	料移送系配管		0.25	
	逃がし安全弁窒素ガス供		5.14	
	A系配管	配管本体	0.25	2.30
			0.24	

# 表7 配管系のフラジリティ評価法

※:代表配管のフラジリティ評価においては、最も厳しい条件となる配管区分の減衰定数を考慮するため、個別評価と代表評価でフラジリティ評価結果が異なる。

# 地震ハザード変更に伴う PRA見直し前後比較表 表 8

			事故シーケンス	別の炉心損傷類度	〔 (/炉年)			全CDFに対する	全CDFに対する	事故シーケンスグ	事故シーケンスグ	全CDFに対する	全CDFに対する
単次シーケンス	内部事象	地震 (変更後)	地震 (変更前)	津波 (変更後)	津波 (変更前)	合計 (変更後)	合計 (変更前)	寄与割合(%) (変更後)	寄与割合(%) (変更前)	ルーノ別 CDF (ノ炉年) (変更後)	ルーノ別 CDF (ノ炉年) (変更前)	寄与割合(%) (変更後)	寄与割合(%) (変更前)
象+高压炉心冷却失败+低压炉心冷却失败	3. 0E-09	9.2E-07	3. 5E-08	I	I	9. 2E-07	3.8E-08	6.4	0.5				
象+圧力パウンダリ健全性(SRV再閉)失敗+高圧炉心冷却(HPCS)失敗+低圧炉心冷却失敗	3.4E-11	1.4E-08	6.8E-10	1	1	1.4E-08	7. IE-10	0.1	0.0				
止十高压炉心冷却失败十低压炉心冷却失败	4. 7E-13	I	I	1	2. 2E-09	4. TE-13	2. 2E-09	0.0	0.0	20 TE 02	00 00	L G	c c
ヒ+圧力バウンダリ健全性(SRV再閉)失敗+高圧炉心冷却(HPCS)失敗+低圧炉心冷却失敗	1.5E-13	I	I	I	1.2E-09	1.5E-13	1.2E-09	0.0	0.0	9.4E-07	4. ZE-US	0.0	a .n
>系喪失+高圧炉心冷却失敗+低圧炉心冷却失敗	2. 3E-10	I	-	-	1	2. 3E-10	2. 3E-10	0.0	0.0				
素喪失+圧力バウンダリ健全性(SRV再開)失敗+高圧炉心冷却(HPCS)失敗+低圧炉心冷却失敗	4.0E-12	T	I	T	I	4.0E-12	4.0E-12	0.0	0.0				
3十高压炉心冷却失败十原子炉减压失敗	4. 0E-09	1.0E-07	4.6E-09	I	I	1. 1E-07	8.6E-09	0.8	0.1				
:+高正炉心浴却失败+原子炉诚正失败	5. 7E-13	I	-		-	5. 7E-13	5. 7E-13	0.0	0.0	1. 1E-07	9.7E-09	0.8	0.1
>系喪失+高圧炉心冷却失敗+原子炉減圧失敗	1. 1E-09	I	I	I	I	1. 1E-09	1. 1E-09	0.0	0.0				
泉喪失+交流電源(DG−A, B)失敗+高圧炉心冷却(HPCS)失敗	2.7E-09	<ol> <li>0E-06</li> </ol>	3.1E-07	-	1	<ol><li>0E-06</li></ol>	3. 1E-07	14	4.1				
巻失+交流電源(DG-A、B)失敗+圧力パウンダリ健全性(SRV再閏)失敗+高圧炉心冷却(HPCS)失敗	8. 2E-12	1.5E-08	1.4E-09	I	I	<ol> <li>5E-08</li> </ol>	1.4E-09	0.1	0.0	3 4F-06	3 8F-07	76	Ľ
₹喪失+交流電源(DG−A,B)失敗+高圧炉心冷却失敗	1.2E-11	1.4E-06	6.2E-08	I	I	<ol> <li>4E-06</li> </ol>	6.2E-08	9.6	0.8	2	10 20 10		
(喪失+直流電源(区分1,2) 喪失+高圧炉心冷却(HPCS)失敗	3.8E-12	5. 8E-09	1.1E-09	I	I	5.8E-09	1.1E-09	0.0	0.0				
1+崩據熟除去失敗	4.5E-06	1. 1E-06	7.6E-08	-	-	5. 7E-06	4.6E-06	40	60.3				
t+高压炉心冷却失败+崩骤熟除去失敗	1.7E-11	4. 2E-07	2.2E-08	-	-	4. 2E-07	2. 2E-08	2.9	0.3				
t+圧力パウンダリ健全性(SRV再開)失敗+崩壊熟除去失敗	3. 3E-08	3. 2E-09	2.7E-10	I	I	3.6E-08	3. 3E-08	0.3	0.4				
(+圧力パウングリ健全性(SRV再閉)失敗+高圧炉心治却(HPCS)失敗+崩線熱除去失敗	3.6E-11	4.4E-09	1.9E-14	I	I	4.4E-09	3. 7E-11	0.0	0.0				
: + 崩壊熟除去失敗	1.2E-08	T	I	I	4. 1E-07	1.2E-08	4.2E-07	0.1	5.5				
:+高压炉心冷却失敗+崩艘熟除去失敗	1. 1E-14	T	I	I	I	1. 1E-14	1. 1E-14	0.0	0.0				
+ 圧力バウンダリ健全性(SRV再閉)失敗+崩壊熱除去失敗	3. 1E-11	I	I	I	I	3. 1E-11	3. IE-11	0.0	0.0				
+ 圧力バウンダリ健全性(SRV再閉)失敗+高圧炉心冷却(HPCS)失敗+崩壊熱除去失敗	1.7E-14	I	I	I	I	1. 7E-14	1.7E-14	0.0	0.0				
系喪失+崩뉋熱除去失敗	1.2E-06	1	1	1	1	1.2E-06	1.2E-06	8.3	15.5				
系要失于高压炉心浴却失敗十崩遽熟除去失敗	1.4E-10	I	1	1	1	1.4E-10	1.4E-10	0.0	0.0			i	
系喪失+圧力バウンダリ健全性(SRV再閉)失敗+崩襲熟除去失敗	3.8E-09	I	I	I	I	3. 8E-09	3.8E-09	0.0	0.1	7.8E-06	6. 7E-06	54	88
系喪失+圧力バウンダリ健全性(SRV再閉)失敗+高圧炉心冷却(HPCS)失散+崩壊熱除去失敗 ・ パンポポーティン・パルキポペ・パパ	3. 7E-12	1	I	I	1	3. 7E-12	3.7E-12	0.0	0.0				
天(小破附LOCA) 十崩骤熟除去失敗	5.4E-09	I	1	1	1	5.4E-09	5.4E-09	0.0	0.1				
天(小碳酮LOCA) 十高庄炉心冷却失败十崩壊熟除去失敗 4. 《本wwww.cov》, 5. 出世神险之本.e.m.	3. 1E-14	I	I	1	1	3. 1E-14	3. 1E-14	0.0	0.0				
长(中国的DUA) 于例最密始的法学现在 4.(本語語1904) - 本世世紀 S S 和社語(世紀語165-4 年間)	3.0E-09	I	I	1	1	3. 0E-09	3. 0E-U9	0.0	0.0				
长(甲酸即DUA)主向出外心管却失眠于则硬剂研造为BI	3.8E-12 2.6E-10					3. 8E-12 9. 6E-10	3.8E-12 2.6E-10	0.0	0.0				
K (人版的LAUA) 主用機能時至天BK 長 (大破断LATA) 主点圧恒心洛ᆀ生附土崩疲熟除去失胜	3. 7E-10					3. 7E-13	3. 7E-13	0.0	0.0				
また十交流電源(DG-A、B)失敗	4.4E-07		1			4.4E-07	4.4E-07	3.1	5.8				
シントングルマント・シュートシング 夏失+交流電源(DG-A.B)失敗+圧力パウングリ継全性(SRV再閉)失敗	1. 3E-09	1	1	1		1. 3E-09	1. 3E-09	0.0	0.0				
^{要失+} 直流電源(区分1, 2)失敗	6. 3E-10	I	I	1	1	6. 3E-10	6. 3E-10	0.0	0.0				
+原子炉停止失败	6.4E-10	3. 3E-07	9. 5E-08	1	1	3. 3E-07	<ol> <li>6E-08</li> </ol>	2.3	1.2				
€ (小破酢L0CA) +原子炉停止失敗	8. 7E-13	I	-	1	-	8. 7E-13	8. 7E-13	0.0	0.0				
€(中破肺10CA)+原子炉停止失敗	5.8E-13	I	I	I	I	5.8E-13	5.8E-13	0.0	0.0	8.5E-07	1.6E-07	6.0	2.1
€(大破断LUCA)+原子炉停止失敗	5.8E-14	I	I	I	ı	5.8E-14	5.8E-14	0.0	0.0				
<b>聚丧失(外部電源喪失+交流電源,補機治却杀喪失)+原子炉停止失敗</b>	I	5.2E-07	<ol><li>6.9E-08</li></ol>	I	I	5. 2E-07	<ol> <li>6.9E-08</li> </ol>	3.6	0.9				
€(小破断LOCA)+高压炉心浴却失敗+低压炉心浴却失敗	2.8E-15	1	I	1	1	2.8E-15	2.8E-15	0.0	0.0				
矣(小破肺1.0CA) +高压炉心冷却失败+原子炉减圧失敗	5.7E-15	I	I	I	I	5. 7E-15	5. 7E-15	0.0	0.0				
失(中被断LOCA) +高压炉心冷却失败+低压炉心冷却失败	3.5E-13	I	I	I	I	3. 5E-13	3.5E-13	0.0	0.0	4. 3E-13	4. 3E-13	0.0	0.0
失(中碳酯LOCA) +高压炉心冷却失败+原子炉减压失敗	3.9E-14	1	I	1	1	3. 9E-14	<ol> <li>3. 9E–14</li> </ol>	0.0	0.0				
天(大破酢LOCA)+両比炉心浴却失敗+飯圧炉心浴却失敗 メノニュノノノントーニーノオンニュニノ・ヘロ・ハ	3.4E-14	1	1	1	1	3.4E-14	3.4E-14	0.0	0.0	0 01 00	0 00 00	0	0
	0. 0E-US	1 or 1	1 - 12 -	'	'	0. 0E-09	0.0E-09	0.0	0.0	3. 3E-09	0. 3E-09	0.0	0.0
ssive LOCA 卸る市小		4. 25-07	1.0E-04			4. ZE-01	1. 0E-07	1 0.5	0 10	4. 2E-07	1.0E-06	2.9	2.0
17.14.1. 5.4. 15.2	1	3.5E-00	6 5E-11	,	,	3 5E-00	6.5E-11	0.02	000	3 5F-09	6.5E-11	0.1	1.0
中国の	1	3. 4E-07	2.6E-08	1	1	3. 4E-07	2. 6E-08	2.40	0.34	3.4E-07	2. 6E-08	2.4	0.3
198器損傷	I	1.7E-07	7.5E-08	1	1	1. 7E-07	7.5E-08	1.20	0, 98	1.7E-07	7.5E-08	1.2	1.0
防損傷	I	3. 1E-08	9. 7E-09	I	I	3. 1E-08	9.7E-09	0.22	0.13	3. 1E-08	9.7E-09	0.2	0.1
物損傷	1	1.4E-08	1.5E-09		1	1.4E-08	1.5E-09	0.10	0.02	1.4E-08	1.5E-09	0.1	0.0
里建物損傷	T	1.8E-10	1.6E-10	I	I	1.8E-10	1.6E-10	0.00	0.00	1.8E-10	1.6E-10	0.0	0.0
貴傷に至る事象	I	I	I	1. 2E-07	5. 7E-08	1.2E-07	5.7E-08	0.8	0.7	1.2E-07	5.7E-08	0.8	0.7
合計	6. 2E-06	7.9E-06	9.5E-07	1.2E-07	4. 7E-07	1.4E-05	7.7E-06	100	100	1.4E-05	7.7E-06	100	100

■ 地震PRA, 津波PRAの再評価により, その結果を反映している項目を示す。

補足 1. 2. 1. d-5-17 **1101** 



A-A 断面

図1 レストレントビームの構造





図3 弾塑性サポートを有する配管の加振試験体

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。



# 図4 荷重-変位特性

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

補足 1. 2. 1. d-5-20 **1104**


図5 原子炉格納容器の評価部位

## 津波による敷地内浸水解析について

護岸周辺には津波防護施設及び浸水防止設備として,高さEL15.0mの防波壁を設置するとともに,防波壁通路及び1号炉放水連絡通路に防波扉を設置しているが,以下の点を考慮して防波壁を越える津波としてEL20m津波における浸水解析を実施し,敷地内浸水範囲及び浸水高を評価した。

- ・EL8.5m盤にある取水槽や放水槽等の開口部からの浸水
- ・防波壁を越える津波の遡上
- ・津波に対する防波扉の耐力
- 1. 浸水解析条件

浸水解析の条件は以下のとおりとした。

- (1) EL20m 津波の作成
  - 基準津波として策定した日本海東縁部に想定される地震に伴う津波を、 輪谷湾内の施設護岸位置での最高水位が EL20m 程度となるように、沖合 での波形を振幅倍(約7倍)させたものを評価用津波とした。施設護岸 の最高水位地点及び施設護岸の最高水位地点で取り出した時刻歴波形を それぞれ図1及び図2に示す。
- (2) 浸水経路の設定
  - ・敷地内から海域に繋がる開口部の位置図及び諸元を図3及び表1に示す。
  - ・1~3号炉の取水槽,放水槽及び放水接合槽は,EL8.5m 盤に開口部を有しており,浸水経路として考慮した。
  - ・屋外排水路における逆止弁からの逆流は、浸水経路から除外した。
  - ・1号炉放水連絡通路は、防波扉が設置されており通常時閉運用であること及び耐力評価の結果から、浸水経路から除外した。
  - ・敷地内浸水量を多く見積もるため、通常時閉運用であるが防波壁通路防 波扉を開として防波壁通路を浸水経路として考慮し、屋外排水路からの 排水は考慮しない。
- (3) 浸水の検討
  - ・津波が遡上して地上部から敷地に到達すること及び EL8.5m 盤の取水槽や 放水槽等の開口部から浸水することから、遡上した津波による浸水及び 開口部からの浸水について検討を実施した。
  - ・開口部からの浸水については、1~3号炉の取水口及び放水口における EL20m 津波の時刻歴波形を用いて、取水口~取水槽に至る経路及び放水口 ~放水槽に至る経路の水理特性を考慮した水位変動の数値シミュレーションを実施した。取水・放水施設の一例として、2号炉の取水・放水施 設を図4に示す。

- ・浸水量の算定に当たっては, EL8.5m 盤の取水槽や放水槽等の開口部から 浸水した津波は全量敷地内に留まるものとし,取水・放水施設等からの 排水は考慮していない。
- 2. 浸水解析結果

敷地内浸水深分布を図5に示す。主な浸水経路からの敷地内への浸水量及び屋 外構築物まわりの最大浸水高と機能喪失浸水高の比較を表2及び表3に示す。

海水ポンプエリア付近及び2号炉タービン建物付近の浸水深は高くても 0.5m ~1.0m 未満であるため,海水ポンプエリア防水壁及び2号炉タービン建物水密 扉等の評価に用いる浸水深は1.0m とする。

浸水深 1.0m (EL9.5m) では,海水ポンプ防水壁の機能喪失浸水高以下である ため防水壁は損傷せず,また,図6の管路計算結果に示すとおり,除じん機エリ アの津波高さは EL12.1m であり,除じん機エリア防水壁を越波し海水ポンプエリ アに浸水することはない。同様に,建物外壁の水密扉の機能喪失浸水高以下であ るため水密扉は損傷せず,建物内への浸水は発生しない。



図1 施設護岸最高水位地点





図3 開口部位置図

取水施設



図4 島根2号炉 取水·放水施設



図5 敷地内浸水深分布



設備	諸元 (開口面積)	浸水経路としての取扱い	備考
1号炉取水槽	約 230m ²	考慮する	EL10.8mの開口部
2号炉取水槽	約 180m ²	考慮する	EL10.8mの開口部
3号炉取水槽	約 610m ²	考慮する	EL10.8mの開口部
1号炉放水槽	約 30m²	考慮する	EL8.8mの開口部
2号炉放水槽	約 360m ²	考慮する	EL8.8mの開口部
3号炉放水槽	約 90m ²	考慮する	EL8.8mの開口部
1 号炉 放水接合槽	約 30m²	考慮する	EL9.0mの開口部
2 号炉 放水接合槽	約 50m²	考慮する	EL8.0mの開口部
3 号炉 放水接合槽	約 110m ²	考慮する	EL8.0mの開口部
屋外排水路	約 1~4m²	考慮しない	耐力評価結果による
1号炉放水 連絡通路	約 10m²	考慮しない	耐力評価結果による
防波壁通路	約 30~70m ²	考慮する	開状態を想定し保守 的に設定

表1 浸水経路の諸元及び浸水対策実施状況

浸水経路	浸水量(m ³ )
防波壁(越波)	約 2,000
1号炉取水槽	約 200
2号炉取水槽	約 2,800
3号炉取水槽	約 1, 100
1号炉放水槽	約 100
2号炉放水槽	約 1,900
3号炉放水槽	約 4,800
1号炉放水接合槽	約 500
2号炉放水接合槽	約 3, 200
3号炉放水接合槽	約 5,400
防波壁通路防波扉	約 2,000
合計	約 24,000

表2 浸水経路からの敷地内への浸水量

表 3	島根2号炉	屋外構築物まわりの最大浸水高と機能喪失浸水高の	)比較
			. – ./

津波 高さ	屋外構築物	敷地高	浸水深	最大浸水高	機能喪失 浸水高 ^{*1}	健全性
	除じん機エリア防水壁		_	EL12.1m ^{*2}	EL12.3m	0
	海水ポンプエリア防水壁	EL8.5m 1.0m ^{**3}		EL10.8m	$\bigcirc$	
	海水ポンプ給気エリア 防水壁		1. Om ^{** 3}	EL10.5m ^{**4} (EL9.5m)	EL10.8m	0
EL20m	海水ポンプエリア水密扉				EL10.8m	0
	タービン建物外壁				EL15.Om	0
	タービン建物水密扉				EL15.Om	0
	起動変圧器前防水壁				EL15.Om	0

※1:設計時に考慮した静水圧に対する許容浸水高

※2:管路計算による取水槽内の最大津波高さ

※3: EL20m 津波による浸水解析結果を基に設定した値

※4:防波壁を越波する津波の波力を考慮した静水圧

防波壁を越波して浸水する津波の波力は、内閣府作成の「津波避難ビル等に係るガイドライン」の「巻末資料② 構造物要件の基本的な考え方」において示されていたものを、東日本 大震災における津波による建築物被害の調査を踏まえ、津波避難ビル等の構造上の要件について取りまとめられ、平成23年11月17日に国土交通省から各自治体に通知されている暫定 指針を参考に浸水深の2倍を考慮し評価した値。参考図に浸水高の2倍の根拠である暫定指 針の抜粋を示す。

