島根原子力多	発電所2号炉 審査資料
資料番号	EP-050改46(比)
提出年月日	令和2年5月28日

島根原子力発電所2号炉

地震による損傷の防止

比較表

令和2年5月 中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

まとめ資料比較表 〔4条 地震による損傷の防止 別紙-11 液状化影響の検討方針について〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
別紙-11 液状化影響の検討方針について	別紙- 17 液状化影響の検討方針について	別紙-11 液状化影響の検討方針について	
これまでの経緯及び本検討の位置つけ			・資料構成の相違
「相崎刈羽原子刀発電所6号及び7号炉原子炉建屋等の基礎地			【相喻6/7】
盤及び周辺斜面の安定性について」において、取水路等を支持す			柏崎6/7は他資料にお
る古安田層*に対する支持性能の補足として,以下のように説明を			ける液状化の記載内容
している。			について説明している
 ・支持地盤(古安田層)は、シルト主体の地層であり、液状化が 			
<u>懸念される地盤ではないと判断できる。</u>			
・道路橋示方書・同解説(H14)や建築基礎構造設計指針(2001)			
では、地表面から20m以浅の沖積層を液状化判定が必要な土層と			
しており、古安田層の一部に分布する砂層は、中期更新世の地			
層かつ深度20m 以深の非常に密な地盤であることから, その対			
象とはならない。			
・ただし、この古安田層の砂層については、詳細設計段階におい			
て基準地震動Ss に対する液状化に関する詳細な検討を行う。			
本検討は、耐震設計・耐津波設計基本方針における液状化の構			
造物への影響評価の考え方についてとりまとめたものである。ま			
た、構造物影響評価の考え方を説明する上で、詳細設計段階にお			
ける評価の前提となる液状化試験結果について併せて説明する。			
なお、液状化に対する構造物への影響評価の見通しについても説			
明する。			
 ※ 安田層下部層のMIS10~MIS7 とMIS6 の境界付近の堆積物につ 			
いては、本資料では『古安田層』と仮称する。			
※ 本資料では,道路橋示方書・同解説 (V耐震設計編) ((社)			
日本道路協会, H24.3)(以下「道路橋示方書」という)で用い			
られている『洪積層』という用語を使用する。なお、道路橋示			
<u>方書では,洪積層について「第四紀のうち古い地質時代(更新</u>			
世)における堆積物による土層に概ね対応すると考えてよい」			
とされている。			

<u>実線・・設備運用又は体制等の相違(設計方針の相違)</u>

波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
且次	且此次		
1. 液状化評価の基本方針3	1. 液状化影響評価の基本方針1	1. 液状化評価の基本方針	
	1.1.設置許可基準規則第三条第1項,第2項及び第三十八条第		
	1項, 第2 項に対する条文適合方針1		
	12.液状化影響評価の基本方針1		
2. 液状化評価対象層の抽出	2. 液状化 <u>検討</u> 対象層の抽出 <u>3</u>	2. 液状化評価対象層の抽出	
	2.1 敷地の地質概況		
	2.2.旧表土の分布6		
	23 盛土の分布		
	2. 4. 液状化檢討対象層 6		
	<u>3. 液状化検討対象施設の抽出</u>		・資料構成の相違
	3.1 液状化検討対象施設の抽出及び解析手法選定の観点.7		【女川2】
3. 液状化試験位置とその代表性		3. 液状化 <u>強度特性の網羅性</u> , 代表性	島根2号炉では4.2章
	4液状化強度試験 試料採取位置選定とその代表性	3.1.液状化試験試料採取位置とその代表性	で液状化検討対象施設
<u>3.11</u> 液状化試験位置の選定 <u>19</u>	<u>4.1.1.</u> 液状化 <u>強度</u> 試験 試料採取位置の選定 <u></u>	<u>3.1.1</u> 液状化試験試料採取位置の選定	の選定について説明し
<u>3.2</u> 液状化試験 <u>選定個所</u> の代表性確認 <u>・・・25</u>	<u>42</u> 液状化 <u>強度</u> 試験 試料採取位置の代表性確認 <u>40</u>	3.1.2.液状化試験試料採取位置の代表性確認	ている
3.3 追加調査位置 ・・・ 50			・資料構成の相違
			【柏崎6/7】
4液状化試験結果	5液状化強度試験結果と液状化強度特性の設定	<u>3.2</u> 液状化試験結果	柏崎6/7では追加調査
<u>41</u> 液状化試験方法54	<u>51</u> 液状化 <u>強度</u> 試験方法51	3.2.1 液状化試験方法	について説明している
<u>4.2</u> 液状化試験結果の分類に対する基本的考え方 <u>58</u>	5.2.液状化強度試験結果の分類に対する基本的考え方52	3.2.2 液状化試験結果の分類に対する基本的考え方	
4.3 試験結果の分類63	<u>5.3.液状化強度</u> 試験結果	3.2.3 試験結果の分類	
<u>5. 基準地震動Ss に対する液状化判定(FL 法) ・・・ 83</u>			・資料構成の相違
			【柏崎6/7】
<u>6.</u> 基準地震動Ss に対する液状化試験の妥当性確認	5. 4 基準地震動Ss に対する液状化強度試験の妥当性確認 69	3.3.基準地震動Ssに対する液状化試験の妥当性確認	柏崎6/7では「液状化」
			を示す土層について説
			明している
		3.4 簡易設定法	・資料構成の相違
			【柏崎6/7,女川2】
<u>.7</u> 液状化強度特性の設定 <u>104</u>	<u>55</u> 液状化強度特性の設定 <u></u>	3.5 液状化強度特性の設定方針	島根2号炉では有効
			応力解析のパラメータ
8液状化影響の検討方針113	<u>6</u> . 液状化影響の <u>検討</u> 方針 <u></u>	4. 液状化影響の評価方針	設定に使用する簡易設
	<u>6.1.1</u> 液状化影響の検討方針 <u></u>	4.1.液状化影響の検討方針	定法について説明して
		4.2 液状化検討対象施設の選定	いる

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	6. 2 解析コード「FLIP」の構成則と特徴 87		・資料構成の相違
	6.3 有効応力解析に用いる地下水位設定について 89		【女川2】
			女川2では解析コー
			ド及地下水位設定につ
			いて説明している
			・資料構成の相違
9. 設置許可段階における構造物評価の見通し			【柏崎6/7】
9.1 代表構造物の抽出 ・・・115			柏崎6/7では構造物評
<u>9.2</u> 取水路 ・・・117			価の見通しについて説
9.3 常設代替交流電源設備基礎 · · · 149			明している
<u>1.0</u> 参考文献 <u>・・・171</u>		5 参考文献	
11. 参考資料	(参考資料)		・資料構成の相違
11.1 評価対象構造物の断面図 ・・・172	1. 盛土・旧表土のボーリング柱状図・コア写真及び液状化強度		【柏崎6/7,女川2】
11.2 荒浜側の古安田層中の砂層に関する補足 ・・・181	試験結果データ集		柏崎6/7, 女川2では
11.3 液状化に関連する基本物性に関する補足 ・・・191	2. 盛土の均一性について		参考資料を添付してい
11.4 液状化関連の文献整理 ・・・198	3. 液状化に関連する基本物性の補足		る (敷地の地質の補足デ
11.5 新潟県中越沖地震時の地盤変状 ・・・217	4.N値とFcの関係について		ータであるため, 記載を
	<u>5. 盛土のN 値について</u>		省略)
	6. 2011 年東北地方太平洋沖地震における沈下実績について		
	7. 盛土の追加液状化強度試験について		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
1. 液状化評価の基本方針	1. 液状化影響評価の基本方針	1. 液状化評価の基本方針	
	1.1 設置許可基準規則第三条第1 項, 第2 項及び第三十八条第1		・資料構成の相違
	項, 第2 項に対する条文適合方針		【女川2】
	女川原子力発電所における耐震重要施設及び常設重大事故等対		女川2では条文適合
	処施設は、直接又は杭を介して十分な支持性能を有する岩盤又は		方針及び基本方針につ
	改良地盤で支持する		いて説明している
	(第三条及び第三十八条第1 項適合)。		
	耐震重要施設及び常設重大事故等対処施設のうち杭基礎構造物		
	においては、液状化影響を考慮した場合においても、支持機能及		
	び杭本体の構造が成立するよう設計する。また、耐震重要施設及		
	び常設重大事故等対処施設においては、液状化、揺すり込み沈下		
	等の周辺地盤の変状を考慮した場合においても、当該施設の機能		
	が損なわれるおそれがないように設計する(第三条及び第三十八		
	条第1 項及び第2 項適合)。		
	1.2 液状化影響評価の基本方針		
	本資料では, 1.1 に示す条文適合方針に基づき, 耐震設計にお	本資料では,耐震設計における液状化影響の検討方針を示す。	
	ける液状化影響の検討方針を示す。		
	耐震重要施設及び常設重大事故等対処施設においては,液状化,	設計基準対象施設(建物,構築物,屋外重要土木構造物及び津	・記載の相違
	揺すり込み沈下等の周辺地盤の変状を考慮した場合においても,	波防護施設)及び重大事故等対処施設においては,液状化,揺す	【柏崎6/7】
	当該施設の安全機能が損なわれるおそれがないように設計する。	り込み沈下等の周辺地盤の変状の影響を考慮した場合において	島根2号炉, 女川2号
	耐震重要施設及び常設重大事故等対処施設の設計においては、地	<u>も、当該施設の安全機能が損なわれるおそれがないように設計す</u>	炉では,基本設計方針を
	下水位低下設備の効果が及ぶ範囲においてはその機能を考慮した	<u>る。液状化の影響検討における地下水位について、設計基準対象</u>	記載している。
	設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設	施設(屋外重要土木構造物及び津波防護施設)及び重大事故等対	
	備の効果が及ばない範囲においては、自然水位より保守的に設定	処施設においては、自然水位より保守的に設定した水位にて設計	
	した水位又は地表面にて設計用地下水位を設定する。なお、各施	用地下水位を設定する。設計基準対象施設(建物、構築物)であ	
	設の設計用地下水位は工認段階において設定するものとする。	る原子炉建物等においては、地下水位低下設備の効果に期待して	
		設計地下水位を設定する。なお、各施設の設計用地下水位は詳細	
		設計段階において設定するものとする。	
		設計基準対象施設及び重大事故等対処施設においては、設置状	
		況を考慮し、液状化の影響を検討する必要がある液状化検討対象	
		候補施設を抽出する。液状化検討対象施設に当たっては、施設が	
		岩盤中に設置されているか、施設周辺の地下水位が十分に低いか	
		の観点から選定する。	・液状化評価方法の相違
<u>第11-1-1</u> 図に液状化評価の流れ, <u>第11-1-1</u> 素に液状化評価の	女川原子力発電所における液状化影響評価のフローを第1.2-1	<u>第1-1</u> 図に液状化評価の流れ, <u>第1-1表</u> に液状化評価の基本方針	【柏崎6/7, 女川2】
基本方針を示す。	図に示す。	を示す。	島根2号炉では,粒径
液状化評価については道路橋示方書を基本として,道路橋示方	・液状化評価については,道路橋示方書 <u>の液状化評価方法</u> を基	液状化評価については道路橋示方書・同解説(V耐震設計編)	に着目し液状化評価を
<u>書において</u> 液状化評価の対象外となっている <u>洪積層についても</u> 液	本と <u>するが</u> , 液状化評価の対象外と <u>されるG.L20m 以深の</u>	((社)日本道路協会,H24.3)(以下,「道路橋示方書」という)	実施する

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
状化試験を実施し、液状化の有無を確認することで保守的な評価	<u>土層等についても</u> 液状化強度試験を実施し,保守的 <u>に盛土及</u>	を基本と <u>するが</u> ,液状化評価の対象外となっている <u>50%粒径が10mm</u>	
を実施 <u>する。</u>	び旧表土を液状化検討対象層とする(2.液状化検討対象層	を超過する,または、10mm以下であっても10%粒径が1mmを超過す	
	の抽出)。	<u>る土層については、粒径2mm未満の砂を含む場合は念のため</u> 液状化	
	・屋外の耐震重要施設(建物・構築物,屋外重要土木構造物,	試験を実施し、液状化の有無を確認することで保守的な評価を実	
	津波防護施設等),常設重大事故等対処施設,可搬型重大事故	施し <u></u> <u></u> <u>粒径2mm未満の砂を含まない場合は土質性状等を踏まえて液</u>	
	等対処設備保管場所及びアクセスルートを対象に,液状化検	<u>状化の有無を確認する。</u>	
	討対象施設の抽出及び解析手法選定の方針を示す(3. 液状	また、島根原子力発電所の津波防護施設や護岸等は、港湾の施	
	化検討対象施設の抽出)。	設の技術上の基準・同解説((社)日本港湾協会,H19年版)(以下,	
	 ・液状化検討対象層として抽出した盛土及び旧表土の液状化強 	「港湾基準」という)に基づき設計されていることを踏まえ、港	
	度試験の試料採取位置について,敷地全体に分布する盛土及	湾基準に基づいた液状化評価も行うが、土の粒径加積曲線が「液	
	び旧表土の基本物性値と比較し、その代表性を確認する(4.	<u>状化の可能性あり」の範囲内に含まれない土層については、粒径</u>	
	液状化強度試験試料採取位置選定とその代表性)。	2mm未満の砂を含む場合は念のため液状化試験を実施し,液状化の	
		有無を確認することで保守的な評価を実施し,粒径2mm未満の砂を	
		含まない場合は土質性状等を踏まえて液状化の有無を確認する。	
		なお、島根原子力発電所の設計基準対象施設及び重大事故等対処	
		施設に該当する建物,構築物,屋外重要土木構造物及び津波防護施	
		設は、堅固な地盤上に設置されており、液状化の影響検討を行う	
		地盤は構造物の「周辺地盤」である。	
液状化試験に基づいて、地震時の地盤の状態を『液状化』。『サ	 ・液状化強度試験結果に基づいて、地震時の地盤の状態を「液 	液状化試験に基づいて,地震時の地盤の状態を『液状化』また	
イクリックモビリティ』及び『非液状化』と判定する。	<u>状化」,「繰返し軟化」及び「非液状化」と分類し,液状化検</u>	は『繰返し軟化(サイクリックモビリティ含む)』,若しくは『非	
	<u>討対象層が「液状化」とならないこと(支持力を喪失しない,</u>	液状化』と判定する。	
<u>それぞれの試験結果に基づいて液状化強度特性を設定し、構造</u>	又は急激な流動変位が発生しない地盤であること)を把握す	液状化強度特性は、港湾基準に基づく詳細な計算例をまとめた	・液状化強度特性の設定
物への影響評価を実施する。なお、試験結果が非液状化となる土	る。また,累積損傷度理論を適用し,基準地震動Ss 相当の地	港湾構造物設計事例集(沿岸技術研究センター,H19年版)(以下,	方法の相違
層も、念のため液状化強度特性を設定して保守的な構造物評価を	盤の状態を模擬して液状化強度試験が実施できていることを	「設計事例集」という)に準拠し、有効応力解析(FLIP)の簡易	【柏崎6/7,女川2】
実施する。設定した液状化強度特性については、試験結果を基本	確認する(5.液状化強度試験結果と液状化強度特性の設定)。	パラメータ設定法(以下,「簡易設定法」という)により設定する。	島根2号炉では,液状
に設定するが、基本物性のばらつきも考慮して保守的な設定とす	 ・耐震設計において、地震時における地盤の有効応力の変化に 	なお、液状化試験結果が繰返し軟化(サイクリックモビリティ含	化特性を港湾構造物設
<u> 3.</u>	伴う影響を考慮する場合には,有効応力解析等を実施する。	む),若しくは非液状化となる土層も,念のため液状化強度特性を	計事例集に準拠し設定
液状化評価の対象となる施設は、屋外の設計基準対象施設(屋	有効応力解析に用いる液状化強度特性は,敷地の原地盤にお	設定して保守的な構造物評価を実施する。また, 簡易設定法より	する
外重要土木構造物、津波防護施設)及び重大事故等対処施設を対	ける代表性及び網羅性を踏まえた上で実施した液状化強度試	設定した液状化強度特性は、液状化試験結果による液状化強度特	
象に抽出した。第11-1-2 表に液状化評価の対象設備を示す。また,	験結果に基づき,保守性を考慮して設定する。なお,解析手	性よりも保守的であることを確認する。	
荒浜側には液状化評価の対象となる施設はないが、津波評価の前	法は液状化考慮と液状化非考慮で耐震安全性評価上どちらが	島根原子力発電所の設計基準対象施設及び重大事故等対処施設	
提となる液状化に伴う地盤の沈下等を評価するために、荒浜側に	保守的な評価になるかを確認した上で選定する(6. 液状化	に該当する建物、構築物、屋外重要土木構造物及び津波防護施設	
<u>分布する砂層については、荒浜側防潮堤の縦断方向の地質断面図</u>	影響の検討方針)。	は、堅固な地盤上に設置されていることから、設計地下水位以深	
を代表例として,液状化対象層の抽出を行った。		の周辺地盤において埋戻土(掘削ズリ)又は砂礫層が分布してい	
		る構造物の中から、工認段階において液状化影響評価対象施設を	
		選定する。	
なお、波及的影響評価において抽出される屋外下位クラス施設		なお、波及的影響評価において抽出される屋外下位クラス施設	
に対する基本方針は、波及的影響評価の中で整理を行う。		に対する基本方針は, 波及的影響評価の中で整理を行う。	

スクリーン室	鉄筋コンクリート構造	ī
取水路	鉄筋コンクリート構造	ī
補機冷却用海水取水路※1	鉄筋コンクリート構造	

			电关 小下 卢吕		百女田暦
	設計基	网络 重调 上 小練 生物	補機冷却用海水取水路 ^{※1}	鉄筋コンクリート構造	西山層
至	海水貯留堰 ^{率2}	鋼管矢板構造	古安田層, 西山層		
	象施設		軽油タンク基礎	鉄筋コンクリート + 杭基礎構造	西山層
	I.A.		燃料移送系配管ダクト	鉄筋コンクリート + 杭基礎構造	西山層
		津波防護施設	海水貯留堰 ^{率2}	鋼管矢板構造	古安田層,西山層
		· · · · · · · · · · · · · · · · · · ·	常設代替交流電源設備基礎	鉄筋コンクリート + 杭基礎構造	西山層
		里八争似寺对处雕议	格納容器圧力逃がし装置基礎	鉄筋コンクリート + 杭基礎構造	西山層
X	€1 : マ	ンメイドロックを介して西	山層に直接支持, ※2:海水貯留5	- 医は屋外重要土木構造物と津波防護施設の	兼用。海水貯留堰の周辺には
뷗	代化評価	「対象層は存在しないことカ	いら,液状化評価対象設備からは影	余外する。	
*)	化評価	両対象層は存在しないことが	いら、液状化評価対象設備からは評	余外する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
2. 液状化評価対象層の抽出	2. 液状化検討対象層の抽出	2. 液状化評価対象層の抽出	・敷地の地質の相違
	<u>2.1</u> 敷地の地質概況		【柏崎6/7,女川2】
<u>第11-2-1</u> 表に敷地の地質層序表を示す。敷地の地質は、 <u>下位か</u>	敷地の地質層序表を <u>第2.1-1</u> 表に示す。敷地の地質は, <u>中生界</u>	第2-1表に敷地の地質層序表を示す。敷地の地質は、新第三紀中	島根2号炉の地質に
ら新第三系の寺泊層及び椎谷層,新第三系鮮新統~第四系下部更	ジュラ系と、これを覆う第四系等によって構成されており、敷地	新世の堆積岩類からなる成相寺層及び貫入岩類、並びにそれらを	ついて詳細に説明して
新統の西山層、下部更新統の灰爪層、それらを不整合で覆う中部	のジュラ系は、牡鹿層群月の浦累層及び荻の浜累層に区分される	覆う被覆層から構成される。成相寺層は海成層で、下位より下部	いる
更新統の古安田層、上部更新統の大湊砂層及び番神砂層、完新統	砂岩、頁岩及び砂岩頁岩互層の堆積岩類であり、敷地に広く分布	<u>頁岩部層,火砕岩部層及び上部頁岩部層に区分される。</u>	
の新期砂層・沖積層からなる。	し、部分的にこれらを貫いてひん岩が分布する。また、第四系と	被覆層は,崖錐・海底堆積物及び盛土からなる。崖錐・海底堆	
評価対象範囲の地盤に分布する砂層としては、古安田層中の砂	して、一部海岸付近及び低地周辺に、未固結~半固結の堆積物が	積物は主に礫混じり砂質土及び礫混じり粘性土からなり,約2m~	
層,新期砂層・沖積層,埋戻土層がある。	分布する。	5mの厚さで,斜面中腹や裾部,あるいは谷部等の傾斜面に分布す	
古安田層は,敷地のほぼ全域にわたって分布し,主に粘土~シ	敷地の地盤は,岩盤,盛土及び旧表土に分類され,液状化の可	<u>る。また、盛土は1号炉、2号炉及び3号炉建設時の埋立地等に</u>	
ルトからなり,砂,砂礫等を挟在する。また,本層は,MIS10~MIS7	能性を考慮するべき未固結の地盤は,盛土及び旧表土が該当する。	分布する。	
とMIS6 との境界付近の海進,海退に伴う堆積物を含むものと推定	なお、旧表土は、第四系の沖積層に該当し、粘性土~粘土質砂質	敷地の被覆層である盛土は,埋戻土(掘削ズリ)と埋戻土(粘	
され、中部更新統と判断される。	<u>土~砂質土を主体とし、海浜砂に比べ粒径が比較的幅広い特徴を</u>	性土)に分類している。	
敷地の古安田層は全域に広く分布しており、古安田層中の砂層	有する。	<u> 埋戻土(掘削ズリ)は、発電所建設時の敷地造成において発生</u>	
は, 主にAta-Th テフラを含むシルト主体のMIS7 の地層に挟在し	旧表土は,敷地のほぼ全域にわたり牡鹿層群を覆って分布する。	した新第三紀中新世の成相寺層の岩砕が主体となっており、広く	
ている。また, MIS7 の堆積物の基底には砂礫層が分布している。	旧表土は、地層の連続性からみて同時代に堆積したものと考えら	分布する。	
第11-2-1 図に古安田層上限面図及びボーリング柱状図を示す。	れ、かつては敷地のほぼ全域に分布していたが、発電所設置の際	<u> 埋戻土(粘性土)は,護岸建設時に,背面の止水性を担保する</u>	
新期砂層・沖積層は,敷地のほぼ全域にわたって下位層を覆っ	の掘削により、その多くが取り除かれている。	ために幅20m程度にわたり裏込めしたものである。第2-1図に被覆	
て分布している。下位層上限面に刻まれた谷を埋めるように堆積	<u>盛土は建設時に発生した岩砕を締固め管理**した人工地盤であ</u>	層のボーリング柱状図を示す。	
したため、場所により層厚が大きく変化している。本層は、主に	り、敷地のほぼ全域の整地地盤に分布している。	敷地の被覆層である崖錐・海底堆積物は、砂礫層として分類し	
未固結の淘汰の良い細粒~中粒砂からなる。現在の海浜、砂丘を	<u>盛土及び旧表土の分布状況について,平面図を第2.1-1 図,地</u>	ている。	
形成しており、下位層を不整合に覆う。	質断面図を第2.1-2 図に示す。また,盛土及び旧表土を確認した		
液状化評価対象層については、道路橋示方書に基づいて対象層	ボーリング柱状図及びコア写真を参考資料1に示す。	液状化評価対象層については,道路橋示方書 <u>及び港湾基準</u> に基	
を抽出した。第11-2-2 図に液状化評価対象層の抽出フローを示	※撒き出し厚30cm とし,振動ローラー等で締固めを実施。施工後,	づいて対象層を抽出した。第2-2 図に道路橋示方書の液状化評価	
す。	現場密度試験を行い、室内試験(突固め試験)結果と比較して	対象層の抽出フローを示す。	
道路橋示方書では,沖積層を液状化評価対象層としているが,	十分締固められていることを確認した。	また, 第2-3 図に港湾基準の液状化判定に用いる粒度分布図を	
本評価では洪積層(古安田層)についても、同様に抽出対象とし		示す。	
た。また,地表面から20m 以深は対象外となっているが,本評価		第2-4図に発電所建設前の地形立体図を示す。1号炉、2号炉及	
では地表から20m 以深の砂層も抽出対象とした。		び3号炉の建設にあたり、周辺の山を掘削して敷地を造成し、原	
対象設備のうち、スクリーン室、取水路、軽油タンク基礎、燃		子炉建物,取水槽等の施設を岩盤上に設置した。敷地の前面(北	
料移送系配管ダクト、常設代替交流電源設備基礎の地盤には砂層		側)に護岸を設置し、敷地造成において発生した岩砕を主体とす	
が分布している。これらの施設に着目して地質断面図を作成し、		る埋戻土(掘削ズリ)により埋戻した。なお、護岸背面の止水性	
砂層の分布状況について第11-2-3 図に整理した。		を担保するための埋戻土(粘性土)が1,2号炉北側に分布し,	
6 号及び7 号炉の取水路及び常設代替交流電源設備基礎の周辺		砂礫層として分類した崖錐・海底堆積物が1号炉東側、3号炉北	
地盤については、シルト主体の古安田層中に挟在する砂層が広く		側及び輪谷湾周辺において局所的に分布する。	
分布している。この砂層が挟在するシルト層内の上部にはAta-Th		対象設備周辺の地層の分布状況について第2-5図,第2-6図及び	
テフラが同程度の標高で広く確認されること、その下部には砂層		第2-7図に整理した。	
が同程度の標高に分布していることから, MIS7 の同時期に堆積し		<u>埋戻土(掘削ズリ)は,敷地全体において概ね全域にわたって</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
た地層である。		広範囲に分布する。	・敷地の地質の相違
常設代替交流電源設備及び7 号炉軽油タンク基礎等の周辺地盤		<u>埋戻土(粘性土)は、1、2号炉北側護岸背面にのみ分布する。</u>	【柏崎6/7,女川2】
には、細粒~中粒砂からなる新期砂層・沖積層が分布している。		砂礫層は, 1号炉東側のEL+15m以下の敷地, 3号炉北側の	島根2号炉の地質に
6 号炉軽油タンク基礎等の周辺地盤には、古安田層中の砂層が		EL+8.5m以下の敷地及び輪谷湾周辺において局所的に分布する。	ついて詳細に説明して
一部分布している。この砂層は、取水路付近の砂層からは西山層		敷地内における購入地盤材料の使用箇所を第2-8図に示す。取水	いる
の高まり等により連続していないものの、古安田層中に挟在する		管,3号炉東側護岸・岸壁,1,2号炉北側護岸,防波堤等にお	
砂層が同様に分布していることから、取水路付近の砂層と同様に		いて、砕石、基礎捨石、被覆石を使用している。	
MIS7 の同時期に堆積した地層である。		購入地盤材料は天然石材であり、粒度調整されたものである。	
<u>6 号及び7 号炉の取水路の地盤については、シルト主体の古安</u>		敷地内でEL+15m以下に分布する地盤材料の抽出結果を第2-2表	
田層中に挟在する砂層が広く分布している。この砂層が挟在する		に示す。	
シルト層内の上部にはAta-Th テフラが同程度の標高で広く確認		<u>埋戻土(粘性土)は、護岸建設時に、背面の止水性を担保する</u>	
されること、その下部には砂層が同程度の標高に分布しているこ		ために施工している。埋戻土(粘性土)の分布状況、試験に用い	
とから、MIS7の同時期に堆積した地層である。		た試料の採取位置を第2-9図に,採取した埋戻土(粘性土)の写真	
		を第2-10図に示す。また、塑性図による粘性土の分類を第2-11図	
		に示す。	
		第2-11図より, 埋戻土(粘性土)は, 土の液性限界・塑性限界	
		試験(JIS A 1205)より、低液性限界の粘土(CL)に分類される。	
		<u>A線より下側の場合はシルトに分類されるが、埋戻土(粘性土)は</u>	
		塑性指数Ipが大きいため粘土に分類される。	
		基礎捨石は、1、2号炉北側護岸、防波堤等に使用している。	
		寸法200mmから250mm程度の材料を使用しているため間隙が大き	
		く、十分な透水性を有する。基礎捨石の設置状況の写真を第2-12	
		図に示す。	
		<u>被覆石は、1,2号炉北側護岸等に使用している。寸法700mm</u>	
		から800mm程度の材料を使用しているため間隙が大きく,十分な透	
		水性を有する。被覆石の寸法及び設置状況の写真を第2-13図に示	
		<u>t.</u>	
		道路橋示方書に基づき液状化評価対象層を抽出した結果を第	
		2-14図に示す。液状化の判定を行う必要がある土層は砂礫層のみ	
		<u>である。</u>	
		港湾基準に基づき液状化評価対象層を抽出した結果を第2-15図	
		に示す。粒径加積曲線が「液状化の可能性あり」の範囲内に含ま	
		れないため、液状化の判定を行う必要がある土層はない。	
		道路橋示方書では, 50%粒径が10mm以下で, かつ, 10%粒径が1mm	
		以下である土層について液状化評価対象層としているが,本評価	
		では50%粒径が10mmを超過する,または,50%粒径が10mm以下であ	
		っても10%粒径が1mmを超過する土層についても、同様に抽出対	
		象とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		港湾基準では、 粒度による土の分類を行い、 粒径加積曲線が 「液	・敷地の地質の相違
		状化の可能性あり」の範囲内に含まれる土を液状化評価対象層と	【柏崎6/7,女川2】
		しているが、範囲以外に含まれる土についても同様に抽出対象と	島根2号炉の地質につ
		<u>する。</u>	いて詳細に説明してい
			3
以上より, <u>大湊側</u> の液状化評価対象層として, <u>砂層の分布状況</u>		以上より, <u>敷地内</u> の液状化評価対象層として, <u>被覆層の分布状</u>	・液状化評価対象層の相
から、古安田層中の砂層、新期砂層・沖積層及び埋戻土層を抽出		況,道路橋示方書及び港湾基準に基づく液状化評価対象層の抽出	違
した。		結果を踏まえ、保守的に埋戻土(掘削ズリ)及び砂礫層を抽出し	【柏崎6/7,女川2】
荒浜側に分布する砂層については、荒浜側防潮堤の縦断方向の		<u>t.</u>	島根2号炉では,埋戻
地質断面図を代表例として,砂層の分布状況について第11-2-4 図			土 (掘削ズリ) 及び砂礫
に整理した。			層を抽出している
3 号炉及び4 号炉海側の地盤には、シルト主体の古安田層中に			
<u>挟在する砂層が広く分布している。この砂層が挟在するシルト層</u>			
内の上部にはAta-Th テフラが広く確認されること,その下部には			
砂層が同程度の標高に分布していることから、大湊側と同様に			
MIS7 の同時期に堆積した地層である。			
<u>4</u> 号炉海側には、古安田層の上位に新期砂層・沖積層が連続し			0
て分布している。			
<u>1 号炉及び2 号炉海側の地盤には、3 号炉及び4 号炉海側から</u>			
連続するシルト主体の地層の上位に位置する砂層がおおむね10m			
<u>以上の厚さで連続して分布していることから、この砂層は同時期</u>			
に堆積した砂層である。なお,古安田層の基底に一部分布する砂			
<u>層は、3 号炉及び4号炉海側に分布するMIS7 の砂層と同じ地層と</u>			
想定される。			
<u>1</u> 号炉海側の防潮堤端部には、4 号炉海側と同様に新期砂層・			
沖積層が分布している。			
以上より, <u>荒浜側</u> の液状化評価対象層として, <u>砂層の分布状況</u>			
から, 主に3 号炉及び4 号炉海側に分布する古安田層中の砂層,			
主に1 号炉及び2 号炉海側に分布する古安田層中の砂層,新期砂			
層・沖積層及び埋戻土層を抽出した。			