構造設計用の進行方向の津波波圧は下式により算定する。
 qz = pg(<u>a</u>h - z) (4.1)
 ここに、
 qz:構造設計用の進行方向の津波波圧(kN/m²)

- qZ: 構造設計用の進行方向の律波波注(KIN/m
- ρ : 水の単位体積質量 (t/m³)
- g : 重力加速度 (m/s²)
- h : 設計用浸水深 (m)
- z : 当該部分の地盤面からの高さ(0≤z≤<u>a</u>h)(m)
- a:水深係数。3とする。ただし、次の表に掲げる要件に該当する場合は、それぞれ a の値の欄の数値とすることができる。(注:この係数は、建築物等の前面でのせき上げによる津波の水位の上昇の程度を表したものでない、)

HI IEI	てのとき上りによる律仮の示位の上升の住後を表したものでない	0/
	要件	<u>aの値</u>
<u>()</u>	津波避難ビル等から津波が生じる方向に施設又は他の建築物	2
	がある場合(津波を軽減する効果が見込まれる場合に限る)	
<u>(_)</u>	(一)の場合で、津波避難ビル等の位置が海岸及び河川から 500	1.5
	<u>m以上離れている場合</u>	



参考図 越波する津波波力の浸水深の2倍の考え方について

国土交通省住宅局長発信文書(平成23年11月17日付)「津波に対し構造耐力上安全な構築物の 設計方等に係る追加的知見について(技術的助言)」抜粋

> 補足 1. 2. 2. a-1-8 **1113**

EL20m 津波に対する津波防護施設及び浸水防止設備の評価について

1. EL20m 津波時の津波防護施設及び浸水防止設備の評価

EL20m 津波に対して、考慮した津波防護施設及び浸水防止設備がその機能が維持できることを確認するため、EL20m 津波時の最大浸水高と機能喪失浸水高の比較を行う。「第1.2.2.a-2表 対象とした津波防護施設及び浸水防止設備」の設備に関して、EL20m 津波時の各施設の最大浸水高と機能喪失浸水高の比較を表1に示す。表1に示すとおり、EL20m 津波時の最大浸水高は機能喪失浸水高未満であるため、EL20m 津波に対して、考慮した津波防護施設及び浸水防止設備が機能維持できることを確認した。

区分	名称	箇所数	設置場所 最大 浸水高		機能喪失 浸水高
屋外	防波壁	一式	敷地護岸周辺	EL20m	EL15.0m ^{※1} (補足説明資料 1.2.2.a-3参照)
屋外	屋外排水路 逆止弁	15 箇所	屋外排水路	EL20m	EL20m 超 (補足説明資料
屋外	防波扉	1箇所	1 号炉放水連絡通路	EL20m	1.2.2.a-3 参照)
屋外	防水壁	1箇所	起動変圧器前	EL10.5m ^{*2} (EL9.5m) ^{*6}	EL15.0m ^{×4}
屋外	防水壁	1箇所	海水ポンプエリア	EL10.5m ^{*2} (EL9.5m) ^{*6}	EL10.8m ^{×4}
屋外	防水壁	1箇所	海水ポンプ給気 エリア	EL10.5m ^{ж2} (EL9.5m) ^{ж6}	EL10.8m ^{×4}
屋外	防水壁	1箇所	除じん機エリア	EL12.1m ^{** 3}	EL12. 3m ^{× 4}
屋外	閉止板	1箇所	取水管立入ピット	EL12.1m ^{×3}	EL12.3m ^{×4}
屋外	床ドレン逆止弁	一式	取水槽	EL12.1m ^{*3}	EL20.0m ^{ж₄}
屋外	水密扉	3箇所	海水ポンプエリア	EL9. 5m ^{ж6}	EL15.0m ^{×4}
屋外/ 屋内	水密扉	4箇所	タービン建物	EL10.5m ^{*2} (EL9.5m) ^{*6}	EL15.0m ^{ж₄}
屋内	水密扉	1箇所	原子炉建物境界	浸水なし	EL6. 1m ^{×4}
屋外	貫通部止水処置	一式	海水ポンプエリア	EL9. 5m ^{×6}	EL11.0m ^{×5}
屋外/ 屋内	貫通部止水処置	一式	タービン建物と屋外 の地下部~EL15.0mま での境界	EL9. 5m ^{*6}	EL11.0m ^{₩5}
屋内	貫通部止水処置	一式	タービン建物と原子 炉建物及び廃棄物処 理建物の地下部~ EL8.8mまでの壁面	浸水なし	EL11.0m ^{*5}

表1 EL20m津波時の最大浸水高と機能喪失浸水高の比較

※1: EL15m を超える津波は越波するが、EL20m 津波による波力に対して強度は維持できる。

※2:防波壁を越波する津波の波力を考慮した静水圧

※3:管路計算による取水槽内の最大津波高さ

※4:設計時に考慮した静水圧に対する許容浸水高

※5:試験で確認済の止水性能を踏まえて設定した値

※6: EL20m 津波による浸水解析結果を基に設定した値

- 2. 貫通部止水処置
  - (1) 評価内容

貫通部止水処置に使用されている,貫通部シール材であるシリコンとモルタ ルの止水性能を確認する。

(2) 評価結果

a. シリコン (配管貫通部)

配管貫通部の止水処置に用いるシリコンについては,図1のような試験体 による引張試験により止水性能を確認した。

本試験において得られたシリコンの破壊限界値は (試験体 6 体の うち最も低い破壊限界値)であり、約 の静水圧に相当することから、止 水性能は十分に確保できる。



図1 試験体形状

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.a-1-10

b. シリコン(電気関係貫通部)

電気関係貫通部処理の止水処置に用いるシリコンについては、図2に示す とおり、試験圧力0.147MPa(静水圧15m相当)で継続加圧した結果、漏えい は認められなかったため、止水性能は十分に確保できる。



試験装置に注水後,空気により加圧 試験圧力(0.147MPa),保持時間72時間

## 図2 試験装置全体図

c. モルタル

貫通部の止水処置に用いるモルタルについては、以下のとおり静水圧に対 し十分な耐性を有していることを確認している。モルタルの評価概要を図3 に示す。

【検討条件】

- ・スリーブ径:D[mm]
- ・モルタルの充填深さ:L[mm]
- ・配管径:d [mm]
- ・モルタル許容付着強度^{**}:2.0 [N/mm²]
- ・静水圧: 0.2 [N/mm²] (保守的に 20m 相当の静水圧を想定)
- ※「鉄筋コンクリート構造計算基準・同解説 2010」による。

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。



図3 モルタル評価概要図

モルタル部分に作用する水圧荷重(P1)
 静水圧がモルタル部分に作用したときに生じる荷重は以下のとおり。

P1 [N] =0.2 [N/mm²] × ( $\pi$  × (D²-d²) /4) [mm²]

② モルタルの許容付着荷重(P2)

静水圧がモルタル部分に作用したときに、モルタルが耐える限界の付 着荷重は以下のとおり。

P2 [N] =2.0 [N/mm²] × ( $\pi$  × (D+d) ×L) [mm²]

モルタルの付着強度は、付着面積及び充填深さに比例するため、ここでは、 保守的に貫通部に配管がない状態(d=0)を想定し評価を行った。

静水圧に対して止水性能を確保するためには、P1≦P2であるため、以下のように整理できる。

 $0.03 \times D \text{ [mm]} \leq L \text{ [mm]}$ 

上式より、モルタル施工個所が止水性能を発揮するためには、貫通スリー ブ径の3%以上の充填深さが必要である。例えば400mmの貫通スリーブに対 して、約12mm 以上の充填深さが必要であるが、実機における対象貫通部の 最小厚さ200mm に対し、モルタルは壁厚さと同程度の厚さで充填されている ことを踏まえると、止水性能は十分に確保できる。

## 津波PRAにおける漂流物の取り扱いについて

津波 P R A 学会標準の建物・機器のフラジリティ評価の中で,漂流物の選定に 関して以下の記載がある。

【津波PRA学会標準8.2.3 損傷モード及び部位の抽出 より抜粋】 なお,津波による対象漂流物の選定に際しては,5.1.3 フラジリティ評価関連 情報の収集・分析で得られる当該サイトに影響を与える可能性のある漂流物の諸 元(位置・種類・頻度)に留意し,支配的な津波波源から当該サイトまでに存在す る漂流物の発生頻度が炉心損傷頻度に比べて小さい場合,もしくは,当該サイト に接岸していない船舶に対しては対象から除外してもよい。

発電所に影響を与える可能性のある漂流物を諸元(位置・種類・頻度)に留意して調査し、津波により漂流物となる可能性がある施設・設備について、1.発電 所構内と2.発電所構外で区分けして評価した。

- 1. 発電所構内の評価
  - (1) 船舶(燃料等輸送船)

発電所内に停泊中の船舶は、津波襲来が想定される場合は湾外に避難する が、仮に避難する時間余裕がなく津波が襲来した場合でも、以下のとおり、 炉心損傷頻度の評価に有意な影響を与えるものではないと判断した。

a. 海域活断層に想定される地震による津波

島根原子力発電所に想定する津波のうち,海域活断層に想定される地震 による津波は,地震発生後,数分で到達するが,図1に示すとおり,年超 過確率1.0E-07/炉年においても施設護岸における水位はEL5m未満であり, 仮に燃料等輸送船が漂流物となった場合でも炉心損傷に有意な影響を及ぼ す可能性は十分に小さい。

b. 日本海東縁部に想定される地震による津波

島根原子力発電所に想定する津波のうち、日本海東縁部に想定される地 震による津波は、地震発生後、発電所到達までに約 110 分程度の時間を要 するため、図2に示すとおり、発電所内に停泊する燃料等輸送船は、地震 発生後 40 分程度で退避可能であり、日本海東縁部に想定される地震による 津波に対し、漂流物となる可能性は十分に小さい。



補足 1.2.2.a-2-2 **1119** 



図2 津波の到達と緊急退避に要する時間との関係

(2) 建物・構築物等

プラントウォークダウンにより確認した発電所構内で漂流物となる可能性 のあるものとしては,図3に示す防波壁の外側にある主要な敷地内構築物及 び設置物が挙げられる。

基準津波時の荷揚場の最高水位は EL6.7m で、荷揚場高さ EL6.0m を越える が、これらの構築物及び設置物が漂流して EL8.5m に設置された防波壁に影響 を及ぼすおそれはない。また、基準超過津波時に漂流した場合でも、表1に 示すとおり防波壁の健全性に影響を及ぼす可能性は十分小さい。



図3 防波壁の外側にある敷地内構築物及び設置物

表1 防波壁の外側にある敷地内構築物及び設置物の評価結果

	設備 (設置高さ)	概略寸法及び 概算重量	評価結果
(a)	荷揚場詰所 (EL 6.0m)	(縦)8.6m× (横)18.1m× (高さ)6.5m	詰所は鉄骨造であり,詰所内の事務機器等が 防波壁に衝突した場合でも防波壁の健全性 に影響を及ぼす可能性は十分に小さい。
(b)	キャスク取扱機器 収納庫 (EL 6.0m)	(縦) 7.8m× (横) 4.6m× (高さ) 4.5m (重量) カバー部:4.3t 定盤部 :7.9t	定盤部は重量物でありコンクリート基礎部 にアンカーボルトで固定されているため,漂 流物となる可能性は十分に小さい。カバー部 は漂流物となる可能性があるが,防波壁の健 全性に影響を及ぼす可能性は小さい。
(c)	オイルフェンス ドラム (EL 6.0m)	<ul> <li>(縦) 5.2m×</li> <li>(横) 3.0m×</li> <li>(高さ) 3.9m</li> <li>(重量)</li> <li>本体:2.6t</li> <li>オイルフェンス:0.8t</li> </ul>	コンクリート基礎部にアンカーボルトで固 定された構造物で,鋼製の本体とオイルフェ ンスからなる。重量物であり津波で押し流さ れた場合でも,防波壁のある EL8.5m 盤に乗 り上げて防波壁の健全性に影響を及ぼす可 能性は十分に小さい。
(d)	防舷材 (EL 6.0m)	(縦)2.5m× (横)1.3m× (高さ)1.3m (重量)0.6t	船舶等の接舷時の衝撃を和らげるための緩 衝材であり、津波時には浮き上がる可能性が あるが、用途から考えて防波壁に衝突しても 防波壁の健全性に影響を及ぼす可能性は十 分に小さい。
(e)	デリッククレーン 吊上げ治具 (EL 6.0m)	(縦)5.7m× (横)0.7m× (高さ)1.9m (重量)8t	鋼製構造物の重量物であり津波で押し流された場合でも,防波壁のある EL8.5m 盤に乗り上げて防波壁の健全性に影響を及ぼす可能性は十分に小さい。

- 2. 発電所構外の評価
- (1) 漂流物調査範囲の設定

基準津波による漂流物調査範囲は,基準津波による敷地前面海域の流向及 び流速を考慮し,発電所周辺約2kmの範囲としている。また,漂流物の到達 範囲は1kmの範囲としている。

この漂流物調査範囲及び漂流物の到達範囲は,基準津波の(寄せ波)1波 による移動量約450mに,保守性を考慮して設定したものであり,津波PRA で想定する EL20m 津波に対しても適用できるものと考える。

(2) 漂流物となる可能性のある施設・設備の抽出 発電所周辺約2kmの調査を実施した。発電所周辺の海域及び陸域沿岸部の 施設・設備の状況を表2及び図4に示す。

施設・設備	調査結果		
船舶(漁船等)	発電所から1km 以遠にある片句漁港には12t 未満の漁		
	が40隻程度係留されている。		
建物・構築物等	発電所から1km以遠の漁港周辺に家屋,車両等がある。		
定置網	発電所周辺に定置網の設置海域があるが,発電所周辺約2		
	km に定置網の設置海域はない。		

表2 漂流物調査結果

(3) 発電所構外の施設・設備の評価

発電所周辺の海域及び陸域沿岸部の施設・設備の状況は以下に示すとおり であり,発電所周辺の施設・設備が発電所へ漂流物として到達する可能性は 十分小さい。

a. 船舶(漁船等)

発電所周辺1kmの範囲に漁港はなく,漁港に係留されている漁船等は発 電所への漂流物とはならない。また,発電所沖合を航行中の漁船が津波に よって漂流する可能性は十分小さく,発電所への漂流物とはならない。

b. 建物·構築物等

発電所周辺1kmの範囲の陸域には家屋,車両等ないため,発電所への漂 流物とはならない。

c. 定置網

発電所周辺1km の範囲の海域には定置網の設置海域はないため,発電所 への漂流物とはならない。



図4 発電所構外図

防波壁,屋外排水路逆止弁及び1号放水連絡通路防波扉の耐力について

- 1. 防波壁の耐力
  - 防波壁の概要

防波壁は,敷地の海側に位置し,天端高さ EL15m,延長約 1,500m にわたり 設置された津波防護施設である。

防波壁の配置図を図1に示す。また,防波壁の評価対象断面図を図2に示す。

防波壁の耐力評価は、「港湾の施設の技術上の基準・同解説(日本港湾協会: 2007)」を参考に実施しており、防波壁について部材応力評価を行っている。

なお,防波壁は 10~20m程度のスパンを1ブロックとした線状構造物であ ることから,防波壁法線と直交する断面(弱軸方向)をモデル化し,隣接す るブロック及び防波扉を考慮せず,耐震性を確保する設計としている。



図1 防波壁配置図

補足 1. 2. 2. a-3-1 **1125** 



図2 防波壁評価対象断面図(単位:m)

補足 1.2.2.a-3-2 1126

(2) 津波高さ 20m における耐力評価結果

津波高さ20mにおける津波波力分布図を図3に示す。

また,津波高さ 20m における防波壁(断面①,断面②,断面③)の評価結 果を表1に示す。評価結果が最も厳しい断面②における津波高さ 20m の評価 結果は,0.48 となり,1.0 を下回る。



図3 津波波力分布図(断面①)

断面名称		曲げ・軸力	せん断力	
断面①		0.40	0.39	
断面②	竪壁	0.48	0.44	
	鋼管杭	0.40	0.12	
断面③		0.43	0.10	

表1 防波壁の耐力評価結果(耐力作用比)

- 2. 屋外排水路逆止弁
- (1) 屋外排水路逆止弁の概要

屋外排水路逆止弁は、耐震性を有する排水桝(計15箇所)に設置された鋼 製フラップゲートである。逆止弁の配置図を図4に、代表例として逆止弁⑨ の構造図を図5に示す。

逆止弁の耐力評価は、「鋼構造設計規準 - 許容応力度法 - (日本建築学会: 2005 改訂)」等に準拠し、部材応力評価を行っている。

なお、津波荷重については、「港湾の施設の技術上の基準・同解説(日本港 湾協会:2007)」に準拠し、考慮する。



補足 1. 2. 2. a-3-4 **1128** 



図5 逆止弁⑨構造図

(2) 津波高さ 20m における耐力評価結果

津波高さ20mにおける津波水圧分布図を図6に示す。

また,津波高さ 20m における大口径の逆止弁の評価結果を表2に示す。評価結果が最も厳しい逆止弁⑨における津波高さ 20m の評価結果は0.5 となり, 1.0 を下回る。



補足 1.2.2.a-3-5 **1129** 

逆止弁		スキンプレート	主桁	補助桁		
逆止弁 ②~⑥, ⑭	1,700×1,850	0. 33	0.50	0.13		
逆止弁①, ⑨	2, 200×2, 350	0.36	0.51	0.08		

表2 屋外排水路の逆止弁の耐力評価結果(耐力作用比)

※同一形状の逆止弁について、最も深い位置に設置している逆止弁の耐力評価結果値を記載

- 3. 1号放水連絡通路防波扉
  - (1) 1号放水連絡通路防波扉の概要

1号放水連絡通路防波扉は、1号炉放水連絡通路の放水口側(海側)に位置する鋼製スイングゲートである。1号放水連絡通路防波扉の配置図を図7 に、構造図を図8に示す。

1号放水連絡通路防波扉の耐力評価は、「鋼構造設計規準 - 許容応力度法 -(日本建築学会:2005 改訂)」等に準拠し、部材応力評価を行っている。

なお、津波荷重については、「港湾の施設の技術上の基準・同解説(日本港 湾協会:2007)」に準拠し、考慮する。









補足 1.2.2.a-3-7 **1131**  (2) 津波高さ 20m における耐力評価結果

津波高さ20mにおける津波波力分布図を図9に示す。

また,津波高さ 20m における1号放水連絡通路防波扉の評価結果を表3に示す。津波高さ 20m の評価結果は0.47 となり,1.0を下回る。

【津波高さ 20m】



図9 津波波力分布図(1号放水連絡通路防波扉)

防波扉	スキンプレート	主桁	補助桁
1号放水	0.41	0.48	0.17
連絡通路防波扉	0.41	0.48	0.17

表3 1号放水連絡通路防波扉の耐力評価結果(耐力作用比)