自崎刈	羽厚	原子力	発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所	所 2号
		第1	1-2-1 表 敷地の地質層	 屠序表	第2.1-1 表 敷地の地質層序表 第2-1 表 敷地の)地質層F
時作	9	地層名	主な層相・岩質	テフラ・放射年代	年代目示区分 社 東 平 真 の 屋 水 ¹⁰ 繁地 内 の 層 市 地質時代 地層名	
完成	所世	新期砂層・沖積	 上部は灰白色の細~中粒砂 下部は茶褐色の細~中粒砂, 腐植物を含む 			埋戻土(持
	20. HI	香神砂層	灰白色~赤褐色の中~粗粒砂	→ 局祖 (6,150±170平)	<u>生 ぎ 素 三 差 前 前 山 夏</u> 素 古 素 三 差 日表主 日表主 日表主 日表主 日	礫混じ
	150.991	大湊砂層	 ・・ ・ 	NG(約13万年前)	□ 上 ^版 貫入岩類 貫入岩類	
		Ai部層	最上部は砂 粘土〜シルト,砂を多く挟む	← y-1(約20万年前)		
更	中期	古 A3部層 安	粘土~シルト 編状粘土,有機物,砂を伴う,貝化石を含む			ă
新 2 世		田 居 日 A:部層	粘土~シルト 砂, 厚い砂礫, 有機物を挟む	← Ata-Th(約24万年前)	生 ジ 上 郎 恵 次の哀気薄 (株の高気) (10-24) (10-	黒
		A1部層	粘土~シルト 砂,砂礫を挟む	← Kkt(約33-34万年前)	* 中 部 群 月の油泉暦 7 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
		灰爪層	凝灰質泥岩,凝灰質砂岩,凝灰岩	← Iz (約1.5Ma)		
	前朔	Ns部層	砂質泥岩 砂岩、凝灰岩、ノジュールを挟む 貝化石を含む		三 葉 系 <u>福 井 履 郡</u> 祭 扁原(i4.4 (1987) it-层加举	
		四 山 N:部層	シルト質泥岩 縞状泥岩, 凝灰岩, ノジュールを多く挟む	← Fup (彩)2. 2Ma) ← Tsp (彩)2. 3Ma) ← Az (彩)2. 4Ma)		
鮮 新新 第世	後期	N ₁ 部層	シルト質~粘土質泥岩 砂岩, 凝灰岩, ノジュールを挟む 珪質海綿化石を含む	← Nt-17 (340±20万年) ← Nt-7 (350±20万年)		
三 三 紀 中	後期	椎谷層	砂岩,砂岩・泥岩五層,編礫岩等を挟む			
新世	中期	寺 泊 層	黒色泥岩,砂岩 ・泥岩互層			
			不整合			

力発電	所 2号炉	備考
敷地0	D地質層序表	
	主要構成地質	
	埋戻土(掘削ズリ)・埋戻土(粘性土)	
堆積物	礫混じり砂質土・礫混じり粘性土	
	ドレライト・安山岩	
部層	黒色頁岩	
部層	凝灰岩·凝灰角礫岩	
部層	黒色頁岩 · 凝灰質頁岩	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
(始め)		
¥		地下水位が地表面
地下水位が地表面 から10m以内		から10m以内
Yes		↓ Yes 地表面から20m以内
地表面から20m 以内の飽和土層		の飽和土層
Yes		★ Tes 粒度試験(1mあたり1試料程度)
程度試験 (1mあたり1試料程度)		+
No		50%粒径D ₅₀ ≦10mm
< 50% № (±D ₁₀ ≤ 10mm)		¥ Yes
Yes No		10%粒径D ₁₀ ≤1mm
		↓ Yes
Yes apply fes		Yes 細粒分含有率
FC≤35%		Fc≦35%
→ No 液性限界試験 即使用限は酸		
362 LT 197 37 99-497		☆「土限乔武、猿、空」生限乔武、猿
Yes 塑性指数I _p ≤15 No →		Yes 塑性指数Ip≤15
		 │ 液状化判定を行う │ 必要がある土層
◎ - 解8.2.1 液状化の判定を行う必要がある土層の評価の手順		
第11-2-2 図 液状化評価の対象層の抽出ファー		第2-2 図 液出化評価の対象層の抽出フ
道路橋示方書·同解説(V耐震設計編)((社)日本道路協会		
H24.3)		
		均等係数の大きい砂 (U_≥3.5)
		ア5- 特に液状化の 対応性もの ア
		·····································
		四 頭 一 彼状化の可能性
		粘土 シルト 砂
		0.005 0.075
		 第2-3 図 粒度に上ろ海牡ル判点

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 25
		第2-6 図 敷地の地層分布状況 (a) 埋戻土(掘削ズリ)
		第2-6 図 敷地の地層分布状況 (b) 埋戻土(粘性土)女

炉	備考
v)	
ア) H:V41:5	
W W 地平面図	
21.00m	
堆戻土(振創ズリ) 27.00m	
砂礫層	
コア写真	
(断面図)	・敷地の地質の相違
·布図	【柏崎6/7,女川2】
	局根25炉の地貨に ついて説明している
	1

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	2 号炉 (2019.11.6 版)	島根原子力発電所 2 号炉	備考
			<u>第2-7 図 敷地の地層分布状況(断面図)</u> (<u>6) 1, 2 号炉北側エリア分布</u> 図	 ・敷地の地質の相違 【柏崎6/7,女川2】 島根2号炉の地質に ついて説明している

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)		ŀ	島根原子力発電所	近 2-
						E	東 あ か か か か か か か か か か か か か	РФФЩН
					_⊽ jijiji 	EL0.46(HWL.)	▽設計地下水位	<u>こ</u> (例) ※グラウンドアンカー
							3 号炉東側	護岸
						N	<u>EL15m</u> 雷コンクリート時(鉄筋コンクリート法)	· 🔽
						」 被覆石 <u>▼EL0.46(HWL</u>) 消滅ブロック ¹ ¹ ¹ ¹ ¹ ¹ ¹ 	2000 現設復岸	→ 埋戻土 (掘削) 鋼管 埋戻土 (抵削) 鋼管 埋戻土 (私付) 砂 岩灯
							1, 2号炉北	 二側護岸
						N =E(-10 -30 -40 -50	W 被覆コンクリート (m) 海底堆積額-風化名 L0 EL-12.0m EL-17.8m L0 Z縮	R★管 海底+ 砂石
							取水管	:
						<u>第2-8</u>	3 図 購入地盤林	才料の
						2-2 表 地盤	材料の液状化判	定の要
					地盤材料	規 格	分布場所·使用場所	
					(掘削ズリ) 埋戻土	-	 ・概ね全域に分布 ・1,2号炉北側護岸 	************************************
					(粘性土) 砂礫層	-	背面に分布 ・1号炉東側に局所的に分布	試験 (JIS
					(崖錐·海底 堆積物) 砕石	ー 20~80mm (底部のみ5~20mm)	 ・3号炉北側に局所的に分布 ・輪谷湾内に分布 ・取水管 	状化判定を 粒径の大き 能性あり」の
					基礎捨石	200~250mm程度	 ·1,2号炉北側護岸 	 ら,対象タ 粒径の大き 能性ありが
					被覆石	(30kg/個以上) 700~800mm程度 (1.5t/個)	・3 号炉東側護岸・岸壁 ・1,2号炉北側護岸	ら,対象外 粒径の大き 能性あり」の ら,対象タ
							1	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (島根原ヨ	子力発電所 2号
				凡例 ・:試料採取位置 ::埋戻土(粘性土) ・	
				<u>第2-10 図 採</u>	(取した埋戻土 (
				埋戻土(粘性土)	液性限界 望 w _L (%) w 48.5
				 (平均値,試験数:22) 100 塑性図 範 第 50 ジー ジー	10.0 株土 (CH) (MH) A線 100 性限界w H22:土質試験ま 性図による粘性

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
				・敷地の地質の相違 【柏崎6/7,女川2】 島根2号炉の地質に ついて説明している
			基礎捨石設置状況(防波堤) <u>第2-12 図 基礎捨石の設置状況</u>	
			被覆石寸法(1,2号炉北側護岸)	
			<image/>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)			島根原子力	発電所 2岁	1
							FOR \$1.57	100 44 57	1
						地層名	50%和侄 (平均) (mm)	10%和全 (平均) (mm)	
						埋戻土 (掘削ズリ)	16.5	-	
						砂礫層	9.1	0.0651	
						Yes Ves Ves	地下水 から1 ・ 地表面が の館 粒度試験(1m 50%粒紀 10%粒 10%粒 下c: 液性眼界試験 塑性打	協め ·位が地表面 Om以内 · Yes から20m以内 和士層 · Yes あたり1試料程度) · · · · · · · · · · · · ·	
					液状	¥ 化判定を行う がある土届 砂礫 <u>周</u> ↓			_
							当社の液物 <u>砂礫層,埋</u>	ベビ検討対象層 戻 <u>土(掘削ズリ</u>	2
						第2-14	図 道路橋法	示方書に基つ	5

自動の利用電子力量電子 6/27 分野 (2017, 12, 20 成) 支出電子力量電子 2分野 (2019, 11, 6 成) 正相電子力量電子 正相電子力量電子 正相電子力量電子 1 1<						
	柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2 号
	伯呵利初原于刀発電/JT	0 / 1 75%		及川原于/J 発 电//		Bt(R,TJ)発電所 2+ 100 90 100 90 <

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	2.2 旧表土の分布		・敷地の地質の相違
	各断面位置における旧表土の分布の特徴は以下のとおりであ		【女川2】
	<u>3.</u>		女川2では旧表土に
	 ①-①' 断面 		ついて説明している
	防潮堤付近に旧表土が広く分布している。2 号炉取水路と3 号		
	炉取水路の中間付近で旧表土が最も厚くなり,その層厚は最大14m		
	程度である。		
	 ・②-②'断面 		
	山側の沢地形部に旧表土が分布している。盛土の下層に旧表土		
	が分布しており、その層厚は、最大7m 程度である。		
	<u>・③-③'断面</u>		
	建屋周辺には発電所建設時に掘削範囲外であった旧表土がわず		
	かに分布しており、その層厚は最大3m 程度である。港湾部分にも		
	旧表土が分布しており、その層厚は最大9m 程度である。		
	<u>2.3 盛土の分布</u>		・敷地の地質の相違
	盛土については、発電所建設時の敷地造成及び構造物建設時の		【女川2】
	<u>埋戻しにより、敷地のほぼ全域にわたって分布している。盛土は</u>		女川2では盛土につ
	人工地盤として締固め管理して施工されており、盛土材料は建設		いて説明している
	時に発生した岩砕(最大粒径300mm)が主体となっている(盛土の		
	均一性については、参考資料2に示す)。		
	2.4 液状化検討対象層		・資料構成の相違
	基準地震動Ss により液状化する可能性を否定できず,液状化評		【女川2】
	価を行う対象土質である液状化検討対象層として、道路橋示方		女川2では道路橋示
	<u>書・同解説(V耐震設計編)((社)日本道路協会,H14.3)(以下,</u>		方書の方法について説
	「道路橋示方書」という)では、以下の条件全てに該当する土層		明している
	と定めている。		
	①地下水位がG.L10m 以内であり,かつG.L20m 以内の飽和		
	土層		
	②細粒分含有率が35%以下、又は細粒分含有率が35%を超えても		
	塑性指数が15以下の土層		
	③平均粒径が10mm 以下で,かつ10%粒径が1mm 以下である土層		
	上記の条件は指針類(鉄道構造物等設計標準・同解説 耐震設計		
	編(平成24 年9 月),港湾の施設の技術上の基準・同解説(平成		
	<u>19 年))でほぼ共通している。</u>		
	液状化検討対象層の抽出は、道路橋示方書で対象としている地		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所	2号炉	備考
			層を基本とし、比較的浅部の地盤等が液状化検討対象層となるが、			
			<u>以下の場合も含め液状化検討対象層として抽出する。</u>			
			• 細粒分含有率が35%以上の飽和土腐			
			 ・平均粒径が10 mm以上の飽和土層 			
						・液状化評価対象層の相
						違
						【柏崎6/7,女川2】
						島根2号炉では,埋戻
						土(掘削ズリ)及び砂礫
						層を抽出している

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	3. 液状化検討対象施設の抽出		・資料構成の相違
	屋外の耐震重要施設、常設重大事故等対処施設等の設置状況及		【女川2】
	び地下水位を考慮し、液状化の影響を検討する必要がある液状化		島根2号炉では4.2章
	検討対象施設を抽出する。抽出に当たっては、すべての屋外の耐		で液状化検討対象施設
	震重要施設(建物・構築物,屋外重要土木構造物,津波防護施設		の選定について説明し
	等),常設重大事故等対処施設等を対象に,網羅的に検討する。		ている
	屋外の耐震重要施設及び常設重大事故等対処施設の配置図を第		(以下,女川2の3章は
	3.1-1 図に,可搬型重大事故等対処設備保管場所及びアクセスル		すべて同じ理由である)
	ートの配置図を第3.1-2 図に示す。また,屋外の耐震重要施設(建		
	物・構築物,屋外重要土木構造物,津波防護施設等)及び常設重		
	大事故等対処施設について、液状化検討対象施設の抽出及び解析		
	手法選定フローを第3.1-3 図に,設計用地下水位の設定の考え方		
	を第3.1-4 図に示す。		
	なお、可搬型重大事故等対処設備による重大事故等への対応に		
	<u>必要なアクセスルートは、地震時の液状化に伴う地下構造物の浮</u>		
	き上がりの影響を受けることなく通行性を確保する設計とする。		
	ここでは、液状化検討対象施設の抽出の考え方を示し、工認段階		
	において,改めて設定した設計用地下水位に基づき液状化検討対		
	象施設の抽出を行う。		
	3.1 液状化検討対象施設の抽出及び解析手法選定の観点		
	液状化検討対象施設の抽出及び解析手法選定における観点を以		
	下に示す。		
	(1) 液状化検討対象施設の抽出		
	液状化検討対象施設は以下の項目で抽出する。		
	①施設が岩盤中に設置されているか		
	②施設周辺の地下水位が十分に低いか		
	観点例:周辺地盤における地下水位が施設底盤より低い。		
	(2) 液状化検討対象施設の解析手法の選定		
	<u>a.</u> 屋外の耐震重要施設及び常設重大事故等対処施設(建物・		
	構築物を除く)		
	上記(1)にて抽出された施設について,施設周辺に改良地盤,		
	セメント改良土, 置換コンクリート, マンメイドロック (MMR)		
	及び他構造物(以下、「改良地盤等」という。)が有り、液状化又		
	は繰返し軟化*の影響を緩和している場合,その改良地盤等周辺の		
	地盤の液状化又は繰返し軟化により施設に悪影響を与える恐れが		
	有るか判断する。		
	③施設周辺に改良地盤等が有り、液状化又は繰返し軟化の影響		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20片	反) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	を緩和しているか		
	④改良地盤等周辺の地盤の液状化又は繰返し軟化により施設に		
	悪影響を与える恐れが有るか		
	観点例:施設が改良地盤や他構造物に囲まれており,液状		
	化等の影響が無い。		
	施設周辺の地形等から、側方流動の影響が無い。		
	③で施設周辺に改良地盤等が無い場合又は④で悪影響を与える		
	恐れがある場合は、液状化考慮と液状化非考慮で耐震安全性評価		
	上どちらが保守的になるかを確認するため、一次元又は二次元の		
	全応力及び有効応力による地震応答解析を実施した上で、全応力		
	解析と有効応力解析それぞれの結果から構造物上下端の層間変位		
	を比較するなどして、保守的となる解析手法を選定する(⑤)。		
	なお,地盤改良が必要となった場合は,上記で選定した解析手法		
	により、その範囲の妥当性を確認する。		
	また,対象施設が耐震重要施設の間接支持構造物である場合は,		
	床応答の観点も考慮して解析手法を選定するものとする。		
	b. 屋外の耐震重要施設及び常設重大事故等対処施設(建物・構		
	<u>築物)</u>		
	上記(1)にて抽出された施設について,液状化等により施設に		
	<u>悪影響を与える恐れが有る場合は、地盤の液状化等の影響を考慮</u>		
	した評価を行う (③)。		
	<u>また,対象施設が耐震重要施設の間接支持構造物である場合は,</u>		0
	床応答の観点も考慮して解析手法を選定するものとする。		
	以上を踏まえ、工認段階で設定する設計用地下水位に対する液		
	状化検討対象施設の抽出及び解析手法選定の考え方を確認する目		
	的で、液状化検討対象施設を抽出した結果(例)を第3.1-1表に、		
	抽出した液状化検討対象施設(例)の解析手法について検討した		
	結果(例)を第3.1-2 表に,各施設の断面図と設計用地下水位(例)		
	を第3.1-5 図~第3.1-40 図に示す。工認段階においては、すべて		
	の屋外の耐震重要施設(建物・構築物,屋外重要土木構造物,津		
	<u> 変防護施設等) 及び常設重大事故等対処施設を対象に、確定した</u>		
	地下水位を踏まえ、改めて網羅的に液状化検討対象施設を抽出し、		
	その上で解研手法を選定する。		
	なお、第3.1-3 図のフローにより抽出した液状化検討対象施設		
	のうち、地下水位が施設底盤より高く、施設と地下水が接する場		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	合は、間隙水圧の上昇により浮き上がりの恐れが有ることから、		
	浮き上がりに対する安全性を確認する。		
	<u>また,波及的影響評価において抽出される屋外下位クラス施設</u>		
	に対する検討方針は本資料に基づき整理を行う。		
	※:液状化と繰返し軟化の区分については「5.液状化強度試験		
	結果と液状化強度特性の設定」にて後述する。		
	Invertigation Invertigation Invertigation Invertigation 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	第3.1-1 図 屋外の耐震重要施設及び常設重大事故等対処施設		
	<u>配置図</u>		
			1
			1
			1
			1
			1
			1
	第3.1-2 図 可搬型重大事故等対処設備保管場所及びアクセス		1
	ルート配置図		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	文川原千刀/全庙/T 2 安外 (2013, 11.6 hd/) (1) 小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	唐依原于"力强 电 / 加" 2 劳动"	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	(職品的) (職品的) (職品的) (職品的) (協同的) (第次的公司) (第次的公司) (第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		
	国外の計蔵重減階級及び常設重次事例的対処階級 国外の計蔵重減階級及び常設重次事例的対処 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (5) (4) (4) (4) (5) (4) (4) (4) (5) (4) (5) (4) (5) (4) (6) (4) (6) (4) (6) (4) (6) (4) (7) (5) (6) (4) (6) (4)		
	<u>第3.1-3 図(2) 液状化検討対象施設の抽出及び解析手法選定フロ</u> <u>ー (建物・構築物)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.	12.20版) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	部計用地下水位は、解析明面で発展する地下水位のうち、構造物制面や解析明面現界等の各点で の最高水位を結んで保守的な設定とする。		
	(1) 箱形構造物の設定例		
	<text><text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text></text>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉					備考		
	第3.1-1 表	液状化検討	村対象施	設の)抽出結果の例((1/2))	
		(第3.	1-3 図((1)の)(1), (2)			
					項目	波伊尔施制		
	施股名称		①施設が岩 数中に設置 の施設展辺の第下本位が十分		関辺の地下水位が十分に低い	対象施設*		
		1	されている			×:対象外		
	排気筒連絡	岩盤部	Yes		一	×		
		土砂部	No	No	高設まう向い位置に高り示 位を設定する。 周辺地盤における地下水位	0		
	10.十0°快福440	2017年7年前に留タクト 2017年	No	Yes	が、施設底盤より低い。 施設から離れた位置で地下	×		
	海水 ポンプ室	10000 82185	No	No	木位が上昇する。 施設から離れた位置で地下	0		
	47.16	南北	No	Yes	水位か上昇する。 周辺地盤における地下水位 が、施設に敷上れたい	×		
	軽相 タンク室	東西	No	Yes	か、端政政堡より44%。 周辺地盤における地下水位 が、施設底盤より低い。	×		
	释油	南北	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×		
	タンク室 (H)	東西	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×		
	軽油タン	ク連絡ダクト	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×		
	復水貯蔵	南北	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×		
	タンク査機	東西	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×		
	ガスタービン 発電設備軽油	南北	No	No	単数周辺の地下水位を地表 面に設定する。 体験周辺の地下すなた検索	0		
	タンク重	東西 標準部	No	No	面に設定する。	0		
		 (改良地盤に囲まれる箇所) 標準部 	No	No	施設より高い位置に地下水 位を設定する。	0		
	取水路	(改良地盤に囲まれる箇所以外)	No	No	施設に接する高さに地下水 位を設定する。	0		
		漸拡部	No	No	施設に接する高さに地下水 位を設定する。	0		
		標準部 (積新)	No	No	施設より高い位置に地下水 位を設定する。	0		
	取水口 ()貯留堰)	漸縮部 (観断)	No	No	施設より高い位置に地下水 位を設定する。 施設より高い位置又け地す	0		
		総断	No	No	客窩さに増下永位を設定す る。	0		
		第官式和直型 (一般部) 編纂さ記言様	No	No	施設に接する高さに地下水 位を設定する。	0		
	防潮堤	(岩盤部)	Yes		ー	×		
	※ :工銀段勝つ	盛土堤防 5地下水位低下設備3	No を考慮した浸透	No 法解析:	位を設定する。 を実施し、その結果に基づき	 対象施設の設 		
	計において	参照する設計用地下	水位を設定し	た上で、	改めて液状化検討対象施設の	の抽出を行う。		
								,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)					E)		島根原子力発電所 2号炉	備考
	第3.1-1 表 液状化検討対象施設の抽出結果の例(2/2)					(2/2)		
	(第3.1-3 図(1), (2)の①, ②)								
	項目 2000年6月11日					波计化输出			
	施設名称 罰盤に 囲まれる箇所		 ①施設が岩 盤中に設置 されている 	②施設	周辺の地下木位が十分に低い	対象施設 ^{₩1} ○:対象 ×:対象外			
			Yes		-	×			
	防潮壁	改良地盤に 囲まれる箇所 岩敷・改良地敷に	No	No	施設に接する高さに地下水 位を設定する。 体验に始まる高さに始下す	0			
		囲まれる箇所以外	No	No	花を設定する。	0 ¥			
	取放水路 流路輸小工	1号炉放水路 1号炉放水路	Yes		-	×			
		防潮壁 (2品原始ま立法)	No	Yos	周辺地盤における地下水位	~			
	貫通部 止水処置	(2号炉放水 100 横断部 防潮壁 (3号炉放水立坑)	No	Yes	が、施設底盤より低い。 周辺地盤における地下水位 ボ、施設底盤より低い。	×			
	2.5.6	横断部 横断	No	Yes	周辺地盤における地下水位	×			
	3 号が 海水ポンプ室	縦断	No	No	施設東側の防衛堤外側において地下水位が上昇する。	0			
	措 (漫水防止 ポンプ室	水井戸 蓋:3号炉海水 防潮壁区画内)	No	No	施設に接する高さに地下木 位を設定する。	0			
	3 号炉補機冷 (浸	却海水系放水ビット 水防止墨)	No	Yes	周辺地盤における地下水位 が、施設底盤より低い。	×			
	逆制	防止設備	Yes		- 設計条件保持のため地下木	×			
	原	子炉建屋	No	Yes	位低下設備を設置すること から、施設周辺の地下水位 が十分に低い。	× #2			
	制御建座		No	Yes	設計条件条件のため思ト本 位低下設備を設置すること から、施設周辺の地下水位 が十分に低い。	×			
	3号炉海:	水熱交換器速屋	No	Yes	設計条件保持のため地下木 位低下設備を設置すること から、施設周辺の地下水位 が十分に低い。	×			
	1	非気筒	No	Yes	設計条件保持のため地下木 位低下設備を設置すること から、施設周辺の地下木位 が十分に低い。	×			
	緊急	時対策建屋	No	No	施設に接する高さに地下水 位を設定する。	0			
	緊急用 2011、工程時期	電気品速量	No de de 1 - A alian	No	施設に接する高さに地下水 位を設定する。 も実施1 この計算に並べき	0			
	※2:原子好建 辺地盤の相	組の大物療入口につい 1五作用の影響につい	では、周辺地	整 の液	状化影響の有無を含めた基礎	躯体部分と周			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)			島根原子力発電所 2号炉	備考
	第3.1-2 表 液状化検討対象施設の解析手法選定の例(1/2)				
	(第3.1-3 図(1)の③,④)				
			項目		
	施設名称	 ③施設周辺 に改良地盤 が有る 	④改良地整両辺の地整の被状化又は暴返し軟化により施設に悪影響を与える恐れが有る		
	排気筒連絡 ダクト 土砂	部 No			
	海水 ポンプ室	WF Yes	No 地区かな良地盤に囲まれ、板衣化の影響は 無い。 … 施設が改良地盤及び他構造物(取木路)に		
		W Yes	No 囲まれ、液状化の影響は無い。 施設市成员地盤に囲まれる。 加設南側の最低面は南側に下り勾配であ		
	発電設備軽油 タンク室 東ア	fi Yes	り施設への何方法動の影響は無い。 施設が改良地盤及び他構造物(電気品速 原)に開まれ、液状化の影響は無い。		
	様準 (改良地想 わえ際	構 壁に囲ま Yes (所)	No 施設が改良地盤に囲まれ, 液状化の影響は 無い。		
	取水路 取水路 (改良地盤 れる第一部	部 壁に囲ま No (2146.)	-		
		部 Yes	Yes 施設周辺に被状化検討対象層が分布す る。		
	標準部((観新) Yes	Yes 施設は改良地盤等に囲まれるが、その外 個の土圧の影響を無視できない。 第25個ににの影響を無視できない。		
	取木口 (貯留堰) 兼縮部((横断) Yes	Yea 対象層とも彼している。また、改良相盤の 外側の土圧の影響を無視できない。		
	atta 調管式。	所 No 伯直壁 You	- Vec 山甸から海甸への何方清酢の影響が有ろ。		
	防潮堤 <u> (一般1</u> <u> 盛</u> 土堤	的 Yes	Yes 山側から海側への側方流動の影響が有る。		
	改良地 頭主れる	壁に 強所 Yes	No 第設が改良地盤に囲まれ, 液状化の影響は 無い。		
	50割望 岩盤,改良 囲まれる箇	1.地盤に No 1所以外	-		
	3 号炉 海水ポンプ室 縦断	f Yes	地下木位が上昇する東側において,施設 が改良地盤及び倍構造物(取木路)に囲 まれ,液状化の影響は無い。		
	摘水井戸 (浸水防止圏:3号炉湾 ポンプ客防御壁区面内	床 No	-		
	<u>第3.1-2 表 液状化</u>	検討対象施調	段の解析手法選定の例(2 <u>∕2)</u>		
		(第3.1-3	$\underline{\mathbb{X}}(2)\mathcal{O}(\underline{3})$		
			項目		
	施設名称	েনাং:	伏化等により施設に悪影響を与える恐れが有る		
	緊急時対策課題	No	施設が岩盤、改良地盤等に囲まれており、液状化 等の影響は無い。		
			施設北側及び西側は岩盤や包構造物に囲まれてい る。施設肉側のお盤面は閉側に下り勾配であり施 設への側方派動の影響は無い、施設東側上部に一		
	緊急用電気品線層	No	部盛士があるものの。 裁股の地震観測記録の分析 や解析検討等の傾向から、周辺地撃による施設の 応答への影響が小さく、個方地撃を考慮しない解		
			新モデルの安当党が爆撃されている。以上より、 液状化等により施設に悪影響を与える恐れはな い。		
	I				1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第 3.1-5 図 排気簡連絡ダクト地質断面図(縦断)		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
--------------------------------	--	--------------	----
	ス		
	① No 施設が岩盤中に設置されていない。 ② No 施設から離れた位置で地下木位が上昇する。 ③ Yes 施設所備の地盤改良を実施する。 ④ No 施設所において地下木位が上昇するが、南側は施設 近傍に笠良地盤がオり、北備には酸未踏が存在するため、読載 ④ No 施設においこ 第3.1-10回 海水ポンプ室地質断面図(縦断)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考

~炉	備考

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	A Image: Image: I		
	第3.1-20図 取水路(漸拡部) 地質断面図		
	 第: 本具装置の範囲は今後の数を通びで表更の考測性がある。 項目 判定 親点 ① No 施設が発生中に設置されていない。 ② No 施設より高い位置に地下木位を設定する。 ③ Yes 施設は改良地差等に囲まれるが、その外側の土圧の影響を繋 ④ Yes 施設は支出差等に囲まれるが、その外側の土圧の影響を繋 第3.1-21図 取水口 (標準部) 地質断面図 (横断) 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	<complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	で で し し し し し し し し し し し し し		
	<image/>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		····································		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	代表の 代表の		
	***** **: 改良地盤の範囲は今後の設計進捗で変更の可能性がある。 *: 防潮壁の新面図は,東北地方太平祥沖地質による約1mの沈降を考慮した標高とする。 ・防潮壁(2 号炉放水 立坑) 【岩盤に囲まれる箇所】 ① Yes 施設が岩盤中に設置されている。 ② / - / - 【改良地盤に囲まれる箇所】 ① No 施設が岩盤中に設置されていない。 ③ Yes 杭周辺の地盤改良を実施する箇所がある。 ④ No 施設が設良地盤に囲まれ,彼状化の影響は無い。 【岩盤及び改良地盤に囲まれる箇所以外】 ① No 施設が岩盤中に設置されていない。 ③ Yes 杭周辺の地盤改良を実施する箇所がある。 ④ No 施設が設良地盤に囲まれ,彼状化の影響は無い。 】		
	③ No 施設構造に改良地整が無い。 ・貫通部止木処置(防潮壁(2号炉放木立坑)横断部) 項目 利定 観点 ① No 施設が岩盤中に設置されていない。 ② Yes 周辺地盤における地下木位が、施設底盤より低い。 第3.1-28図 防潮壁(2号炉放水立坑), 貫通部止水処置 (防潮壁(2号炉放水立坑) 貫通部止水処置		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	Image: state in the state in		
	 ・揚水井戸 項目 判定 親点 		
	Image: set of the set of		
	 ・ 貫通部止木処置(防潮壁(3号炉放木立坑)横断部) 項目 相定 観点 ① No 施設が岩盤中に設置されていない。 ② Yes 周辺地盤における地下木位が、施設底盤より低い。 第3 1-30図 防海避時(3号・行放水 立方) 貫通部(止水加器(店海)) 		
	(3号炉放水立坑)横断部) 地質縦断図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	- -		
	点 ····································		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	単数工程に基づいた大型 2010年10月 単数工程に基づいた大型 2010年10月 一種数工程に基づいた大型 2010年10月 1011年10日 一種数工程に基づいた大型 2010年10月 1011年10日 一種数工程に基づいた大型 2010年10月 1011年10日 一種数工程に基づいた大型 2010年10日 1011年10日 一種数工程に基づいた大型 2010年10日 1011年10日 一種数工程に基づいた大型 2011年10日 1011年10日 第月日本日本型 1011年10日 第3.1-33回 3号炉海水ポンプ室地質断面回(横断)		

柏崎刈羽原子力発電所 6/7号炉 (20)	17.12.20版) 女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	一 1		
	本 ####################################		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第:設計用地下水位は、地下水位低下設備に腐特しない設定とする。 項目 判定 観点 ① No 施設が岩盤中に設置されていない。 ② No 施設が岩盤。MMR,改良地盤に囲まれており、液状化等の影響がない。 ③ No 整が分盤、MMR,改良地盤に囲まれており、液状化等の影響がない。 第3.1-37図 緊急時対策建屋地質断面図(東西)		
	※:設計用地下水位は、地下水位低下設備に開持しない設定とする。 項目 判定 観点 ① No 施設が岩盤中に設置されていない。 ② No 施設が岩盤・に数一本位を設定する。 ③ No 施設が岩盤、MMR,改良地盤に囲まれており、液状化等の影響がない。		
	<u>第3.1-38図 緊急時対策建屋地質断面図 (南北)</u>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		第1.2000 第1.20000 第1.200000 第1.200000 第1.200000 第1.200000 </td <td></td> <td></td>		
		項目 判定 観点 ① No 施設が岩盤中に設置されていない。 ② No 地下木位低下設備に期待しないため、施設周辺の地下木位は低 ③ No 施設北側は岩盤に囲まれている。施設南側の岩盤面は南側に下 ③ No 施設北側は岩盤に囲まれている。施設南側の岩盤面は南側に下 ③ No 施設北側は岩盤に囲まれている。施設南側の岩盤面は南側に下 ③ No 施設北側は岩盤に囲まれている。施設南側の岩盤面は南側に下 第3.1-40図 緊急用電気品建屋地質断面図(南北)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
3. 液状化試験位置とその代表性		3. 液状化強度特性の網羅性, 代表性	
	4. 液状化強度試験 試料採取位置選定とその代表性	3.1 液状化試験試料採取位置とその代表性	
3.1 液状化試験位置の選定	4.1 液状化強度試験 試料採取位置の選定	3.1.1 液状化試験試料採取位置の選定	
大湊側の液状化評価対象層として、砂層の分布状況から、古安	敷地内に残存する液状化検討対象層(旧表土・盛土)について,	液状化試験試料の採取方法としては、先行他サイトの審査実績	・説明の充実
田層中の砂層,新期砂層・沖積層及び埋戻土層を抽出した。	採取可能な試料採取位置の選定を行った。	及び審査状況を踏まえると、ロータリー式三重管サンプラー、GP	【柏崎6/7,女川2】
液状化試験については、砂層の分布状況から比較的砂層が厚く	旧表土の液状化強度試験に用いる試料採取位置は,第4.1-1 図	サンプリング, 凍結サンプリング及び表層試料採取の4種類(①~	島根2号炉では液状
<u>堆積している6号炉取水路付近の地点を選定し(O-1)</u> ,試料を	及び第4.1-2 図に示すとおり,敷地内に残存する旧表土から網羅	④)がある。各試料採取方法の概要及び試料採取結果等を以下に	化試験結果の信頼性向
採取して液状化試験を実施した。	ー 的に採取する観点から, A-1~A-7 の7点を選定した。	示す。	上を図るため,GPサン
常設代替交流電源設備基礎や7号炉軽油タンク基礎等の周辺地	盛土については、敷地内全域において均一な施工がなされてい	①ロータリー式三重管サンプラー	プリング及び表層試料
盤に分布している新期砂層・沖積層については、敷地の全域に分	るが,耐震重要施設及び常設重大事故等対処施設が0.P.+14m 盤及	ロータリー式三重管サンプラーは、アウターチューブ、インナ	採取により試料を採取
布していることから4号炉で確認している新期砂層・沖積層と連	び0.P.約+60m 盤の2エリアに設置されることを踏まえ,第4.1-3	<u>ーチューブ及びライナーからなる三重管構造である。ボーリング</u>	し,液状化試験データを
続する地層であると想定される。	図及び第4.1-4 図に示すとおり、液状化強度試験に用いる試料採	ロッドの回転がアウターチューブに伝わるがインナーチューブは	拡充している
第11-3-1 図に大湊側の試料採取地点位置図(O-1)を示す。	取位置はそれぞれのエリアから1地点ずつ計2地点を選定した。	回転しない機構を有しており、試料はインナーチューブ内側のラ	(以下,島根2号炉の
荒浜側の液状化評価対象層として、砂層の分布状況から、主に		イナーに収納される。乱れの少ない試料を採取できるサンプリン	3.1.1 章はすべて同じ
3~4号炉海側に分布する古安田層中の砂層,主に1~2号炉海		グ方法である。	理由である)
側に分布する古安田層中の砂層、新期砂層・沖積層及び埋戻土層		埋戻土(掘削ズリ)の採取にあたり、ロータリー式三重管サン	
を抽出した。		プラーにより試料採取(Φ 88mm)を実施した。採取した試料は、	
荒浜側については、砂層の分布状況から以下のとおり地点を選		局所的に発生する乱れを除いて乱れの少ない試料であった。一方,	
定し, 試料を採取して液状化試験を実施した。		埋戻土(掘削ズリ)は150mm程度の玉石を伴うため,土の三軸試験	
・1~2号炉海側の古安田層中の砂層は、 3~4号炉海側から連		の供試体作製・設置方法 (JGS 0520),及び粗粒土の三軸試験の供	
続するシルト主体の地層の上位に位置する砂層が連続して分布		試体作製・設置方法 (JGS 0530) を踏まえると液状化試験に採用	
していることから、1号側の比較的砂層が厚く堆積している地		可能な区間は限定的であり、約110mの掘進長に対して供試体とし	
<u>点を選定した(A-1)。</u>		て使用可能なものは4体(約1m)であった。	
・3~4号炉海側の古安田層中の砂層は、その分布状況から4号		土の三軸試験の供試体作製・設置方法(JGS 0520),及び粗粒土	
側の比較的砂層が厚く堆積している地点を選定した (A-2)。		の三軸試験の供試体作製・設置方法 (JGS 0530) に基づき,供試	
・新期砂層・沖積層は、10m 以上の層厚で連続して分布している		体直径がΦ300mmの場合,試料の最大粒径は60mm程度まで許容され	
ことから、比較的砂層が厚く堆積している地点を選定した(A		るが, 埋戻土(掘削ズリ)は150mm程度の玉石も含むことから, 採	
$(-3)_{\circ}$	● 試料採取位置	取数(液状化試験に採用可能な供試体数)の改善は困難である。	
		第3-1-1 図に液状化試験試料採取状況を示す。	
(a) 平面図	第4.1-1図 液状化強度試験に用いる試料採取位置平面図(旧表土)	第3-1-1 図 E-2地点の液状化試験試料採取状況(供試体(S2-10))	
第11-3-1 図 大湊個 試料採取地占位置図(O−1)		<u>おき出し後</u>)	
			1

炉	備考
ポリマー溶液を内封す 込んだ試料がポリマー よりポリマー溶液が潤 料とコアチューブとの 試料を採取できるサン	
<u> 実土(掘削ズリ)の採</u> り試料採取(Φ100mm) <u> こよりコアが動いてコ</u> ずに詰まる)を起こし き上げ時に掘削したコ することから,以降の	
<u>した不連続面に沿って</u> <u>れていたことから,供</u> た <u>。また,埋戻土(掘</u> の三軸試験の供試体作 <u>朝</u> 転試験の供試体作製・ 試験に採用可能な区間	
IGS 0520),及び粗粒土 0530)に基づき,供試 60mm程度まで許容され 石も含むことから,採 の改善は困難である。 た埋戻土(掘削ズリ)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
「現成土 部間料理・小規範 副中時間・小規範 副中時間・小規範 日 点型旧理 A2回 和日土 和日土・約単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理土・砂単土用 総理・ 日 の一一の一の一の一の一の一の一の一の一の一の一の一の一の一の一の一の一の一	(0.f.m) 10	・ ・	
	(0. P. m) 70 高 断面図(⑥-⑥')※	第3-1-2 図 GPサンプリングにより採取した埋戻土(掘削ズリ)	
(b) 断面図 (A-1)	※ 新面図(⑥-⑥) は液状化強度試験当時のものであ り、その後点線のとおり提制・整地したことから、地質断 面位置図の標高とは整合していない。(平面図は握剤・ 整地後の形状を示す)	③凍結サンプリング 凍結サンプリングは,原位置で地盤を凍結させ,その状態で試 料を採取する方法であるため,乱れの少ない試料を採取できるサ	
<u>第11-3-2 図 荒浜側 試料採取地点位置図(A-1,2,3)</u>	第4.1-4図 液状化強度試験に用いる試料採取位置断面図(盛土)	<u>ンプリング方法である。</u> またエンプリングの済田地駅はまたに以西ため知度の言い地駅	
TPmi 20		康結サンフリンクの適用地盤は凍結に必要な飽和度の高い地盤 であることから、埋戻土(掘削ズリ)のうち地下水位以浅の採取 には適用不可と判断した。 乱れの少ない試料を採取した場合、囲豆土(掘削ズリ)は150mm	
		<u>程度の玉石を伴うため、土の三軸試験の供試体作製・設置方法(JGS</u> 0520),及び粗粒土の三軸試験の供試体作製・設置方法(JGS 0530) に基づき、液状化試験に採用可能な区間は限定的である。	
		④表層試料採取 表層試料採取は,地表付近の埋戻土(掘削ズリ)を対象として	
-30 -		試料の採取を行う方法である。 採取した試料について、土の三軸試験の供試体作製・設置方法 (JGS 0520)、及び粗粒土の三軸試験の供試体作製・設置方法(JGS)	
(c) 断面図(A-2)		0530) に準拠し、供試体引法に対して適合しない礫を除くことに より、試験基準を満足する供試体を作製可能である。	
<u>第11-3-2</u> 図 荒浜側 試料採取地点位置図(A-1, 2, 3)		敷地の被覆層(埋戻土(掘削ズリ))は敷地造成において発生し	
		た岩砕を主体とする材料により埋戻した人工地盤であることか	
		ら,既往の埋戻土(掘削ズリ)の粒径加積曲線となるよう粒度調	
		<u>整を行った。また、敷地の埋立工事における施工管理基準値とな</u>	
		<u>るより街皮調金を11つた。</u> 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2 号炉	備考
		今回,既往のロータリー式三重菅サンプラー及びGPサンプリン	
21.25.66位置		グによる採取実績を踏まえ、液状化試験データ数を確実に増やす	
20		観点から、表層試料採取により追加試料を採取した。	
		液状化試験試料採取方法及び採取結果を第3-1-1表に示す。	
B			
		第3-1-1 表 液出化試驗試料採取方法及び採取結果	
-10 - 新期砂層·沖積層			
-20 -		三重管サンプラー ② GPワノリング ③ 未結ワノリング ④ 表層試料採取 構造 三重管 単管 (GP-D) 凍結管による地盤凍結 -	
-30 -		特徴 乱れの少ない試料を採取可能。乱れの少ない試料を採取可能。 乱れの少ない試料を採取可能。 試料の寸法調整, 粒度調整, たののでは、 たいののでは、 たいのののでは、 たいののでは、 たいのののでは、 たいののでは、 たいのののでは、 たいののでは、 たい。 たいののでは、 たいののので	
		通用範囲 粘性土,砂質土,碳混り土 粘性土,砂質土,碟混り土 ※凍結に必要な銘和度の 表層に分布する試料	
-40		高い地盤に適する。 ○ 宇体右無 ○ × (第720回来赤今へ))政	
-50		実施行加 (適用不可のため実施しない) (1000700011011251020000000000000000000000	
(d) 断面図(A-3)		試料採取結果 埋戻王 (掘削スリ) は150mm いるもの、自立しないもので占め 102mm になるの、自立しないもので占め 現地地盤を再現した供試体を作 程度の正ち合きむため試験に採 られていたことから、供試体として 現地地盤を再現した供試体を作 用可能な区間は限定的であった。 採用可能なものは得られなかった。	
<u>第11-3-2 図 荒浜側 試料採取地点位置図(A-1,2,3)</u>		供試体:4体 供試体:0体 - 供試体:10体	
		第3-1-3 図に敷地内の試料採取地点位置図を示す。	
		敷地内の液状化評価対象層として, 埋戻土(掘削ズリ)及び砂	
		<u>礫層の分布状況から以下のとおり地点を選定し、試料を採取して</u>	
		液状化試験を実施する。	
		<u>埋戻土(掘削ズリ)は3号炉西側から1,2号炉東側に広く分</u>	
		布している。このうち,地下水位以下で埋戻土(掘削ズリ)が厚	
		く分布している護岸法線に沿った地点を広範囲に選定し、ロータ	
		リー式三重管サンプラーにより試料採取した(E-2~E-8)。なお,	
		いて、代表性・網羅性の確保及び保守的な液状化強度の設定の観	
		点から、これまで液状化試験データが得られていない位置を選定	
		砂礫層は局所的に分布していることから 分布箇所である3号	
		<u>ボーロスロネスの1,25%</u> 北国大学を発生し、 $F=1$ F-7 F-8)	
		$ $	
		山武村の休取を美施した。供武性作製が可能な武村(巨傑の有無,	
		<u> 必安前さ、日辺性寺」を唯裕し、 彼不化試験を美施した。</u> (ないて、近傍によいてず、リンジョオさけた) 「「海海市 3 5 km/	
		けてし、近伤にわいしホーリンク調査を実施し、標準員人試験	
		およい粒度試験用の試料採取を実施した。ロータリー式三重管サ	
		ンフラーによる液状化試験実施箇所を第3-1-4 図に示す。	

柏崎刈羽原子力発電所 6/7号炉 (20)	17.12.20版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			<figure></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			敷地の被覆層(埋戻土(掘削ズリ))は敷地造成において発生し	
			た岩砕を主体とする材料により埋戻した人工地盤であることか	
			ら、埋戻土(掘削ズリ)の粒径加積曲線となるように粒度調整行	
			い、敷地の埋立工事における施工管理基準値となるよう密度調整	
			を行うことにより、人工地盤である敷地の被覆層(埋戻土(掘削	
			ズリ))を再現した供試体を作製する。	
			<u>路盤材以深の埋戻土(掘削ズリ)を対象として表層試料採取を</u>	
			実施した(A~E地点)。また、表層試料採取にあたり、巨礫を除い	
			て採取した。	
			第3-1-5 図に採取試料状況及び巨礫の例を示す。	
			表層試料採取 生の粒度試験(JISA 1204) 	
			・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
			<u>第3-1-5 図 採取状況及び巨礫の例</u>	
			 既往の試料採取位置の粒径加積曲線と同等になるよう,最大粒 径53mmとして表層採取試料の粒度調整を実施した。粒度調整後の 表層採取試料の粒径加積曲線を第3-1-6 図に示す。 表層採取試料の細粒分含有率を第3-1-6 図に示す。表層採取試料の細粒分含有率の平均値は,既往の試料採取位置の細粒分含有 率の平均値及び平均値-1ヶ値の範囲内である。 土の三軸試験の供試体作製・設置方法(JGS 0520)に基づき, 表層採取試料による供試体を作製した。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		AmintanaImage: Sector Se	
		 <u>線及び細粒分含有率</u> <u>3号炉建設時の敷地の埋戻しにあたり、大型締固め試験により乾燥密度ρ。を算出した(締固めエネルギー1.0E。の乾燥密度ρ。= </u> <u>1.874g/cm³)。乾燥密度ρ。=1.874g/cm³を踏まえ、礫補正後乾燥密度度の。</u> <u>1.874g/cm³)。乾燥密度ρ。=1.874g/cm³を踏まえ、礫補正後乾燥密度とは、粒径53mm以下の材料を対象に実施した大型締固め試験結果に対し、53mm以上の礫を含む実際の埋戻土(掘削ズリ)の乾燥密度を算出するための補正である。したがって、表層採取試料の最大粒径は53mmであることから、表層採取試料による供試体作製にあたっては、乾燥密度ρ。=1.874g/cm³を目標値とした。 </u> <u>供試体作製に、土の三軸試験の供試体作製・設置方法(JGS 0520)</u>に準拠して実施した。試料を5層に分けてモールド(直径100mm)に入れ、静的締固め法により作製した。 <u>以上の方法により表層採取試料による供試体を作製し、土の繰返し非排水三軸試験方法(JGS 0541)を実施した。</u> <u>第3-1-7</u>図に表層採取試料による供試体の乾燥密度を示す。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	画根原子力発電所 2 号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
3.2 液状化試験選定個所の代表性確認	4.2 液状化強度試験 試料採取位置の代表性確認	3.1.2 液状化試験試料採取位置の代表性確認	
液状化試験 <u>個所</u> における基本物性(粒径加積曲線,N値・細粒		液状化試験 <u>試料採取位置</u> における基本物性(粒径加積曲線, N	
分含有率 <u>・乾燥密度・相対密度</u>) について, <u>第11-3-3~6</u> 図に示		値・細粒分含有率)について, <u>第3-1-8~17</u> 図に示す。	・比較指標の相違
す。			【柏崎 6/7】
これらの基本物性について, 液状化試験選定個所の代表性確認		液状化試験試料採取位置の代表性確認を目的に、液状化試験試	柏崎 6/7 では乾燥密
を目的に、液状化試験個所と周辺調査個所の比較、検討を行った。		料採取位置と周辺調査位置を含めた敷地全体との比較、検討を行	度及び相対密度を参考
比較する指標としては、N値、細粒分含有率を選定し、参考指標		った。比較する指標としては、N値、細粒分含有率を選定する。	指標として比較してい
として粒径加積曲線及び密度(相対密度,乾燥密度)を選定した。		<u>第3-1-2</u> 表に各基準類における液状化強度比R _L と基本物性の相	る
第11-3-1 表に各基準類における液状化強度比R _L と基本物性の相		関性を示す。	
関性を示す。			
N値は、各基準類の液状化判定における液状化強度比R _L の算定		N値は、各基準類の液状化判定における液状化強度比R _L の算定	
式がいずれもN値をパラメータとした式であり、また、有効応力		式がいずれもN値をパラメータとした式であり、また、有効応力	
解析(FLIP)の <u>簡易パラメータ設定法</u> にN値がパラメータとして		解析 (FLIP) の <u>簡易設定法</u> にN値がパラメータとして用いられて	
用いられており、液状化強度比との相関が最も高いと考えられる		おり、液状化強度比R _L との相関が最も高いと考えられることから、	
ことから、指標として選定した。		指標として選定する。	
細粒分含有率は、各基準類の液状化判定における液状化強度比		細粒分含有率は、各基準類の液状化判定における液状化強度比	
R _L の算定式において,液状化強度比R _L を補正するパラメータとし		R _L の算定式において,液状化強度比R _L を補正するパラメータとし	
て用いられており、液状化強度比との相関が高いと考えられるこ		て用いられており、液状化強度比R _L との相関が高いと考えられる	
とから、指標として選定した。		ことから、指標として選定する。	
粒径加積曲線や密度(相対密度、乾燥密度)は、基本的な土の	選定した旧表土と盛土の液状化試験試料の採取位置が発電所敷	<u> E-2~8の埋戻土層の基本物性に関する評価は以下のとお</u>	・敷地の地質の相違
物性値であることから、参考指標として選定した。	地内の液状化強度を代表できることを示す。	<u> り。</u>	【柏崎6/7, 女川2】
	旧表土については、液状化強度比RL と相関性のある指標(基本		島根2号炉の地質に
	物性)を抽出の上,液状化強度試験位置と敷地全体における指標	<u>【E-2の埋戻土(掘削ズリ)】</u>	ついて詳細に説明して
	の比較を行うことにより、その妥当性を確認した。	・E-2は3号炉北側エリアのEL+6.5m盤上の地点であり、地表面か	いる
	<u>盛土については、盛土材料及び施工管理の観点から均一である</u>	<u>ら岩盤(約EL-15m)まではすべて埋戻土(掘削ズリ)である。</u>	(以下,島根2号炉の
	ことを示した上で、旧表土と同様に液状化強度比RLと相関性のあ	 ・E-2の埋戻土(掘削ズリ)の粒度分布について、D₅₀は10mm以上と 	3.1.2 章はすべて同じ
	る指標を抽出の上,液状化強度試験位置と敷地全体における指標	なっており,道路橋示方書及び港湾基準のいずれにおいても液	理由である)
	の比較を行うことにより、その妥当性を確認した。	<u>状化の判定を行う必要がある土層には該当しない。</u>	
		・N値は概ね20程度である。また、細粒分含有率は概ね10%程度で	
	<u>4.2.1 旧表土の代表性確認</u>	<u>ある。</u>	
	旧表土の液状化強度試験位置の代表性を確認することを目的と		
	して、液状化強度試験位置と敷地全体における指標を比較し検討	<u>【E-3の埋戻土(掘削ズリ)】</u>	
	<u>を行った。</u>	・E-3は3号炉東側エリアのEL+8.5m盤上の地点であり, 地表面か	
	代表性確認において比較する指標として、(a)粒度分布、(b)細	ら岩盤(約EL-10m)まではすべて埋戻土(掘削ズリ)である。	
	粒分含有率, (c)N値を選定した。なお,各種試験は, JIS に基づ	 ・E-3の埋戻土(掘削ズリ)の粒度分布について、D₅₀は10mm以上と 	
	き実施した。	なっており,道路橋示方書及び港湾基準のいずれにおいても液	
	各指標の選定理由を以下に示す。また、各基準類における液状	<u>状化の判定を行う必要がある土層には該当しない。</u>	
	化強度比R ₁ と基本物性の相関性を第4.2-1 表に示す。	・N値は概ね20程度である。また、細粒分含有率は概ね10%程度で	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	なお,液状化に関連する基本物性の補足を参考資料3に示す。	<u>ある。</u>	
	(a)粒度分布		
	粒径加積曲線から求められる粒度分布は、基本的な土の物性値	【E-4'の埋戻土(掘削ズリ)】	
	であり,各基準類における液状化判定において平均粒径,10%粒径	・E-4'は3号炉東側エリアのEL+8.5m盤上の地点であり,地表面	
	が用いられており、液状化強度比の相関が高いことから選定した。	から岩盤(約ELOm)まではすべて埋戻土(掘削ズリ)である。	
	(b)細粒分含有率	 ・E-4'の埋戻土(掘削ズリ)の粒度分布は、D₅₀は10mm以上となっ 	
	細粒分含有率は、各基準類の液状化判定における液状化強度比	ており,道路橋示方書及び港湾基準のいずれにおいても液状化	
	<u>R</u> の算定式において,液状化強度比RL を補正するパラメータと	の判定を行う必要がある土層には該当しない。	
	して用いられており、液状化強度比RL との相関が高いことから選	・N値は概ね30程度である。また、細粒分含有率は概ね10%程度で	
	定した。	<u>ある。</u>	
	<u>(c)N值</u>		
	N値は、各基準類の液状化判定における液状化強度比RL の算定	【E-5の埋戻土(掘削ズリ)】	
	式がいずれもN値をパラメータとした式であり、また、有効応力	・E-5は3号炉東側エリアのEL+6.0m盤上の地点であり、地表面か	
	解析コード (FLIP) の簡易パラメータ設定法にN値が用いられて	<u>ら岩盤(約EL-3m)まではすべて埋戻土(掘削ズリ)である。</u>	
	おり、液状化強度比との相関が高いことから選定した。	 ・E-5の埋戻土(掘削ズリ)の粒度分布は、D₅₀は10mm以上となって 	
		おり,道路橋示方書及び港湾基準のいずれにおいても液状化の	
		<u>判定を行う必要がある土層には該当しない。</u>	
		・N値は概ね10程度である。また、細粒分含有率は概ね10%程度で	
		<u>ある。</u>	
	第4.2-1表 各基準類における液状化強度比R ₁ と基本物性の相関性		
	基準領名 液状化強度比凡の算定 液状化強度比凡の補	<u>【E-6の埋戻土(掘削ズリ)】</u>	
	道路橋云古書(V) 副電影社	 ・E-6は1,2号炉北側エリアのEL+8.5m盤上の地点であり、地表 	
	編)・同解説,(社)日本道路協 会 平成14年3月	面から岩盤(約EL-10m)にかけて,上から順に埋戻土(掘削ズ	
	港湾の施設の耐震設計に係る当	<u>リ), 埋戻土(粘性土), 基礎捨石が存在する。</u>	
	面の措置(その2),日本港湾 協会,2007(部分改訂,2012) (右効上載圧を考慮した補 細粒分含有率 Fc	<u>・そのうち, E-6の埋戻土(掘削ズリ)の粒度分布は, D₅₀は10mm</u>	
	建築基礎構造設計指針,日本建 施学会 2001	以上となっており、道路橋示方書及び港湾基準のいずれにおい	
	(株) (1001) (★) (1	ても液状化の判定を行う必要がある土層には該当しない。	
	耐震設計,(財)鉄道総合技術 研究所,2012	・N値は概ね20程度である。また、細粒分含有率は概ね10%程度で	
		<u></u>	
	旧表土の液状化強度試験位置並びに標準員人試験及び物理特性	<u>・E-7は1,2号炉北側エリアのEL+8.5m盤上の地点であり、地表</u>	
	試験採取位直を第4.2-1 図に示す。旧表土の液状化強度試験の試	<u> 田から宕盤(約EL-10m)にかけて、上から順に埋戻土(掘削ス</u> <u> 北) 田戸し(地址し) 東西協力 西部になって</u>	
	科採取位直での合指標(粒度分布, 細粒分含有率及びN 値)は,	<u>リ), 理民工(粘性工), 基礎苦石, 砂礫層が存在する。</u>	
	<u>保</u> 理員人試験及び物理特性試験採取位直を含めた敷地全体での指 「無し比較したな用」回知産まないた回来しの対地に設産発展と	・てのりら,E-(の理民工(畑則スリ)の粒度分布は,港湾基準に	
	<u>除こ比較しに結末,回住度のるいは旧衣工の彼状化独皮試験位直</u> の支払めの流出ルしの大い傾向ぶちてたみ。回去しの流出ルや産	<u>やいて、 (牧仏仏のり) 形性がめる工層には該自しない。</u> また、 DEOは10mm PIT、 D 2は1mm PITできてが、 T ざいいしでさ	
	<u>の力がやや悩れ化しやすい傾向かめるため、旧衣工の彼状化強度</u>	また、 $D30$ は10mm以下、 D_{10} は1mm以下であるか、 I_p か15以上であ スため、送晩様二十またい、マ茨地ルの地内を行きせませた。	
	矾映位直には代衣性かめると考えられる(第4.2-2 図)。	<u> るにめ、 退路 備 示 力 書 に お い し 彼 状 化 の 判 足 を 行 う 必 要 か あ る </u>	1