## <u>引き波時を含む取水の継続性及び</u> 事故シナリオの分析で引き波を除外する考え方について

島根2号炉取水槽は貯留構造となっており,引き波時に取水口の水位が低下し 取水管の下端レベルを下回っても,原子炉補機海水ポンプ(以下「RSWポンプ」 という。)の取水性能を維持できる。貯留構造により冷却水を確保できる時間と津 波周期の関係を整理し,引き波時の取水の継続性を以下に示す。また,RSWポ ンプの取水の継続性を踏まえ,事故シナリオの分析で引き波を除外する考え方を 以下に示す。

1. 津波周期

EL20m 津波時の水位の時刻歴波形を図1及び図2に示す。図より敷地前面の取水口及び取水槽での津波周期は5分以下であることがわかる。



図1 EL20m 津波での取水口での時刻歴波形



図2 EL20m 津波での取水槽での時刻歴波形

2. R S W ポンプの 取水継続時間

取水槽貯留構造によるRSWポンプの取水継続時間を,RSWポンプ設計取水 可能水位及びRSWポンプ実取水可能水位の2通りのケースで評価した。

取水槽貯留構造部には、RSWポンプと循環水ポンプ(以下「CSWポンプ」 という。)の吸込口があり、CSWポンプの運転状態によりRSWポンプの取水 継続時間は異なる。津波時には取水槽水位低下(EL-3.0m)によりCSWポンプ を停止することから、RSWポンプ設計取水可能水位による評価においてはCS Wポンプから取水はない条件での評価とした。RSWポンプ実取水可能水位によ る評価においては、CSWポンプからの取水がある条件での評価も行った。

(1) RSWポンプ設計取水可能水位による評価

RSWポンプとCSWポンプの下端高さと設計取水可能水位を表1に,取水 槽の貯留構造部を図3に示す。津波時にはCSWポンプは停止することから, 取水管下端を下回る引き波時に,RSWポンプは取水管下端~RSWポンプ設 計取水可能水位の間の貯留水が使用可能である。このとき,RSWポンプの取 水継続時間は以下に示すとおり約11分であり,津波周期(5分以下)を上回る。

- 【RSWポンプの取水継続時間(CSWポンプ取水なし)】
  - 取水可能容積: 800m³
  - RSWポンプ流量:68m³/min(2台運転)
  - ・取水可能時間:800/68=11.7min
- (2) RSWポンプ実取水可能水位による評価

RSWポンプの実取水可能水位を,添付に示す実機RSWポンプによる取水 性能試験により確認した。その結果,RSWポンプはポンプ下端の水位まで取 水できる構造であることを確認したため,RSWポンプの実取水可能水位をR SWポンプ下端水位として,RSWポンプの取水継続時間を評価した。取水槽 の貯留構造部を図4に示す。津波時にはCSWポンプは停止することとしてい るが,CSWポンプがポンプ下端まで取水可能であると想定した場合の評価も 行った。RSWポンプの取水継続時間は,以下に示すとおりCSWポンプ取水 なしの条件で約23分,CSWポンプ取水ありの条件で約10分であり,津波周 期(5分以下)を上回る。

【RSWポンプの取水継続時間(CSWポンプ取水なし)】

- ・取水可能容積:1,600m³ (取水管下端~RSWポンプ下端)
- RSWポンプ流量:68m³/min(2台運転)
- ・取水可能時間:1,600/68=23.5min

【RSWポンプの取水継続時間(CSWポンプ取水あり)】

- ・取水可能容積:700m³ (CSWポンプ下端~RSWポンプ下端)
- RSWポンプ流量:68m³/min(2台運転)
- ・取水可能時間:700/68=10.2min

補足 1. 2. 2. a-4-2 **1134**  3. 事故シナリオの分析で引き波を除外する考え方

以上により,RSWポンプの取水継続時間は,RSWポンプの設計取水可能水 位及び実取水可能水位のいずれの場合でも,津波周期(5分以下)を十分上回り, EL20m 津波による引き波時にもRSWポンプの取水性が確保できることを確認 した。

事故シナリオの分析においては, EL20m 津波による引き波時にもRSWポンプの取水性が確保されることから,引き波を除外することとした。

	定格流量	ポンプ下端	吸込口径	設計取水可能水位※
	(m³/h/台)	高さ(EL m)	(m)	(EL m)
		H _o	$D_0$	$H = H_0 - 1.3 \times D_0$
RSW ポンプ	2,040	EL-9.3m	0.75m	-8.325
CSW ポンプ	67,400	EL-8.4m	2.9m	-4.63

表1 RSWポンプ及びСSWポンプの下端高さと設計取水可能水位

※:日本機械学会基準「ポンプの吸込水槽の模型試験法」(JSME S 004-1984)
 に基づき設定



図3 取水槽の貯留構造部(その1)



図4 取水槽の貯留構造部(その2)

補足 1.2.2.a-4-4 **1136**  1. 目的

RSWポンプの取水性能を確認するため,実機RSWポンプ取水性能試験及び ポンプ軸受単体の無潤滑運転試験を行い,以下の2項目について性能を確認した。 ここで,RSWポンプ水切れ運転とは,RSWポンプ下端より取水する水位が下 回った状態でのRSWポンプの運転をいう。島根2号機RSWポンプの断面図を 添図1に示す。

性能確認項目A. RSWポンプ実取水可能水位

性能確認項目B. RSWポンプ水切れ運転時のポンプ状態と その後のポンプ取水性能



添図1 島根2号機RSWポンプの断面図

2. 試験内容

基準超過津波が来襲し,引き波により取水槽水位が取水槽取水管下端位置を下回った場合,RSWポンプは取水槽下部の貯留構造部の海水を取水する。その後,押し波により取水管から取水槽へ水が流れ込み,取水槽水位が回復する。このような状態でのRSWポンプの取水性能を確認するため,「実機RSWポンプ取水性能試験」及び「ポンプ軸受単体の無潤滑運転試験」を行った。

「実機RSWポンプ取水性能試験」は、実機のRSWポンプ及び取水槽を模擬 した試験であるが、RSWポンプ出口から出口逆止弁までの配管長が実機より模 擬試験の方が長い。これにより、RSWポンプの保有水の量が異なるため、ポン プ水切れ運転状態でのポンプ内水位が実機と異なる。RSWポンプの水切れ運転 状態での損傷モードは、水切れによるポンプ軸受の無潤滑状態での長時間運転に よる損傷であることから、これに対する評価及び試験を「ポンプ軸受単体の無潤 滑運転試験」により行った。

- (1) 実機RSWポンプ取水性能試験
  - a. 試験内容

基準超過津波が来襲し、引き波により取水槽水位が取水槽取水管下端位置 を下回る場合に想定される実機取水槽の時系列とこれを模擬したRSWポ ンプ取水性能試験の確認項目を添表1に示す。本試験により、RSWポンプ の実取水可能水位、ポンプ水切れ運転時にポンプが破損せず機能維持するこ と、及びポンプ水切れ終了後の再冠水時に定格流量が取水可能であることを 確認する。

b. 試験結果

添図2に示す試験装置を用い 分間のRSWポンプ水切れ運転状態を含 むポンプ取水性能試験を行った。試験時の状態を添図3に,試験中のポンプ 流量と水位の関係を添図4に示す。RSWポンプは,RSWポンプ下端付 近まで定格流量を取水し,その後,約 分間のポンプ水切れ運転後に再冠 水しても、定格流量が取水可能であった。また、水位低下中に連続渦などは 確認されず、運転試験後に実施したポンプ開放点検による外観点検でも部品 に異常は確認されなかった。なお、本試験において、ポンプ内の水位は最上 部の軸受まで低下しておらず、いずれの軸受も無潤滑状態となっていない。

- (2) ポンプ軸受単体の無潤滑運転試験
  - a. 試験内容

ポンプ水切れ運転時には、ポンプ内の水位が低下してポンプ軸受が無潤滑 状態で長時間運転することで軸受が損傷し、ポンプが機能喪失となる可能性 がある。2号炉RSWポンプの軸受は、添図1に示すように5つのテフロン 軸受により構成されている。

2号炉RSWポンプの水切れ運転状態での水位低下予測を「水車及びポン プの性能換算法 JSME S008(1989)」により行った結果を添図5⁽¹⁾に示す。2 号炉RSWポンプは,最短で水切れ運転後 分で最上部のテフロン軸受が無

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

潤滑状態になる可能性があるため, テフロン軸受の無潤滑運転試験を実施した。

b. 試験結果

添図6に示す試験装置を用い 分間のテフロン軸受の無潤滑運転試験を 実施した。テフロン軸受の無潤滑運転試験前後の写真を添図7に示す。摩耗 は見られたものの摩耗量は判定基準を満足しており、軸受の健全性が維持さ れることを確認した。

3. まとめ

「実機RSWポンプ取水性能試験」により、2号炉RSWポンプの実取水可能 水位はポンプ下端位置であることを確認した。

また、模擬水槽試験では、RSWポンプを約□分間のポンプ水切れ運転し、 その後に再冠水した場合でも、定格流量が取水可能であることを確認したが、模 擬水槽試験と実機RSWポンプの設置状態では、RSWポンプの保有水量が異な るため、これについて「ポンプ軸受単体の無潤滑運転試験」を実施し、テフロン 軸受は□分間の無潤滑運転後も健全性が維持されることを確認した。したがっ て、RSWポンプは、約□分間のポンプ水切れ運転後に再冠水しても、定格流 量が取水可能である。

参考文献

(1) 実金一成・宮本裕之(2013): 立形ポンプ内包水の水切れ運転時における挙動 について,日本原子力学会 2013 秋の大会, I23

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.a-4-7

添表 1	津波時の2号取水槽の想定時系列とRSWポンプ取水性能試験の確認項目

津波時の2号取れ	k槽の想定時系列	津波模擬試験水槽	
取水槽水位	取水槽の状態	試験水槽の状態	試験確認項目
【引き波】	・引き波による取水	<ul> <li>RSW ポンプと水位調整</li> </ul>	・RSW ポンプ流量,電流等
通常水位~	槽水位低下	ポンプにより試験水槽	ポンプ運転パラメータ
取水槽取水管下端		水位低下	
水位(EL-7.3m)			
【引き波】	・RSW ポンプによる	<ul> <li>RSW ポンプと水位調整</li> </ul>	・RSW ポンプの実取水可能
取水槽取水管下端	取水槽貯留構造部	ポンプにより試験水槽	水位 (取水停止水位)
水位(EL-7.3m)~	の水位低下	水位低下	・RSW ポンプ流量,電流等
RSW ポンプ実取水可			ポンプ運転パラメータ
能水位			
【引き波→押し波】	・取水槽水位は RSW	・RSW ポンプ下端を露出	・RSW ポンプ流量,電流等
RSW ポンプ実取水可	ポンプ実取水可能	させるため水位調整ポ	ポンプ運転パラメータ
能水位で一定時間	水位で保持される	ンプにより試験水槽水	
経過	<ul> <li>RSW ポンプ取水停</li> </ul>	位低下後水位保持	
	止	・RSW ポンプ取水停止	
	<ul> <li>RSW ポンプ内包水</li> </ul>	・RSW ポンプ内包水の落	
	の落水	水	
【押し波】	・押し波による取水	・水位調整ポンプによ	・RSW ポンプの実取水可能
RSW ポンプ実取水可	槽水位上昇	り試験水槽水位上昇	水位 (取水開始水位)
能水位	<ul> <li>RSW ポンプ取水開</li> </ul>	<ul> <li>RSW ポンプ取水開始</li> </ul>	・RSW ポンプ流量,電流等
~通常水位	始		ポンプ運転パラメータ

*CSWポンプの取水なしの条件を示すが、CSWポンプ取水ありにおいても同様な時系列となる。
## 添図2 ポンプ取水性能試験装置

添図3 試験時の状態

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.a-4-9

添図4 試験中のポンプ流量と水位変化



添図5 ポンプ内の水位低下予測

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.a-4-10



添図6 ポンプ軸受単体の無潤滑運転試験装置

添図7 試験前後軸受状態

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.a-4-11

### 津波襲来時の原子炉停止の手順について

震源の近い地震によって津波が引き起こされる場合,地震加速度大のインター ロックにより原子炉は自動スクラムし,プラントは自動停止すると考えられる。

また,震源が遠い地震の場合等,プラントでの地震加速度が小さく,自動停止 に至らずに津波が襲来する場合を想定し,原子炉を停止する手順を以下に示す。

発電所の近傍を震源とする地震に起因して大津波警報が発令された場合には, 津波高さによらず,原子炉を停止し,原子炉の冷却操作を開始する。

震源が発電所の近傍ではない地震に起因して大津波警報が発令された場合であって、「島根県 出雲・石見」区域において予想される津波高さが5mを超えて10m 以下の場合を意味する「津波高さ10m」又は10mを超える場合を意味する「津波高さ10m 超」の場合には、以下の場合を除いて原子炉を停止し、原子炉の冷却操作を開始する。

- ・大津波警報が誤報であった場合
- ・発電所から遠方で発生した地震に伴う津波であって,「島根県 出雲・石見」 地域に津波が到達するまでの間に大津波警報が解除又は見直された場合

震源が発電所の近傍ではない地震に起因して大津波警報が発令された場合であって、「島根県 出雲・石見」区域において予想される津波高さが3mを超えて5m 以下の場合を意味する「津波高さ5m」の場合や、津波注意報及び津波警報発令時 は、発電所への津波による影響を確認するため、取水槽水位計や津波監視カメラ 等により海域の監視を行うとともに、海水ポンプの電流等関連するプラント・パ ラメータの監視強化を行う。取水槽の水位が低下し「取水槽水位低」警報(EL-2.0m)が発信した場合、速やかに原子炉を手動スクラムにより停止し、原子炉を 冷却する。更に取水槽の水位が低下し「取水槽水位低低」警報(EL-3.0m)が発 信した場合、速やかに循環水ポンプ全台を停止する。



審査会合	におい	ける指摘事項		1
項目	No.	コメント要旨	審査会合	頁
	1	海域活断層について適用しているスケーリング則を明 記し,影響が大きいとしている「津波評価技術」の式を 適用している考え方を説明すること。	平成30年12月14日 第662回審査会合	P20, 70
  基準津波の  年超過確率	2	領域震源に想定される地震による津波を検討対象外と する考え方については、敷地周辺の主な海域活断層と の位置関係等と比較を行ったうえで、整理すること。	平成30年12月14日 第662回審査会合	P5, 24, 73, 74
の参照に ついて	3	敷地周辺の主な海域活断層のスクリーニングにおける 各断層の数値シミュレーションの検討ケースの考え方 を示すこと。	平成30年12月14日 第662回審査会合	P61~64
	4	モンテカルロ法のサンプル数の妥当性を感度解析により説明すること。	平成30年12月14日 第662回審査会合	P76

目 次

1. 2. 3.	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
補足	2.説明資料
1	. 設置変更許可申請時からの変更点について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30
2	. 基準津波の策定(第632回審査会合資料より引用)・・・・・・・・・・・・・・・・・・・・・・・31
3	. 津波解析条件(第575回審査会合資料より引用)・・・・・・・・・・・・・・・・・・・・・・・・46
4	. 津波波源モデルの設定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
5	. フラクタイル曲線の作成方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6	. 施設護岸又は防波壁, 2号炉取水口及び2号炉取水槽における津波ハザード評価結果・・・78
7	. 防波堤の影響検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・82



## 1. 評価方針

・確率論的津波ハザード評価(以降,津波ハザード評価という)は、日本原子力学会(2012)⁽¹⁾,土木学会(2011)⁽²⁾ 及び土木学会(2016)⁽³⁾を踏まえて実施する。

4

・本評価では、断層運動が直接の原因で生じる津波を対象とし、海底地すべり等による津波については、発生頻度等を設定することが難しいため、評価に含めていない。

・なお、日本原子力学会(2012)では、津波を起因とした確率論的リスク評価(津波PRA)は地震そのものによる安 全機能等への影響の考慮は適用範囲外としていることから、津波ハザード評価においても同様の考え方により、 防波堤有りケースを基本とした評価を実施する。



目次
1.評価方針
2. ロジックツリー設定
2. 1 日本海東縁部に想定される地震による津波
2. 2 海域活断層から想定される地震による津波
3.領域震源(背景的地震)による津波
3.評価結果

2. ロジックツリー設定 2.1 日本海東縁部に想定される地震による津波 (1)検討対象波源の選定	$\overline{)}$
<ul> <li>・日本海東縁部に想定される地震による津波のロジックツリーを以下に示す。</li> <li>・土木学会(2011)の活動域区分(E0領域, E1領域, E2領域, E3領域)のみを考慮する場合と、土木学会(2011)の活動域区域」を加える場合の分岐を設定し、複数のハザード曲線を作成する。なお、土木学会(2011)の活動域区</li> <li>・「運動領域」の波源は、基準津波策定の際に考慮した、地震発生領域の連動を考慮した波源モデル(断) 自治体独自の波源モデルを考慮する。</li> <li>・上記分岐の重み配分については、土木学会(2016)に基づき、現時点の知見で判断するのは困難である する。</li> </ul>	2011)の活動域区分に「連動領 分は次頁に示す。 層長さ350kmモデル)及び地方 にとから、均等配分として設定
【ロジックツリーの構成】	
0.50 EO領域 E1領域 E2領域 E3領域	
日本海東縁部	→ 海域活断層へ
0.50 E0領域 E1領域 E2領域 E3領域 連動領域	
各活動域についての分岐	
⑩活動域区分の分岐     ①地震発生     ②津波高     ③津波推定値の     (E1及びE2のみ)     モデル     推定モデル     ばらつきの分岐	:申請時からの変更箇所

## ロジックツリー設定 2.1 日本海東縁部に想定される地震による津波 (2) 土木学会(2011)の活動域区分

・土木学会(2011)では、日本海東縁部の活動域区分(E0, E1, E2, E3)について、地震の発生履歴や地質学的知見、地震調査研究推進本部(2003)⁽⁴⁾等の知見をもとに、以下のとおりとしている。



	M7.8程度(D) M7.5前後(B) M7.8前後(B)
7.7 7.8	M7.5前後(B) M7.8前後(B)
7.8	M7.8前後(B)
7.7	M7.7前後(B)
-	M7.5程度(C)
7.8	M7.7前後(B)
7.5	M7.5前後(B)
—	M7.8程度(D)
	7.7  7.8 7.5 

日本海東縁部の大地震活動域の既往最大Mw

土木学会(2011)より作成

8

#### 地震調査研究推進本部に示される平均発生間隔と津波ハザード解析における分布の考え方

<b></b>	半均発生間隔	半均発生間隔の根拠	分布の考え万
北海道北西沖(E0)	3,900年程度	約2,100年前と約6,000年前に2個のイベント	発生間隔データ1個
北海道西方沖(E1-1)	1,400~3,900年程度	(連続性)	一様分布(1,400-3,900)
北海道南西沖(E1-2)	500~1,400年程度	6個のイベントの平均が約1,400年	一様分布(500-1,400)
青森県西方沖(E1-3)	500~1,400年程度	3個のイベントの平均が約500年	一様分布(500-1,400)
秋田県沖(E2-1)	1,000年程度以上	(2列への配分)	一様分布(1,000-1,500)
山形県沖(E2-2)	1,000年程度以上	(2列への配分)	一様分布(1,000-1,500)
新潟県北部沖(E2-3)	1,000年程度以上	(2列への配分)	一様分布(1,000-1,500)
佐渡島北方沖(E3)	500~1,000年程度	中嶋(2003)	一様分布(500-1,000)
		:	土木学会(2011)より作成