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
			なお, N 値と細粒分含有率 (Fc)の関係について整理したものを	土層には該当しない。	
			参考に参考資料4に示す。	・N値は概ね10程度である。また、細粒分含有率は概ね10%程度で	
			 ・液状化強度試験位置の粒度分布は、おおむね敷地全体の粒度 	<u>ある。</u>	
			分布の平均的な範囲にある。		
			・液状化試験位置の細粒分含有率は,敷地全体の±1 σ の範囲	【E-8の埋戻土(掘削ズリ)】	
			であり、おおむね敷地全体の平均的な範囲にある。	・E-8は3号炉北側エリアのEL+6.5m盤上の地点であり, 地表面か	
			 液状化試験位置のN値は、敷地全体よりもやや小さい値であ 	<u>ら岩盤(約EL-20m)にかけて,上方に埋戻土(掘削ズリ)が存</u>	
			<u> </u>	在し,岩盤上に厚さ最大5m程度の砂礫層が存在する。	
				<u>・</u> そのうち, E-8の埋戻土 (掘削ズリ) の粒度分布は, D ₅₀ は10mm	
				<u>以上となっており、道路橋示方書及び港湾基準のいずれにおい</u>	
				ても液状化の判定を行う必要がある土層には該当しない。	
				・N値は概ね20程度である。また、細粒分含有率は概ね10%程度で	
				<u>ある。</u>	
				次に,砂礫層の基本物性に関する評価は以下のとおり。	
				【E-1の砂礫層】	
				・E-1は3号炉北側エリアのEL+6.5m盤上の地点であり, 地表面か	
			: 液状化強度試験位置(IB表土) /////////////////////////////////	<u>ら岩盤(約EL-20m)にかけて,上方に埋戻土(掘削ズリ)が存</u>	
			 :標準寬入試験位置又13 物理特性試験試料採取位置 	<u>在し、岩盤上に厚さ最大5m程度の砂礫層が存在する。</u>	
				・そのうち, E-1の砂礫層の粒度分布は,港湾基準において,液状	
			第4.2-1図 旧表土の液状化強度試験位置並びに標準貫入試験及び	化の可能性がある土層には該当しない。	
			物理特性試験採取位置の平面図	<u>また, D₅₀が10mm以下, D₁₀が1mm以下及び細粒分含有率が35%以下</u>	
				である試料があるため、道路橋示方書において液状化の判定を	
				<u>行う必要がある土層に該当する。</u>	
				・N値は概ね20程度である。また、細粒分含有率は概ね20%程度で	
				<u>ある。</u>	
				 ・E-7は1,2号炉北側エリアのEL+8.5m盤上の地点であり、地表 	
				面から岩盤(約EL-10m)にかけて,上から順に埋戻土(掘削ズ	
				リ), 埋戻土(粘性土), 基礎捨石, 砂礫層が存在する。	
				・そのうち, E-7の砂礫層の粒度分布は,港湾基準において,液状	
				化の可能性がある土層には該当しない。	
				<u>また、D₅₀が10mm以下、D₁₀が1mm以下及び細粒分含有率が35%以下</u>	
				である試料があるため、道路橋示方書において液状化の判定を	
				行う必要がある土層に該当する。	
				・N値は概ね10程度である。また、細粒分含有率は概ね10%程度で	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>ある。</u>	
	粒度分布		
	 ・おおむね敷地全体の平均的な粒 注) 沈降分析を実施していない試料に関しては、 度分布を持つ試料で試験を実施 75 μ m以上の粒度分布のみ表示。 	【 E - 8の砂礫層】	
	30 S	・E-8は3号炉北側エリアのEL+6.5m盤上の地点であり、地表面か	
		ら岩盤(約EL-20m)にかけて,上方に埋戻土(掘削ズリ)が存	
		在し,岩盤上に厚さ最大5m程度の砂礫層が存在する。	
	R SO ROOM	・そのうち, E-8の砂礫層の粒度分布は,港湾基準において,液状	
		化の可能性がある土層には該当しない。	
	接続(m) 0.001 0.001 日本(10.000) 4.75 19 25 0.12 シストト 経谷 中却 保谷 振振 中語 明確	<u>また, D₅₀が10mm以下, D₁₀が1mm以下及び細粒分含有率が35%以下</u>	
	(a) 粒度分布	である試料があるため、道路橋示方書において液状化の判定を	
	ao ao 描述分含有空	<u>行う必要がある土層に該当する。</u>	
	a) 2 ・あおで13数地全体 における土10の 第第四の試料で試	・N値は概ね20程度である。また、細粒分含有率は概ね20%程度と	
		ばらつきが大きい。	
各基準のおける設計で設定する地盤物性値のばらつきに対する		各基準における設計で設定する地盤物性値のばらつきに対する	
考え方は,「地盤工学会基準JGS4001:性能設計概念に基づいた基	は酸使用 数法全体	考え方は,「地盤工学会基準 JGS 4001:性能設計概念に基づいた	
礎構造物等に関する設計原則(2006)」や「港湾の施設の技術上の	(b) 細粒分含有率	基礎構造物等に関する設計原則(2006)」や「 <u>港湾基準</u> 」,「道路橋	
基準・同解説(2007)」,道路橋示方書によると、平均値を原則と	50 50 第二日の値 共二数地会体より	示方書」によると、平均値を原則とし、ばらつきを考慮する場合は	
し、ばらつきを考慮する場合は変動係数等に応じて設定するとい	40 小さい箇所で試 数を実施	変動係数等などに応じて設定するという考え方が示されている。	
う考え方が示されている。			
液状化試験 <u>個所</u> と周辺調査 <u>個所</u> のN値等の比較に際しては,各		液状化試験試料採取位置と周辺調査位置を含めた敷地全体との	
基準における地盤物性値のばらつきに対する考え方を参考に、「平		N値等の比較に際しては、各基準における地盤物性値のばらつき	
均値」及び平均値から標準偏差σを減じた「平均値-1σ(以下「-1	(c) N 值	に対する考え方を参考に,「平均値」及び平均値から標準偏差σを	
σ値」と称す)」について整理した。	第4.2-2図 液状化強度試験位置の基本物性の比較(旧表土)	減じた「平均値-1σ(以下「-1σ値」という)」について整理した。	
		第3-1-3 表に各基準類における地盤物性値のばらつきに対する考	
	(2) 液状化のしやすさに関する検討	え方を示す。	
	液状化強度試験位置並びに標準貫入試験及び物理特性試験試料		
【地盤工学会基準JGS4001:性能設計概念に基づいた基礎構造物等	採取位置のすべての粒度分布から液状化しやすい傾向にある試料	【地盤工学会基準 JGS 4001:性能設計概念に基づいた基礎構造物	
に関する設計原則(2006)】	(細粒分含有率が小さく、0.1~1mm の範囲で急激な立ち上がりと	等に関する設計原則(2006)】	
 ・設計に用いる「特性値」の決定にあたっては、過去の経験にも 	なっている試料)を抽出し、その平面的な分布について確認した	・設計に用いる「特性値」の決定にあたっては、過去の経験にも	
とづき、地盤パラメータのばらつきや単純化したモデルの適用	(第4.2-3 図)。	とづき、地盤パラメータのばらつきや単純化したモデルの適用	
性に十分留意しなければならない。	その結果、海側(図面上部の防潮堤近傍)から採取した旧表土	性に十分留意しなければならない。	
 この特性値は、原則として導出値の平均値(期待値)である。 	が液状化しやすい傾向となっていることを確認した(第4.2-3 図	 この特性値は、原則として導出値の平均値(期待値)である。 	
この平均値は単なる機械的な平均値ではなく、統計的な平均値	及び第4.2-4図)。	この平均値は単なる機械的な平均値ではなく、統計的な平均値	
の推定誤差を勘案したものでなければならない。	なお,旧表土の液状化強度試験は,上記の海側からも試料を採	の推定誤差を勘案したものでなければならない。	
 ・特性値を示すにあたっては、地盤の特性を記述するために、特 	取していることから、敷地に対して代表性があるといえる。	・特性値を示すにあたっては、地盤の特性を記述するために、特	
性値に加えて、導出値のばらつきの指標(たとえば標準誤差や	以上より,旧表土における液状化強度試験の試料採取位置は,	性値に加えて、導出値のばらつきの指標(たとえば標準誤差や	
変動係数)を含めることが望ましい。	敷地全体に対し代表性を有していると評価した <u>。</u>	変動係数)を含めることが望ましい。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)

女川原子力発電所 2号炉(2019.11.6版)

【港湾の施設の技術上の基準・同解説 (2007)】

- ・性能照査に用いる地盤定数の設計用値は,原則として地盤工学 会基準JGS4001 に基づき,推定する。
- ・地盤定数の代表値である特性値は、データ数が十分かつ導出値のばらつきが小さい場合には、原則として導出値の平均値をもって算定することができる。ただし、データ数が不足している場合(10 個未満)及び導出値のばらつきが大きい場合には、導出値の平均値を補正した上で、特性値を設定する必要がある。
- ・特性値は、導出値のばらつきに関する補正係数b1 を標準偏差と して定義される変動係数に応じて設定することにする。

【道路橋示方書】

- ・地盤は複雑でばらつきの大きい材料であるが、設計に用いる地 盤定数は、基礎に作用する荷重に対して、その条件下で最も高 い確率で起こり得る基礎の挙動を推定するものである。したが って、地盤定数は、計算式の精度や特性を顧慮した上で、当該 地盤の平均的な値と考えられるものを求めることが原則であ る。
- ・自然地盤から得られる計測データは多様で、しかもばらつくの が<u>ふつう</u>である。データのばらつきだけでなく、データ数を合 理的に評価して設計に用いる地盤定数を定める必要がある。

各液状化試験<u>個所とその対象地層の周辺調査</u>個所における基本 物性を整理した。第11-3-7 図に液状化試験個所と周辺調査個所の 位置図,第11-3.8~14 図に各土層の基本物性の比較結果を示す。 なお,各種試験は,JIS に基づき実施した。

<u>A-1地点の洪積砂層 I は、周辺調査個所と比べて、N値が同</u> 程度であり細粒分含有率が小さいこと、A-1の洪積砂層 II は、 細粒分含有率が若干大きいもののN値が小さいことから、代表性 を有していると評価した。ただし、当該地層は層厚が厚く分布範 囲が広いことを踏まえ、データ拡充を目的とした追加調査を実施 する。

<u>A-2地点の洪積砂層 I は、周辺調査個所と比べて、N値及び</u> 細粒分含有率の-1σ値が大きいものの、液状化強度との相関が最 も高いN値の平均値は小さいことから、代表性を有していると評 価した。ただし、A-2地点の洪積砂層 I は、A-1地点の洪積

第4.2-3図 粒度分布から液状化しやすいと考えられる試験位置の

平面図(旧表土)

第4.2-4図 液状化のしやすさに関する検討結果(旧表土)

島根原子力発電所 2号 【<u>港湾基準</u>】 ・性能照査に用いる地盤定数の設計用値は,

- 会基準 JGS 4001に基づき,推定する。
- ・地盤定数の代表値である特性値は、データのばらつきが小さい場合には、原則としてって算定することができる。ただし、デー場合(10個未満)及び導出値のばらつきか出値の平均値を補正した上で、特性値を認めていたとで、特性値を認めていたとで、特性値を認めていたとの。
- ・特性値は、導出値のばらつきに関する補正 して定義される変動係数に応じて設定する

【道路橋示方書】

- ・地盤は複雑でばらつきの大きい材料である
 盤定数は、基礎に作用する荷重に対して、
 い確率で起こり得る基礎の挙動を推定する
 って、地盤定数は、計算式の精度や特性を
 地盤の平均的な値と考えられるものを求める。
- ・自然地盤から得られる計測データは多様で が<u>普通</u>である。データのばらつきだけでな 的に評価して設計に用いる地盤定数を定め

液状化試験を実施した箇所のうち, 埋戻 礫層の液状化試験試料採取位置と周辺調査(や防波壁近傍におけるN値や物理特性(細緒 行い, 代表性を確認した。第3-1-18 図に比 3-1-19 図に各土層の基本物性の比較結果を は, JIS に基づき実施した。

<u>E-2~E-8地点の埋戻土(掘削ズリ)</u> て,N値及び細粒分含有率ともに,液状化語 均値及び-1σ値が,敷地全体のばらつき(± ことから,液状化試験試料採取位置は代表性 した。また,埋戻土(掘削ズリ)は敷地全体 所によって埋戻土(掘削ズリ)の性状が異た ら,敷地の広範囲にわたって設置された防護 化試験試料採取位置と3つの構造形式の防護 比較したところ,N値及び細粒分含有率とす 採取位置の平均値が,防波壁近傍のばらつき

	備考
原則として地盤工学	
タ数が十分かつ導出値	
て導出値の平均値をも	
ータ数が不足している	
が大きい場合には,導	
設定する必要がある。	
E係数b1を標準偏差と	
ることにする。	
るが,設計に用いる地	
その条件下で最も高	
るものである。したが	
を <u>考慮</u> した上で,当該	
めることが原則であ	
で,しかもばらつくの	
なく、データ数を合理	
める必要がある。	
上(掘削ズリ)及び砂	
立置を含めた敷地全体	
立分含有率)の比較を	
較対象位置図を, 第	
・示す。なお,各種試験	
は、敷地全体と比べ	
試験試料採取位置の平	
±1σ)の範囲内である	
生を有していると評価	
本に分布するため,場	
なる懸念があることか	
皮壁に着目して,液状	
皮壁近傍の基本物性を	
もに、液状化試験試料	
き (±1σ) の範囲内で	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
砂層 I, Ⅱと同時代に堆積した地層であること, N値がA-1地	4.2.2 盛土の代表性確認	あることから、液状化試験試料採取位置は代表性を有していると	
点の洪積砂層Ⅱと同程度であることを踏まえ,後述する液状化試	<u>盛土については、建設時に発生した岩砕が主体であり、締固め</u>	評価した。	
験結果から非液状化層と評価しているものの、物性設定において	管理して施工された人工地盤である(盛土の均一性については参	E-1, E-7, E-8地点の砂礫層の細粒分含有率は, 液状化試験試料	
は保守的にサイクリックモビリティを示すA-1地点の洪積砂層	考資料2に示す。)。	採取位置の平均値及び-1σ値が,敷地全体のばらつき(±1σ)の	
Ⅱの試験結果を用いる方針とする。	盛土の液状化強度試験位置の代表性を確認することを目的とし	範囲内であった。また、N値は、液状化試験試料採取位置の平均値	
A-2地点の洪積砂層Ⅱは、周辺調査個所と比べて、N値及び	て、液状化強度試験位置と敷地全体における指標を比較し検討を	は敷地全体のばらつき(±1 g)の範囲内であり,液状化試験試料	
細粒分含有率が同程度若しくは小さいことから、代表性を有して	行った。	採取位置の-1σ値は敷地全体のばらつき(±1σ)の範囲から僅か	
いると評価した。なお、後述する液状化試験結果から非液状化層	代表性確認において比較するため,液状化強度比RL と相関性の	に外れているものの概ね一致していることから、液状化試験試料	
と評価しているA-2地点の洪積砂層Ⅱは,主にサイクリックモ	ある指標として(a)粒度分布,(b)細粒分含有率,(c)相対密度を選	採取位置は代表性を有していると評価した。なお、砂礫層は敷地	
ビリティを示すA-1地点の洪積砂層 I , II 及びA-2地点の洪	定した。なお,各種試験は,JIS 及びJGS に基づき実施した。	の局所的な範囲で確認されており、液状化試験試料採取位置と敷	
積砂層 I の下位に分布する砂層であり、より古い時代に堆積した	各指標の選定理由を以下に示す。なお、液状化に関連する基本	地全体の調査位置とは近接している。	
砂層である。	物性の補足について、参考資料3に示す。		
O-1地点の洪積砂質土層Ⅰ,Ⅱは、周辺調査個所と比べて、	(a) 粒度分布		
細粒分含有率の大きい試料が1試料あることで平均値が若干大き	粒径加積曲線から求められる粒度分布は、基本的な土の物性値		
いもののN値が同程度であることから、代表性を有していると評	であり,各基準類における液状化判定において平均粒径,10%粒径		
価した。ただし、液状化試験個所の粒径加積曲線が周辺調査個所	が用いられており、液状化強度比RL の相関が高いことから選定し		
よりばらつきが大きいこと、6、7号炉の申請であることも踏ま	<u>t.</u>		
<u>え、N値のデータが少ない7号取水路周辺でデータ拡充を目的と</u>	(b)細粒分含有率		
した追加調査を実施する。	細粒分含有率は、各基準類の液状化判定における液状化強度比		
<u>A-3地点の新期砂層・沖積層は、荒浜側の周辺調査個所と比</u>	<u>R₁の算定式において,液状化強度比R₁を補正するパラメータとして</u>		
<u>べて、N値及び細粒分含有率がいずれも小さく下限付近であるこ</u>	<u>用いられており、液状化強度比R_Lとの相関が高いことから選定し</u>		
とから、試験は保守的な個所で実施していると評価した。	<u>t.</u>		
<u>A-3地点の新期砂層・沖積層は、大湊側の周辺調査個所と比</u>	(c)相対密度		
<u>べて,細粒分含有率が小さいものの,N値が大きいことから,大</u>	ダイレイタンシー特性(繰返しせん断に伴う体積変化)に直接		
<u>湊側の新期砂層・沖積層の液状化強度を確認することを目的とし</u>	関連する指標であり、液状化強度比R _L との相関が高い。		
た追加調査を実施する。			
<u>A-1地点の埋戻土層は,N 値のみの比較ではあるものの,液</u>	なお,盛土を構成する岩砕の最大粒径は300mm であり, 岩砕が		
状化強度との相関が最も高いN 値が周辺調査個所と比べて小さく	多く含まれることから標準貫入試験が適正に実施できないこと及		
下限付近であることから、試験は保守的な個所で実施していると	び通常の小口径ボーリングコア試料では物理特性を把握すること		
評価した。	ができないことから、N値を使用せず原位置における粒度分布や		
	細粒分含有率及び現場密度試験に基づく相対密度を指標に採用し		
	た。盛土のN値については、参考資料5に示す。		
	盛土の液状化強度試験位置並びに原位置試験及び物理特性試験		
	採取位置を第4.2-5 図に示す。		

柏崎刈羽原子力発電	所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2 長
<u>第11-3-1 表 各基準類における液状化強度比R</u> と基本物性の相		ŁR <u>,</u> と基本物性の相		100
<u>関性</u>				90 埋戻土(掘削ズリ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
				80
基準類名	液状化強度比 R _L の算定 に用いる主物性	液状化強度比の補正に 用いる物性		€70 ₩ co ₩ co €
道路橋示方書				余 60 回 50 回 50
(下水道施設の耐震対策指針と				第40
解說,日本下水道協会,2006) (河川砂防技術基準(案)同解		細粒公会有率 Fe		30
説 設計編,日本河川協会編,		和性力百有牛 10		20 Dio=18m
(高圧ガス設備等耐震設計指				
針, 高圧ガス保安協会, 2000)	NG			0.001 0.01 0.1 1 粒径(mm)
港湾の施設の耐震設計に係る当 面の措置(その2),日本港湾	№1値 (有効上載圧を考慮した			F-6地占の液状化試驗試料の約4
協会,2007 (部分改訂 2012)	補正を行う)	細粒分含有举 Fc		
建築基礎構造設計指針,日本建				CI N值 制
築学会, 2001		細粒分含有率 Fc		0 m
(不道應該納晨上法指對·问解 説,日本水道協会,1997)				
鉄道構造物等設計標準・同解説 耐震設計 (財) 鉄道総合技術		細粒分含有率 Fc		5 m
研究所, 2012		平均粒径 D ₅₀		
 : 液状化試験 試料採取位置 : 標準貫入試験位置または物理特性試料採取位置 (〇内数値は位置番号, 荒浜側①~砲、大湊側				
放水口 // *>/章	0			サンプリ
		0 00 stais		
		#4T. B		細粒分含有率:粒度0.075mm未満の土
- FRU 01 - 177 - 64 - 823 53 - 38 - 698				● :ボーリング調査試料の試験
				 □ :液状化試験試料の試験系 □ : E-6の採取深度
	(a) 荒浜側			P_6地点のボーリング調本計判なとび抜歩
				第3-1-12 図 液状化試験試料採取位置の基
				<u>土 (掘削ズリ))</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
Interview Interview <td></td> <td>第3-1-2 表 各基準類における液状化強度比R, と基本物性の相 <u>男性</u> 第3-1-2 表 各基準類における液状化強度比R, の算定 度性 準準知名 液状化強度比R, の算定 (用いる主物性) 液状化強度比R, の算定 (用いる主物性) 「水道施設の耐震対策指針と解説、日本下水道協会、H24 (下水道施設の耐震設計能料,高圧ガス保安協会,H18) (同川砂防茨滿基準 (案) 同解説 設計編,日本河川協会編,H9) (高圧ガス設備等耐震設計指針,高圧ガス保安協会,H12) N値 (有効上報圧を考慮した 福祉分含有率FC 細粒分含有率FC 潜惑の施設の耐震設計指針、日本建築学会、H13 (水道施設耐震工法指針・同解説、日本水道協会,H9) N値 (有効上報圧を考慮した 福正を行う) 細粒分含有率FC 業場場機構造設計編集,日本建築学会,H13 (水道施設耐震工法指針・同解説、日本水道協会,H9) M値 (有効上報圧を考慮した 福正を行う) 細粒分含有率FC 平均粒径D₅₀ 業満の施設の技術上の基準・同解説、日本港湾協会,H19 埋立地の液状化対策ハンドブック(改訂版),運輸省港湾局監修,H9 細粒分含有率FC</td> <td></td>		第3-1-2 表 各基準類における液状化強度比R, と基本物性の相 <u>男性</u> 第3-1-2 表 各基準類における液状化強度比R, の算定 度性 準準知名 液状化強度比R, の算定 (用いる主物性) 液状化強度比R, の算定 (用いる主物性) 「水道施設の耐震対策指針と解説、日本下水道協会、H24 (下水道施設の耐震設計能料,高圧ガス保安協会,H18) (同川砂防茨滿基準 (案) 同解説 設計編,日本河川協会編,H9) (高圧ガス設備等耐震設計指針,高圧ガス保安協会,H12) N値 (有効上報圧を考慮した 福祉分含有率FC 細粒分含有率FC 潜惑の施設の耐震設計指針、日本建築学会、H13 (水道施設耐震工法指針・同解説、日本水道協会,H9) N値 (有効上報圧を考慮した 福正を行う) 細粒分含有率FC 業場場機構造設計編集,日本建築学会,H13 (水道施設耐震工法指針・同解説、日本水道協会,H9) M値 (有効上報圧を考慮した 福正を行う) 細粒分含有率FC 平均粒径D ₅₀ 業満の施設の技術上の基準・同解説、日本港湾協会,H19 埋立地の液状化対策ハンドブック(改訂版),運輸省港湾局監修,H9 細粒分含有率FC	
-3地点の新期砂層・沖積層)		<u>第3-1-3 表 各基準類における地盤物性値のばらつきに対する考</u> <u>え方</u>	
<text><text><text><text><text></text></text></text></text></text>		基準類名 地盤物性値のばらつきに対する考え方 地盤工学会基準 JGS4001 ・設計に用いる「特性値」の決定にあたっては、過去の経験にもとづき、地盤パラメータのばらつきや単純化したモデルの適用性に十分留意しなければならない。 ・の特性値は、原則として導出値の平均値(期待値)である。この平均価は単なる機械的な平均値ではなく、統計的な平均値の推定誤差徴離果したのでなければならない。 ・特性値を示すにあたっては、地盤の特性を記述するために、特性値に加えて、導出値のどうつき加損機(たとえば標準 誤差や変動係数)を含めることが望ましい。 ・特性値を示すにあたっては、地盤の特性を記述するとめに、特性値に加えて、導出値のどうつき加損機(たとえば標準 誤差や変動係数)を含めることが望ましい。 ・特性値を示すこのたっては、地盤の特性を記述するとかに、特性値に加えて、導出値のどううきの上載である。 ・特性値は、デーク弦が十分かつ導出値のがおつきがいとい場合には、原則として潮出値かす 均値をもって算定することができる。ただし、デークなが十分かつ導出値のがおつきがいやい場合には、原則として潮出値の存 場合には、導出値のでジョ値を確正したして、特性値を設定する必要がある。 ・特性値は、導出値のびらうきに関する補正に係及して建築される変動係数に応じて設定することです。 ・地盤は複雑でばらうきの大きい材料であるが、設計に用いる地盤定数なとたがって、地盤定数は、計算式の精度や特性を考慮 したって、当該地盤の平均的な値を考えられるを求めることがが見回てある。 ・自然地盤が分得られる計測デークが多様で、しかちだらつくがふっううたる。デークのはらつきだけでなく、デーク数を含理 のに評価して設計に用いる地盤定数を定める必要がある。 ・自然地盤が分得られる計画があった。 ・自然地盤が分得られる計画デークが多様で、しかちだらつくがふっうである。デークのはらつきだけでなく、デーク数を含せ のに評価して設計に用いる地盤定数を定める必要がある。 ・飲むたちのたちれば計デークがなりである。 ・認知道のが得られる計画が完成したびのがふうったる。 ・認知道の平均的な値を定めと変め必要がある。 ・自然地盤のデ約る計画が可能であるの必要がある。 ・認知道の生まるのものをするのものがあるの。 ・認知道の平均的な値を定めるの必要がある。 ・自然やりたきがに用いる地盤定数を定め必要がある。 ・ のが能を引くままするのである。 ・ のがけるのものでながっためのでなる。 ・ のがまするのがあるのがあるのがある。 ・ のが能量のなるをするのがある。 <t< td=""><td></td></t<>	
 (b) 基本物性比較 <u>第11-3-13 図 液状化試験個所と周辺調査個所の基本物性比較(A</u> <u>- 3 地点の新期砂層・沖積層)</u> 			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
<figure></figure>		・ ・
-1の埋戻土層)		
● 「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」		砂礫層 第3-1-18 図 比較対象位
¹ りのします。1000日の「日本のののののののののののののののののののでは、1000日ののののののののののののでは、1000日ののののののののののののでは、1000日ののののののののののののでは、1000日ののののののののののののでは、1000日ののののののののでは、1000日ののののののののののののののでは、1000日のののののののののののののののののののののののののののののののののの		

柏崎刈羽原子	力発電所	6/	7 号炉	(2017	7.12.20版) 女川原子フ	発電	所 2号炉(2019.11.6版)	島根原子力発電所 2号炉 備考
<u>第11-3-2</u> 表 液状	化試験個	所と周	辺調査個	国所の基	基本物性比較のま			
		<u>と</u> 8	<u>か</u>					E-3
地層区分		N值	細粒分 含有率	追加 調査 実施				E-5 E-7
A−1 洪積砂層 I	平均値 -1σ値			0				
A-1 洪積砂層 Ⅱ	平均値 -1σ値			0				● 100 200 500 400 500 a
A−2 洪積砂層 I	平均值 -1σ值			*				O N値 O N値 平均:19.1 平均:15.8 デー交散:75 デー交散:506
A-2 洪積砂層Ⅱ	平均值 -1σ值			_				
10-1 洪積砂質土層 I, Ⅱ	平均值 -1σ值			0				
A-3 新期砂層・沖積層 (荒浜側)	平均値 -1σ値			_				
A-3 新期砂層・沖積層 (大湊側)	平均值 -1σ值			0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A−1 埋戻土層	平均値 -1σ値		-	0				[■] [■] : 平均値 [■] : 平均値 + 10 [■]
: 周辺 (3	辺調査箇所にす 変動率 < -109	すして液状化 v)	試験箇所がり	はい				<u>較(埋戻土(掘削ズリ))</u>
:周辺 (一 :周辺 (3	2調査箇所とネ 10% ≦ 変動滓 2調査箇所にタ 変動率 > 10%)	刻状化試験値 ^Ξ ≦ 10%) 対して液状化)	動が同程度 ム試験箇所がフ	大きい				
※ 液状化強度特性	の設定は,保	守的にA-	1(洪積砂層	脅Ⅱ)の液料	犬化試験結果を用いる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12	2.20版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			<figure></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		60 ○ N値 平 均:15.8 ○ N値 平 均:15.9 ○ N値 平 均:15.7 50 6 7-930:75 7-930:300	
		(a) №値 (a) №値 第3-1-19図 液状化試験試料採取位置と防波壁近傍の基本物性比 較(埋戻土(掘削ズリ))	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		110 〇細粒分含有率 平 均:10.2 データ数:35 〇細粒分含有率 平 均:15.5 データ数:154 〇細粒分含有率 平 均:15.7 データ数:45 〇細粒分含有率 平 均:15.7 データ数:57 〇細粒分含有率 平 均:16.1 データ数:57 90 0	
		試液 敷 3 科状 地 号 提化 全 機 機 号 取試 域 北 東 機 位該	
		第3-1-19図 液状化試験試料採取位置と防波壁近傍の基本物性比 較(埋戻土(掘削ズリ))	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		60 N価 平均: 15.5 データ数: 15 ジータ数: 15 ジー ジータ数: 15 ジー ジー ジー ジー ジー ジー ジー ジー ジー ジー	
		20 0	
		▲ №★ 第3-1-19 図 液状化試験試料採取位置と敷地全体の基本物性比 較(砂礫層)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		90 90 90 90 90 90 90 90 90 90	
		20 0	
		<u>較(砂礫層)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
3.3 追加調査位置		
3.1 及び3.2 の検討結果を踏まえて, 第11-3-15 図に追加調査		
実施予定地を示す。		
荒浜側におけるA-1地点の洪積砂層Ⅰ, Ⅱ及びA-2地点の		
洪積砂層 I は、地質の連続性等の評価や周辺調査個所のN値や細		
粒分含有率の比較から代表性を有していると評価した。ただし、		
層厚が厚く分布範囲が広いことを踏まえ、データ拡充を目的とし		
た追加調査を実施する。なお, A-2地点の洪積砂層 I は, A-		
1地点の洪積砂層Ⅰ, Ⅱと同時代に堆積した地層であること, N		
<u>値がA-1地点の洪積砂層Ⅱと同程度であることを踏まえ、物性</u>		
設定においては保守的にA−1地点の洪積砂層Ⅱの試験結果を用		
いる方針とする。追加調査位置は、事前調査を実施し、A-1地点		
の洪積砂層Ⅰ, Ⅱの両層を採取できる場所を選定する。		
O-1地点の洪積砂質土層Ⅰ,Ⅱは、地質の連続性等の評価や		
周辺調査個所のN値や細粒分含有率の比較から代表性を有してい		
ると評価した。ただし、6、7号炉の申請であることを踏まえ、		
7号取水路周辺でデータ拡充を目的とした追加調査を実施する。		
追加調査位置は,事前調査を実施し,古安田層中に挟在する砂層		
から試料が確実に採取できる場所を選定する。		
<u>A-3地点の新期砂層・沖積層は、大湊側の周辺調査個所と比</u>		
<u>べて、細粒分含有率が小さいものの、N値が大きいことから、大</u>		
<u>湊側の新期砂層・沖積層の液状化強度を確認することを目的とし</u>		
た追加調査を実施する。追加調査位置は、事前調査を実施し、新		
期砂層・沖積層から試料が確実に採取できる場所を選定する。		
<u>埋戻土層については、液状化試験を実施したA-1地点のN値</u>		
が周辺調査個所に比べて小さく下限付近であることから, 試験は		
保守的な個所で実施している評価した。ただし,大湊側でのN値		
のデータが少ないことから、大湊側の埋戻土層の液状化強度を確		
認することを目的とした追加調査を実施する。追加調査位置は,		
事前調査を実施し、埋戻土層から試料が確実に採取できる場所を		
選定する。		

号炉	備考
	・資料構成の相違
	【柏崎6/7】
	柏崎6/7では追加調査
	位置について説明して
	いる
	(以下, 柏崎 6/7 の 3.3
	章はすべて同じ理由で
	ある)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<u>(a) 荒浜側:A−1地点の洪積砂層 I , Ⅱ及びA−2地点の洪積</u> <u>砂層 I</u> <u>第11-3-15 図 追加調査実施予定地</u>			
A M 「日本語」 1 大法問題(100-11) 大法問題(100-11) 大法問題(100-11) 大法問題(100-11) 大法問題(100-11) 日本法側:00-11)			
<u>七層</u> <u>第11-3-15</u> 図追加調査実施予定地			
大発生 読品/2003 大発生 読品/2003 大発生 読品/2003 大発生 読品/2003 大発生 読品/2003 1000000000000000000000000000000000000			
<u>(c)大湊側:新期砂層・沖積層</u> <u>第11-3-15</u> 図 追加調査実施予定地			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉	戸(2019.11.6版)	島根原子力発電所 2号炉	備考
<u>4</u> 液状化試験結果	5. 液状化強度試験結果と液状化強度	ま特性の設定	32 液状化試験結果	
4.1 液状化試験方法	5.1 液状化强度試験方法		3.2.1 液状化試験方法	
地盤工学会では、地盤の液状化強度特性を求めるための繰返し			地盤工学会では,地盤の液状化強度特性を求めるための繰返し	
非排水三軸試験方法(JGS 0541)が <u>規程</u> されている。実務的には,			非排水三軸試験方法(JGS 0541) <u>(地盤工学会,H21)</u> が <u>規定</u> され	
地盤の液状化強度特性を求める試験方法として、繰返し非排水三			ている。実務的には、地盤の液状化強度特性を求める試験方法と	
軸試験のほかに、中空円筒供試体による繰返しねじりせん断試験			して,繰返し非排水三軸試験のほかに,中空円筒供試体による繰	
等が用いられる。(安田, <u>1991</u>)			返しねじりせん断試験等が用いられる。(安田, <u>H3</u>)	
第11-4-1 図に一般的な液状化試験方法の例を示す。			<u>第3-2-1図</u> に一般的な液状化試験方法の例を <u>,第3-2-2</u> 図に液状	
			化試験結果の例を示す。	
三軸試験に代表される間接型せん断試験と比較して、ねじりせ			<u>繰返し非排水三軸試験では,等方に拘束圧をかけた状態で軸方</u>	・試験方法及び液状化対
ん断試験は比較的広範囲な応力経路又はひずみ経路を供試体に与			向に外力を繰返し与えて液状化させるので、圧縮側と引張側で応	象層の相違
<u>えられる。(地盤工学会,2009)</u> 三軸試験では圧縮側と引張側で			力経路やひずみの生じ方が異なる。一方、繰返しねじりせん断試	【柏崎6/7,女川2】
挙動が異なり、応力経路は上下では対称ではないし、ひずみの発			<u>験では、円周方向に回転させるように外力を加える。原地盤の拘</u>	島根2号炉では繰返
生量も異なる。これに対してねじり試験では応力-ひずみ関係、応			<u>東圧に近い異方応力状態での試験も可能である。また,応力経路</u>	し非排水三軸試験を採
力経路ともほぼ対称な形をしている。(土木学会, 2003:第11-4-2			も原地盤に近い挙動となる。	用し,埋戻土(掘削ズリ)
図)			ただし、実務では装置や操作が比較的容易であり、実績の多い	及び砂礫層を対象とし
			<u>繰返し非排水三軸試験が用いられることが多い。また,繰返しね</u>	ている
			じりせん断試験では中空の円筒状の供試体を用いるので、粒径が	(以下、島根2号炉の
			大きい試料には適用が困難である。	3.2.1 章はすべて同じ
以上を踏まえ, <u>洪積層である古安田層中の砂層やN値の比較的</u>	旧表土及び盛土に対し、地盤工学会	会が定める地盤の液状化強度	以上を踏まえ, <u>埋戻土(掘削ズリ)及び砂礫層</u> を対象とした液	理由である)
大きい新期砂層・沖積層を対象とした試験を実施するにあたり,	特性を求めるための「土の繰返し非排	非水三軸試験方法 (JGS 0541)」	状化試験を実施するにあたり, <u>繰返し非排水三軸試験</u> を採用した。	
高せん断応力比の液状化試験を実施する必要があることから、中	に基づき試験を実施する。試料採取に	は,原位置の地盤を乱さない	実施した <u>繰返し非排水三軸試験</u> の概要を <u>第3-2-3</u> 図に示す。	
空円筒供試体による繰返しねじりせん断試験を採用した。	よう,凍結サンプリングやゲルプッシ	シュサンプリングにより実施		
実施した中空円筒供試体による繰返しねじりせん断試験の概要	した。			
を第11-4-3 図に, 試料採取に用いた凍結サンプリングの概要を第	繰返し非排水三軸試験装置の概要を	を <u>第5.1-1</u> 図に示す。		
11-4-4 図に示す。				

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 25
柏崎刈羽原子力発電所 6/7号炉 載荷状況 繰返し三軸 (別名 振動三軸) 動的三軸 (別名 振動三軸) (別名 振動的三軸) (別名 動的之助) (別名 動的ねじりせん断 (別名 動的ねじりせん) (別名 動的ねじりせん)	(2017. 12. 20 版) 応力状態	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 25 繰返し三軸
(り 2 がねじ り 4 ん 断 1 一 一 加 1 2 一 一 欣 的 な 液 状 化 都 (<u>第3-2-1 図 一般的な液状化試</u> <u>(吉田, H22)</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号版
<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>	第5.1-1図 繰返し非排水三軸試験装置の概要	Y Y y y

			10114 V
4.2 液状化試験結果の分類に対する基本的考え方 5.	.2 液状化 <u>強度</u> 試験結果の分類に対する基本的考え方	3.2.2 液状化試験結果の分類に対する基本的考え方	
レベル2地震動による液状化研究小委員会活動成果報告書(土	液状化強度試験の結果は、第5.2-1 図に示すとおり、有効応力	レベル2地震動による液状化研究小委員会活動成果報告書(土	
木学会,2003)では、地盤の液状化及びそれに関連する事象の定 が	び低下する影響を広義に分類・定義している土木学会地震工学委	木学会, 1115) では, 地盤の液状化及びそれに関連する事象の定義	
義として,以下のように記載されている。第11-4-5 図に地盤の強 員	員会の報告書に基づき分類する。	として,以下のように記載されている。第3-2-4 図に地盤の強度	
度とダイレイタンシー特性の概要を示す。		とダイレイタンシー特性の概要を示す。	
【液状化】	<u>土木学会地電工学委員会「レベル2地震動による</u> <u> 支用の波状化強度</u>	【液状化】	
地震の繰返しせん断力などによって、飽和した砂や砂礫などの	<u>没现代的效小型自动 法就能是做的量</u> 就最高量少分量 液状化:	地震の繰返しせん断力などによって、飽和した砂や砂礫などの	
緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、有効	地震の構成しな人間力なとしようと、動化したがやや様なとの感じか 教授主からなる地震和で関連大手が進発し、 <u>者が活力がゼロ主</u> で低下し達体状となり、その後無葉の「濃整」たともなう濃重。	緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、有効	
応力がゼロまで低下し液体状となり、その後地盤の流動を伴う現	広義の液状化: 副、特別質や砂罐放着に指定せず、家な砂炭質や家な砂罐放開さら	応力がゼロまで低下し液体状となり、その後地盤の流動を伴う現	
象。	に動性土地盤でも地震などを含む種々の外力によって <u>有効応力が低</u> 下し、地盤の機能定たは創作の低下により有害な次下や変形などが起 ころ明急	象。	
【サイクリックモビリティ】	縁返し軟化、サイクリック・ソフトニング:	【サイクリックモビリティ】	
繰返し載荷において土が「繰返し軟化」する過程で、限られた	構成し取得により回 <u>換ストナニ系と取得取したことがためのです</u> <u>みが効果し</u> 、それが構造し回数とともに数々に増大するが、主 のもつダイレイタンシー特性や粘性のために「 <u>れずみは本面の</u> → 繰返し数化	繰返し載荷において土が「繰返し軟化」する過程で、限られた	
ひずみ範囲ではせん断抵抗が小さくなっても、ひずみが大きく成	大きさにとど思り、大きなひずみ 範囲にいたるまでの <u>意味はた</u> 少ない。	ひずみ範囲ではせん断抵抗が小さくなっても、ひずみが大きく成	
長しようとすると、正のダイレイタンシー特性のためにせん断抵	サイクリック-モビリティ: 繰返し戦者において <u>土が「繰返し数化」する通程で、服られた</u> いてみ範囲ではなく展開時だからくなっても、ひざみがまたく	長しようとすると、正のダイレイタンシー特性のためにせん断抵	
抗が急激に作用し、せん断ひずみの成長に歯止めがかかる現象。	成長しようとすると、正のダイレイタンシー特性のために <u>せん</u> 基括が急激に作用し、せん激化すたの成長に進止めがかかる 理念	抗が急激に作用し、せん断ひずみの成長に歯止めがかかる現象。	
主に、密な砂や礫質土、過圧密粘土のように正のダイレイタンシ	*● の油粉ル 非液状化	主に、密な砂や礫質土、過圧密粘土のように正のダイレイタンシ	
ー特性が著しい土において顕著に現れる。	正量の度数11 液状化、緯返し数化以外を 非液状化に分類する。	ー特性が著しい土において顕著に現れる。	
【繰返し軟化】	(サイクリック・モビリティを含む) その増 (不動和土年)	【繰返し軟化】	
繰返し載荷による間隙水圧上昇と剛性低下によりせん断ひずみ	ätte	繰返し載荷による間隙水圧上昇と剛性低下によりせん断ひずみ	
が発生し、それが繰返し回数とともに徐々に増大するが、土の丸	第5.2-1図 液状化強度試験結果の分類に対する基本的考え方	が発生し、それが繰返し回数とともに徐々に増大するが、土の持	
ごダイレイタンシー特性や粘性のためにひずみは有限の大きさに		<u>つ</u> ダイレイタンシー特性や粘性のためにひずみは有限の大きさに	
とどまり、大きなひずみ範囲にいたるまでの流動は起きない。		とどまり、大きなひずみ範囲にいたるまでの流動は起きない。	
これらの事象のうちサイクリックモビリティは、その現象の違		これらの事象のうちサイクリックモビリティは、その現象の違	
いから一般的に液状化とは区別されている。以下に既往文献にお		いから一般的に液状化とは区別されている(第3-2-1表参照)。以	
けるサイクリックモビリティの記述を示す。また, <u>第11-4-6</u> 図及		下に既往文献におけるサイクリックモビリティの記述を示す。ま	
び第11-4-7 図に緩い砂と密な砂の液状化試験結果の比較を示し,		た, <u>第3-2-5</u> 図及び <u>第3-2-6</u> 図に緩い砂と密な砂の液状化試験結	
液状化とサイクリックモビリティの違いを整理した。		果の比較を示し、液状化とサイクリックモビリティの違いを整理	
		した。	
・サイクリックモビリティとは、砂などの繰返し載荷において、	液状化しなくとも、間隙水圧の上昇による剛性の低下が生じる	・サイクリックモビリティとは,砂などの繰返し載荷において,	
有効拘束圧がゼロに近づいてから,載荷時にせん断剛性の回復, 場	易合,構造物の設計で考慮する必要があることから,「繰返し軟化」	有効拘束圧がゼロに近づいてから,載荷時にせん断剛性の回復,	
除荷時に有効応力の減少を繰り返していくが,ひずみは有限の に	こついても分類する。ただし、「サイクリック・モビリティ」は「繰	除荷時に有効応力の減少を繰り返していくが、ひずみは有限の	
大きさにとどまる現象であり,液状化とは区別して用いられる 返	反し軟化」のうち,有効応力がゼロ(せん断抵抗が小さくなる)	大きさにとどまる現象であり、液状化とは区別して用いられる	
ことがある。(地盤工学会, 2006) ま	まで低下するケースと考えられることから「繰返し軟化」に含め	ことがある。(地盤工学会, <u>H18</u>)	
・地盤の液状化は、ゆるい砂地盤が繰り返しせん断を受け、せん る	3.2.2.2.t.J.a.	・地盤の液状化は、ゆるい砂地盤が繰り返しせん断を受け、せん	
断振幅が急増し、地盤全体が泥水状態となり、噴砂や噴水を伴		断振幅が急増し、地盤全体が泥水状態となり、噴砂や噴水を伴	
うことが多いので、現象的にサイクリックモビリティとは異な		うことが多いので、現象的にサイクリックモビリティとは異な	
る。(井合, 2008)		る。(井合, <u>H20</u>)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	Į	島根原子力発電所	近 2号炉		備考
・サイクリックモビリティにおいて,有効応力がゼロになるのは,			・サイクリックモビ	リティにおいて,	有効応力がゼロ	こなるのは,	
せん断応力がゼロになる瞬間だけであり、せん断応力が作用し			せん断応力がゼロ	になる瞬間だけ	であり,せん断応	力が作用し	
ている間は有効応力が存在するので,間隙水圧比が100%に達し			ている間は有効応	力が存在するの	で,間隙水圧比が	100%に達し	
た後でも,繰返しせん断に対して相当な剛性を保持する。(吉見,			た後でも,繰返し	せん断に対して相	目当な剛性を保持	する。(吉見,	
1991)			<u>H3</u>)				
・密詰めの場合には大ひずみは生じない。一時的に有効拘束圧が0			・密詰めの場合には	大ひずみは生じ	ない。一時的に有	効拘束圧が	
になっても、その後にせん断力を加えると負の過剰間隙水圧が			0になっても、そ	の後にせん断力	を加えると負の過	剰間隙水圧	
発生して有効拘束圧が増加(回復)し、有限の小さなひずみ振			が発生して有効拘	東圧が増加(回	復)し,有限の小	さなひずみ	
幅しか発生しない。この現象を"サイクリックモビリティー"			振幅しか発生しな	い。この現象を	"サイクリックモ	ビリティー"	
と呼んで液状化と区別することもある。(安田, <u>1991</u>)			と呼んで液状化と	区別することも	ある。(安田, <u>H3</u>)		
これらの知見を踏まえて、液状化試験結果を、「液状化」、「サイ	以上を踏まえ, 第5.2-1 表に	二示すとおり,「液状化」,「繰返	し軟 これらの知見を踏	まえて,液状化諸	試験結果を,「液状	代」,「繰返	
クリックモビリティ」及び「非液状化」の3つに大別することと	化」及び「非液状化」に分類し,	,「繰返し軟化」と「サイクリッ	<u>,ク・し軟化(</u> サイクリッ	クモビリティ含素	む)」及び「非液状	(化」の3つ	
した。	モビリティ」は、合わせて「網	操返し軟化」に分類する。	に大別することとし	た。			
Image: State of the state				 粒子 二、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	+ - - - - - - - - - - - - -		
	<u>第5.2-1表</u> 液状化 <u>強度</u>	試験結果の判定項目と分類	<u>第3-2-4</u> 図 地	盤の強度とダイ	レイタンシー特性	の概要	
		○:該当する。 ×:該当しない					
	利定項目== 液状化	繰返し軟化 サイクリック モビリティ	<u>第3-2</u>	-1.表 液状化詞	式験結果の分類 の:酸当す	5 ×:該当しない	
	間隙木圧が上昇・蓄積する。 (最新開始水圧は 05%を知った)	0 0 ×	和今望日	法共正	繰返し軟化	非流出化	
	有効応力がゼロまで低下する。 〇	×** 0 ×		/21/10	サイクリックモビリティ		
	液体状となり流動する。 (ひずみが急増する。) ○	× × ×	 ・間隙水圧が上昇・蓄積する。 (過剰間隙水圧比95%を超える。) 0	0 0	×	
	正のダイレイタンシー特性		 ・有効応力がゼロまで低下する。 ・液体状となり流動する。 	0	× O	×	
	によりせん病態のが作用する。 (有効応力が回復する。)		(ひずみが急増する。)・正のダイレイタンシー特性により				
	※1 1本字会地展工字委員会の定義に基づき判定項 るよう、括弧内の判断項目を補足した。 ※2 旧表土の試験のうちルー1シリーズは有効応力経 ックモビリティ」の判定ができないため、「 ※3 項目の判定はするものの、「非被状化」の分類は	県日を用なEしたか、被状化強度可要の結果に対して判定でき 経路のデータを取得しておらず、「構返し軟化」と「サイクリ 「−」で表示し、「構返し軟化」に整理する。 に影響は及ぼさない。	せん断抵抗が作用する。 (有効応力が回復する。)	×	0 0	0	

·炉	備考
少ない緑波し回数でせん間のずみ(ア)が増加 小瓶のずみ(ア)が増加 2 4 6 8 10 12 建り返し回数 (c) せん断ひずみ 少ない緑波し回数で通利問題の 水圧化のでうがいのに近てく (0.95に達する) (c) せん断ひずみ (=1-σ _x *)で _{ad} の時刻部 少ない緑波し回数で通利問題の 水圧化のでしままする) (c) 生ん断ひずみ 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 後の返し回数 (d) 過剰問除水圧比 (d) 過剰間除水圧比 (d)	 ・資料構成の相違 【女川2】 女川2は既往文献に よる液状化に関して説 明している
試験結果 メメIEIXIAI メメIEIXIAI	
過剰問題水圧比が 上昇と下降を繰返す 5 10 15 20 後92し時後 (d) 過剰問隙水圧比 含む) の場合) のひぞみ空間多重モデ 11号	
果を <u>, 第3-2-7~21 図</u> 7_表に液状化試験結果	 ・試験結果の相違 【柏崎6/7,女川2】 島根2号炉では液状 化試験結果について詳 細に説明している (以下,島根2号炉の 3.2.3 章はすべて同じ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
ひずみが急激に上昇する。これらの状況から、この試験結果は液	は、せん断ひずみが大きくなると間隙水圧が減少し、したがって	し,上昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩	
<u>状化していると判断した。</u>	有効応力が回復することである。	やかに上昇した。また、有効応力は減少するがせん断変形時の	
	有効応力がゼロになるのは、せん断応力がゼロになる瞬間だけ	正のダイレイタンシー特性により回復した。	
A-3 地点の新期砂層・沖積層及びA-1 地点の洪積砂層 I ・Ⅱの	であり, せん断応力が作用している間は有効応力が存在するので,		
液状化試験結果は,過剰間隙水圧比が上昇・下降を繰返し,上昇	間隙水圧比が100%に達した後でも、繰返しせん断に対して相当な	【E-3地点 (埋戻土(掘削ズリ))】	
時に1.0 に近づく (0.95 を上回る)。これに伴って, 有効応力は	剛性を保持する。	 ・いずれの試料においても、過剰間隙水圧比が上昇・下降を繰返 	
減少するが、繰り返しせん断を受けることで回復する。また、せ	密な砂では、ゆるい砂でみられるような破局的なクイックサン	し,上昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩	
ん断ひずみは緩やかに上昇する。これらの状況から、この試験結	ドは起こらず、有限なひずみ振幅を持つせん断変形が繰り返され	やかに上昇した。また、有効応力は減少するがせん断変形時の	
果はサイクリックモビリティであると判断した。	<u>るにすぎない。</u>	正のダイレイタンシー特性や粘性により回復した。	
<u>A-2</u> 地点の洪積砂層 I ・ Ⅱ 及び0-1 地点の洪積砂質土層 I ・ Ⅱ	<u>なお,地盤のダイレイタンシー特性の概要を第5.2-2 図に示す</u> 。	【E-4'地点(埋戻土(掘削ズリ))】	
の液状化試験結果は、過剰間隙水圧比が0.95を上回ることがな		・S4-5は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近	
く,試験実施の間,有効応力を保持している。また,せん断ひず	• • • • • • • • • • • • • • • • • • •	<u>づき(0.95を上回り), せん断ひずみは緩やかに上昇した。また,</u>	
みが緩やかに上昇し、試験終了直前で急激にせん断ひずみが増大		有効応力は減少するがせん断変形時の正のダイレイタンシー特	
<u>する傾向である。A-2</u> 地点の洪積砂層Ⅰ・Ⅱの液状化試験後の供		<u>性や粘性により回復した。</u>	
試体状況をみると、明確なせん断破壊が確認され、このせん断ひ		・S4-6, S4-8-2は過剰間隙水圧比が上昇・下降を繰返すが, 0.95	
ずみの増大はせん断破壊によって発生したものと考えられる。こ	ゆるい砂の場合	を上回らなかった。	
れらの状況から、この試験結果は非液状化であると判断した。	第5.2-2図 地盤のダイレイタンシー特性の概要		
		【E-5地点 (埋戻土(掘削ズリ))】	
	液状化となる試験結果の例を第5.2-3 図に、繰返し軟化となる	・過剰間隙水圧比が上昇・下降を繰返し,上昇時に1.0に近づき	
	<u>試験結果の例を第5.2-4</u> 図に示す。	(0.95を上回り), せん断ひずみは緩やかに上昇した。また, 有	
		効応力は減少するがせん断変形時の正のダイレイタンシー特性	
		や粘性により回復した。	
		【E-6地点(埋戻土(掘削ズリ))】	
		・S6-1-2は過剰間隙水圧比が上昇・下降を繰返し,上昇時に1.0	
		<u>に近づき(0.95を上回り),せん断ひずみは緩やかに上昇した。</u>	
		また,有効応力は減少するがせん断変形時の正のダイレイタン	
		シー特性や粘性により回復した。	
		・S6-1-1, S6-3は過剰間隙水圧比が上昇・下降を繰返し,上昇時	
		に1.0に近づき(0.95を上回り), せん断ひずみは緩やかに上昇	
		した。また、有効応力は減少するがせん断変形時の正のダイレ	
		イタンシー特性により回復した。	
		【E-7地点 (埋戻土(掘削ズリ))】	
		・過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近づき	
		(0.95を上回り), せん断ひずみは緩やかに上昇した。また, 有	
		効応力は減少するがせん断変形時の正のダイレイタンシー特性	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	With Birls HallWith Ha	 や粘性により回復した。 【E - 8 地点(理屋土(掘削ズリ))】 S8-4 ③(は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0 に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。 また、有効応力は減少するがせん断変形時の正のダイレイタン シー特性や粘性により回復した。 S8-2、S8-4 ④(は過剰間隙水圧比が上昇・下降を繰返し、上昇時 に1.0に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇 した。また、有効応力は減少するがせん断変形時の正のダイレ イタンシー特性により回復した。 【A地点(理屋土(掘削ズリ))】 A①は通剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近 づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。また、 有効応力は減少するがせん断変形時の正のダイレイタンシー特 性により回復した。 A②は過剰間隙水圧比がし昇・下降を繰返し、上昇時に1.0に近 づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。また、 有効応力は減少するがせん断変形時の正のダイレイタンシー特 性により回復した。 B①は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近 づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。また、 有効応力は減少するがせん断変形時の正のダイレイタンシー特 性により回復した。 【C地点(理屋土(掘削ズリ))】 C①~④(は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0 に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。 また、有効応力は減少するがせん断変形時の正のダイレイタンシー 特性により回復した。 【D地点(理屋土(掘削ズリ))】 C①~④(は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0 に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。 また、有効応力は減少するがせん断変形時の正のダイレイタンシー かった。 【D地点(理屋土(掘削ズリ))】 D①は過剰間隙水圧比が上昇・下降を繰返すが、0.95を上回らな かった。 【D地点(理屋土(掘削ズリ))】 D①は過剰間隙水圧比が上昇・下降を繰返し、1.95を上回らな かった。 (理屋土(掘削ズリ))】 D①(は過剰間隙水圧比が上昇・下降を繰返し、1.95を上回らな かった。 (10)(1) (1)(1) (1)(1) (1)(1) (1)(1) (1)(1)(1) (1)(1)(1) (1)(1)(1) (1)(1)(1) (1)(1)(1)(1) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	Urf Anithe Arich & Aris	 【E地点(埋戻土(掘削ズリ))】 ・E①は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。また、 有効応力は減少するがせん断変形時の正のダイレイタンシー特性や粘性により回復した。 【E-1地点(砂礫層)】 ・S1-23-3、S1-24及びS1-25は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近づき(0.95を上回り)、せん断ひずみは緩やかに上昇した。また、有効応力は減少するがせん断変形時の 	
		 正のダイレイタンシー特性や粘性により回復した。 ・S1-26は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に 近づき(0.95を上回り),せん断ひずみは緩やかに上昇した。また、有効応力は減少するがせん断変形時の正のダイレイタンシー特性により回復した。 【E-7地点(砂礫層)】 ・S7-15及びS7-17は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩やかに上昇した。また、有効応力は減少するがせん断変形時の正のダイレイタンシー特性や粘性により回復した。 ・S7-16は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩やかに上昇した。また、有効応力は減少するがせん断変形時の正のダイレイタンシー特性により回復した。 	
	第5.2-4図 液状化試験の例(繰返し軟化の場合) 5.3 液状化強度試験結果 旧表土及び盛土の液状化強度試験位置並びに旧表土及び盛土の 分布範囲を重ねた平面図を第5.3-1 図に示す。	【E-8地点(砂礫層)】 ・S8-23-1及びS8-25は過剰間隙水圧比が上昇・下降を繰返し,上 昇時に1.0に近づき(0.95を上回り),せん断ひずみは緩やかに 上昇した。また,有効応力は減少するがせん断変形時の正のダ イレイタンシー特性や粘性により回復した。 ・S8-24は過剰間隙水圧比が上昇・下降を繰返し,上昇時に1.0に 近づき(0.95を上回り),せん断ひずみは緩やかに上昇した。ま た,有効応力は減少するがせん断変形時の正のダイレイタンシ 一特性により回復した。 埋戻土(掘削ズリ)の液状化試験は,土の繰返し非排水三軸試	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		試験結果は過剰間隙水圧比が上昇・下降を繰返し、上昇時に1.0	
		に近づき(0.95を上回り), せん断ひずみは緩やかに上昇する。ま	
		た,有効応力は保持している,若しくは減少するがせん断変形時	
		の正のダイレイタンシー特性により回復した。一方, E-4'地	
		点及びD地点では過剰間隙水圧比が0.95を上回らなかった。これ	
		らの状況から、埋戻土(掘削ズリ)は非液状化、若しくは繰返し	
		軟化(サイクリックモビリティ含む)であると判断した。	
		供試体直径の1/5を超える礫を含む供試体については、土の三軸	
		試験の供試体作製・設置方法 (JGS 0520) を満足しないため, 試	
		験結果を参考値とし、以降の評価には採用しない。埋戻土(掘削	
	● 日表土分名現西 ● 福士試料接取位置	ズリ)の液状化試験結果のうち,供試体直径の1/5を超える礫を含	
	● 旧表主統和接收位置	む供試体について,液状化試験後の写真を第3-2-18 表に示す。	
	第5.3-1図 旧表土及び盛土の液状化強度試験位置並びに旧表土	砂礫層の液状化試験は、土の繰返し非排水三軸試験方法 (JGS	
	及び盛土の分布範囲の平面図	0541)に準拠し実施した。試験結果は過剰間隙水圧比が上昇・下	
		降を繰返し、上昇時に1.0に近づき(0.95を上回り)、せん断ひず	
	5.3.1 旧表土の液状化強度試験結果	みは緩やかに上昇する。また、有効応力は保持している、若しく	
	旧表土に対する液状化強度試験の試験ケース及び結果を第	は減少するがせん断変形時の正のダイレイタンシー特性により回	
	5.3-1 表に示す。なお,各試験ケースの個別データについては,	復した。これらの状況から、砂礫層は繰返し軟化(サイクリック	
	参考資料1.液状化強度試験結果データ集に示す。	<u>モビリティ含む)であると判断した。</u>	
これらの区分を整理して, 第11-4-10 表に示す。	旧表土の液状化強度試験の結果は,全ての試験ケース(50 ケー	これらの区分を整理して, <u>第3-2-19</u> 表に示す。	
埋戻土層以外の土層は, 比較的N 値が高く, 液状化試験結果は	ス)において、有効応力がゼロとなり液体状になるケースは無か	<u>すべての土層で、液状化試験結果は繰返し軟化(サイクリック</u>	
サイクリックモビリティあるいは非液状化を示している。このこ	った。また、繰返し載荷に伴い、ひずみは徐々に大きくなるが、	モビリティ含む)あるいは非液状化を示している。このことは,	
とは,道路橋示方書において,一般にN値が高く,続成作用を受	急には増大せず、脆性的な破壊は生じなかった。繰返し載荷に伴	50%粒径が10mm超過, または, 10%粒径が1mm超過である, 粗粒で	
けている洪積層等は、液状化に対する抵抗が高いため、一般には	い過剰間隙水圧が蓄積する傾向は見られたものの、せん断応力の	均等係数が低い礫質土では透水係数が高く液状化しにくいという	
<u>液状化の可能性は低いという記載に整合する。</u>	作用によって有効応力は回復した。また、過剰間隙水圧比は、95%	道路橋示方書の記載に整合する。	
<u> 埋戻土層については試験結果が液状化を示していることから道</u>	を超過しないケースと超過するケースが確認された。	<u> 埋戻土(掘削ズリ)及び砂礫層は液状化を示さず,道路橋示方</u>	
路橋示方書の液状化判定法 (FL法)を実施し,基準地震動Ss作	旧表土に対する液状化強度試験の結果は、非液状化又は繰返し	書の液状化判定法(FL法)が適用できないと考えられることから,	
用時の液状化の有無を判定する。埋戻土層以外の土層については	軟化を示すものであり、地震時の旧表土の挙動は、新潟地震の液	埋戻土(掘削ズリ)について,液状化試験が基準地震動Ss相当	
<u>液状化を示さず,道路橋示方書の液状化判定方法が適用できない</u>	状化被害例(第5.2-3図)のように支持力を失う液状化事象は発	の地盤の状態を模擬していることを確認する。	
と考えられることから,液状化試験が基準地震動Ss 相当の地盤の	生せず,ひずみが漸増するねばり強い挙動を示すことを確認した。		
状態を模擬していることを確認する。	上記を踏まえ、施設の耐震性評価に当たっては、有効応力解析		
	により過剰間隙水圧の上昇に伴う旧表土の剛性低下を考慮した変		
	形量等の評価を行う方針とする。		
	旧表土の液状化強度試験結果の代表例として、防潮堤近傍から		
	採取したA-2試料の供試体No.2 及びNo.4 の試験結果を第5.3-2		
	図, 第5.3-3 図にそれぞれ示す。A-2 試料のNo.2 供試体は, 有効		
	応力がゼロになることはなく、地盤が支持力を失い液状化するよ		
	うな事象は発生しなかった。繰返し荷重により、ひずみは漸増す		