	$\bigcirc$
<ul> <li>・連動領域の波源は、基準津波策定の際に考慮した、地震発生領域の連動を考慮した波源モデル(断層長さなモデル)及び地方自治体独自の波源モデルを考慮する。</li> <li>・連動領域の地震発生モデル及び津波高さ推定モデルは、波源モデルのいずれかがランダムに起こると仮定本学会(2016)に基づき、偶然的不確定性として1本のハザード曲線の中で考慮する。</li> </ul>	350km し, 土
「連動領域」       ①地震発生 モデル※       ②津波高さ推定 モデル※       ③津波推定値の ばらつきの分岐へ         ※ 各波源の「①地震発生モデル」及び「②津波高さ推定モデル」の詳細をP53~60	のに示す。
連動領域の地震発生モデル	
波源モデル Mw 発生頻度 参照先	
Mw=8.09 一樣分布,1個/3,000-6,000年	
日本海東縁部(350km) Mw=8.15 一樣分布,1個/3.000-6.000年 P53.54	
Mw=8.25         一種分布,1個/3,000-6,000年	
▲取県(2012) ⁽⁶⁾ Mw=7.85 一様分布、1個/500-1,000年 P55	
Mw=8.16 一様分布,1億/1.500-3.000年	
Mw=7.82 一樣分布.1個/500-1,400年	
Mw=7.89 一-禄分布.1圈/500-1.000年	
秋田県(2013) ⁽⁷⁾ Mw=8.46 一様分布,1個/1.000-2.000年 P56	
MW=5.28 一様分布,1億/1,500-3,000年	
www-o.os         一様分布,1個/15000-0000年           石川県 (2012) ⁽⁸⁾ ・福井県 (2012) ⁽⁹⁾ Mv=7.99         一様分布,1個/1500-3000年	
株分布,1個/500-1,000年	
島根県(2012) ⁽¹⁰⁾ P59 Mw=8.01 一樣分布,1個/1.500-3.000年	
山口県(2012) ⁽¹¹⁾ Mw=7.85 一祿分布,1個/500-1,000年 P60	



目次	(17)
1. 評価万針	
2.ロジックツリー設定	
2. 1 日本海東縁部に想定される地震による津波	
2.2 海域活断層から想定される地震による津波	
2.3 領域震源(背景的地震)による津波	
3. 評価結果	











目次	23
1. 評価方針	
2.ロジックツリー設定	
2. 1 日本海東縁部に想定される地震による津波	
2. 2 海域活断層から想定される地震による津波	
2.3 領域震源(背景的地震)による津波	
3. 評価結果	











目 次

## 補足説明資料

- 1. 設置変更許可申請時からの変更点について
- 2. 基準津波の策定(第632回審査会合資料より引用)
- 3. 津波解析条件(第575回審査会合資料より引用)
- 4. 津波波源モデルの設定方法
- 5. フラクタイル曲線の作成方法
- 6. 施設護岸又は防波壁, 2号炉取水口及び2号炉取水槽における津波ハザード評価結果

(29)

7.防波堤の影響検討

補足説 1.	^{明資料} 設置変列	〔許可	申請時からの変更点について	30
·設	置変更許可申請	時からのす	変更点について下表に示す。	
	1		変更内容	
波源	項目		変更前	変更後
日本海東縁部	検討対象波源	の選定	土木学会(2011)に示される以下の領域区分を選定 ・E0領域 ・E1領域 ・E2領域 ・E3領域	<ul> <li>土木学会(2011)に示される領域区分に加え、基準津波策 定の際に考慮した、以下の波源を追加選定</li> <li>・地震発生領域の連動を考慮した波源</li> <li>-鳥取県(2012)</li> <li>・秋田県(2013)</li> <li>・石川県(2012)</li> <li>・福井県(2012)</li> <li>・島根県(2012)</li> <li>・山口県(2012)</li> <li>・山口県(2012)</li> </ul>
<b>海</b>	検討対象断層	の選定	阿部(1989)の予測式により津波高さを算出し,予測高が 比較的大きくなる以下の断層を選定 ・F-Ⅲ~F _K -2断層 ・K-4~K-7断層 ・大田沖断層 ・鳥取沖西方沖断層 ・鳥取沖東部断層 ・F _K -1斷層	土木学会(2011)に基づき,年超過確率への寄与度が高 い以下の断層を選定 ・F-亚~F-V断層
~ 域活断層		傾斜 方向	F-亚~F _K -2断層の長さを51.5kmと設定し, 断層の傾斜方 向は北傾斜と南傾斜に設定	設置変更許可申請以降に実施した海上音波探査による 結果(F-Ⅲ~F _K -2断層の名称をF-Ⅲ~F-V断層に変更) より,断層長さは48.0km,断層の傾斜方向は南傾斜に設 定
	海域活断層の パラメータ	傾斜角	土木学会(2011)に示される45°~90°に基づき、上限値、 下限値及び中央値の45°、67.5°、90°に設定	基準津波策定の際に検討を実施した45°,60°,75°, 90°に設定
		断層上 縁深さ	土木学会(2011)に示される0~5kmに基づき, 0kmに設定	基準津波策定の際に検討を実施した0,2,5kmに設定

補足説明資料 2. 基準津波の策定 2.1 基準津波の選定における津波水位の評	平価地点	第632回審查会合資料2 P143 再揭
・津波防護対象施設等はT.P.+8.5m以上の敷地に設置されてお (天端高さT.P.+15.0m)等により津波を防護する。 ^{※1}	り, 敷地高さT.P.+8.5mを	越える津波に対しては防波壁
		※1 構造物の詳細は P43~45に 示す。
		<ul> <li>津波防護対象</li> <li>○設計基準対象施設: 原子炉建物</li> <li>海水ポンプエリア</li> <li>ディーゼル燃料エリア</li> <li>制御室建物の一部</li> <li>廃棄物処理建物の一部</li> <li>Oアクセスルート,保管場所**2</li> <li>※2 審査の進捗によりルート,位置</li> <li>等変更が生じる可能性はある。</li> </ul>
	本資料のうち、枠囲みの内容は	機密に係る事項のため公開できません。
<ul> <li>・基準津波の波源の選定においては、津波防護対象施設等への津波のとさする。なお、施設護岸を越えた津波は防波壁に到達することから防波 津波水位の下降側の評価地点は2号炉取水口とする。</li> <li>・また、ドライサイト及び海水ポンプの取水性を確認する観点から、上昇低水槽の評価水位についても確認する。</li> </ul>	影響を確認するため, 津波水 壁も対象とする。また, 引き消 削については1~3号炉の取・	位の上昇側の評価地点は施設護岸 違に対する影響を確認するため、 放水槽、下降側については2号取



## 2.3 津波評価結果①(海域活断層から想定される地震による津波の検討)

第632回審査会合資料2 P145 再揭

・地震による洋波の検討(海域活動層から認定される地震による洋波の検討)の計画水位取高クース及び計画水位取低クースは以下のとおり。
------------------------------------------------------------------

	_		波源	モデル	_	_	_			評価フ	k位(T.P_	m)*		
検討ケース	断層 長さ (km)	モーメント マグニ チュート Mw	傾斜角 (°)	すべり角 (°)	上縁深 さ(km)	大 すべり 域	ポンプ 運転 状況	施設護岸	1号炉 取水槽	2号炉 取水槽	3号炉 取水槽	1号炉 放水槽	2号炉 放水槽	3号炉 放水槽
土木学会に基づく検討(F-Ⅲ~F-Ⅴ断層)	48.0	7.27	90	130, 180	0	-	運転	+3.6[+3.59]	+1.9 +2.2	+1.4 +2.0	+1.3 +2.9	+2.7	+2.8 +2.7	+2.1 +2.4
国土交通省・内閣府・文部科学省(2014)に 基づく検討(F56断層)	49.0         7.2         60         143, 215         1         中央         運転						+1.9	+1.9 +2.1	+1.6	+1.1 +1.8	+2.8	+3.1 +1.5	+2.4 +1.5	
国土交通省・内閣府・文部科学省(2014)の横ずれ断層 に対するすべり角の知見を踏まえた検討	48.0	7.27	90	130, 215	0	-	運転	+3.6[+3.56]	+2.0	+1.5	+1.4	+2.7	+2.9	+2.1
地方自治体独自の波源モデルを対象とした検討		1	1	-	1	1	1.1.2	断層長され モデルから 価している 響と同程の	及び敷地から想定され る海域活断 変以下と考	いらの距離 る地震に。 層から想 えられる。	を考慮す よる津波の 定される地	ると,地方 )敷地への と震による	自治体独 )影響は, 津波の敷切	自の波源 当社が評 地への影
評価水位最低ケース(水位下降側)										:25	炉取水	ロにおい	て評価水	位最低
検討ケース	断層 長さ (km)	モーメント マクゴニ チュート Mw	波源 傾斜角 (°)	モデル すべり角 (゜)	上縁深 さ(km)	大 すべり 域	ポンプ 運転 状況	2号 取水口	号炉 コ(東)	評価オ	k位(T.P. 2号炉 (水口(西)	m) *	2号炸 取水	沪槽
土木学会に基づく検討(F-Ⅲ~F-Ⅴ断層)	48.0	7.27	90	115, 180	0	-	 停止	-3	3.9		-3.9	-	-5.9[-5 -4.8	i.84] 3
国土交通省・内閣府・文部科学省(2014)に 基づく検討(F56断層)	49.0	7.2	60	143, 215	1	隣接LR	<u>運転</u> 停止	-1	.0		-1.0	-	-1.5	5
国土交通省・内閣府・文部科学省(2014)の横ずれ断層 に対するすべり角の知見を踏まえた検討	48.0	7.27	90	115, 215	0	-	<u>運転</u> 停止	-3	3.8		-3.8	-	-5.8 -4.8	3
<ul> <li>地方自治体独自の波源モデルを対象とした検討         <ul> <li></li></ul></li></ul>														

補足説明資料 2.3 津波	2. 基準津波( 評価結果②(日	の策5 本海]	と 東縁部	いま	定される	也震	によ	る津波	友の検討	4)	第(	632回審 P146	査会合 3 再掲	資料2	34
・地震による津波	の検討(日本海東約	豪部にな	息定され	る地震	ミニよる津波	の検	討)の	評価水	位最高ケ	ース及び	び評価水	位最低ケ	ースは以	下のとお	IJ.
評価水位最高ケ	<u>ース(水位上昇側</u>	D									※ 評価水位 ]:施設護/	:は地盤変動) 単 <b>又は防波</b>	量及び潮位 と 壁におし	を考慮してい いて評価水	る。 <b>位最高</b>
検討	ケース	断層 長さ (km)	モーメントマク ニチュート Mw	断層· 傾斜角 ( [°] )	モデル すべり角 (°)	上縁 深さ (km)	大 すべり 域	ポンプ 運転 状況	施設護岸 又は 防波壁	1号炉 取水槽	評 [.] 2号炉 取水槽	画水位(T.P. 3号炉 取水槽	m) [※] 1号炉 放水槽	2号炉 放水槽	3号炉 放水槽
土木学会に基づく	E1領域 断層上縁深さ0km	131.1	7.85	60	90	0	_	<ul><li>運転</li><li>停止</li></ul>	+7.2	+6.9	+6.4 +8.1	+4.9 +6.3	+2.3	+5.3 +4.3	+4.4 +5.5
	(追加)E1領域 断層上縁深さ1km	131.1	7.85	60	90	1	_	運転停止	+7.2	-	+6.5	+5.0 +6.3	-	+5.3	+4.4 +5.4
国土交通省·内閣府·	F24断層	132	7.9	30	74, 80	1	隣接 LLRR	運転停止	+3.4	-	+4.1	+2.4	+2.0	+3.6	+3.5
文部科学省(2014)に 基づく検討	(追加)F28断層	126	7.7	45	115, 93, 118	1	隣接 LRR	運転	+3.6	-	+4.8	+3.8	- +1.7	+4.1	+3.4
地方自治体独自 基づく検討(!	iの波源モデルに 鳥取県(2012))	222.2	8.16	60	90	0	-	運転停止	+10.5	+7.6	+7.0	+5.9	+4.0	+6.8	+6.6
(追加)地震発生 考慮した検討()	生領域の連動を 断層長さ350km)	350	8.09	60	90	0	IV V	運転	+8.7	+7.1	+6.9	+6.1	+3.0	+6.1	+4.4
評価水位最低ケ		D()		· · · · · ·	·							:2号炉取	水口にお	いて評価オ	〈位最低
		断网	エーむルフク	断層	モデル	上上級	+	ポンプ			評	価水位(T.P.	m)*		
検討	アース	町 信 長さ (km)	=₹⊐−ŀ Mw	傾斜角 (°)	すべり角 (゜)	上 深さ (km)	ス すべり 域	運転 状況	2 取力	号炉 (口(東)		2号炉 取水口(西)		2号灯 取水	ē 書
+木学会に基づく	E2, E3領域 断層上縁深さ2.5km	131.1	7.85	60	90	2.5	-	 運転 停止		-4.2		-4.1		-5.3 -5.0	,
検討	(追加)E2, E3領域 断層上縁深さ1km	131.1	7.85	60	90	1	-	運転停止		-4.2		-4.1		-5.4	
国土交通省・内閣府・	F24断層	132	7.9	30	74, 80	1	中央	運転停止		-2.4		-2.4	-	-3.4	
文部科学省(2014)に 基づく検討	(追加)F28断層	126	7.7	45	115, 93, 118	1	右側	運転停止		-1.9		-1.9	-	-2.7	
地方自治体独自 基づく検討(	1の波源モデルに 鳥取県(2012)	222.2	8.16	60	90	0	-	· 運転 停止		-5.0		-5.0	-	-5.9[-5	.81]
(追加)地震発生領域の進動を 考慮した検討(断層長350km) 350 8.09 60 90 0 ⅣVI / 運転 考慮した検討(断層長350km) 550 8.09 60 90 0 ⅣVI / 運転 -4.5 -4.5 -5.2															
・日本海東縁部に想定される地震による津波の検討においては、防波壁の評価水位が最高となること及び、2号炉取水口の評価水位が最低となることから、上昇 側・下降側ともに「地方自治体独自の波源モデルに基づく検討(鳥取県(2012))」を基準津波の選定に反映する。 ・また、「地震発生領域の運動を考慮した検討(断層長さ350km)」においては、3号炉取水槽のポンプ停止時の評価水位が最高となること及び、2号炉取水槽のポン プ運転時の評価水位が最低となることから基準津波の選定に反映する。(該当箇所を表中に 2 として示す。)															

・地震以外の要因による津波の検討の評価水位最高ケース及び評価水位最低ケースは以下のとおり。										
価水位最高ケース(水	位上夏側)					※ 評価水位	は地盤変動量及び潮信 は防波壁においる	^{立を考慮してい}		
				5	华価水位(TP m)	*				
検討ケース	ボンプ 運転状況	施設護岸	1号炉 取水槽		3号炉 取水槽	1号炉 放水槽	2号炉 放水槽	3号炉 放水槽		
海底地すべりに 起因する津波(地すべり①)		+4.1 +3.5 +3.2 +2.3 +3.4 +4.3 +4.0 +4.0 +4.5 +4.0 +2.1 +3.8								
陸上地すべりに 起因する津波(1s26)	運転	+1.2 +1.1 +1.1 +1.0 +0.7 +0.5 +2.6 +2.4 +1.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.1 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8 +1.0 +0.8								
起因する津波(L526)         停止         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1         +1.1										
<ul> <li>敷地への影響は小さいと考えられる。</li> <li>・鬱陵島:山体崩壊を伴うような爆発的噴火の可能性は低いことから、敷地に与える影響が大きい津波は発生することはないと考えられる。</li> <li>・隠岐島後:山体崩壊を伴うような爆発的噴火の可能性は低いことから、敷地に与える影響が大きい津波は発生することはないと考えられる。</li> <li>・避馬丸馬、朝潮津波水付は日本海車緑部に想定した地震による津波水位を下回ると考えられる。</li> </ul>										
火山現象に起因する津波	-	とはないと考えば ・隠岐島後:山体 ことはないと考え ・渡島大島:観測	られる。 体崩壊を伴うよう えられる。 川津波水位は、E	な爆発的噴火の同 本海東縁部に想	「能性は低いこと 定した地震による	から,敷地に与; 5津波水位を下[	える影響が大きい 回ると考えられる。	津波は発生		
火山現象に起因する津波 価水位最低ケース(水	 位下降側)	とはないと考え ・隠岐島後:山(4 ことはないと考え ・渡島大島:観源	541755 541755 155405 11注波水位は、E	な爆発的噴火の同 本海東縁部に想	J能性は低いこと 定した地震による	から、敷地に与 5津波水位を下[ 2 <del>月</del> :2 <del>月</del> :	える影響が大きい 回ると考えられる。 <b>炉取水口において</b>	津波は発生 ご評価水位最		
_{火山現象に起因する津波} 価水位最低ケース(水	 位下降側)	とはないと考え ・隠岐島後:山々 ことはないと考え ・渡島大島:観測	られる。 本崩壊を伴うよう もられる。 引津波水位は、E	は爆発的噴火の同 日本海東縁部に想	J能性は低いこと 定した地震による F価水位(T.P. m)	から,敷地に与; 5津波水位を下[ 2号: ※	える影響が大きい 回ると考えられる。 <b>炉取水口において</b>	津波は発生 〔 <b>評価水位』</b>		
火山現象に起因する津波 <b>価水位最低ケース (水</b> 検討ケース	- 位下降側) ポンプ 運転状況	とはないと考え ・隠岐島後:山存 ことはないと考え ・ で ・ で した ことはないと考え ・ で した ことはないと考え ・ の で した ことはないと考え の の で した の こと した な こと う 、 した の した こと した な こと した な こと した な こと した の した の こ した の こと した な い と考え の の の の の の の の の の の の の	5. たる。	な爆発的噴火の戸	「能性は低いこと 定した地震による <u>P価水位(T.P.m)</u> 2号炉 取水口(西)	から,敷地に与; 5津波水位を下[ :2 <del>号</del> ※	える影響が大きい 回ると考えられる。 <b>炉取水口において</b> 2 号炉 取水材	津波は発生 「評価水位長		
火山現象に起因する津波 価水位最低ケース(水 検討ケース 海底地すべりに 起因する津波(地すべり①)	- 位下降側) ポンプ 運転状況 停止	とはないと考え ・隠岐島後:山体 ことはないと考え ・ でで、 ・ でで、 で、 で、 した で、 した 、 で、 した 、 ことはないと考え ・ で、 した で、 した 、 ことはないと考え ・ で、 い した で、 ことはないと考え ・ で、 の た の た 、 た 、 、 、 、 、 、 、 、 、 、 、 、 、	541る。 本崩壊を伴うよう たられる。 川津波水位は、 E 2 号炉 (ロ (東) -2.8	な爆発的噴火の戸  本海東縁部に想	「能性は低いこと 定した地震による <u>P価水位(T.P.m</u> ) 2号炉 取水口(西) -2.7	から,敷地に与; 5津波水位を下回 	える影響が大きい 回ると考えられる。 <b>炉取水口において</b> 2 号炉 取水料 -3.7 -3.3	津波は発生 「 <b>評価水位</b> 最 ■		
火山現象に起因する津波 価水位最低ケース(水 検討ケース 海底地すべりに 起因する津波(他すべり①) 陸上地すべりに 起因する津波(にs26)	- 位下降側) ボンブ 運転状況 停止 停止	とはないと考え: ・隠岐島後:山ね ことはないと考う ・波島大島:観測 取力	<ul> <li>ふれる。</li> <li>本崩壊を伴うよう:</li> <li>とられる。</li> <li>川津波水位は、E</li> <li>2号炉</li> <li>2号炉</li> <li>-2.8</li> <li>-0.5</li> </ul>	は爆発的噴火の 戸  本海東縁部に想	T能性は低いこと 定した地震による F価水位(TP m) 2号炉 取水口 (西) -2.7 -0.5	から,敷地に与; 5津波水位を下 :2 <del>号</del> : ※	える影響が大きい 回ると考えられる。 <b>炉取水口において</b> 2 号炉 取水材 -3.7 -3.3 -1.1 -0.7	津波は発生 「 <b>評価水位』</b> 『		
<ul> <li>火山現象に起因する津波</li> <li>価水位最低ケース(水</li> <li>検討ケース</li> <li>検討ケース</li> <li>施因する津波(地すべりに 起因する津波(しまなり)</li> <li>陸上地すべりに 起因する津波(しま26)</li> <li>岩盤崩壊に起因する津波</li> </ul>	- 位下降側) ボンプ 運転 停止 -	とはないと考え ・隠岐島後 - 山板 ことはないと考え ・ 渡島大島: 観況 取オ Huber and Hage 地への影響はの	<ul> <li>される。</li> <li>が前壊を伴うよう;</li> <li>にられる。</li> <li>川津波水位は、E</li> <li>2号炉</li> <li>2号炉</li> <li>-2.8</li> <li>-0.5</li> <li>-(1997)の予測式</li> <li>いさいと考えられ</li> </ul>	な爆発的噴火の戸 1本海東縁部に想 1本海東縁部に想 による津波高さ( る。	T能性は低いこと 定した地震による で価水位(TP m) 2号炉 取水口(西) -2.7 -0.5 全振幅)が陸上歩	から、敷地に与; 5)津波水位を下回 :2号: ** 地すべりの津波	える影響が大きい 回ると考えられる。 <b>炉取水口において</b> 2 号焼 取水料 -3.7 -3.3 -1.1 -0.7 高(全振幅)を下回	津波は発生 「 <b>評価水位</b> 景 『 『 』		