ゲ炉 <u> の埋戻土(掘削ズリ))</u> ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	備考	
の埋戻土 (掘削ズリ))		
代 (現) : : : : : : : : : : : : : : : : : : :		
液状化試験試料採取位置 :周辺調査位置 ■:埋展主 (照射ズリ)		
<u>-10</u> S2-14-1		
<u>~11.20</u> 14.12~15.12		
<u>実土</u> Iズリ)		
<u>1</u> 1		
2.723		
<u>30</u> 130		
<u>522</u> 0.551		
. <u>.5</u> 0.6		
. <u>5</u> 1.5		
<u>7.6</u> 5.0		
<u>2.9</u> 7.0		
<u>.0</u> 3.0		
0.95 を超えるもの) - る		
ひずみは後々に大きくなるが。 急に増大しないため、酸性的な 破壊は生じない。		
AND 地点の埋戻土(掘削ズ		

リ))

の埋戻	長土 (掘削)	
	の埋戻土 (掘削ズリ))	
(少理庆工、(如田円(ハック))) (第二日) (原本(第二日)の 次次(ご続く時日東市(第二日)の 次次(ご続く時日東市(第二日)) (第二日)		
<u>-9-2</u>	S3-11	
~10.6 <u>5</u>	11.80~12.70	
<u>戻土</u> 川ズリ)		
1	1	
<u>619</u>	2.685	
<u>80</u>	180	
<u>323</u>	0.357	
<u>.5</u>	3.5	
<u>.5</u>	5.5	
<u>4.1</u>	10.0	
<u>6.9</u>	-	
<u>2.0</u>	9.0	

			備去
N			リ田 ~ラ
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Dずみは後々に大きくな 急に増大しないため、厳	るが、 性的な		
www	MMMM		
	11111		
進動開除水圧比が上昇と1 1.955 超過するものの。1 1にはならない。	ド隆を勧終し。 前打ちとなり。		
地点の埋	11月11日(加	削ズ	
の埋戻土	_ (掘削ス	<u> (リ))</u>	
## : 現見土(服剤ズリ)の 次次化試験に対す取れの当 ・利口調査の注意 : 利口調査の注意 : 非皮土(服剤ズリ)			
<u>S4-6</u>	S4-8-2		
<u>6.50~7.50</u>	8.90~9.90		
<u>±</u> (リ)			
1	1		
2.733	2.648		
<u>90</u>	90		
0.560	0.636		
<u>4.0</u>	0.5		
<u>13.6</u>	0.9		
<u>38.7</u>	2.5		
<u>94.7</u>	5.5		
=	_		
 を超えるもの)			

炉	備考
- ひずみは後ゃに大さくなるが、 当に形大しなっため、副性的な 構築はなない。	
- 通動問題本記上が上昇と下隔を締然し。 0.96に渡しない。	
'地点の埋戻土(掘削	

炉		備考
の埋戻土(掘	削ズリ))	
FLM		
 : 埋泉土(堀朝又J) 液状化試験試料接耳 : 肩辺湖杏位量 : 埋泉土(堀朝又J) 	の 1903章	
S5-3		
3.35~3.98		
<u>瞿戻土</u> <u>削ズリ)</u>		
1		
2.705		
120		
0.647		
15.8		
29.2		
62.2		
115.0		
41.0		
5を超えるもの)		

炉	備考
- ひずみは後々に大きくなるが、 急に増えしないため、観光的な	
· 通利四時未正社が上記を上記をした。	
0.968週減するものの、個目ちとなり。 1にはならない。	
茎ををます (「「」」を見る 「」」 「」」 まん しょう しょう しょう しょう こうちょう こうちょう こうちょう こうちょう こうちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	
地点の埋庆上(畑則へ	

炉	備考
- ひずみは後々に大きくなるが、 急に増大しないため、酸性的な 2時間でありため、酸性的な	
議制領導水正社が上昇と下降を秘密し、 0.00を展測するものの、銀行ちとなり、	
акааса».	
地点の埋戻土(掘削ズ	

炉		備考
の埋戻土(掘削ズリ)))
		-
AU ・ 理泉土 (原本 家次化試験) ・ 理泉土 (原本 家次化試験) ・ 理泉土 (原本	(XV))の (XV)の (XV)の (XV)	
<u> 87-3</u>		
.40~4.40	3.40~4.40	
<u>埋戻土</u> 掘削ズリ)		
3	4	
2.701	2.701	
80	80	
0.457	0.366	
0.8	9.0	
2.5	21.3	
10.9	52.9	
24.8	99.3	
14.0	38.0	
王超えるもの	2)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
相解利4初原于力発電所 6/1757 (2017.12.20 成)	文川原十万発電所 2 5% (2019.11.6 歳)	attraction and a state and a	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉 第3-2-8 表 液状化試験結果 (E-8地点の埋戻土 (掘削ズリ)) 第3-2-8 表 液状化試験結果 (E-8地点の埋戻土 (掘削ズリ)) レー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	備考
		試料番号 SB-2 S8-4 深度(m) 2.50~3.50 4.50~5.00 土気材料 「夏見工 供試体 No. 2 3 4 土粒子の密度p。(g/om ³) 2.672 2.670 圧密応力 σ`(kN/m ³) 1.70 1.70 繰返回数 DA = 1% 9.5 5.5 2.0 動 DA = 1% 9.5 3.1.8 23.6 22.8 動 DA = 1% 9.5 3.4.8 66.8 過剰間除水圧比 95% 1.0.0 6.0 3.0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	

		順今							
	burner versus z vi								
柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女ノ	原子力発電所	2号炉(2019.11.6版)		Ē	島根原子力発電所	行 2号炉		備考
------------------	------------------	--------	-----------------	--------------	----------------------------------	---	----------------------	---	----
				第 3-2-9 表	衰 液状	化試験結果(A ^t	池点の埋戻土	<u>: (掘削ズリ))</u>	
					50 30			注(援執スリ)の 代述時候(対)の 代述時候(対)に 注(援執スリ)	
				Ē	式料番号		Δ	The state of second second	
				 涛	深度(m)		<u>0.30~0.70</u>	0.30~0.70	
				£	上質材料		<u>埋戻</u> (掘削)	<u>.土</u> ズリ)	
				供	供試体 No		<u>1</u>	2	
					粒子の密度	度 $\rho_{\rm s}({\rm g/cm}^3)$	<u>2.647</u>	2.647	
					上名心力で し応力振幅	5 _c (κΝ/m) 晶比 σμ/2σ'o	0.395	0.498	
						DA = 1%	14.9	7.0	
				繰	軸のしても	DA = 2%	<u>20.5</u>	10.0	
				返回	ず ^派 み ^幅	DA = 5%	<u>26.2</u>	13.0	
				数	過剰問	DA = 10% 偕水圧比 95%	<u>31.0</u>	16.0	
						N _{u95}	22.0	-	
				 [] 下紡	:最大間 :DA=5%0 記:下図に	隙水圧比が 1.0 に近 D値を繰り返し回数 例示する試験結果	づく(0.95 を超; N とする	えるもの)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
相喻对羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	唐根原子力発電所 2 特/P	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>第3-2-10 表 液状化試験結果 (B地点の埋戻土 (掘削ズリ)</u>)	
		試料番号 <u>B</u>	
		深度(m) 0.30~0.90 0.30~0.90 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
		土質材料 (掘削ズリ)	
		供試体 No. 1 2	
		エ和子の密度ρ _s (g/cm ²) <u>2.684</u> 2.684	
		EEEの力振幅比 σ / 2σ '。 0.388 0.452	
		$DA = 1\% \qquad \frac{18.9}{12.0}$	
		軸両 ひ ₊ DA = 2% <u>24.7</u> 15.0	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		数 DA = 10% <u>33.6</u> 19.0	
		過剰間隙水圧比 95% - <u>29.0</u> - N _{u95}	
		□ :最大間隙水圧比が 1.0 に近づく(0.95 を超えるもの)	
		└──」:DA=5%の値を繰り返し回数 N とする 下線:下図に例示する試験結果	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		• With a state with the state stat	
		<u>第3-2-15 図 彼状化試験結果の例(B地点の理戻工(掘削スリ))</u>	
		<u>第 3-2-11 表 液状化試験結果(C 地点の埋戻土(掘削スリ))</u>	
		試料番号 C IIII (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		決度(m) 0.30~0.90 0	
		供試体 No. 1 <u>2</u> 3 4	
		<u>土粒子の密度ρ_s(g/cm³)</u> 2.659 <u>2.659</u> 2.659 2.659 圧密応力 σ'(kN/m ²) 120 80 80 90	
		操返し応力振幅比 σ _d /2σ' ₀ 0.350 0.391 0.514 0.655	
		DA = 1% 28.0 <u>24.0</u> 6.5 1.5	
		₩ 両 DA = 2% 36.0 33.0 11.0 4.5 緩 ブ振 DA = 5% 42.0 40.0 17.0 8.0	
		回 み m DA = 10% 47.0 46.0 21.0 10.0	
		過剩間隙水圧比 95% 43.0 <u>39.0</u> 18.0 9.5	
		 □ :最大間隙水圧比が 1.0 に近づく(0.95 を超えるもの) □ :DA=5%の値を繰り返し回数 N とする 下線:下図に例示する試験結果 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刘羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	<u>女川原子力発電所 2号炉 (2019.11.6版)</u>	BRURT PAR TER 2 日月 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	備考

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号
					<u>第3-2-12</u> 表 液状化試験結果(D地点の地
					試料番号
					深度(m)
					土質材料
					供試体 No.
					土粒子の密度 ρ _s (g/cm ³)
					圧密応力 σ ' _c (kN/m ²)
					繰返し応力振幅比 σ _d /2σ'₀ 繰返 □

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	A根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
柏呵利初原于刀充电所 6/ 7 亏炉 (2017.12.20 版)	女川原于刀充电所 2 亏炉 (2019.11.6 lk)	・ 第 3-2-13 表 液状化試験結果(E地点の埋戻土(掘削ズリ))	
		● ●	
		試料番号 E 深度 (m) 0.30~0.70 土質材料 埋戻土 (振測ブロ)	
		供試体 No. 1 + 粒子の密度 o. (g/cm ³) 2.678	
		<u> 圧密応力 σ 'c(kN/m²) 80</u>	
		繰返し応力振幅比 σ _d /2σ' <u>o</u> <u>0.317</u> DA = 1% <u>84.0</u>	
		繰 凝 返 同 団 本 婚 両 DA = 2% <u>94.0</u> <u>94.0</u> <u>104.0</u>	
		数 DA = 10% <u>114.0</u> 過剰間隙水圧比 95% <u>100.0</u>	
		N ₀₉₅ □ :最大間隙水圧比が 1.0 に近づく(0.95 を超えるもの) □ :DA=5%の値を繰り返し回数 N とする 下線:下図に例示する試験結果	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第3-2-14 表 液状化試験結果(E-11地点の砂礫層) 第3-2-14 表 液状化試験結果(E-11地点の砂礫層)	
		Image: state of the state	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島村	R 原子力発 に	電所 2-	号炉		備考
		\overline{B} \overline{B}	1000000000000000000000000000000000000	→ · · · · · · · · · · · · · · · · · · ·	 ・ まで開きたたが、またしなったの、 確認させない。 ・ まで開きたしたが上の、 ・ まで開きたしたが上の 0.00を表示する人のの 11にはならない。 ー 1 地点 	(220%) menoio to TREE BOOL 0, MITISZERO, 気の砂礫層)	
			中心對驗站	田 (正二	7批占の	いが厳屋)	
					- ジャーク		
		試料番号	S7-15	<u>87-1</u>	6	S7-17	
		深度(m)	15.70~16.60	<u>16.00~</u>	<u>16.80</u>	17.60~18.60	
		工賞材料 供試体 No	1	<u>砂礫</u>	2	1	
		土粒子の密度 p 。(g/cm ³)	2.702	<u>2.70</u>	<u>-</u>	2.709	
		庄密応力 σ' _c (kN/m²)	260	260	<u>)</u>	260	
		繰返し応力振幅比 $\sigma_d/2\sigma'_0$	0.401	0.300	<u>0.350</u>	0.324	
		DA = 1%	0.7	21.0	<u>3.5</u>	5.5	
		● ^軸 両 ひA = 2% び振	2.0	28.7	<u>6.0</u>	8.0	
		返 9 幅 回 み DA = 5%	6.0	39.6	<u>10.4</u>	12.3	
		如 DA = 10% 過剰間隙水圧比 95%	11.8	48.6	<u>14.4</u>	16.4	
		N _{uss} □□: 最, □□: DA 下線: 下	大間隙水圧比が =5%の値を繰り返 図に例示する試験	1.0 に近づく(C し回数 N とす 検結果	<u>3.9</u> 0.95 を超える [:] る	9.0 もの)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20	版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			$\int \frac{1}{\sqrt{2}} \frac{1}{$	
			第3-2-16 表 液状化試験結果(E-8地点の砂礫層)	
			<section-header><section-header><section-header></section-header></section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<figure></figure>	
		<u>第3-2-21 図 液状化試験結果の例(E-8地点の砂礫層)</u>	
<section-header><section-header></section-header></section-header>		<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			第3-2-17 表 液状化試験結果のまとめ	
			(a) 埋戻土 (掘削ズリ) (2)	
			A B C 近料番号 A① A② B① B② C② C② C③ C③ C③ Li取用 C/I) Li取用 C/I) Li取用 C/I) C. C.	
			C D E 現在土(組附ZO) 現在土(組附ZO) 道利開隙水圧比95%を超えない。※ C③ D④ E④ 過利開隙水圧比95%を超えない。※ × ○ × 有効応力がゼロまで低下しない。 × × ○ × 有効応力がゼロまで低下しない。 × × ○ × 資格体長な対応動しない。(ひずみが急増 ○ ○ ○ ○ 正のダイレイタシシー特性によりせん断抵抗 ○ ○ ○ ○ 正のダイレイタシン一特性によりせん断抵抗 ○ ○ ○ ○ 現象の整理 野(列野) 野/切野) 野液状化 野(列野) 現象の整理 野(列野) サ/切野) 非激秋化 野(*97) 米:1GS 0541-2009において過期間酸水圧比0.95を液状化の目安としている。	
			<u>第3-2-17 表 液状化試験結果のまとめ</u>	
			(D) Vi傑唐 <u>E-1</u> <u>E-7</u>	
			送料描号 S1-23-3① ^{#2} S1-23-3② S1-24 S1-25 ^{#2} S1-26 ^{#2} S7-15 近期期間はなどにいたEMP3P1、 ^{#1} × × <td< th=""><th></th></td<>	
			100mm(Carganity) 0	
			力が作用する。(4530b/)力が回復する。) 繰返し	
			E-7 E-8 試料番号 S7-16① ^{®2} S7-17 S8-23-1 S8-24① S8-24② 過剰間酸水圧比95%を超えない。 ^{®1} × × × × × × × 有効応力がゼロまで低下しない。 × × × ○ × ×	
			液体状となり流動しない。(ひずみが急増 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			ILE 0971 (192)2-14111-A3D(AntitLisk) ○ ○ ○ ○ ○ ○ ○ ○ ○ □ <th□< th=""> □ □</th□<>	
			E-9 Kt E 9/1 Kt E 9/1 E 9/1 6 6/27	
			※1:3GS 0541-2009において過剰間隙水圧比0.95を液状化の目安としている。 ※2:4転は体直径の1/5を超える様を含む一部の供試体についても試験を実施し、液状化判定の参考とした。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第3-2-18 表 埋戻土(掘削ズリ)の液状化試験結果(参考値)	
		E-3 E-6 E-8 試料 63-01 64-3 69-3	
		Eff S392 S03 S02 FR Image: Signal and	
第11-4-10 表 液状化試験結果の分類		<u>第3-2-19 表 液状化試験結果の分類</u>	
対象層 A-1(進展土層) A-1(法積砂層I) A-2(法積砂層I) A-1(進展土層) A-1(法積砂層I) A-2(法積砂層I) A-2(法積砂層I) A-2(法積砂層I) A-2(法積砂層I) A-2(法積砂層I)		対象層 埋戻土(掘削ズリ) 砂礫層	
		 ・ 過剰間隙水圧比が0.95を上回るが、 ・ 過剰間隙水圧比が0.95を上回るが、 有効応力は0にならない。 ・ 有効応力は0にならない。 ・ 有効応力は0にならない。 ・ 有効応力は減少するが、回復する。 ・ ひずみが緩やかに上昇する。 ・ ひずみが緩やかに上昇する。 ・ ・ ひずみが緩やかに上昇する。 ・ ・ ・	
試験結果の分類 試験結果は、液状化である。 ・試験結果は、サイクリックモ ビリティである。 試験結果は、非液状化である。 者効応力が回復するため支持 力が期待できる。 試験結果は、非液状化である。 試験結果は、非液状化である。 基準地震動Ssに対す る液状化判定 基準地震動Ssに対する液状 化判定(FL法)を実施 基準地震動Ssに対する液状化試験の妥当性確認		 試験結果は、非液状化または繰返 試験結果は、非液状化または繰返 試験結果は、線返し軟化(サイクリックモビリティ含 さ)であり、液状化ではない。 有効応力は維持または回復するため、支持力が期待できる。 ・ 活動に力は維持できる。 	
		基準地震動Sslこ対する 液状化判定 基準地震動Sslこ対する液状化試験の妥当性確認	
		液状化試験結果(埋戻土(掘削ズリ))による液状化強度曲線を	
		第3-2-22 図に示す。液状化強度曲線は、試験結果から得られる近	
		<u>似曲線が試験結果の下限値を通るように保守的に設定する。</u>	
		表層採取試料による供試体は、人工地盤である敷地の被覆層(埋	
		<u> 戻土(掘削スリ))を再現するため粒度調整及び密度調整を行い作</u> 制した。 土 敷地の埋立工東から1,00円にエルスで20年11,1	
		<u>表しに。 カ、放地の生エエサから1,2万アエリアで30年以上</u> 3号炉エリアで10年以上経過しており、被覆層(埋戸十(掘削ズ	
		リ))は経年的な圧密を受けていることから,液状化試験結果①(ロ	
		ータリー式三重管サンプラー)は液状化試験結果②(表層試料採	
		取)の上側に位置する。	
		上記と同様に、液状化試験結果(砂礫層)による液状化強度曲	
		<u> 緑を第3-2-23 凶に示す。</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
5. 基準地震動Ss に対する液状化判定 (FL 法)			・資料構成の相違
A-1 地点の埋戻土層については液状化試験結果が液状化を示し			【柏崎6/7】
ていることから道路橋示方書の液状化判定(F _L 法)を実施し,基			柏崎6/7では「液状化」
準地震動Ss 作用時の液状化の有無を判定する。第11-5-1 図にFL			を示す土層があるため,
法による液状化判定のフローを示す。			FL法による液状化判
液状化判定(F _L 法)に用いるA-1 地点の埋戻土層の液状化強度			定を行っている
R _L は,先述の液状化試験結果に基づいて設定する。第11-5-2 図			(以下,柏崎 6/7 の
に液状化試験結果に基づく液状化強度R_を示す。			5 章はすべて同じ理由
基準地震動Ss が作用した際のA-1 地点の埋戻土層に発生する			である)
せん断応力比を一次元逐次非線形解析より求める。第11-5-3 図に			
解析用物性値及び解析モデルを,第11-5-4 図に地震応答解析結果			
を示す。			
地震応答解析結果における最大せん断応力と液状化試験から求			
<u>まる液状化強度R_L を比較し, 第11-5-1 表に示す。液状化判定 (F</u> L			
法)の結果, A-1 地点の埋戻土層は, 全ての基準地震動Ss に対し			
て液状化する可能性があると判断される。			
液状化試験における液 状化強度RLの評価 基準地震動Ssに対する 地盤の地震時せん断応 力比Lを評価			
F _L ≦1.0 液状化判定 F _L = R _L /L			
液状化の可能性あり 液状化の可能性なし			
<u>第11-5-1 図 F」</u> 法による液状化判定のフロー			