補足説明 2.3	資料 2.基準 津波評価結果	^建 波の策定 (④(津波起	因事	象の重畳(	こよる津涼	皮の検討)	)	<b>第632回審査</b> P148	i会合資料 再掲	2 36	
·津波起因事	象の重畳による津洋	皮の検討の評価	水位最	高ケース及び評	⁷ 価水位最低 ⁴	ケースは以下	のとおり。				
評価水位最	高ケース(水位上)	早側)					* * <b>h</b> :	評価水位は地盤変活 調査 調査 調査 調査 調査 調査 においた の に の に の の の の の の の の の の の の の の の	動量及び潮位を考 波壁において書	_{慮している。} 平価水位最高	
	検討ケース		ポンプ			評値	西水位(T.P. m) [※]	×			
地震による 津波	地震以外の要因による 津波	検討方法	運転 状況	施設護岸	1号炉 取水槽	2号炉 取水槽	3号炉 取水槽	1号炉 放水槽	2号炉 放水槽	3号炉 放水槽	
	陸上地すべり	水位の 足し合わせ	<u>運転</u> 停止	+3.8[+3.71]	_	_	_		_	_	
F-Ⅲ~F-V	Ls26	一体	運転	+3.8[+3.74]	+1.5	+1.1	+1.0	+2.7	+2.8	+1.9	
断層	a - 14 - 14 1	シミュレーション	停止		+1.8	+1.7	+2.7	+1.2	+2.6	+2.4	
	その他の地すべり (陸上地すべりLs7・ 海底地すべり①~④)	水位の 足し合わせ	-	F-Ⅲ~F-V断層 ら想定される地震 波は到達しないた	と海底地すべり( 影による津波の最 とめ、重畳を考慮	1)~③との位置間 大水位上昇量の しても評価水位1	葛係から, これら )発生時に, 陸上 こ影響はない。	の重畳は考慮し ¹ ニ地すべりLs7及ひ	ない。また, F-Ⅲ が海底地すべり④	~F-V断層か )に起因する津	
日本海東縁部 に想定される 津波	陸上地すべり 海底地すべり	水位の 足し合わせ	-	日本海東縁部に ことから、それら(	想定される地震の の重畳を考慮しな	の波源は,陸上地 い。	もすべりLs7・Ls2	6及び海底地す~	い①~④と十分	に離れている	
評価水位最	低ケース (水位下	降側)						:2号炉取	水口において	評価水位最低	
	検討ケース		ポンプ			評估	西水位(T.P. m) [※]	^{%2}			
地震による 津波	地震以外の要因による 津波	検討方法	運転 状況	2 [.] 取水	号炉 ロ(東)		2号炉 取水口(西)		2号炉 取水槽		
	陸上地すべり	水位の 足し合わせ	運転 停止	-3.7	[-3.62]		-3.6		_		
F-Ⅲ~F-V 断屬	Ls26	ー体 シミュレーション	運転 停止	-3.7	[-3.69]		-3.7		-5.7		
WITE	その他の地すべり (陸上地すべりLs7・ 海底地すべり①~④)	水位の 足し合わせ	-	F-Ⅲ~F-V断層 ら想定される地震 波は到達しない†	と海底地すべり( 髪による津波の最 とめ、重畳を考慮	①~③との位置 した水位下降量の しても評価水位	関係から, これら )発生時に, 陸」 こ影響はない。	の重畳は考慮し と地すべりLs7及び	ない。また, F-Ⅲ が海底地すべり④	~F-V断層か Dに起因する津	
日本海東縁部 に想定される 津波 海底地すべり 水位の 足し合わせ - 日本海東縁部に想定される地震の波源は、陸上地すべりLs7・Ls26及び海底地すべり①~④と十分に離れている ことから、それらの重畳を考慮しない。											
<ul> <li>・津波起因事象の重畳による津波の検討においては、施設護岸の評価水位が最高となること及び、2号炉取水口の評価水位が最低となることから、 上昇側・下降側ともに「F-皿~F-V断層から想定される地震による津波」と「陸上地すべりに起因する津波(Ls26)」の重畳ケースを基準津波の選定 に反映する。</li> </ul>											

補足説明 2.3	資料 2.基準津波の 津波評価結果	D策定 のま	とめ	)							第632	2回審査 P149	会合資 再掲	[料2	37
·各検討結界	見より選定した評価水位最	高ケー	ス及び	評価水	位最低	ケース	は以下	のとおり	١.						
水位上昇			段護岸又(	は防波壁(	こおいて解	価水位局	ka 🗌	:左記	波源の1~3号	戸取・放水料	※ 言 前の評価水位を	平価水位は <b>上回る, ま</b>	地盤変動量) たはほぼ同	及び潮位を考 <b>直となる水位</b>	慮している。
波源	検討ケース	断層 長さ (km)	モーメント マク [*] ニ チュート [*] Mw	傾斜角 (°)	すべり 角 (゜)	上縁 深さ (km)	大 すべり 域	ポンプ 運転 状況	施設護岸 又は 防波壁	1号炉 取水槽	評価水 2号炉 取水槽	: <u>位(T.P.</u> m 3号炉 取水槽	) ^{)※} 1号炉 放水槽	2号炉 放水槽	3号炉 放水槽
海域活断層	土木学会に基づく検討 (F-Ⅲ~F-V断層)	48.0	7.27	90	130,180	0	-	運転停止	+3.6	+1.9 +2.2	+1.4 +2.0	+1.3 +2.9	+2.7	+2.8 +2.7	+2.1 +2.4
日本海東縁部	地方自治体独自の波源モデル に基づく検討(鳥取県(2012))	222.2	8.16	60	90	0	-	運転停止	+10.5	- +7.6	+7.0 +9.0[9.00]	+5.9 +7.0	- +4.0	+6.8 +7.1	+6.6 +6.4
日本海東縁部	(追加)地震発生領域の連動を 考慮した検討(断層長さ350km)	350	8.09	60	90	0	IV V	運転 停止	+8.7	- +7.1	+6.9 +9.0[8.91]	+6.1 +7.2	- +3.0	+6.1 +6.5	+4.4 +4.9
海底地すべり	海底地すべりに 起因する津波(地すべり①)				-			<u>運転</u> 停止	+4.1	+3.5 +4.0	+3.2 +4.5	+2.3 +4.0	+3.4 +2.1	+4.3 +3.8	+4.0 +4.2
津波起因事象 の重畳	F-Ⅲ~F-Ⅴ断層 + 陸上地すべりLs26		-	-体シミュ	レーション	<i>·</i>		 停止	+3.8	+1.5 +1.8	+1.1 +1.7	+1.0 +2.7	+2.7 +1.2	+2.8 +2.6	+1.9 +2.4
水位下降	则						:2 <del>写</del>	炉取水口(	こおいて評価オ	、位最低	:21	記波源の2-	炉取水槽を	上回る水位	
波源	検討ケース	断層 長さ (km)	モーメント マグニ チュート Mw	傾斜角 (°)	すべり 角 (°)	上縁 深さ (km)	大 すべり 域	ポンプ 運転 状況	2 取水	号炉 .口(東)	評価水	:位(T.P. m 2号炉 取水口(西	i) **	2号) 取水	炉 槽
海域活断層	土木学会に基づく検討 (F-III ~ F-V 断層)	48.0	7.27	90	115,180	0	-	<u>運転</u> 停止		-3.9		-3.9		-5.9[-5 -4.	5.84] 8
日本海東縁部	地方自治体独自の波源モデル に基づく検討(鳥取県(2012))	222.2	8.16	60	90	0	-	運転停止		-5.0		-5.0	-	-5.9[-5 -5.	j.81] 4
日本海東縁部	(追加)地震発生領域の連動を 考慮した検討(断層長さ350km)	350	8.09	60	90	0	IV VI	<u>運転</u> 停止		-4.5		-4.5		-5.9[-5 -5.	5.88] 2
海底地すべり	海底地すべりに 起因する津波(地すべり①)				-			運転停止		-2.8		-2.7	-	-3. -3.	7 3
津波起因事象         F-Ⅲ~F-Ⅴ断層 + 00重畳         一体シミュレーション         運転 停止         -3.7         -3.7															
<ul> <li>各検討結</li> <li>号炉取水</li> <li>は、ほぼ同</li> </ul>	・各検討結果より選定した評価水位最高ケース及び評価水位最低ケースから、施設護岸又は防波壁の評価水位が最高となる波源及び2 号炉取水口の評価水位が最低となる波源を基準津波として選定する。また、上記波源の1~3号炉取・放水槽の評価水位を上回る、または、ほぼ同値となる波源についても安全側の評価を行う観点から基準津波として選定する。														

補反 2	!説明) 4	資料 2.基準 基準津波	<b>津波</b> の遅	の策 電定	定										<b>第</b> 632	回審查会 P150	会合資 再掲	料2	38
・地 海東 ケー 想定	震による 縁部に スを基準 される5	津波の検討, 地 想定した地震に 準津波2, 評価オ 也震による津波3	震以 よる 注 な 長 基準	外の 建波を 低ケー 津波 加 二 二 二 二 二 二 二 二 二 二 二 二 二	要因に 基準 コスを 4とし	よる津 津波1, 基準達 て選定	■波の 日本 建波3 する。	検討ス海東線として	及び津 豪部に 選定す	波起[ 想定す る。す	因事象 される また, 身	マの重 地震 教地近	畳による 発生領域 〕傍に位	る津波の 或の連動 置する ※	)検討の  を考慮  毎域活断 ※ 評価	結果, に た検討 f層(F-1	鳥取県(2 †の評価 Ⅲ~F−♪	012)が 水位最 7断層) ^{(潮位を考慮}	日本 高 から _{乱ている。}
水位	L昇側				施設護川	又は防治	皮壁にお	いて評価	「水位最高	<b>۲</b>	:左裔	波源の1	~3号炉取	・放水槽の	評価水位を_	上回る, また	はほぼ同信	にとなる水位	
基準 津波	波源域	検討ケース	断層 長さ (km)	モーメント マグニ チュート Mw	傾斜角 ( [°] )	すべり 角 (°)	上縁 深さ (km)	大 すべり 域	走向	東西 位置	防波堤 有無	ポンプ 運転 状況	施設護岸 又は 防波壁	1号炉 取水槽	評価 2号炉 取水槽	<u>1水位(T.P.</u> 3号炉 取水槽	^{m)≫} 1号炉 放水槽	2号炉 放水槽	3号炉 放水槽
基津 津波1	日本海東線部	地方自治体独自の波 源モデルに基づく検討 (鳥取県(2012))	222.2	8.16	60	90	0	-	-	-	有	運転停止	+10.5	-+7.6	+7.0 +9.0[9.00]	+5.9	- +4.0	+6.8	+6.6
基準 津波2	日本海東 縁部	地震発生領域の連動 を考慮した検討(断層 長さ350km)	350	8.09	60	90	0	IV V	走向 一定	(3)	有	運転停止	+8.7	-	+6.9	+6.1	-	+6.1	+4.4
水位	下降側			:24	炉取水	コにおい	て評価オ	〈位最低		] :左1	記波源の	2号炉取	水槽を上回	る水位	=∞ /2		) ※		
基準 津波	波源域	検討ケース	断層 長さ (km)	モーメント マグニ チュート Mw	傾斜角 ( [°] )	すべり 角 (°)	上縁 深さ (km)	大 すべり 域	走向	東西 位置	防波堤 有無	ポンプ 運転 状況	2 <del>:</del> 取水	号炉 ロ(東)	a+11 2 取水	■水位(T.P. 号炉 .口(西)	<u>m) =</u>	2号炉 取水槽	
基津 津波1	日本海 東縁部	地方自治体独自の波 源モデルに基づく検討 (鳥取県(2012))	222.2	8.16	60	90	0	-	-	-	有	運転停止	-	5.0		-5.0		-5.9[-5.8]	]
基準 津波3	日本海東縁部	地震発生領域の連動 を考慮した検討(断層 長さ350km)	350	8.09	60	90	0	IV VI	走向 一定	(3)	有	運転停止	-	4.5		-4.5		-5.9[-5.88	3]
基準	海域活断層	土木学会に基づく検討	48.0	7.27	90	115,180	0	-	-	-	有	運転	-	3.9		-3.9		-5.9[-5.84	1]