~炉	備考

柏崎刈羽原子力発電所 6/7号烷	戸 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	Ss-1			
	Ss-2EW			
	S=-4NS S=-5EW S=-5NS			
	プラ分布 (%) 最大せん断応力分布 (N/mm2) 4 £ 6 £ 8 £ 0.00 0.20 0.40 0.60 0.80			
-11.62				
-27.00				
-22.00				
-24.50 -29.60 E um				
-12.00	 			
-17.00				
-51.02				
-37.60				
<u> </u>	· · · · · · · · · · · · · · · · · · ·			
第11-5-4 図 地震応答解析結	果(A-1 地点)			
<i></i>				
第11-5-1 表 埋戻土層の液状化	判定(F _L 法)結果			
地震動 Ss L R _L	[™] L [™] =R _L /L 評価			
Ss1 0.76	0.32 液状化			
SS2EW 0.51 Ss2NS 0.47	0.47 液状化 0.51 液状化			
Ss3 0.57	0.42 液状化			
Ss4EW 0.44 Ss4NS 0.30	0.55 液状化 0.80 液状化			
Ss5EW 0.51 0.24	0.47 液状化			
Ss5NS 0.44 Ss6EW 0.49	0.55 液状化 0.49 液状化			
Ss6NS 0. 43	0.56 液状化			
Ss7EW 0.47	0.51 液状化 0.60 液状化			
551N5 U. 4U	0.00 代孙化			
				1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
6. 基準地震動Ss に対する液状化試験の妥当性確認	5.4 基準地震動 Ss に対する液状化強度試験の妥当性確認	3.3 基準地震動Ssに対する液状化試験の妥当性確認	
新期砂層・沖積層及び古安田層中の砂層については、試験結果	敷地で採取された試料を用いて実施した液状化強度試験が基準	<u>敷地内の埋戻土(掘削ズリ)及び砂礫層</u> は,試験結果が液状化	・液状化評価対象層の相
が液状化を示さず、道路橋示方書の液状化判定方法が適用できな	地震動Ss相当の地盤の状態(繰返し応力及び繰返し回数)を模擬	を示さず,道路橋示方書の液状化判定方法が適用できないと考え	違
いと考えられる。このため、液状化試験が基準地震動Ss 相当の地	していることを確認するため,累積損傷度理論(吉見(1991))を	られる。このため、液状化試験実施箇所が多い埋戻土(掘削ズリ)	【柏崎6/7,女川2】
盤の状態(繰返し応力及び繰返し回数)を模擬していることを確	適用し, 不規則波である基準地震動Ss によって発生する地盤のせ	について, 液状化試験が基準地震動Ss相当の地盤の状態(繰返	島根2号炉では,埋戻
認する。 <u>第11-6-1</u> 図に累積損傷度理論に基づく評価のフローを,	ん断応力と等価な一定せん断応力及びその繰返し回数を求め、試	し応力及び繰返し回数)を模擬していることを確認する。第3-3-1	土(掘削ズリ)及び砂礫
第11-6-2 図に累積損傷度理論に基づく等価繰り返し回数の評価	験結果との比較を実施した。	図に累積損傷度理論に基づく評価のフローを, 第3-3-2 図に累積	層を抽出している
方法を示す。		損傷度理論に基づく等価繰り返し回数の評価方法を示す。	
なお,埋戻土層においては,5章に示したFL 法の判定結果から,	累積損傷度理論に基づく評価フローを第5.4-1 図, 累積損傷度	<u>液状化試験が基準地震動Ss相当の地盤の状態(繰返し応力及</u>	・妥当性確認方法の相違
基準地震動Ss において地盤に発生するせん断応力比よりも小さ	理論による等価繰返し回数の評価方法を第5.4-2 図に示す。	び繰返し回数)を模擬していることについて、地震応答解析によ	【柏崎6/7,女川2】
いせん断応力比で液状化する結果となっている。	基準地震動Ss の一次元地震応答解析を実施する位置について	って確認するに当たり、代表地震動を使用する。第3-3-3 図に基	島根2号炉では液状
評価にあって,液状化試験個所であるA-1 地点,A-2 地点,A-3	は、地下水位が比較的高く液状化検討対象層が分布する敷地海側	準地震動Ssの加速度時刻歴波形(水平方向)を示す。	化試験の妥当性確認方
地点及び0-1 地点の地盤モデルを用いて,一次元逐次非線形解析	の防潮堤近傍から選定する。選定に当たっては、拘束圧が大きい	なお、敷地ごとに震源を特定して策定する地震動による基準地	法について詳細に説明
を実施した。第11-5-3 図, 第11-6-3 図及び第11-6-4 図に各地点	0.P.+14m 盤と拘束圧が小さい0.P.+2.5m 盤から盛土の厚さ,旧表	<u> 震動(Ss-D, Ss-F1, Ss-F2)においては,繰返し応力及び繰返し回</u>	している
の解析用物性値及び解析モデルを示す。また,評価結果を第11-6-1	土の厚さの大小を考慮して10 点を選定した。選定した一次元地震	数に着目し、水平最大加速度が大きく、継続時間が長い地震動が	(以下、島根2号炉の
表及び第11-6-5~11 図に示す。	応答解析実施位置を第5.4-3 図に示す。	<u>液状化評価において最も厳しいと考えられることから、Ss-Dを</u>	3.3 章はすべて同じ理
	<u>拘束圧が大きい0.P.+14m 盤では,地下水位が高く液状化検討対</u>	選定する。	由である)
A-1 地点の洪積砂層 I について,解析結果による最大せん断応	象施設である防潮堤直下のA-1, B-1~B-4 を選定した。A-1 は盛	液状化試験選定箇所を第3-3-4 図に示す。	
力比と等価繰返し回数は、試験で実施したせん断応力及び繰返し	土堤防直下で最も拘束圧が大きく,盛土・旧表土が分布する。B-2	<u>埋戻土(掘削ズリ)に対する液状化試験は,埋戻土(掘削ズリ)</u>	
回数と同程度であり、おおむね基準地震動Ss 相当の試験が実施で	は旧表土が最も厚く, B-3, 4は盛土・旧表土の厚さが平均的であ	が3号炉北側西端から1,2号炉北側東端までの全域に分布してい	
きていると考える。低拘束圧部の基準地震動Ss-4NS で地盤に発生	り, B-1 は盛土のみ分布する位置である。	ることから、網羅性を確保するため、広い範囲において実施した。	
するせん断応力比は、試験結果の回帰曲線で設定した下限値(繰	<u>拘束圧が小さい0.P.+2.5m 盤では,地下水位が高いC-1,D-1~</u>	一方、砂礫層に対する液状化試験は、砂礫層が局所的に分布して	
返し回数200 回のせん断応力比)以下となっており,等価繰返し	D-4 を選定した。C-1 は盛土堤防近傍で盛土のみ分布する。D-2 は	いることから、分布箇所である3号炉北側西端及び1,2号炉北側東	
回数の評価対象外であるが,液状化試験はこのせん断応力比を上	旧表土が厚く分布しており, D-1, 3, 4 は盛土・旧表土の厚さが	端の地点を選定し実施した。	
回るレベルで実施できている。(第11-6-5 図参照)	平均的な位置である。	<u>液状化試験の妥当性確認に当たって,液状化試験箇所が多い埋</u>	
	<u> 選定した位置での地盤モデルを用いて一次元地震応答解析を実</u>	<u> 戻土(掘削ズリ)に対して行った液状化試験を敷地全体の代表と</u>	
A-1 地点の洪積砂層Ⅱについて,解析結果による最大せん断応	施し、各位置における等価一定せん断応力と等価繰返し回数を算	して、妥当性確認を行う。なお、妥当性確認を行う地点として、	
力比と等価繰返し回数は、試験で実施したせん断応力及び繰返し	出した。算出結果を第5.4-1 表~第5.4-2 表及び第5.4-4 図~第	防波壁沿い全線において比較地点①~⑧を選定する。	
回数と同程度であり、おおむね基準地震動Ss 相当の試験が実施で	5.4-13 図に示す。なお、液状化強度試験は等方応力状態であり、	第3-3-5 図に各地点の解析用物性値及び解析モデルを示す。ま	
きていると考える。(第11-6-6 図参照)	実地盤(異方応力状態)で算出される応答解析と比較するため,	た,評価結果を第3-3-1 表及び第3-3-6 図に示す。	
	静止土圧係数(K ₀ :一般値0.5)を用いて,液状化強度試験から得	<u>液状化評価対象層のうち埋戻土(掘削ズリ)について,液状化</u>	
A-2 地点の洪積砂層 I について, 解析結果による最大せん断応	られるせん断応力を補正した。	試験結果①(ロータリー式三重管サンプラー)および液状化試験	
力比と等価繰返し回数は、試験で実施したせん断応力及び繰返し	$\tau = \mathbf{R} \times (1 + 2\mathbf{K}_0) / 3 \times \sigma_{\underline{v}} = \mathbf{R} \times 2 / 3 \times \sigma_{\underline{v}}$	結果②(表層試料採取)から各せん断応力比に対して所定のせん	
回数と同程度であり、おおむね基準地震動Ss 相当の試験が実施で	R:液状化強度比, σv':有効土被り圧	断ひずみとなる繰返し回数を整理し、一次元時刻歴非線形解析の	
きていると考える。Ss-1, Ss-3 及びSs-5EW 以外の基準地震動Ss		結果を累積損傷度理論に基づいて整理したせん断応力比及び等価	
で地盤に発生するせん断応力比は、試験結果の回帰曲線で設定し	評価結果より、せん断応力比と等価繰返し回数は、すべての位	繰返し回数と比較した。	
た下限値(繰返し回数200回のせん断応力比)以下となっており,	置において液状化強度試験で実施したせん断応力比及び繰返し回	基準地震動Ss-D, Ss-N1, Ss-N2による最大せん断応力比は0.4	
等価繰返し回数の評価対象外であるが、液状化試験はこのせん断	数と同程度であり、おおむね基準地震動Ss 相当の試験が実施でき	~0.7程度であり、また、等価繰返し回数は地震動継続時間の長い	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
応力比を上回るレベルで実施できている。(第11-6-7 図参照)	ていることを確認した。また, 拘束圧が大きい0.P.+14m 盤のA-1,	Ss-Dを除き数10~300回程度であり、液状化試験と同程度であるこ	
	B-1, 3, 4 の特に盛土においては, ほとんどの基準地震動Ss で地	とから、今回実施した液状化試験は、当該地盤の基準地震動Ss相	
<u>A-2</u> 地点の洪積砂層Ⅱについて,解析結果による最大せん断応	盤に発生するせん断応力比は、液状化強度試験の繰返し回数の上	当が作用した状態を概ね再現できていると判断した。	
力比と等価繰返し回数は、試験で実施したせん断応力及び繰返し	限値である200 回に対応するせん断応力比以下となっている。こ	なお,Ss-Dによる等価繰返し回数は地震動継続時間が長いため	
回数と同程度であり、おおむね基準地震動Ss 相当の試験が実施で	の程度のせん断応力比はほとんど破壊に寄与しないため、非液状	500~1,000回程度となるが、一方で液状化試験においてSs-Dによ	
きていると考える。Ss-2NS, Ss-4EW, Ss-4NS, Ss-5NS, Ss-6EW,	化と判断され、等価繰返し回数の評価対象外であるが、液状化試	るせん断応力比を作用させた場合,両振幅ひずみが5%となる繰返	
Ss-6NS及びSs-7NS で地盤に発生するせん断応力比は,試験結果の	験はこのせん断応力比を上回るレベルで実施できていることを確	し回数は、近似曲線から5~30回程度となる。埋戻土(掘削ズリ)	
回帰曲線で設定した下限値(繰返し回数200 回のせん断応力比)	認した。	は液状化試験結果から、非液状化または繰返し軟化(サイクリッ	
<u>以下となっており,等価繰返し回数の評価対象外であるが,液状</u>		クモビリティ含む)を示すため、繰返し回数による直接的な比較	
<u>化試験はこのせん断応力比を上回るレベルで実施できている。(第</u>		が難しい材料であるが、Ss-Dのせん断応力比に相当する試験を実	
<u>11-6-8 図参照)</u>		施していることから概ね再現できていると判断した。	
<u>A-3 地点の新期砂層・沖積層について,解析結果による最大せ</u>			
ん断応力比と等価繰返し回数は、試験で実施したせん断応力及び			
繰返し回数と同程度であり,おおむね基準地震動Ss相当の試験が			
実施できていると考える。Ss-4NS で地盤に発生するせん断応力比			
は,試験結果の回帰曲線で設定した下限値(繰返し回数200 回の			
せん断応力比)以下となっており、等価繰返し回数の評価対象外			
であるが,液状化試験はこのせん断応力比を上回るレベルで実施			
<u>できている。(第11-6-9 図参照)</u>			
0-1 地点の洪積砂質土層 I について, 全ての基準地震動Ss で地			
盤に発生するせん断応力比は、試験結果の回帰曲線で設定した下			
限値(繰返し回数200 回のせん断応力比)以下となっており,等			
価繰返し回数の評価対象外であるが,液状化試験はこのせん断応			
力比を上回るレベルで実施できている。(第11-6-10 図参照)			
0-1 地点の洪積砂質土層Ⅱについて, 全ての基準地震動Ss で地			
盤に発生するせん断応力比は、試験結果の回帰曲線で設定した下			
限値(繰返し回数200 回のせん断応力比)以下となっており,等			
価繰返し回数の評価対象外であるが,液状化試験はこのせん断応			
力比を上回るレベルで実施できている。(第11-6-11 図参照)			
新期砂層・沖積層及び古安田層中の砂層における液状化試験の			
結果は,基準地震動Ss 時の最大せん断応力比及び等価繰返し回数			
<u>と同程度である。よって、</u> 今回実施した試験は、当該地盤 <u>に</u> 基準			
地震動Ss 相当が作用した状態をおおむね再現できていると判断			
される。			

炉	備考
_	
²⁴ ・ せん断ひずみ	
市を求める。	
ん断応力と繰	
返し回数N _{eq}	
$\sum \frac{N_i}{N_{if}}$	
 >	
し回数 平価方法	
max	
+ と等価級返1 回数	
繰り返し回数の評価 <u>方</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 女川原子力発電所 2号炉(2019.11.6版) 島根原子力発電所 2号炉 備考

柏崎刈羽原子力発電所 6/7号炉	〔 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 25
柏崎刈羽原子力発電所 6 / 7 号炉	i (2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2.5

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		比較地点① 上較地点② ● <td< th=""></td<>
	近しししししししししししししししししししししししししししししししししししし	<figure></figure>

炉	備考
● ■ 福東王 (19月ズリ)の 市状化に記載が利率形で工 ■ 北京市場 第 正式変通言 ■ 注意天主 (12月ズリ)	
T. P. (m) 10	
(気中)	
岩盤 D速度層)30 	
〕) 解析モデル	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
1 1			
<page-header><equation-block><equation-block><equation-block><section-header><page-header><text></text></page-header></section-header></equation-block></equation-block></equation-block></page-header>		<figure></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉 (2019.11.6版)	<complex-block></complex-block>	備考

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 25
					地盤物性値
					主量 標準 (T.P.m) 有強上 (G.L-m) 単位体積重量 載売 (, (L.m) 世心勝 並ん局 (, (L.m) 世心勝 並ん局 (, (L.m) 世次勝 (L.M) 世次勝 (世久) 世次勝 (世久) 世次時 (世久) 世次時 (地方) 世況) 世界 (世久) 世次時 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世久) 世界 (世景) 1
					(d) 基本物性(比較地点
					<u>第3-3-5 図 解析用物性値及び</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>地般物性</u> 值 T.P.(m) 10	
		<complex-block></complex-block>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		地盤物性值 T. P. (m) 10	
		$ \frac{1}{2\pi} = \frac{\mathbb{R}^{\times}}{(\Gamma, P, m)} (\frac{\mathbb{R}}{(L, m)}, \frac{\pi}{(N, m)})} (\frac{\mathbb{R}}{(N, m)}) (\frac{\mathbb{R}}{(N, m$	
		(g) 基本物性(比較地点⑦)	
		<u>第3-3-5 図 解析用物性値及び解析モデル</u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)
				地盤物性値
				$ \frac{\pm \pi}{2} = \frac{\pi}{(\Gamma P.m)} + \frac{\pi}{(\Gamma P.m)} +$
				(h) 基本物性(比較地点 第2-2-5 図 解析田物性値及び

广炉	備考
 液状化試験結果の(理反土(提明(ズリ)) 液状化試験結果の(理反土(提明(ズリ)) Ss-D Ss-N1 Ss-N2 (NS) Ss-N2 (EW) 液状化試験結果の近似曲線 液状化試験結果の近似曲線 	
」 結果(埋戻土(掘削ズ	

~炉	備考

~炉	備考

~炉	備考

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<figure></figure>		
	with the second secon		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	1.0 Image: Constraint of the second of t		
	with the second secon		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)		島根原子力発電所 2号炉	備考
		3.4 簡易設定	法	・資料構成の相違
		港湾基準では	t, 有効応力解析(FLIP)に使用する地盤の物性に	【柏崎6/7, 女川2】
		関するパラメ-	-タの設定方法について,原位置で行われた詳細な	島根2号炉では有効
		土質データを	用いて検討することを基本としているが,簡易設定	応力解析のパラメータ
		法による方法で	5明記されている。	設定に使用する簡易設
		簡易設定法に	は,港湾基準に基づく詳細な計算例をまとめた設計	定法について説明して
		事例集に準拠	し、液状化強度比RLと相関が高いN値、有効上載圧及	いる
		び細粒分含有率	率を用いて,有効応力解析(FLIP)の解析理論に則	(以下,島根2号炉の
		った液状化強度	度特性を設定することができる <u>。</u>	3.4 章はすべて同じ理
		有劾応力解析	斤(FLIP)は,解析において土粒子と間隙水の両方	由である)
		を取り扱うこ。	とによって、過剰間隙水圧の上昇を模擬できるとと	
		もに、過剰間隔	家水圧の上昇に伴う土要素の剛性及び強度の低下,	
		すなわち液状化	L現象を模擬することができる解析コードである。	
		さらに,地盤の	D液状化に伴う構造物の変形等,地盤と構造物の相	
		互作用を模擬	<u>けることができる。</u>	
		有劾応力解析	斤(FLIP)で用いる有効応力モデルのパラメータの	
		うち,液状化物	<u> 特性(過剰間隙水圧の発生)を設定するパラメータ</u>	
		<u>を第3-4-1表に</u>	<u>示す。</u>	
		第3-4-1表	有効応力解析 (FLIP) で用いる有効応力モデルの主	
			なパラメータ	
		分類	モデルパラメータ	
			Φ _p 変相角	
			W1 過剰間隙水圧上昇の全体を規定するパラメータ	
		液状化特性	p1 過剰間隙水圧上昇の前半を規定するパラメータ	
			C1 液化化塩度の下吸伸び発起するハフメータ	
		液状化特性表	を設定するパラメータは, 繰返し非排水三軸試験結	
		<u>果を踏まえ, F</u>	LIPで試行的な繰返し計算を行い,全てのせん断応	
		力比における	を合性を確認して設定する方法が標準的とされてい	
		<u>る。</u>		
		一方, 簡易語	没定法は標準的な液状化パラメータ設定法を基に ,	
		これらのパラン	メータを,通常の地盤調査で比較的入手しやすい標	
		<u>準貫入試験のN</u>	<u>値等と関連付けて設定する方法である。</u>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電所	2 号炉 (2019.11.6 版)	島根原子力発電所 2 号炉 簡易設定法では、原位置のN値及び有効上載圧より求まる等価N 値をもとに簡易的に求めた液状化強度曲線が、FLIPを用いた繰返 し三軸試験のシミュレーション結果に合うように求める。その液 状化パラメータのうちp2については、以下の式で算出する。 (N) 0.66 (N-1.828(σ,'-0.66))/(0.399(σ,'-0.66)+1) N=(1/0.66) ^{0.5} × (N) 0.66 + dNt %d0(14±=5 (1997) 0.6330+65±0.6 ここに, (N) 0.66 +MN #d0(14±=5 (1997) 0.6330+65±0.6 12	備考
			る観点から, 埋戻土(掘削ズリ)及び砂礫層のN値及び細粒分含有率については, 敷地全体の平均値を用いる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		標準貫入試験(JIS A 1219) *により得られたN値について,今回,以下のとおり扱うことにより,保守的に液状化強度特性を設定する。 ①N値=50以上:非常に密な地盤であるため,液状化強度特性の 設定に使用しない。	
		 ②N値=30以上:密な地盤であるため,保守的に補正し,以下のとおり扱う。 ・10cm毎の打撃回数の最小値を3倍した値とし,その値が30以上の場合,結果を液状化強度特性の設定に使用しない。 ・10cm毎の打撃回数の最小値を3倍した値とし,その値が30未満の場合,結果を液状化強度特性の設定に使用する。 ③N値-30未満・液性化強度特性の設定に使用する。 	
		<u>(3)M値=30未満:被状化強度特性の設定にそのまま使用する。</u>	
		※15年4月八回秋(JISA1219)は、原44月八回秋田リンフノーを助的員入りることによるて原位置における地盤の硬軟、締まり具合または土層の構成を判定するためのN値を得るために行う。試験は、質量63.5kgのハンマーを76cmの高さから自由落下させ、標準貫入試験用サンプラーを打ち込む。N値は、標準貫入試験用サンプラーを30cm打ち込むために必要な打撃回数である。 第 3-4-3 図 N値の評価概要図(②N値=30以上)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉 第3-4-2 表 簡易設定法におけるN値の考え方 打撃回数 N値 1 N2 N3 (JIS A 1219) (Aufence) 評価結果 (日の3倍) (今回) 1 17 33 - 17 11 22 50 - 使用しない 17 11 22 50 - 使用しない 15 9 18 42 27 27	備考
		③ 8 10 5 23 - 23	
		² ⁰ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		・簡易設定法の適用範囲	
		「液状化による構造物被害予測プログラムFLIPにおいて必要な	
		各種パラメタの簡易設定法(森田ら)」では, FLIPを用いて解析を	
		行う場合の種々のパラメータの設定方法として標準貫入試験のN	
		<u>値から簡易的に設定する方法が示されており、この検討で用いら</u>	
		れているせん断応力比は、0.2~0.9程度(Fc=10~20%)と幅の広	
		い値としている。	
		<u>島根2号炉における埋戻土(掘削ズリ)の累積損傷度理論に基</u>	
		づく評価において,基準地震動Ssでの最大せん断応力比は0.4	
		<u>~0.7程度である。</u>	
		島根2号炉における埋戻土(掘削ズリ)の最大せん断応力比は、	
		森田らの検討で使用されているせん断応力比に包含されているこ	
		とから、簡易設定法が適用できると考えられる。	
		$\mathbf{x} = 0$ 守恤N個(N) \mathfrak{ss} に対するせん切応力式 $\mathfrak{c}_1 / \mathfrak{o}_m$ (和私分習有率 $\mathfrak{l}_e \geq 10\% $ の場合)	
		(a) F 。= 10%の場合	
		(N) 0.66 N. 100 150 260	
		5 12 0.24 0.22 0.21	
		10 18 0.35 0.31 0.28	
		(b) F = = 20%の場合	
		(N) o. 66 Na 1019 1519 2619	
		5 14 0.26 0.24 0.22	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		液状化による構造物被害予測プログラム FLIP において必要な各種パラメタ	
		の簡易設定法(森田ら)より引用	
		第3-4-6 図 簡易設定法の根拠資料	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		・簡易設定法の実績	
		「液状化解析プログラムFLIPによる動的解析の実務(財団法人	
		沿岸技術研究センター)」では、兵庫県南部地震における神戸RF	
		3岸壁及び神戸港T桟橋の被災状況に対して, 簡易設定法により液	
		状化パラメータを設定した再現解析にて検証を行った実績が示さ	
		れている。	
		「神戸RF3岸壁」は重力式構造物を,「神戸港T桟橋」は杭式構	
		造物を対象としており、「神戸RF3岸壁」においては、埋立土及び	
		置換砂の液状化パラメータを簡易設定法で設定し、概ね被災状況	
		を再現できている。	
		<u> 以上の実績を踏まえ、島根2号炉における防波壁等に対する液</u>	
		19/18	
		0.601, 200.500	
		▼ H.W.L +1.70 +2.00 +8	
		- 基礎指石 14.00 1,00 3.50 3.50 1,00 (200×00) 14.00 1,00 0.00 0.00	
		(1,5) 董政役 11.5	
		11 - 25 - 40 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
		第3-4-7 図 袖戸RF3	
		第3-4-3 表 液状化パラメータの簡易設定法の実績	
		电震名 对象加設 被災状况 再現解析	
		神戸 水平変位 水平変位	
		平成7年 RF3岸壁 3.7m 3.09m	
		兵庫県南部 地震 神戸港 水平変位 水平変位	
		T桟橋 1.4~1.5m 2.01m	
		シター)より知用	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2号炉(2019.11.6版)	島根原子力発	き電所 2号炉	備考
					N値及び粒径加積曲線につい [、]	て,島根2号炉の埋戻土(掘削ズ	
					<u>リ)及び砂礫層と、神戸港の埋土</u>	五土との比較を第3-4-8 図に示す <u>。</u>	
					神戸港の埋立土のN値は、いっ	ずれも5~10前後,最大20程度を示	
					しており、島根2号炉と同程度で	ぎある。神戸港の埋立土の粒径は,	
					島根2号炉の埋戻土(掘削ズリ)	より小さく,砂礫層と同程度で	
					あるが、両者とも粒径が広い範疇	囲にわたって分布し、礫を含む土	
					層である。		
					以上より, 簡易設定法により	夜状化パラメータを設定した再現	
					解析にて検証を行った実績のある	る神戸港の埋立土に対し、島根2	
					<u> 号炉の埋戻土(掘削ズリ)及び</u>	砂礫層の土質性状は類似している	
					ことから、簡易設定法の適用は	妥当であると判断した <u>。</u>	
					前日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	<figure><caption></caption></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
7 液状化強度特性の設定	5.5 液状化強度特性の設定	3.5 液状化強度特性の設定方針	
第2 章で示した地層の同一性及び第3 章で示した液状化試験個	液状化強度特性の設定に当たっては,敷地全体の液状化強度試	液状化試験結果より,液状化を示す土層はないが,繰返し軟化	・設定方針の相違
所の保守性・代表性の結果に基づいて、各土層で実施した液状化	験から得られる液状化強度特性を保守的に下限値設定することを	(サイクリックモビリティ含む),若しくは非液状化となる土層	【柏崎6/7,女川2】
試験結果をそれぞれに適用し、各土層の液状化強度特性を設定し	基本とし、各施設近傍に試験結果がある場合には、その試験結果	(埋戻土(掘削ズリ),砂礫層)については,念のため液状化強度	島根2号炉では液状
て,構造物の影響評価を実施する。第11-7-1 図に液状化強度特性	から液状化強度特性を保守的に下限値設定する。	特性を設定し、保守的に構造物への影響評価を実施する。	化強度特性の設定方針
の設定のフローを,第11-7-2 図に地質断面の概要と調査位置の概	敷地全体の液状化強度試験結果から設定した旧表土及び盛土の	各土層での液状化強度特性は、液状化試験を踏まえ、港湾基準	について詳細に説明し
要を, 第11-7-1 表に液状化強度特性を設定する土層と設定の基と	液状化強度特性(下限値設定)を第5.5-1 図に,液状化パラメー	に基づく詳細な計算例をまとめた設計事例集に準拠し、有効応力	ている
なる液状化試験個所の関係を示す。	タを第5.5-1表に示す。	解析(FLIP)の簡易設定法により設定する。簡易設定法は、液状	(以下,島根2号炉の
なお、試験結果が非液状化となる土層についても、念のため試	ここで,液状化強度特性を下限値とした液状化パラメータにつ	化強度比R ₁ と相関が高いN値,有効上載圧及び細粒分含有率を用い	3.5 章はすべて同じ理
験結果に基づいて液状化強度特性を設定し、保守的な構造物影響	いては、旧表土及び盛土のすべての液状化試験結果を下回るよう	て有効応力解析 (FLIP) の解析理論に則った液状化強度特性を設	由である)
評価を実施する。3/4 号炉側の古安田層中の砂層のうち比較的新	にFLIP の要素シミュレーションを繰返し実施して設定した。	<u>定することができる。なお、簡易設定法で用いるN値は保守的な設</u>	
しい砂層 (A-2 地点の洪積砂層 I) については, 試験結果が非液	なお、今後、盛土の液状化強度試験を追加する計画であること	定値(N値が30以上の場合は、10cm毎の打撃回数の最小値を3倍し	
状化であるが, 地層の同一性を考慮して, A-1 地点の洪積砂層Ⅱ	から、工認段階で改めて試験結果を確認し、必要に応じて液状化	た値とし、その値が30以上の場合は不採用とする)とする。	
の試験結果に基づいて液状化強度特性を設定する。古安田層中の	強度特性の設定に反映する。	また、簡易設定法により設定された液状化強度特性は、液状化	
砂層のうち比較的古い砂層 (A-2 地点の洪積砂層Ⅱ及び0-1 地点		試験結果下限値の液状化強度特性よりも保守的であることを確認	
の洪積砂質土層 I ・Ⅱ) については,試験結果が非液状化である		する。	
が、それぞれの試験で得られたせん断ひずみと繰り返し回数の関		第3-5-1 図に簡易設定法による液状化強度曲線と液状化試験結	
係に基づいて、液状化強度特性を設定する。		果による液状化強度曲線を示す。	
各土層での液状化強度特性は、液状化試験を基本として、各土		簡易設定法により設定した液状化強度曲線(埋戻土(掘削ズリ))	
層で得られた基本物性のばらつきも考慮することで、保守的な設		は,液状化試験結果①(ロータリー式三重管サンプラー)及び液	
定とする。設定の方法について,第3章の液状化試験個所の代表		<u>状化試験結果②(表層試料採取)による液状化強度曲線の下側に</u>	
性の結果に基づいて、液状化試験個所が周辺調査個所に対して保		位置する。そのため、簡易設定法による液状化強度比R ₁ (0.26)	
守的な個所で実施していると考えられる土層(埋戻土層,新期砂		は、液状化試験①(ロータリー式三重管サンプラー)による液状	
層・沖積層(荒浜側))と,液状化試験個所が周辺調査個所に対す		<u>化強度比R₁(0.61)及び液状化試験結果②(表層試料採取)によ</u>	
る代表性を有していると考えられる土層(古安田層中の砂層)に		<u>る液状化強度比R₁(0.40)を下回り、保守的であることを確認し</u>	
大別して設定する。		た。また、簡易設定法により設定した液状化強度曲線(砂礫層)	
液状化試験個所が周辺調査個所に対して保守的な個所で実施し		は液状化試験結果による液状化強度曲線の下側に位置し, 簡易設	
ていると考えられる土層(埋戻土層,新期砂層・沖積層(荒浜側))		<u>定法による液状化強度比R₁(0.25)は液状化試験による液状化強</u>	
については、液状化試験個所の基本物性が、周辺調査個所の下限		<u>度比R₁(0.27)を下回り、保守的であることを確認した。</u>	
相当となっていることから、試験結果を各土層の代表値とするこ			
とが保守的と考えられる。ただし、試験結果の下限に相当する液			
<u>状化強度R</u> を評価して,これを満足する液状化強度特性を設定す			
ることで、さらに保守的な設定とする。具体的には、試験結果に			
おいてせん断ひずみ両振幅が7.5%となる点に対して回帰曲線を評			
価し,この回帰曲線を下方に移動し,試験値の下限を通る曲線と,			
繰返し回数20回との交点を求め、液状化試験の下限値に相当する			
<u>液状化強度R</u> _として評価する。なお、道路橋示方書では、繰り返			
し回数20回で軸ひずみ両振幅が5%(せん断ひずみ両振幅7.5%)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
に達するのに要するせん断応力振幅を初期有効拘束圧で除した値			
を液状化強度R _L として定義している。第11-7-3図に液状化試験結			
果の下限に相当する液状化強度R ₁ の評価結果を示す。			
液状化試験の下限値に相当する液状化強度RL は, A-1 地点の埋			
戻土層で0.19, A-3 地点の新期砂層・沖積層で0.55 となり, 構造			
物影響評価の解析においては、これを満足するように液状化強度			
特性を設定する。			
液状化試験個所が周辺調査個所に対する代表性を有していると			
考えられる土層(古安田層中の砂層)については,液状化試験個			
所の基本物性が、周辺調査個所と同程度になっているとこから、			
試験結果を各土層の代表値とすることは妥当であると考えられ			
<u>る。ただし、N値のばらつきを液状化試験のばらつきと仮定して液</u>			
状化強度RL を保守的に低減させ、これを満足する液状化強度特性			
を設定する。具体的には、試験結果においてせん断ひずみ両振幅			
が7.5%となる点に対して回帰曲線を求め,繰返し回数20回とせん			
断応力比を評価し,当該地層のN値の平均値に対する平均値-1σ			
の値の比を乗して, N 値のばらつきに基づいて低減した液状化強			
<u>度R₁ として評価する。第11-7-4</u> 図にN 値のばらつきに基づいて			
低減した液状化強度R _L の評価結果を示す。			
<u>N 値のばらつきに基づいて低減した液状化強度R₁ は, A-1 地点</u>			
の洪積砂層 I で0.53(拘束圧100kN/m ²)及び0.34 (拘束圧			
<u>150kN/m²</u>), A-1 地点の洪積砂層IIで0.30(拘束圧150kN/m ²)及び			
0.29 (拘束圧200kN/m ²), A-2 地点の洪積砂層Ⅱで0.36, 0-1 地			
点の洪積砂質土層 I で0.45,0-1 地点の洪積砂質土層 Ⅱ で0.45 と			
なり、構造物影響評価の解析においては、これを満足するように			
<u>液状化強度特性を設定する。</u>			
なお,第3章で述べるように追加試験を計画しており,追加調			
査の結果を適切に反映し、設定した液状化強度特性の保守性を確			
認する。また、必要に応じて液状化強度特性の見直しを実施する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
液状化対象層の抽出			
液状化試験箇所の選定 (代表性)			
液状化試験の実施			
液状化試験結果に基づく 液状化強度特性の適用範囲の設定			
→ 設定範囲における基本物性のバラツキ → を考慮した液状化強度特性の設定			
追加調査結果の反映			
<u>第11-7-1 図 液状化強度特性の設定のフロー</u>			
荒浜側 大湊側 (1/2号炉) (3/4号炉) (A-11地点 A-2地点 (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-2)洪陽沙層I (A-1)洪環砂層I (A-1)洪環砂層I			
第11-7-2 図 地質断面の概要と調査位置の概要			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第11-7-1 表 液状化強度特性を設定する土層と設定の基となる液			
次化試験個所の関係			
今回対象構造物 (1.分型) (2.号型(個) (3/4号型(個) 6/7号型			
取水路・低油タンク基礎・GTG 基礎等 増原土層 増原土層 増用 増用 増用 増用 増用 増用 増用 増用 増用			
A-3 〔追加調查〕 新期砂層·沖積層 新期砂層·沖積層			
対 条 N値 平均50以上 A-1 決績砂層I (出現しない)			
声 砂層 N型 A ⁻¹ (※1) 円 理均50以下 決積砂層Ⅱ (※1) (※1) (※1) (※1)			
決積砂層Ⅱ(※2) 洗積砂質土層Ⅰ・Ⅱ(※2) 洗積粘性土層 (非該伏化相)			
西山綱 (非元次化規) ※1:3/4 分列類の古安田眉中の砂層のうち比較的新しい砂層については、試験結果が非成状化であるが、地層の同一性を考慮して、A-1 地点の 法格砂眉 Po試験表表に基づいて流状化強度特性を設定する。			
※2:古安田層中の砂層のうち比較的古い砂層については、試験結果が非成状化であるが、念のため液状化強度特性を設定した構造物影響評価 を実施する。被状化強度特性は、荒浜側については №2 地点の洪積砂層 II、大後側については 0-1 地点の洪積砂質土層 I・IIの試験結果 に基づいて海状化地度特性を設定する。			