## 補足説明資料 2.基準津波の策定

~~~ 니티/비

2.5 基準津波による水位の検討

・防波堤の有無の影響検討を踏まえた基準津波は以下のとおりである。

・基準津波による水位の検討として、基準津波の各々の評価水位に対して、敷地への流入防止及び取水性の確保について確認する。

第632回審査会合 資料2

P151 再揭

(39)

| 不區工开 | 043 | | | | | | | | | | | | | * | < 評価水位 | は地盤変調 | 動量及び潮 | 位を考慮し | ている。 |
|--------|-----|----------------------|------------|-----------------|-----------------------------|----------|-------|---------------|--------|------------|-----------|----------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| | | | 断層 | モーメントマ | 傾斜 | すべり | 上級 | * | | | | ポンプ | | _ | 評価: | 水位 (T.P. | m) ** | | |
| 基準津波 | 波源域 | 検討ケース | 長さ
(km) | ク゛ニチュー
ト゛ Mw | 角
(°) | 角
(°) | 二(km) | く
すべり
域 | 走向 | 東西
位置 | 防波堤
有無 | 運転
状況 | 施設護岸
又は防波
壁 | 1 号炉
取水槽 | 2 号炉
取水槽 | 3 号炉
取水槽 | 1 号炉
放水槽 | 2 号炉
放水槽 | 3 号炉
放水槽 |
| | | | | | | | | | | | 有 | 運転 | +10.5 | - | +7. 0 | +5.9 | - | +6.8 | +6.6 |
| 基準津波 1 | | 地方自治体独自の
波源モデルに基づ | 222.2 | 8.16 | 60 | 90 | 0 | - | - | - | | 停止 | | +7.6 | +9.0 | +7. 0 | +4. 0 | +7. 1 | +6.4 |
| | | く検討(鳥取県
(2012)) | | | | | | | | | 無 | 運転 | +11.6 | - | +9.0 | +6.4 | - | +6. 1 | +6.4 |
| | 日本海 | | | | | | | | | | | 停止 | | +9.0 | +10.4 | +7.7 | +4. 1 | +7.2 | +6.3 |
| 基準津波2 | 果稼部 | | 350 | 8.09 | 60 | 90 | 0 | IV V | 走向 | (3) | 有 | 運転 | +8.7 | - | +6.9 | +6. 1 | - | +6. 1 | +4.4 |
| | | 地震発生領域の連
動を考慮した検討 | | | | | | | 一定 | | | 停止 | | +7.1 | +9.0 | +7. 2 | +3.0 | +6.5 | +4.9 |
| 基準津波5 | | (断層長さ350km) | 350 | 8.09 | 60 | 90 | 0 | VIVI | 走向一定 | (3)から
東 | 無 | 運転 | +11.2 | - | +8.3 | +5.8 | - | +5.5 | +6.8 |
| | | | | | | | | ฅ30km | -10 変化 | 15.9km | | 停止 | | +8.0 | +10.2 | +7.5 | +2.6 | +5.4 | +7.3 |
| | | | | 評価水位
(1 | と比較 <sup>.</sup>
T.P. m) | する高さ | ž | | | | | | 天端
+15.0 | 天端
+10.8 | 天端
+10.8 | 天端
+8.8 | 天端
+8.8 | 天端
+8.8 | 天端
+8.8 |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |

| 記
行
に
に
に
に
に
り
に
説明 | 資料
基 | 2. 基準津
準津波に | 波の
よる | 策定
5水 | 位の | の検 | 討 | | | | | | 第 63 | 2回審查会合
P152 再揭 | 資料2 40 |
|---|---------|-------------------------|------------|-----------------|---------------|----------------|------------|----------|--------|-----|------|----------|----------------|-------------------|----------------------------------|
| 、位下降側 | U | | | | | | | | | | | | ※ 評価; | 水位は地盤変動量及び | び潮位を考慮している。 |
| ** *** ** ** | | | 断層 | モーメントマ | 傾斜角 | すべり | 上縁 | 大 | ** | 東西 | 防波堤 | ポンプ | | 評価水位(T.P.m) | * |
| 基準津波 | 波源域 | 検討ケース | 長さ
(km) | ク ニチュー
ト´ Mw | (°) | 角
(°) | 深さ
(km) | すべり
域 | 走问 | 位置 | 有無 | 連転
状況 | 2 号炉
取水口(東) | 2 号炉
取水口 (西) | 2 号炉
取水槽 |
| | | | | | | | | | | | - | 運転 | 5.0 | 5.0 | -5.9 |
| ** 34* *** *** - | | 地方自治体独自の
波源モデルに基づ | | | | | | | | | 有 | 停止 | -5.0 | -5.0 | -5.4 |
| 基準 準 波 1 | | く検討
(島取県(2012)) | 222. 2 | 8.16 | 60 | 90 | 0 | - | - | - | | 運転 | | | -7.5 |
| | 日本海 | | | | | | | | | | 無 | 停止 | -5.9 | -5.9 | -5.5 |
| | 東縁部 | | | | | | | | 走向 | (0) | | 運転 | | | -5.9 |
| 基準津波3 | | 地震発生領域の連 | 350 | 8.09 | 60 | 90 | 0 | IV VI | 一定 | (3) | 有 | 停止 | -4.5 | -4.5 | -5. 2 |
| **** | | 動を考慮した検討
(断層長さ350km) | 250 | 0.00 | 60 | | 1 | থাপা | 走向一定 | (2) | 4117 | 運転 | 6.0 | 5.0 | -7. 8 |
| 基準津波6 | | | 350 | 8.09 | 60 | 90 | 1 | 南20km | -10°変化 | (3) | 兼 | 停止 | -6.0 | -5.9 | -5. 7 |
| | | | | | | | | | | | - | 運転 | | | -5.9 |
| | 海域 | 土木学会に基づく
検討 | | | | | | | | | 有 | 停止 | -3.9 | -3.9 | -4. 8 |
| 基準津波4 | 活断層 | (F-Ⅲ~F-V断
層) | 48.0 | 1.21 | 90 | 115, 180 | 0 | - | - | - | | 運転 | | | -6.3 |
| | | | | | | | | | | | 兼 | 停止 | -4. 1 | -4. 1 | -5.0 |
| | | | | 評価オ | k位と比
(T. P | 比較する;
'. m) | 高さ | | | | | | 取水I
-1: | コ呑口
2.5 | 原子炉補機海水ポ
ンプ設計取水可能
水位 -8.32 |

上記,基準津波の各々の評価水位に対して,敷地への流入防止及び取水性の確保ができることを確認した。 【敷地への津波の流入】

・施設護岸周辺には高さT.P.+15.0mの防波壁が設置されていることから、津波が遡上し地上部から敷地に到達することはない。

・1~3号炉取・放水槽の天端高さはT.P.+8.8mであること、及び1,2号炉取水槽に天端高さT.P.+10.8mの防水壁が設置されていることから、取・放水経路から敷地に津波が流入することはない。

【原子炉補機海水系の取水性】

・2号炉原子炉補機海水ポンプ設計取水可能水位はT.P.-8.32mであることから、冷却に必要な海水は確保できる。

・2号炉取水口の呑口の下端はT.P.-12.5mであることから、取水に支障が生じることはない。

| * | 補足説明資料 3. 津波解析条件
3.1 計算条件(津波解析)
第575回書査会合 資料1-2
P15 再掲
46 | | | | | | | | | | |
|---|---|--|----------------|--|--|--|--|--|--|--|--|
| | ·計算条件(津波解析) | の詳細を以下に記す。 | | | | | | | | | |
| | 項目 | 計算条件 | | | | | | | | | |
| | 計算領域 | 日本海全体(南北約2100km, 東西約1300km) | | | | | | | | | |
| | 計算時間間隔 | 0.05秒 | | | | | | | | | |
| | 基礎方程式 | 非線形長波 | | | | | | | | | |
| | 沖合境界条件 | 開境界部分は自由透過,領域結合部は,水位と流速を接続 <sup>(21)</sup> | | | | | | | | | |
| | 陸岸境界条件 | 静水面より上昇する津波に対しては完全反射条件,または小谷ほか(1998) <sup>(22)</sup> の遡上第件とする。静水面より下降する津波に対しては小谷ほか(1998)の移動境界条件を用い
海底露出を考慮する。 | | | | | | | | | |
| | 初期条件 | 地震断層モデルを用いて Mansinha and Smylie(1971) <sup>(23)</sup>
盤変位が瞬時に生じるように設定 | の方法により計算される海底地 | | | | | | | | |
| | 海底摩擦 | マニングの粗度係数 0.03 m <sup>-1/3</sup> s | | | | | | | | | |
| | 水平渦動粘性係数 | 0m²/s | | | | | | | | | |
| | 計算潮位 | T.P.±0m | | | | | | | | | |
| | 想定する潮位条件 | 潮位条件
潮位条件
潮位条件
単の評価水位とする。
下降側評価:津波解析の計算結果に,朔望平均干潮位T.P0.02mを足し合わせ,上昇
側の評価水位とする。
下降側評価:津波解析の計算結果に,朔望平均干潮位T.P0.02mを足し合わせ,下降
側の評価水位とする。 | | | | | | | | | |
| | 地盤変動条件 | 「初期条件」において設定した海底地盤変位による地盤変動量を考慮する。 | | | | | | | | | |
| | 計算時間 | ・日本海東縁部に想定される地震による津波は地震発生後6時間まで
・海域活断層から想定される地震による津波は地震発生後3時間まで | | | | | | | | | |

補足説明資料 3. 津波解析条件3.1 計算条件(管路計算)

第575回審查会合 資料1-2 P16 再揭

計算条件(管路計算)の詳細を以下に記す。

| 計算領域 | 【取水施設】 1,2号炉 取水口 ~ 取水管 ~ 取水槽 3号炉 取水口 ~ 取水トンネル ~ 取水路 ~ 取水槽 |
|-----------------------|---|
| | 【放水施設】 放水口 ~ 放水路 ~ 放水槽 |
| 計算時間間隔 | 0.01秒 |
| 基礎方程式 | 非定常管路および開水路流れの連続式および運動方程式 |
| 取水槽側境界条件
(ポンプ取水量) | 1 号炉 循環水ポンプ運転時:19m <sup>3</sup> /s <sup>※1</sup> ,循環水ポンプ停止時:1.0m <sup>3</sup> /s
2 号炉 循環水ポンプ運転時:59m <sup>3</sup> /s,循環水ポンプ停止時:2.3m <sup>3</sup> /s
3 号炉 循環水ポンプ運転時:95m <sup>3</sup> /s <sup>※2</sup> ,循環水ポンプ停止時:3m <sup>3</sup> /s |
| 摩擦損失係数
(マニングの粗度係数) | 【取水施設】 取水管:0.014m <sup>-1/3</sup> ·s
取水トンネル,取水路,取水槽漸拡部:0.015m <sup>-1/3</sup> ·s
(塩素注入あり)
【放水施設】 0.015m <sup>-1/3</sup> ·s |
| 貝の付着代 | 塩素注入しているため、貝の付着代は考慮せず |
| 局所損失係数 | 土木学会(1999)等(24)~(26)による |
| 想定する潮位条件 | 水位上昇側 : 朔望平均満潮位T.P.+0.46m
水位下降側 : 朔望平均干潮位T.P0.02m |
| 地盤変動条件 | 地盤変動量を考慮する |
| 計算時間 | ・日本海東縁部に想定される地震による津波は地震発生後6時間まで ・海域活断層から想定される地震による津波は地震発生後3時間まで |

| 福足説明資料 3. 津波解析条件 3.2 計算領域とその水深 第575回審査会合 資料1-2
P17 再揭 | | | | | | | | | | | | | |
|---|---|----------------------|-----------------|---------------|---|--|--|--|--|--|--|--|--|
| ▪数値
浅測 | ・数値シミュレーションにおいて使用する地形データについては、日本水路協会、国土地理院の地形データ、当社の深
浅測量結果等を使用した。※ ※ 各地形データの適用範囲を次頁に示す。 | | | | | | | | | | | | |
| 区分 | 名称 | 名称 | 作成者 | 作成年 | ※ 日地形 アンの週用範囲を久負に示す。
借者 | | | | | | | | |
| <u>1</u> 277 | -1-1-1-7- | M7009 北海道西部 | IP/W/H | 2008 | ING YO | | | | | | | | |
| | | M7010 秋田沖 | 1 | 2008 | | | | | | | | | |
| | | M7011 佐渡 | 1 | 2011 | | | | | | | | | |
| | M7000> | M7012 若狭湾 | 1 | 2008 | | | | | | | | | |
| | 10009
リース | M7013 隠岐 | 日本水路協会 | 2008 | 日本近海の水深データ作成に使用 | | | | | | | | |
| | ·)-× | | 1 | 2009 | | | | | | | | | |
| | | | 1 | 2008 | | | | | | | | | |
| | | M7024 九州西岸海域 | 1 | 2009 | | | | | | | | | |
| | | 数値地図50mメッシュ(標高)日本- I | 国土地理院 | 1994 | | | | | | | | | |
| 海域 | 数值地 | 数値地図50mメッシュ(標高)日本-II | 国土地理院 | 1997 | | | | | | | | | |
| | 図50m
メッシュ | 数値地図50mメッシュ(標高)日本-Ⅲ | 国土地理院 | 1997 | 日本沿岸の海岸線地形の作成に使用 | | | | | | | | |
| | | 数值地図25000(行政界·海岸線) | 国土地理院 | 2006 | | | | | | | | | |
| | | JTOPO30 | 日本水路協会 | 2011 | 日本近海の水深データ作成に使用 | | | | | | | | |
| | | J-EGG500 | 日本海洋データ
センター | 2002 | 日本近海の水深データ作成に使用 | | | | | | | | |
| | その他 | GEBCO30 | IOC and IHO | 2010 | 日本近海以外の水深データ作成に使用 | | | | | | | | |
| | | 深浅測量等 | 中国電力㈱ | 1998~
2015 | 深浅測量(1998年)の水深データに,以下の工事を反映した。
・防波堤工事(2007年)
・3号炉護岸工事(2010年)
・3号炉跋岸工事(2010年) | | | | | | | | |
| 陸域 | | 5mメッシュ標高、10mメッシュ標高 | 国土地理院 | 2014 | 敷地周辺遡上領域範囲の陸地標高作成に使用 | | | | | | | | |
| 隆城 | 1 | UIIアツノユ惊商、IUIIアツノユ惊商 | 国土地理院 | 2014 | 素とビロム2011円線制図UV陸型係向TFRNトズH | | | | | | | | |

・波源位置としては、土木学会(2011)のE1-3領域(発生頻度:1個/500-1,400年)及びE3領域(発生頻度:1個/500-1,000年)の全体同時破壊に相当する。土木学会(2011)の発生頻度に基づき、E3領域の全体同時破壊が3回に1回発生、その中でさらに2回に1回、E1-3領域との同時破壊が発生すると考え、発生頻度は1個/3,000-6,000年とする。

| 補足説明資料 4. 津波波源モデルの設定方法
4.1 連動領域の地震発生モデル及び津波高さ推定モデル(地震発生領域の連動を考慮した波源モデル) | | | | | | | | | | | | | |
|--|---------------------------|---|--|--|--|--|--|--|--|--|--|--|--|
| •検討 | ・検討ケースの波源モデルは下表のとおり設定する。※ | | | | | | | | | | | | |
| | | | * | 検討ケース数は84ケース(①×②×③)である。 | | | | | | | | | |
| パラン | メータ | 設定方法 | 設定値 | | | | | | | | | | |
| ①大す
位 | <sup>-</sup> べり域
置 | 根本ほか(2009)を参考に波源モデルを8等
分したセグメントについて、隣り合う2つの
セグメントを大すべり域として設定する。 | І П., П.Ш., Ш.IV., IV V.,
V VI, VIVII, VIIVII | 136°E 146°E 144°E | | | | | | | | | |
| ②波源モゴ | 東西
位置 | 地震調査研究推進本部(2003)の領域を網
羅するよう設定する。 | 領域内で東西に移動させ
る。(両端,中央) | 2.無道之后:() 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 | | | | | | | | | |
| テル位置 | 傾斜
方向 | 土木学会(2016)に示される東・西傾斜より
設定する。 | 東·西傾斜 | 282857 | | | | | | | | | |
| ③傾 | 斜角 | 土木学会(2016)に示される変動範囲30~
60°の上限値・中央値・下限値を設定す
る。 | 30°, 45°, 60° | яти
<u> <u> </u> </u> | | | | | | | | | |
| 断層上 | 縁深さ | 土木学会(2016)に示される既往津波の痕
跡高を再現できる波源モデルの変動範囲0
~5kmより0kmに固定して設定する。 | 0km | <u>изялля</u>
<u>Ш</u> | | | | | | | | | |
| 走 | 向 | 地震調査研究推進本部(2003)の領域を踏
まえ設定する。 | 8.9° | (例) | | | | | | | | | |
| すべ | り角 | 土木学会(2016)に示される90°より設定
する。 | 90° | ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー | | | | | | | | | |
| | | | | - | | | | | | | | | |

| 補足説明資 | 【料 4. | 津波波源モデルの設定方法 | |
|-------|-------|-------------------|---|
| 4. 2 | 海域浸 | 5断層毎の最大水位上昇量及び下降量 | ŀ |

・敷地周辺の主な海域活断層毎の最大水位上昇量及び下降量を下表に示す。また、各断層において実施した検討ケースについて、次頁 に示す。

| 水位上昇側(施設護岸) ※1 地盤変動量, 朔望平均満潮位を考慮した | | | | | | | 潮位を考慮した値 | | |
|---------------------------------------|------------|--------------------|-------------|------------|-------------|-------------|--------------|-------|-------------------------------|
| 断層 | 長さ
(km) | モーメントマグニチュート
Mw | すべり量
(m) | 傾斜角
(°) | 主応力軸
(゜) | すべり角
(゜) | 上縁深さ
(km) | すべり方向 | 最大水位上昇量
H(m) <sup>※1</sup> |
| F-Ⅲ~F-Ⅴ断層(①+②+③) | 48.0 | 7.27 | 4.01 | 90 | 110 | 130, 180 | 0 | 南上がり | 3.6 |
| 鳥取沖東部斷層~鳥取沖西部斷層(④+⑤) | 98 | 7.68 | 5.77 | 45 | 120 | 170 | 0 | 南上がり | 0.8 |
| F57断層(⑥) | 108 | 7.74 | 8.98 | 90 | 120 | 180, 120 | 0 | 南上がり | 1.2 |
| K-4~K-7撓曲(⑦+⑧+⑨) | 19.0 | 6.68 | 1.58 | 90 | 120 | 115, 130 | 0 | 北上がり | 2.5 |
| 大田沖断層(⑩) | 53 | 7.33 | 4.43 | 90 | 120 | 180 | 0 | 右横ずれ | 0.8 |
| K-1撓曲+K-2撓曲+F <sub>K0</sub> 断層(⑪+⑫+⑬) | 36 | 7.10 | 3.00 | 90 | 120 | 140, 180 | 0 | 北上がり | 1.2 |
| F <sub>k</sub> -1断層(砲) | 19.0 | 6.68 | 1.58 | 90 | 120 | 155 | 0 | 北上がり | 2.1 |
| 隠岐北西方北部断層(⑮) | 36 | 7.10 | 3.00 | 90 | 90 | 55 | 0 | 西上がり | 1.2 |
| 見島北方沖西部断層(16) | 38 | 7.13 | 3.16 | 90 | 120 | 155 | 0 | 北上がり | 0.7 |

| 水位下降側(2号炉取水槽) ※2 地盤変動量, | | | | | | 朔望平均干潮位を考慮した値 | | | |
|---------------------------------------|------------|--------------------|-------------|-------------------------|-------------|---------------|--------------|-------|-------------------------------|
| 断層 | 長さ
(km) | モーメントマグニチュート
Mw | すべり量
(m) | 傾斜角
(<sup>°</sup>) | 主応力軸
(°) | すべり角
(゜) | 上縁深さ
(km) | すべり方向 | 最大水位下降量
H(m) <sup>※2</sup> |
| F-Ⅲ~F-Ⅴ断層(①+②+③) | 48.0 | 7.27 | 4.01 | 90 | 120 | 115, 180 | 0 | 南上がり | -5.9 |
| 鳥取沖東部断層~鳥取沖西部断層(④+5) | 98 | 7.68 | 5.77 | 45 | 120 | 170 | 0 | 南上がり | -1.0 |
| F57断層(⑥) | 108 | 7.74 | 8.98 | 90 | 120 | 180, 120 | 0 | 南上がり | -1.1 |
| K-4~K-7撓曲(⑦+⑧+⑨) | 19.0 | 6.68 | 1.58 | 90 | 120 | 115, 130 | 0 | 南上がり | -2.7 |
| 大田沖断層(⑩) | 53 | 7.33 | 4.43 | 90 | 120 | 180 | 0 | 右横ずれ | -0.7 |
| K-1撓曲+K-2撓曲+F <sub>K0</sub> 斷層(⑪+⑫+⑬) | 36 | 7.10 | 3.00 | 90 | 120 | 140, 180 | 0 | 南上がり | -0.9 |
| F <sub>k</sub> -1断層(⑭) | 19.0 | 6.68 | 1.58 | 90 | 120 | 155 | 0 | 南上がり | -2.4 |
| 隠岐北西方北部断層(⑮) | 36 | 7.10 | 3.00 | 90 | 90 | 55 | 0 | 西上がり | -1.1 |
| 見島北方沖西部断層(16) | 38 | 7.13 | 3.16 | 90 | 120 | 155 | 0 | 北上がり | -0.6 |

| 補足説明資料 4. 津波波源モデルの設定方法 4.2 海域活断層の検討ケースの考え方 | | | | | | | | | | |
|---|---|----------------|------------------|----------------------|--------------------------|-----|--|--|--|--|
| ・敷地周辺の主な海域活断層の数値シミュレーションについては、阿部(1989)の簡易予測式により算定した津波の予測高を踏まえ、予測
高が大きくなるものについては、詳細に検討を行った。検討ケースの考え方を下表に示す。 | | | | | | | | | | |
| | © N(M | 阿部(1989)による予測高 | | | | | | | | |
| | 断層(図中の番号) | 断層長
さ L(km) | 津波の伝播
距離∆(km) | モーメントマク゛ニ
チュート゜Mw | 阿部(1989)による
予測高 H (m) | | | | | |
| T T | F-Ⅲ~F-Ⅴ断層
(①+②+③) | 48.0 | 24 | 7.3 | 3.6 | | | | | |
| | 鳥取沖東部断層~
鳥取沖西部断層(④+5) | 98 | 84 | 7.7 | 2.7 | | | | | |
| 9 | F57断層(⑥) | 108 | 103 | 7.7 | 2.2 | | | | | |
| 6 | K-4~K-7撓曲
(⑦+⑧+⑨) | 19.0 | 12.9 | 6.7 | 1.8 | | | | | |
| | 大田沖断層(⑩) | 53 | 67 | 7.3 | 1.4 | | | | | |
| | K-1撓曲+K-2撓曲
+F <sub>KO</sub> 断層(⑪+⑫+⑬) | 36 | 50 | 7.1 | 1.2 | | | | | |
| | F <sub>k</sub> 一1断層(⑭) | 19.0 | 28.4 | 6.7 | 0.8 | | | | | |
| | 隠岐北西方北部断層(15) | 36 | 149 | 7.1 | 0.4 | | | | | |
| | | | | 201 | 7.1 | 0.3 | | | | |
| ← ← ← → ・ □ : 阿部(1989)による予測高が大きくなる断層 検討ケースの考え方 | | | | | | | | | | |
| 断層(図中の番号) | 番号) 数値シミュレーションの検討ケース | | | | | | | | | |
| F-Ⅲ~F-Ⅴ断層
(①+②+③) | ・阿部(1989)による予測高が最大となったことから,傾斜角及びすべり角を不確かさとして概略パラメータス
タディを実施し,それらを補間するよう傾斜角,すべり角及び断層上縁深さを不確かさとした詳細パラメータ
スタディを実施(P63,64参照)(84ケース) | | | | | | | | | |
| 鳥取沖東部断層~
鳥取沖西部断層(④+⑤) | ・阿部(1989)による予測高が比較的大きくなったことから, 傾斜角(45°,60°,75°,90°), すべり角
(170°,180°)及びすべり方向を不確かさとしてパラメータスタディを実施 (10ケース) | | | | | | | | | |
| その他の断層・阿部(1989)による予測高が小さいことから、最大水位を示すと考えられる傾斜角90°と固定し、すべり方向のみを不確かさとしてパラメータスタディを実施(最大2ケース) | | | | | | | | | | |
補足説明資料 4. 津波波源モデルの設定方法 4.2 概略パラメータスタディの波源モデル

第423回審查会合 資料2-1 P39 再揭 63

※1 概略パラメータスタディのケース数は12ケースである。

・阿部(1989)の予測式により津波の予測高が最高となるF-Ⅲ~F-Ⅴ断層を対象とする。
 ・上記断層について、土木学会に基づき不確かさを考慮した概略・詳細パラメータスタディを実施する。
 ・概略パラメータスタディにおいては、不確かさとして考慮するパラメータを傾斜角及びすべり角とする。<sup>※1</sup>
 ・詳細パラメータスタディは、概略パラメータスタディの評価水位最高ケース及び最低ケースを基準として実施する。

・なお,パラメータスタディにおいては,津波高の大局的な傾向を把握できると考えられる施設護岸または防波壁位置,及び2号炉取水口位置の評価水位により,パラメータスタディの評価水位最高ケース及び 評価水位最低ケースを選定する。

「老向 θ នណ៍ ស すべり量 D 土木学会に示される45°~90°を 傾斜方向 傾斜角 変動範囲とし、15°毎に設定値と 45° , 60° , 75° , 90° . <り角 λ 断層幅 W する。 断層面 ーバードCMT発震機構解及び文 ・F-亚断層:115°,120°,125°, 145°,150°,180° ・F-Ⅳ~F-Ⅴ断層:180° 凡例 献により主応力軸のバラつき すべり角 海域活断層 (90°, 105°, 120°)を考慮して \$ 傾斜角と走向に基づき設定する。 F−Ⅲ~F−Ⅴ断層 断層上縁 土木学会に示される変動範囲0~ 0km 深さ 5kmより設定する。 5 3 海域の追加調査結果より設定す 傾斜方向 南傾斜 島根原子力発電所 る。 5 50km 0

| 補足説
4. | 調資料 4.
2 詳細/ | 津波波源モデルの設定方法
ペラメータスタディの波源モデル | 第423回審查会合 資料2-1 P41 再揭 64 |
|--------------------------|---|--|--|
| - 概略
スタ
- 詳解
断層 | 各パラメータス
ディを実施し
ヨパラメータス
脅上縁深さと <sup>-</sup> | スタディの評価水位最高ケース及び評価水
た。
スタディにおいては, 不確かさとして考慮す
する。 <sup>※</sup> | は位最低ケースについて詳細パラメータ
るパラメータを傾斜角, すべり角及び |
| | | ※ 詳 | 細パラメータスタディのケース数は72ケースである。 |
| | パラメータ | 設定方法 | 設定値 |
| | 傾斜角 | ・概略パラメータスタディの変動範囲を補
間するように設定する。 ・基準,±7.5°,±15°(上昇側の基準
は75°,下降側の基準は90°) | (上昇側)
60°, 67.5°, 75°, 82.5°, 90°
(下降側)
75°, 82.5°, 90° |
| | すべり角 | ・概略パラメータスタディの変動範囲を補
間する主応力軸のバラつきを考慮して、
傾斜角と走向に基づきすべり角を設定
する。 ・基準,±5°,±10°(上昇側・下降
側の基準は主応力軸120°) | (上昇側・下降側)
・F-Ⅲ断層:115°,120°,125°,130°,
135°,140°
・F-Ⅳ~F-Ⅴ断層:180° |
| | 断層上縁
深さ | ・土木学会に示される変動範囲0~5km,及び
敷地周辺で発生した地震の鉛直分布等か
ら推定される断層上縁深さ2kmに基づき設
定する。 | (上昇側•下降側)
0km, 2km, 5km |
| | | | |

| 補足説明資
4.3 | 料 4. 津波波源モデルの設定方法
=-Ⅲ~F-Ⅴ断層のパラメータ
P67 1 | [会合資料 1
加筆・修正 | -3 71 |
|---|--|------------------------------------|-------------------------------|
| ■ <u>地</u>) | <u> 豪発生層深さ・断層上縁深さ</u> | | |
| 【地震発生】
・敷地及び
【断層上縁
・土木学会
深さ2kml | 層深さ】
数地周辺における地下構造調査等及び既往研究成果を踏まえて15kmと設定する。
深さ】
こ示される変動範囲0~5km,及び敷地及び敷地周辺における地下構造調査等から推
基づき,断層上縁深さの変動範囲を0km,2km及び5kmと設定した。 | 定される断 | 層上縁 |
| 百日 | 给計広交 | 上限资本 | て限変さ |
| セックロック 10 10 10 10 10 10 10 10 10 10 10 10 10 | 地震調査研究推進本部(2017)(30)による地震発生層の設定値 | 上限床C
2km | 15km |
| | 原子力安全基盤機構(2004) <sup>(31)</sup> による中国地方のD10, D90 | 6.4km | 13.1km |
| 震源鉛直分布 | 気象庁一元化データによる敷地周辺(100km以内)のD10, D90 | 約5km | 約13km |
| | | | |
| | 片尾・吉井(2002)(32)による2000年鳥取県西部地震(余震)の震源鉛直分布 | 約3km | 約12km |
| 地下構造調査 | 片尾・吉井(2002) <sup>(32)</sup> による2000年鳥取県西部地震(余震)の震源鉛直分布
敷地及び敷地周辺における微動アレイ探査結果 | 約3km
約2km | 約12km
一 |
| 地下構造調査 | 片尾・吉井(2002) <sup>(32)</sup> による2000年鳥取県西部地震(余震)の震源鉛直分布
敷地及び敷地周辺における微動アレイ探査結果
岩田・関口(2002) <sup>(33)</sup> による2000年鳥取県西部地震の波形インパージョン解析で用いられた速度構造 | 約3km
約2km
2km | 約12km
—
— |
| 地下構造調査
その他の
研究成果 | 片尾・吉井(2002) <sup>(32)</sup> による2000年鳥取県西部地震(余震)の震源鉛直分布
敷地及び敷地周辺における微動アレイ探査結果
岩田・関口(2002) <sup>(33)</sup> による2000年鳥取県西部地震の波形インパージョン解析で用いられた速度構造
Shibutani et al.(2005) <sup>(34)</sup> による2000年鳥取県西部地震のトモグラフィー解析 | 約3km
約2km
2km
約2~4km | 約12km
—
—
— |
| 地下構造調査
その他の
研究成果 | 片尾・吉井(2002) <sup>(32)</sup> による2000年鳥取県西部地震(余震)の震源鉛直分布
敷地及び敷地周辺における微動アレイ探査結果
岩田・関口(2002) <sup>(33)</sup> による2000年鳥取県西部地震の波形インパージョン解析で用いられた速度構造
Shibutani et al.(2005) <sup>(34)</sup> による2000年鳥取県西部地震のトモグラフィー解析
岩崎・佐藤(2009) <sup>(35)</sup> による鳥取県沖の地殻構造探査 | 約3km
約2km
2km
約2~4km
一 | 約12km
—
—
—
約12km |

| 【津波ハザード評価の考え方】 日本原子力学会(2012)では、地震と津波を同時に被る状態でのリスク評価については、地震と津波の相互作用によるリスク評価技術を段階的に開発していくとしており、現時点では地震そのものによる安全機能等への影響の考慮は適用範囲外としている。 ・一方で、基準津波の策定において、防波堤無しによる基準津波が選定されたことを踏まえ、防波堤の有無による影響を考慮した津波ハザード評価の影響検討を参考として実施する。 【重みの設定の考え方】 ・防波堤の有無に関する重みについては、土木学会(2016)に基づき、下記のとおり設定する。 1. 日本海東縁部に想定される地震 震源域は、島根原子力発電所から十分遠方に位置することから、当該地震域での地震活動に伴い防波堤が損傷することは極めて考えにくいことから、防波堤の有無に関する重みを「防波堤有り:防波堤有り:防波堤有り:防波堤の11と設定する。 2. 海域活断層から想定される地震 当該震源域での地震活動に伴い防波堤の損傷程度が判断できないことから、重み付けの判断が困難とし、防波堤の有無に関する重 みを「防波堤有り:防波堤の損傷程度が判断できないことから、重み付けの判断が困難とし、防波堤の有無に関する重 みを「防波堤有り:防波堤の損傷程度が判断できないことから、重み付けの判断が困難とし、防波堤の有無に関する重 みを「防波堤有り:防波堤有り:防波堤でする。 アンケートに基づかない場合の重みの配分例 アンケートに基づけは片方の重みが高いと考えられる場合 0.5:0.5 現時点の知見で重み付けの判断が困難な場合 0.3:0.7 関連情報に基づけば片方の重みが高いと考えられる場合 回該に見てばためです。 | 補足説明資料
7.1 防波 | 7.防波堤の影響
【堤の有無に | <sub>検討</sub>
関する津波ハザード評価の考え方 | 82 |
|--|---|---|--|----------------|
| 【重みの設定の考え方】
・防波堤の有無に関する重みについては、土木学会(2016)に基づき、下記のとおり設定する。
1. 日本海東縁部に想定される地震
震源域は、島根原子力発電所から十分遠方に位置することから、当該地震域での地震活動に伴い防波堤が損傷することは極めて考
えにくいことから、防波堤の有無に関する重みを「防波堤有り:防波堤無し=0.9:0.1」と設定する。
2. 海域活断層から想定される地震
当該震源域での地震活動に伴い防波堤の損傷程度が判断できないことから、重み付けの判断が困難とし、防波堤の有無に関する重
みを「防波堤有り:防波堤無し=0.5:0.5」と設定する。
アンケートに基づかない場合の重みの配分例
<u> アンケートに基づかない場合の重みの配分例</u>
<u> アンケートに基づかない場合の重みの配分例</u>
<u> ロ.5:0.5</u> 現時点の知見で重み付けの判断が困難な場合
<u> 0.3:0.7</u> 関連情報に基づけば片方の重みが高いと考えられる場合
」 | 【津波ハザード評(
・日本原子力学会
を段階的に開発
・一方で,基準津
ハザード評価の) | 西の考え方】
(2012)では、地震と注
していくとしており、現
皮の策定において、防
影響検討を参考として | ≢波を同時に被る状態でのリスク評価については, 地震と津波の相互作用によるリスク
時点では地震そのものによる安全機能等への影響の考慮は適用範囲外としている。
っ波堤無しによる基準津波が選定されたことを踏まえ, 防波堤の有無による影響を考慮
「実施する。 | '評価技術
した津波 |
| アンケートに基づかない場合の重みの配分例 重みの配分
(分岐が2つの場合) 前提条件 0.5:0.5 現時点の知見で重み付けの判断が困難な場合 0.3:0.7 関連情報に基づけば片方の重みが高いと考えられる場合 | 【重みの設定の考
・防波堤の有無に
1. 日本海東縁部
震源域は,島根
えにくいことから,
2. 海域活断層か
当該震源域での
みを「防波堤有り | え方】
関する重みについて
に想定される地震
原子力発電所から十
- 防波堤の有無に関
ら想定される地震
地震活動に伴い防波
- 防波堤無し=0.5:0 | は、土木学会(2016)に基づき、下記のとおり設定する。
分遠方に位置することから、当該地震域での地震活動に伴い防波堤が損傷することは
する重みを「防波堤有り:防波堤無し=0.9:0.1」と設定する。
2堤の損傷程度が判断できないことから、重み付けの判断が困難とし、防波堤の有無に
.5」と設定する。 | 極めて考
- 関する重 |
| 重みの配分
(分岐が2つの場合) 前提条件 0.5:0.5 現時点の知見で重み付けの判断が困難な場合 0.3:0.7 関連情報に基づけば片方の重みが高いと考えられる場合 | | | アンケートに基づかない場合の重みの配分例 | |
| 0.5:0.5 現時点の知見で重み付けの判断が困難な場合 0.3:0.7 関連情報に基づけば片方の重みが高いと考えられる場合 | (() | 重みの配分
岐が2つの場合) | 前提条件 | |
| 0.3:0.7 関連情報に基づけば片方の重みが高いと考えられる場合 | | 0.5:0.5 | 現時点の知見で重み付けの判断が困難な場合 | |
| 関連情報に基づけば分岐を設ける必要が無いと考えられるが、分岐として成立す | | 0.3:0.7 | 関連情報に基づけば片方の重みが高いと考えられる場合 | |
| 0.1:0.9 る可能性を考慮する場合 | | 0.1:0.9 | 関連情報に基づけば分岐を設ける必要が無いと考えられるが、 分岐として成立す
る可能性を考慮する場合 | |
| 土木学会(2016)より引用 | | | 土木学会(2016)より引用 | 1 |

| 参考文献 91 |) |
|---|---|
| 91 (1) (社) 日本原子力学会(2012):日本原子力学会標準原子力発電所に対する津波を起因とした確率論的リスク評価に関する実施
基準:2011 (2) (社) 土木学会 原子力土木委員会 津波評価部会(2011):確率論的津波ハザード解析の方法 (3) (社) 土木学会 原子力土木委員会 津波評価部会(2003):日本海東縁部の地震活動の長期評価について、
http://www.jishin.go.jp/main/chousa/03jun.nihonkai/idex.html (4) 地震調査研究推進本部地震調査委員会長期評価部会(2003):日本海東縁部の地震活動の長期評価について、
http://www.jishin.go.jp/main/chousa/03jun.nihonkai/idex.html (5) (社) 土木学会 原子力土木委員会津波評価部会(2003):日本海東縁部の地震活動の長期評価について、
http://www.jerkinkawajp/bousai/tsunami/index.html (5) (土) 土木学会気会規算価部会(2009): 註本準論的津波ハザード解析の方法(案) (6) 鳥取県2012):鳥取県津波浸水想定区域図」http://www.prefakitalg.jp/pages/archive/6779 (7) 秋田県(2012): 鳥取県津波浸水想定区域図」http://www.prefakitalg.jp/pages/archive/6779 (8) 石川県津波浸水想定区域マリブ、http://www.prefakitalg.jp/bousai/tsunami/index.html (9) 福井県における津波及に気想、マリブ、http://web.gis.pref.shimane.lg.jp/tsunami/ (10) 島根県2012): 島根県津波浸水想定区域マリブ、http://web.gis.pref.shimane.lg.jp/tsunami/ (11) 山県(2012): 第3回山ロ県地震: 津波防災対策検討委員会, |) |
| (22)小谷美佐・今村文彦・首藤伸夫(1998):GIS を利用した津波遡上計算と被害推定法, 海岸工学論文集, 第45巻, pp.356−360.
(23)Mansinha,L and Smylie,D.E.(1971):The displacement fields of inclined faults, Bull. Seism. Soc. Am., Vol.61, pp.1433-1440.
(24)(社)土木学会(1999):「水理公式集[平成11年版]」, 713p. | |

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

津波時の水密扉の期待有無について

本評価では、津波時にプラントに影響を及ぼすものとして抽出した構築物・機器への浸水経路となる可能性のあるタービン建物水密扉及び海水ポンプエリア水 密扉については、通常時閉運用としていることから、機能喪失浸水高未満の浸水 においては水密扉の浸水防止機能に期待しており、以下にその考え方を示す。

1. タービン建物水密扉

タービン建物水密扉の運用状況及び配置を表1,図1及び図2に示す。

タービン建物水密扉は通常時閉運用としており,運用状態の確認のため,以 下により「扉設置場所での"開"状態の認知性向上」及び「中央制御室での開 閉状態の監視」を実施する。

・警報ブザーを扉設置場所に設置する。

・中央制御室に警報ブザーを設置する。

以上より,通常時は確実に閉止される運用となっていることから,津波襲来 前にタービン建物の水密扉が開放されている可能性は十分低いと考えられる。

| 津波襲来時に水密扉が開放される場 | 合を考えると,敷地高さ EL8.5m 以上に遡 |
|--------------------------|-------------------------|
| 上する津波の襲来時に浸水経路となる | 可能性はあるが,表1に示すタービン建 |
| 物水密扉のうち, | については, EL20m 津波時の浸水高 |
| EL9.5mに対して扉下端高さは EL12.5m | であるため、津波高さ EL20m 以下の津波 |
| 襲来時には浸水経路にならない。また | を除く水密扉は, |
| 屋外 | 通行中の作業員がこれらの水密扉を開放 |
| してタービン建物内に避難することは | ないので、津波襲来時にこれらの水密扉 |
| が開放されることにより浸水経路とな | る可能性は十分小さいと考えられる。 |

以上の検討より,水密扉の閉失敗によるタービン建物内浸水はスクリーニン グアウトすることとした。なお,津波高さ EL20m 超過の津波襲来時は,波力を 伴う津波の遡上が大規模になり,建物外壁水密扉は機能喪失するものと扱った。

2. 海水ポンプエリア水密扉

海水ポンプエリア水密扉の配置を図3に示す。

海水ポンプエリア水密扉は通常時閉運用としており,運用状態の確認のため, 以下により「扉設置場所での"開"状態の認知性向上」及び「中央制御室での 開閉状態の監視」を実施する。

・警報ブザーを扉設置場所に設置する。

・中央制御室に警報ブザーを設置する。

海水ポンプエリアでは通常時における巡視点検のため,海水ポンプエリアの水 密扉が短時間開放されることはあるが,上記の運用により確実に閉止されるも のと考える。

> 本資料のうち, 枠囲みの内容は機密に係る事項のため公開できません。 補 足 1, 2, 2, d — 1 — 1

また、津波ハザードの寄与が大きいのは日本海東縁部からの津波であり、日 本海東縁部からの津波の場合、地震発生後、津波の発電所到達までに約110分 程度の時間を要する。このため、巡視点検時等での短時間の扉開放時に津波が 発生したとしても、確実に水密扉を閉止できると考えられる。さらに、異区分 の海水ポンプエリアは分離されているため、仮に当該区分の海水ポンプが機能 喪失した場合でも、健全側の海水ポンプの区分の緩和系により事象を収束する ことができる。

以上の検討より,水密扉の閉失敗による海水ポンプエリアへの浸水はスクリ ーニングアウトすることとした。なお,津波高さ EL20m 超過の津波襲来時は, 波力を伴う津波の遡上が大規模になり,海水ポンプエリア水密扉は機能喪失す るものと扱った。

| No. | タービン建物
水密扉 | 施錠
管理 | 出力運転中
開放実績 | 現地警報
ブザー | 中央制御室
遠隔監視 | 扉下端高さ |
|-----|---------------|----------|---------------|-------------|---------------|-----------------------|
| 1 | | | | 設置 | 設置 | EL8.9m |
| 2 | | | | 設置 | 設置 | EL9.2m |
| 3 | | | | 設置 | 設置 | EL9.1m |
| 4 | | | | 設置 | 設置 | EL12.5m
(タービン建物内※) |
| * | | | | | | |

表1 タービン建物水密扉運用状況

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.d-1-3

図1 タービン建物水密扉配置図(水密扉①~③)

図2 タービン建物水密扉配置図(水密扉④)

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

補足 1.2.2.d-1-4

図3 海水ポンプエリア水密扉配置図

EL20m を超過する津波に対する影響評価について

1. 概要

津波レベル1PRAでは, EL20m以下の津波では炉心損傷に至る事故シーケンスは抽出されず, EL20m 超過の津波襲来時に「直接炉心損傷に至る事象」のみが抽出され,その炉心損傷頻度を1.2×10<sup>-7</sup>/炉年と評価しているが,ここでは, EL20m を超過する津波により発生する起因事象とその想定津波高さを概略評価した。

2. 評価内容

津波レベル1PRAにおいて抽出した起因事象(補機冷却系喪失,外部電源 喪失及び直接炉心損傷に至る事象)をもたらす構築物・機器等(図1参照)を 評価対象とし,図2及び図3のとおり起因事象の発生要因を分析した。また, 図1に示す構築物・機器等の津波に対する耐性(機能喪失浸水高さ)を整理し, それらの機能喪失浸水高さと,機能喪失浸水高さを発生させる想定津波高さ(以 下「機能喪失想定津波高さ」という。)を算定し,EL20mを超過する津波に対す る影響評価を行った。

評価に当たっては、基準津波(施設護岸における津波高さ:EL11.8m)に対し て敷地内に津波を流入させない設計とすること、及び EL20m 津波の敷地内浸水 解析結果、管路計算結果(除じん機エリアの浸水高さ:EL12.1m)を用いて、EL20m を超過する想定津波高さと敷地内浸水高さの関係を、線形計算により外挿して 算出した。また、タービン建物水密扉の損傷により発生するタービン建物への 浸水については、敷地への浸水経路のうち、タービン建物の海側前面にある以 下の浸水経路からの浸水が全てタービン建物に流入すると仮定した。

- ・防波壁(越波)及び防波壁通路防波扉
- ・2号炉取水槽及び2号炉放水槽

防波壁通路防波扉を開条件とした EL20m 津波による敷地内浸水解析結果を表 1及び図4に示す。また,想定津波高さと浸水高さの関係を図5に示す。敷地 内浸水解析では,1~3号炉取水路・放水路の構造を模擬しており,経路毎の 入力条件となる津波の時刻歴波形に対する応答を考慮した解析を実施している。 防波扉は常時閉運用とするが,使用済燃料の搬出等のため開にする場合がある。 開にしている頻度は小さく,また,津波発生時には津波襲来前に防波扉を閉止 できると考えられるためその影響は軽微であると考えられるものの,開状態を 仮定して評価を実施した。本想定により,敷地内浸水量を保守的に見積もるこ ととなるが,表1より,防波壁通路防波扉からの浸水量は,EL20m 津波における 敷地内浸水量の1割程度であり,防波壁通路防波扉の開閉が敷地内浸水量に大 きな影響を及ぼすものではないことがわかる。

> 補足 1. 2. 2. d-2-1 **1198**

図1 起因事象をもたらす構築物・機器等とプラント概要図

図2 EL20m を超過する津波による起因事象の発生要因

法面

図3 津波流入経路のイメージ図

補足 1. 2. 2. d-2-3 **1200**

| | 浸水経路 | EL20m 津波による
敷地内浸水量(m <sup>3</sup>) | EL20m 津波による
敷地内浸水高さ
(敷地内浸水深) |
|----------------|-------------|--|------------------------------------|
| 1 | 防波壁(越波) | 約 2,000 | |
| 2 | 1号炉取水槽 | 約 200 | |
| 3 | 2号炉取水槽 | 約 2,800 | |
| 4 | 3号炉取水槽 | 約 1,100 | |
| 5 | 1号炉放水槽 | 約 100 | |
| 6 | 2号炉放水槽 | 約 1,900 | ・海水ホンフエリア付近: |
| $\overline{7}$ | 3号炉放水槽 | 約 4,800 | $(0.5 \text{m} \sim 1.0 \text{m})$ |
| 8 | 1号炉放水接合槽 | 約 500 | ・タービン建物付近: |
| 9 | 2号炉放水接合槽 | 約 3,200 | EL9. 0m~EL9. 5m |
| 10 | 3号炉放水接合槽 | 約 5,400 | $(0.5 \text{m} \sim 1.0 \text{m})$ |
| (11) | 防波壁通路防波扉 | 約 2,000 | |
| 合計(| ①~⑪の合計) | 約 24,000 | |
| 敷地内 | 浸水量のうちタービン建 | | |
| 物に考 | 慮する浸水 | 約 8,700 | |
| (1)+ | (3+(6+(1))) | | |

表1 防波壁通路防波扉を開条件とした EL20m 津波による敷地内浸水解析結果

※ 浸水解析は①~⑪の浸水経路全てを考慮したものであり、排水路等から敷地外への流出は考慮していない。津波の回り込みについて、3号炉南側では浸水水位が低く、2号炉側への回り込みはなく、また1号炉側は2号炉側に比べ浸水量は少なく、浸水水位も低いため、2号炉側への回り込みはないため、タービン建物を介した原子炉建物への浸水を評価するためのタービン建物への浸水量は、タービン建物の海側前面における浸水量に主に寄与する浸水経路となる①、③、⑥、⑪からの浸水が全て流入すると仮定した。

図4 EL20m 津波による敷地内浸水深分布

・基準津波(EL11.8m)における浸水深(0m)と, EL20m 津波に対する浸水解析により評価した浸水深(1m) から,想定津波高さとEL8.5m 盤における浸水深の関係を,線形計算により外挿して評価した。EL8.5m 盤の浸水高さは,この浸水深に敷地高さ8.5m を加算して算出している。

【除じん機エリアの浸水高さ】

・基準津波(EL11.8m)における除じん機エリアの浸水高さ(EL10.5m)と, EL20m 津波に対する管路計算により評価した除じん機エリアの浸水高さ(EL12.1m)から,想定津波高さと除じん機エリア浸水高さの関係を,線形計算により外挿して評価した。

図5 想定津波高さと浸水高さの関係

- 3. 起因事象をもたらす設備の津波に対する耐性及び機能喪失想定津波高さ
 - (1) 補機冷却系喪失をもたらす設備の機能喪失想定津波高さ

海水ポンプエリアへの浸水が発生し,原子炉補機海水ポンプが機能喪失し た場合,補機冷却系喪失が発生する。

図6に示すとおり,津波が除じん機エリア防水壁を越流し海水ポンプエリ アに流入する場合,又は防波壁を越波する津波等が海水ポンプエリア防水壁 等を損傷させ海水ポンプエリアに流入する場合に,原子炉補機海水ポンプが 機能喪失する可能性がある。

補機冷却系喪失をもたらす設備の機能喪失想定津波高さの評価結果を表2 及び図5に示す。

| 補機冷却系喪失
をもたらす設備 | 機能喪失
要因 | 機能喪失
浸水高さ | 機能喪失
想定津波
高さ | 評価結果 <sup>※2</sup> |
|--------------------|--|-----------------------|--------------------|--------------------|
| 原子炉補機 | ①除じん機エリア 防水壁の越流 | EL12.3m | EL21.Om | EL 91 Om |
| 海水ポンプ | ②海水ポンプエリア防水壁等の損傷 | EL9. 6m <sup>%1</sup> | EL21.2m | |

表2 補機冷却系喪失をもたらす設備の機能喪失想定津波高さ

※1 EL8.5m 盤にある海水ポンプエリア防水壁等の機能喪失高さは EL10.8m(機能喪失浸水深:約2.3m)であるが,防波壁を越波する津波の波力等を考慮し,機能喪失浸水深の 1/2(機能喪失浸水高:EL9.6m)で機能喪失するとした。

※2 ①, ②の機能喪失想定津波高さのうち小さい方の値

図6 原子炉補機海水ポンプの機能喪失要因

補足 1. 2. 2. d-2-6 **1203**

(2) 外部電源喪失をもたらす設備の機能喪失想定津波高さ

外部電源は起動変圧器側,予備変圧器側それぞれから受電が可能であるため, EL8.5m 盤(敷地高さ8.5mのエリア,図1参照)に設置された起動変圧器 及び EL15.0m 盤(敷地高さ15.0mのエリア,図1参照)に設置された予備変 圧器がともに機能喪失した場合,外部電源喪失が発生する。

したがって, EL8. 5m 盤に設置された起動変圧器のみが機能喪失した場合は, EL15. 0m 盤に設置された予備変圧器から外部電源が受電可能なため, 外部電源 喪失には至らず,防波壁を越波する津波等により起動変圧器前防水壁が損傷 して起動変圧器エリアが浸水し,起動変圧器が機能喪失することに加え,敷 地浸水高さが EL15. 0m に達することで予備変圧器が機能喪失する場合に発生 する。

外部電源喪失をもたらす設備の機能喪失想定津波高さの評価結果を表3に 示す。

| 外部電源喪失を
もたらす設備 | 機能喪失
要因 | 機能喪失
浸水高さ | 機能喪失
想定津波
高さ | 評価結果 <sup>※2</sup> |
|-------------------|---|-------------------------|--------------------|--------------------|
| 起動変圧器 | 記載変圧器前の 防水壁の損傷 | EL11. 7m <sup>**1</sup> | EL38.4m | EL65.1m |
| 予備変圧器 | ②EL15m 盤の浸水 | EL15.Om | EL65.1m | |

表3 外部電源喪失をもたらす設備の機能喪失想定津波高さ

※1 EL8.5m 盤にある起動変圧器前の防水壁の機能喪失高さは EL15.0m(機能喪失浸水深:約
 6.5m)であるが,防波壁を越波する津波の波力等を考慮し,機能喪失浸水深の 1/2(機能喪失浸水高:EL11.7m)で機能喪失するとした。

※2 ①, ②の機能喪失想定津波高さのうち大きい方の値

- (3) 直接炉心損傷に至る事象に係る建物への津波流入が発生する想定津波高さ 直接炉心損傷に至る事象は、タービン建物へ流入した津波が原子炉建物等 に浸水する場合、又は、敷地浸水高さが EL15.0m に達することにより EL15.0m 盤を介し、原子炉建物等へ津波が直接流入する場合に発生する可能性がある<sup>\*\*</sup>。 直接炉心損傷に至る事象が発生する想定津波高さの評価結果を表4及び図 5に示す。
 - ※原子炉建物内の止水処置が有効に機能すること等により、この場合でもなお機能維持した 緩和系により事象を緩和できる可能性があるが、本評価では原子炉建物への海水の流入に より炉心損傷直結に至ると仮定する。

| | 惑生亜田 | 事象発生 | 想定津波 | 河在社田※2 |
|--------|----------------|---------|-----------------|----------|
| | 光生安凶 | 浸水高さ | 高さ | 計៕和木 |
| | ①タービン建物を介し | | | |
| | た原子炉建物等への | EL11.7m | EL38. $4m^{*1}$ | |
| 直接炉心損傷 | 津波の流入 | | | EI 20 4m |
| に至る事象 | ②EL15.0m 盤を介した | | | EL38.411 |
| | 原子炉建物等への津 | EL15.Om | EL65.1m | |
| | 波の流入 | | | |

表4 直接炉心損傷に至る事象が発生する想定津波高さ

※1 想定津波高さ EL38.4m においてタービン建物水密扉を損傷させる敷地浸水高が生じ、ター ビン建物に津波が流入するとともに、想定される建物内浸水量は 28,275m<sup>3</sup>であり原子炉建 物への浸水が発生する(図7参照)。

※2 ①, ②の想定津波高さのうち小さい方の値

図7 建物内浸水経路概要図

4. 評価結果のまとめ

評価結果のまとめを表5に示す。また,EL20mを超過する津波による影響について,想定津波高さ別に検討した結果を以下に示す。

(1) 想定津波高さが EL21.0m を超える場合

津波が除じん機エリア防水壁を越流し海水ポンプエリアへ流入するため, 原子炉補機海水ポンプが機能喪失して補機冷却系喪失が発生し,崩壊熱除去 に失敗することで炉心損傷に至る可能性がある。

(2) 想定津波高さが EL38.4m を超える場合

タービン建物水密扉が損傷し、タービン建物内へ津波が流入するとともに、 その流入量はタービン建物の貯留可能容量を上回るため、タービン建物を介 して原子炉建物への浸水が生じる。原子炉建物への浸水が生じた場合は、緩 和設備が広範に機能喪失することが考えられるため、直接炉心損傷に至る事 象が発生する可能性がある。

なお,外部電源については,起動変圧器からの受電経路は同じ津波高さで 機能を喪失するものの,EL15m 盤に設置された予備変圧器からの受電が可能な 津波高さまでは,外部電源系の全喪失には至らない。

5. まとめ

今回の津波レベル1PRAでは,20m 超過の津波襲来時に直接炉心損傷に至る 事象のみを抽出していたが、本評価結果から、EL20m をわずかに超える津波水位 で炉心損傷に至ること、また、直接炉心損傷に至る事象が発生するまでには裕 度があることが確認できた。

津波高さが高くなるにつれ,襲来した津波高さに応じて段階的に緩和系機器 が機能喪失することになると考えられるが,その場合は,機能を維持した設計 基準事故対処設備,可搬型の機器を含めた重大事故等対処設備等を活用した炉 心損傷の防止など,事象の緩和を試みるものと考える。

| | 起因事象の分析 | 想定律波 | 最大浸水高 | 機能喪失
這水高 | 建物内 | 原子炉建物への浸水有無(メードン) 律物の時辺可能 | 重要 |
|------------------|--|----------------------|---------|--------------------------------|---|---|---|
| 起因事象 | 起因事象の発生要因 | 同こ
(EL.m) | (EL. m) | (EL. m) | (文小里
(m <sup>3</sup>) | バー しく 建物で Mill 聞 Pill HE
容積:27, 390m <sup>3</sup>) | 開合 |
| 가 구나 나나 YA 1974년 | 除じん機エリア防水壁の越流
(海水ポンプエリアへの浸水, 原子炉補機
海水ポンプの機能喪失) | 21.0** | 12. 3*2 | 12.3 | | | 海水ボンブエリアへの海水の浸水により,原子炉補機海水ボンブが
機能喪失し,補機冷却系喪失が発生する可能性がある。 |
| 捕陵行却杀贱大 | 海水ボンブエリア防水壁等の損傷
(海水ポンプエリアへの浸水, 原子炉補機
海水ポンプの機能喪失) | 21.2 <sup>%1</sup> | 9.6 | 10.8
(9.6^{*5}) | (ターパン罐 ひんそう (ターパン (ターパン) ひん (ひん) (シン) (シーパン) (シー) (シー) (シー) (シー) (シー) (シー) (シー) (シー | 物内には浸水による影響を受重要な機器がなく、タービン建
正より補機冷却系喪失及び外
に影響をもたらす設備の機能
ため、記載していない。) | なお, 非吊用車原については、8: am 蹠に燃料粉芯ルノノか底直されており, 敷地内浸水高 El 10. 8mで損傷する可能性があるが, 緩和系の機能喪失であり, 起因事象の発生につながるものではない。 |
| 外部電源喪失 | 起動変圧器前防水壁の損傷
(起動変圧器エリアへの浸水, 起動変圧器
の機能喪失) | 38. 4**3 | 11.7 | 15.0 (11. 7^{**5}) | 6 | | 変圧器前防水壁の損傷により起動変圧器の機能喪失が発生するが,
予備変圧器が健全であるため,外部電源喪失は発生しない。 |
| | EL15m 盤への津波の遡上による
予備変圧器の機能喪失 | 65. 1 <sup>**®</sup> | 15.0 | 15.0 | | | 起動変圧器の機能喪失に加え, ELI5m 盤への浸水により予備変圧器
が機能喪失することで,外部電源喪失が発生する可能性がある。 |
| | タービン建物水密扉の損傷
(タービン建物を介した原子炉建物等への
津波の流入) | 38.4 <sup>%4</sup> | 11.7 | 15.0
(11.7 <sup>**5</sup>) | 28, 275 | 有 | タービン種物水密扉の損傷によりタービン種物へ津波が流入すると
ともに、タービン種物の貯留可能容量以上の津波が流入し、原子炉
種物への津波の流入が生じる。
原子炉建物への浸水が生じた場合は、緩和設備が広範に機能喪失す
ることが考えられるため、直接炉心損傷に至る事象が発生する可能
性がある。 |
| 直接炉心損傷に至る事象 | BL15m 盤への津波の遡上による
原子炉建物等への浸水 | 65. 1 <sup>%4</sup> | 15.0 | 15.0 | I | 中 | EL15m 盤を介して原子炉建物へ津波が流入し,緩和設備が広範に機
能喪失するため, 直接炉心損傷に至る事象が発生する可能性がある。 |

HI30m を招過する津波により発生する起因事象とその想定津波高さ ר. ₩

※1:補機冷却系喪失が発生する想定律波高さはEL21.0mとなる(発生要因に対する想定律波高さが小さい方の値)。 ※2:除じん機エリアの浸水高さ。 ※3:外部電源喪失が発生する想定律波高さは,起動変圧器の機能喪失に加え予備変圧器が機能喪失する想定律波高さ EL65.1m となる。 ※4:直接炉心損傷に至る事象が発生する想定律波高さはEL38.4mとなる(発生要因に対する想定津波高さが小さい方の値)。 ※5:EL8.5m盤にある海水ボンプエリア防水壁等の機能喪失高は EL10.8m(機能喪失浸水深:2.3m),起動変圧器前防水壁及びタービン建物水密扉の機能喪失浸水高は EL15.0m(機能 喪失浸水深:6. 5m)であるが防波壁を越波する津波の波力等を考慮し,機能喪失浸水深の 1/2 で機能喪失するとした。