宁炉	備考
果による液状化強度曲	
 液状化式体结束(砂砾)(不覺肌式和) 液状化式体结束 发出曲梯 液状化式体结束 发出曲梯 液状化式体结束 发出曲梯 液状化式体结束 发出曲梯 液状化式体结束 发出曲梯 (砂砾面) (砂砾面) 1000 	
果による液状化強度曲	

~炉	備考

~炉	備考

~炉	備考

<pre>i i i i i i i i i i i i i i i i i i i</pre>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
8. 液状化影響の検討方針	6液状化影響の検討方針	4. 液状化影響の評価方針	
	<u>6.1</u> 液状化影響の検討方針	<u>4.1</u> 液状化影響の検討方針	
液状化評価については道路橋示方書を基本として, 道路橋示方	<u>女川原子力発電所における</u> 液状化 <u>影響</u> 評価については, 道路橋	液状化評価については道路橋示方書を基本として, 道路橋示方	
書において液状化評価の対象外となっている洪積層についても液	示方書の評価方法を参考に,道路橋示方書においては液状化評価	書において液状化評価の対象となっている砂礫層に加えて、液状	・対象地層の相違
状化試験を実施し、液状化の有無を確認することで保守的な評価	の対象外とされているG.L20m 以深の土層等についても液状化	<u>化評価の</u> 対象外となっている <u>埋戻土(掘削ズリ)</u> についても液状	【柏崎6/7,女川2】
を実施した。液状化試験に基づいて、地震時の地盤の状態を『液	強度試験を実施し、全ての盛土、旧表土を液状化検討対象層とす	化試験を実施し、液状化の有無を確認することで保守的な評価を	島根2号炉では砂礫
<u>状化』、『サイクリックモビリティ』及び『非液状化』</u> と判定した。	<u>ることで</u> 保守的な構造物の評価を実施 <u>する</u> 。	実施した。液状化試験に基づいて、地震時の地盤の状態を『繰返	層及び埋戻土(掘削ズ
それぞれの試験結果に基づいて液状化強度特性を設定し、構造物	また、施設ごとに、地下水位低下設備を考慮の上設定した地下	し軟化 (サイクリックモビリティ含む)』,若しくは『非液状化』	リ)について液状化試験
への影響評価を実施する。なお、試験結果が非液状化となる土層	水位及び液状化検討対象層の分布状況を踏まえて、検討の必要性	と判定した。それぞれの試験結果,および,港湾基準に基づく詳	を実施している
も、念のため液状化強度特性を設定して保守的な構造物評価を実	を判断する。液状化を考慮する場合は、構造物と地盤の動的相互	細な計算例をまとめた設計事例集に準拠した有効応力解析 (FLIP)	·液状化強度特性設定方
施する。設定した液状化強度特性については、試験結果を基本に	作用を考慮できる有効応力解析等*を用いて地震時の応答を算定	の簡易設定法を踏まえ、液状化強度特性を設定し、構造物への影	針の相違
設定するが,基本物性のばらつきも考慮して保守的な設定とする。	<u>する。</u>	響評価を実施する。なお、試験結果が『非液状化』となる土層も、	【柏崎6/7,女川2】
		念のため液状化強度特性を設定して保守的な構造物評価を実施す	島根2号炉では試験
		る。	結果及び簡易設定法を
	<u>有効応力解析に用いる</u> 液状化強度特性については、 <u>敷地全体の</u>	液状化強度特性については、 <u>簡易設定法により</u> 設定するが <u>、こ</u>	踏まえて設定すること
	液状化強度試験から得られる液状化強度特性を保守的に設定(下	れにより設定される液状化強度特性が、液状化試験結果下限値の	としている
	限値)することを基本とし、各施設近傍に試験結果がある場合に	液状化強度特性よりも保守的であることを確認している。また,	
	は、その試験結果から液状化強度特性を保守的に設定(下限値)	簡易設定法で用いるN値は保守的な設定値としている。	
	<u>する。</u>	<u>以上を踏まえ,有効応力解析(FLIP)の実施に当たっては,簡</u>	・液状化強度特性の設定
	なお,液状化考慮と液状化非考慮で耐震安全性評価上どちらが	易設定法に基づき設定した液状化強度特性を適用する。	方法の相違
	保守的な評価となるかを確認するため、全応力解析と有効応力解		【柏崎6/7,女川2】
	析の結果を比較して,解析手法を選定する*。		島根2号炉では簡易
構造物の影響評価については、液状化に伴う影響を考慮するた	有効応力解析においては,解析コード「FLIP」を用いることと	構造物の影響評価については、液状化に伴う影響を考慮するた	設定法に基づき設定し
め、有効応力解析を実施する。有効応力解析においては、解析コ	し、解析に用いる液状化パラメータは保守的に設定した液状化強	め、有効応力解析を実施する。有効応力解析においては、解析コ	ている
ード「FLIP」等を用いる。 <u>液状化試験結果に基づいて保守的に設</u>	度を満足するように設定する。	ード「FLIP」等を用いる。液状化試験結果に比べて保守的な簡易	
<u>定した液状化強度R_Lを満足するように</u> 有効応力解析の液状化パ	※: 建物・構築物については、地盤の液状化の影響を考慮した評価を	設定法により有効応力解析の液状化パラメータを設定し、構造物	
ラメータを設定し、構造物の影響評価を実施する。解析コード	別途検討する。	の影響評価を実施する。解析コード「FLIP」については, Iai	
「FLIP」については, Iai et.al(1992) 及びIai et.al(1995)にお		et.al (1992) 及びIai et.al (1995)において, 液状化及びサイクリ	
いて、液状化及びサイクリックモビリティを示す地層についての		ックモビリティを示す地層についての適用性が検証されている。	
適用性が検証されている。Iai et.al (1992)においては,サイクリ		Iai et.al (1992)においては,サイクリックモビリティが観察され	
ックモビリティが観察された砂の繰返しねじり試験結果に対し		た砂の繰返しねじり試験結果に対して、解析コード「FLIP」を用	
て,解析コード「FLIP」を用いた解析を実施し,解析結果が室内		いた解析を実施し、解析結果が室内試験結果と良い対応を示した	
試験結果と良い対応を示したと報告している。Iai et.al(1995)		と報告している。Iai et.al (1995)においては,解析コード「FLIP」	
においては,解析コード「FLIP」を用いて,1993 年釧路沖地震の		を用いて,1993 年釧路沖地震の再現解析を実施している。1993 年	
再現解析を実施している。1993 年釧路沖地震の観測波はサイクリ		釧路沖地震の観測波はサイクリックモビリティの影響を示すスパ	
ックモビリティの影響を示すスパイク状の地震波となっており,		イク状の地震波となっており、解析コード「FLIP」において地震	
解析コード「FLIP」において地震観測値の密な地盤の液状化パラ		観測値の密な地盤の液状化パラメータを設定することで、サイク	
メータを設定することで、サイクリックモビリティの影響を示す		リックモビリティの影響を示す観測値を再現することができたと	

 観測値を再現することができたと報告している。よって、設置許可段階におけ 可段階における構造物評価の見通しについては、解析コード 「PLIP」を用いることとした。 なお、工事認可段階における構造物評価に当たっては、今回説 明した液状化強度特性の妥当性及び採用した解析コードの適用性 について、2007 年新潟県中越沖地震における取水路の釣直変位等 構造物の被害状況の再現性を検証することで確認する。また、構 造物評価よっては、必要に応じて追加対策を実施する。 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針
可段階における構造物評価の見通しについては、解析コード にについては、解析コード「FLIP」を用いることとした。 なお、工事認可段階における構造物評価に当たっては、今回説 なお、工事認可段階における構造物評価に当たっては、今回説 明した液状化強度特性の妥当性及び採用した解析コードの適用性 について、2007 年新潟県中越沖地震における取水路の釣直変位等 構造物の被害状況の再現性を検証することで確認する。 また、構 造物評価よっては、必要に応じて追加対策を実施する。 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第15-9-1 表 液状化評価の基本方針 第15-9-1 表 液状化評価の基本方針 第15-9-1 表 液状化評価の基本方針
「FLIP」を用いることとした。 なお、工事認可段階における構造物評価に当たっては、今回説 取りした液状化強度特性の妥当性及び採用した解析コードの適用性 いた液状化強度特性の妥当性及び採用した解析コードの適用性 について、2007 年新潟県中越沖地震における取水路の鉛直変位等 増造物の被害状況の再現性を検証することで確認する。また、構 進物評価よっては、必要に応じて追加対策を実施する。 エンパの再現性を検証することで確認されてい 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針
なお、工事認可段階における構造物評価に当たっては、今回説 明した液状化強度特性の妥当性及び採用した解析コードの適用性 について、2007 年新潟県中越沖地震における取水路の鉛直変位等 構造物の被害状況の再現性を検証することで確認する。また、構 造物評価よっては、必要に応じて追加対策を実施する。 なお、工事認可段階における構造物評価に 明した液状化強度特性の妥当性及び採用した について、設計事例集で兵庫県南部地震に など、取用の性を検証することで確認されてい 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第44-11-1 表 液状化評価の基 第15000000000000000000000000000000000000
明した液状化強度特性の妥当性及び採用した解析コードの適用性について、2007 年新潟県中越沖地震における取水路の鉛直変位等 明した液状化強度特性の妥当性及び採用した 第した液状化強度特性の妥当性及び採用した について、設計事例集で兵庫県南部地震に 推造物の被害状況の再現性を検証することで確認する。また、構造 造物評価よっては、必要に応じて追加対策を実施する。 エンマー 第11-9-1 表 液状化評価の基本方針 第211-9-1 表 液状化評価の基本方針
について、2007 年新潟県中越沖地震における取水路の鉛直変位等 構造物の被害状況の再現性を検証することで確認する。 また、構 造物評価よっては、必要に応じて追加対策を実施する。 第11-9-1 表 液状化評価の基本方針
構造物の被害状況の再現性を検証することで確認する。また,構造物評価よっては,必要に応じて追加対策を実施する。 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液化(非価の) 第11-9-1 表 液状化(非価の) 第11-9-1 表 液状(小振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振振
<u> 造物評価よっては</u> ,必要に応じて追加対策を実施する。 <u> 第11-9-1 表 液状化評価の基本方針</u> <u> 東陽度の有に対 本税[20]2896 東原度の有に対 本税[20]2896 <u> 東原度の有に対 本税[20]2896 本税[2]2807 本税[2]2807 <u> 市税[3]286 本税[2]2807 本税[2]286 本税[2]2867 <u> 本税[2]2867 本税[2]2867 本税[2]2867 本税[2]2867 <u> 本税[2]2867 本税[2]2867 本税[2]2867 本税[2]2867 <u> 本税[2]2867 本税[2]2867 本税[2]2867 <u> 本税[2]2867 </u> <u> </u> <u> </u></u></u></u></u></u></u>
第11-9-1 表 液状化評価の基本方針 第4-1-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化評価の基本方針 第11-9-1 表 液状化濃度性少 第11-9-1 表 液状化濃度性少 第11-9-1 表 液状化濃度性少 第11-9-1 表 液状化濃度性少 第11-9-1 表 液状化漂面かき 第11-9-1 表 液状化濃度性少 第11-9-1 表 液状化 第11-9-1 表 液水化 第11-9-1 表 液水化 第11-9-1 表 液化 第11-9-1 表 液水化 第11-9-1 表 液水化 第11-9-1 表 液水化 第11-9-1 表 液化 第11-9-1 素 液化 第11-9-1
第11-9-1 表 液状化評価の基本方針 第4-1-1 表 液状化評価の基本方針 下 第4年/5 (2) 第4-1-1 表 液状化評価の基本 (2) 第4-1-1 表 液状化 (2) 第4-1-1 表 液 (2) 第4-1-1 素 液
Image: Note that the section of th
udde de
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
・注積隔 (沖積隔) 着期砂層・や積層
(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
新 洗積砂層Ⅱ して、基本物性の い ばらつきも考慮し
古安田綱 新 A-2 古安田綱 世 造積砂樹 I × で保守的な設定と 中の時間が 洗 ジャット ション
V O ⁻¹ 市るため、彼秋化漁 洗帽砂質土曜日 度特性を設定する。
巻 A2単点の内積紛層 IC-3vでは連連状化であると考えられるが、A-1 地点の内積紛層 I・11 と同時代に現積した地層であること。N 値がA-1 地点の内積紛層 II と同程度であることを指まえ、A-1 地点の内積紛層 I の実験結果に添ついて液状化態度特性を設定する

予炉	備考
ける構造物評価の見通	į
ることとした。	
に当たっては,今回説	
た解析コードの適用性	
おける港湾施設の被災	・妥当性及び採用した解
いる。	析コードの適用性の確
	認方法の相違
	【柏崎6/7】
本方針	島根2号炉では,設計
当社評価 液状化強度特性 液状化強度特性	事例集において再現性
の設定の考え方の保守性	- が確認されている神戸
	港の埋立土と島根2号
で、たいであるのは、 定法に基づき設定する。 り	炉の土質性状を比較し,
] 妥当性及び適用性を確
	認している(3.4章で説
	明)

 4.2. 2021年第7月後の中国の 1. 2021年3月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
 世上学生の変更な必要になったないないないないないないないないないないないないないないないないないないな			4.2 液状化検討対象施設の選定	・資料構成の相違
 二、営業の必要なしたが、実施工業の構成の構成した。 業業のの目になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になってため、実施工業の構成の構成した。 業業の目的になって、 業業の目的になって、			設計基準対象施設及び重大事故等対処施設の設置状況を考慮	【柏崎6/7,女川2】
			し、液状化の影響を検討する必要がある液状化検討対象候補施設	柏崎6/7では3章で液
ログルモンド大学生数点(注意) 1000000000000000000000000000000000000			を抽出する。抽出に当たっては,設計基準対象施設(建物,構築物,	状化検討対象施設の抽
			屋外重要土木構造物及び津波防護施設)及び重大事故等対処施設	出について説明してい
<u> </u>			を対象に検討する。なお、 <mark>海中や岩盤上に設置される</mark> 取水口,取	る
			水管及び1号放水連絡通路防波扉については、周囲に液状化評価対	(以下,島根2号炉の
一次にないためな地域がな一定ななたとしまし、記代生たお名 ない、ホステルなみや地域があ、開きた水体を対応な見たのない、 ない、ホステルなみや地域がある。「日本・水体」 ないないたい、 たいれたかれなりまたのでは、 このないたまたいで、 本のはたかないたまた。 、 「相違なけたいで、 たいたかないたまたいでは、 たいたかったないたけてよるたいではてきた。 たいためでは、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいたかないで、 たいため、 たいたかないで、 たいたかないで、 たいたかないで、 たいため、 たいたかないで、 たいため、 たいたかないで、 たいため、			象層が分布しないことから、抽出対象外とする。	4.2 章はすべて同じ理
 転点、加入部業は外の低点、可能規定人業成業が設めた用金属の行 したた、加入に、成果に低いたす。また、成果に低いたす。また、成果に低いたす。 正式になった。 正式に			液状化検討対象候補施設の一覧を第4-2-1 表に,設計基準対象	由である)
 なびククセスルートのお客様の支援したの支援して、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 などのなどのなど、 など、 など、 など、 などのなど、 など、			施設,重大事故等対処施設,可搬型重大事故等対処設備保管場所	
 並計改発性制造定について、必要化給計改発施設の運送及び運行 生法課題でレーを発生やる「認定す」 正確認定意味でのような法理性に次に設計で表示など含素度 を読むの選筆等に当たって、第日や30回に対けた大量の計量 がたした、などのなどの対応であり、 電流数の選筆等に当たって、第日や30回に対けたた認識が がら施業を使用する、なお、原子が定め方量で計 した活動運動において、自然水位の増圧に対した認識が がら施業を使用する。 電圧水位の開発において、自然水位の増圧に接合と考慮 認定を認めの思いが見たまたのと言うが では、これ次には、これ次位に定くる法 認定にないてきた、運転時の液域などに作り進い環境構成 の消費を使用する、注意が必要に対した大体とする法 認定などのになり、 がたして、 などのでは、 ないが、 き読むのがであり、 ない ない ない			及びアクセスルートの配置図を第4-2-1 図に示す。また,液状化	
 ・生活語は、日本になけて多品なに使けて多品なに使けて多品なに使けて多品なに使けて多品なに使けて多品なに使けて多品なに使けて多品なに使いた状態 ・生活にないては、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないです。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、使いたななどのである。 ・生活にないでは、ないでは、 ・生活にないでは、 ・生活にないです。 ・生活にないでは、 ・生活にないです。 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないでは、 ・生活にないです。 ・生活にないです。 ・生活にないでいです。 ・ ・生活にな			検討対象候補施設について、液状化検討対象施設の選定及び解析	
当無憩:政策で大部分に対し、「本人の人」を読む ないため、「教人の人」を示して、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、			手法選定フローを第4-2-2 図に示す。	
多産産の選定等に当たって、第5と33回にす。地下水位体下設備 の構成の進行大位の含める子制 した浸渍油酸的が出来る使用する。なお、原くの建築等の建築の建築 環体数については、地下水位低下設備の効果に期待した浸渍油酸 れつ速果を使用する。 地下水位の数年が見たいて、自然水位(地下水位に下設備 を装置しない送かつ地下水位)、19保守所に設定した水にとする 調査にないでは、以下に不定実送発酵所の定用を透きえ、水込化検 対対象施設の違定プローのうち、「認識時間の地下水位が十分に ない」の相定を行う。 なが、可能型重大事故等対処強値による重大事故等への対応に 必要なアクマスネートは、地理の検護化で通う地理設備造物 の完善しがりの地層を受けることなく通行体を確保する設計とす な。 ここでは、旅灯化検討対象施認の違定の考え方を示し、詳細成 計算確認において、設定した設計用地下水位に基づき液状化検討対 集値的の遺元を行う。			詳細設計段階で設定する設計用地下水位に対する液状化検討対	
ジ税集しない状態が継続した場合の定常的な地下水位今年を予測した高度流動性の進展を使用する。なお、原子や実物等の建築、 業務的については、地下水位低下設備の効果に期待した設置流程 ゼンは農業を使用する。 進下水位の正式がたれて、自然水位(地下水位低下改催を 考慮しない場合の地下水(の)、自然水位(他下水位低下改進を 考慮しない場合の地下水(の)、自然水位(地下水位低下改進を 考慮しない場合の地下水(の)、自然水位(地下水位低)、設定した設定 起こついては、以下に示す浸活通知等の効果を随まえ、彼式化検 対象施設の選定フローのうち、「②施設周辺の地下水位が十分に 近い(の)、地区を行う。 なお、可報題地大学成等対処設備による電大学故学への対応に 必要な方クセスペートは、地図時の浸法化に伴う体理体算合物 の浮き上がりの影響を受けることなく通行性を確保する成計とす る。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計算を認って、設定した設計用地下水位に基づき液状化検討対象施設の選定を考え」。			象施設の選定等に当たって,第4-2-3 図に示す地下水位低下設備	
した浸渍薄解の結果を使用する。なお、原子が運物等の建物。 増化物については、地下水位低下設備の効果に関待した浸渍透解 好の結果を使用する。 地球水体の設定方法において、自然水位(地下水位転上設備を 考慮しない場合の地下水位)とり保守的に設定した水位とする施 設については、以下に示す浸渍薄解析の結果を踏まえ、液状化液 対差集造の薄度フローのうち「⑤加酸潤辺の地下水位が十分に 低い」の相応を行う。 たお、可兼型重大手数等外切設備による重大手数等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中型設構造物 の浮き上がりの影響を受けることなく通行体を強体する武計すす ろ。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段層において、決定した設計用地下水位に基づき液状化検討対 参加設の選定を行う。			が機能しない状態が継続した場合の定常的な地下水位分布を予測	
当家物については、地下水位低下設備の効果に期待した浸透添解 折の結果を使用する。 地下水位の表示がにおいて、自然木位(地下水位低下改体)をなた。 などの成正が使い思いて、自然木位(地下水位低下改体)をする施 などついては、以下に示す浸透淀解析の結果を踏まえ、彼状化検 対象施設の環定プローのうち「②施設用辺の地下水位が十分に 低い)の判定を行う。 ない」の判定を存う。 などは、可能型電式事故等対処設備による重大事故等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物 の得たよがりの影響を受けることなく通行性を確保する設計とす る。 ここでは、液状化検討対象施設の薄定の考え方を示し、誘細致 計段時において、設定した設計用地下水位に基づき液状化検討対 象施設の薄定を行う。			した浸透流解析の結果を使用する。なお,原子炉建物等の建物,	
<u>新の結果を使用する。</u> <u>地工水位の設定方針において、自然水位(地工水位低下設備を</u> 考慮しない場合の地工水位、近工水位低下設備を 考慮しない場合の地工水位、近工水位低工設備を 設置ついては、以工に示す浸透流解析の結果を踏まえ、彼状化検 討対象施設の施定ショーのうち「②施設周辺の地工水位が十分に <u>低い」の判定を行う。</u> 立記、可撤型重大半致効力設備による重大半致等への対応に 必要なアクセスルートは、地震時の彼状化に伴う地中埋設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす 乙。 <u>ここでは、彼</u> 代化検討対象施設の選定の考え方を示し、詳細設 計段端において、改定した設計用地工水位に基づき液状化検討対 象施設の選定を行う。			構築物については、地下水位低下設備の効果に期待した浸透流解	
 地下水位の設定力針において、自然水位(地下水位低于設備を 考慮しない場合の地下水位)より保守的に設定した水位とする施 設については、以下に示す浸透透解析の結果を触まえ、液状化焼 討対象施設の濁定フローのうち「②施設周辺の地下水位が十分に 低い」の判定を行う。 なお、可兼型量人率数等対処設備による重人率数等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中理設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす 之。 ここでは、液状化検討対象施設の濁定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の適定を行う。 			析の結果を使用する。	
考慮しない場合の地下水位)より保守的に設定した水位とする施設については、以下に示す浸渍透解析の結果を踏まえ、波状化検討対象施設の運行フローのうち「②施設周辺の地下水位が十分に低い」の判定を行う。 かい」の判定を行う。 な要なアクセスルートは、地震時の波状化に伴う地中埋設構造物の浮き上がりの影響を受けることなく通行性を確保する設計とする。 ここでは、液状化検討対象施設の造定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対象施設の進定を行う。			地下水位の設定方針において、自然水位(地下水位低下設備を	
 設については、以下に示す浸透流解析の結果を踏まえ、液状化検 計対象施設の漫定フローのうち「②施設周辺の地下水位が十分に 低い」の判定を行う。 なお、可操型重大事故等外処設備による重大事故等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす る。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の選定を行う。 			考慮しない場合の地下水位)より保守的に設定した水位とする施	
討対象施設の選定フローのうち「②施設周辺の地下水位が十分に 低い」の判定を行う。 なお、可能型重大事故等外処設備による重大事故等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす る。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の選定を行う。			設については、以下に示す浸透流解析の結果を踏まえ、液状化検	
 低い」の判定を行う。 広お、可搬型重大事故等対処設備による重大事故等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす る。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の選定を行う。 			討対象施設の選定フローのうち「②施設周辺の地下水位が十分に	
立志、可搬型重大事故等対処設備による重大事故等への対応に 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物 の浮き上がりの影響を受けることなく通行性を確保する設計とす る。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対象施設の選定を行う。			低い」の判定を行う。	
 必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物の浮き上がりの影響を受けることなく通行性を確保する設計とする。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設計段階において、設定した設計用地下水位に基づき液状化検討対象施設の選定を行う。 			なお、可搬型重大事故等対処設備による重大事故等への対応に	
の浮き上がりの影響を受けることなく通行性を確保する設計とする。 ろ。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設計段階において、設定した設計用地下水位に基づき液状化検討対象施設の選定を行う。			必要なアクセスルートは、地震時の液状化に伴う地中埋設構造物	
ろ。 ここでは、液状化検討対象施設の選定の考え方を示し、詳細設 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の選定を行う。			の浮き上がりの影響を受けることなく通行性を確保する設計とす	
<u>ここでは、液状化検討対象施設の選定の考え方を示し、詳細設</u> 計段階において、設定した設計用地下水位に基づき液状化検討対 象施設の選定を行う。			<u> 3.</u>	
計段階において,設定した設計用地下水位に基づき液状化検討対象施設の選定を行う。			ここでは、液状化検討対象施設の選定の考え方を示し、詳細設	
			計段階において、設定した設計用地下水位に基づき液状化検討対	
			象施設の選定を行う。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
				4.2.1 液状化検討対象施設の選定及び解析手法選定の観点	
				液状化検討対象施設の選定及び解析手法選定における観点を以	
				下に示す。	
				(1) 液状化検討対象施設の選定	
				液状化検討対象施設は以下の項目で抽出する。	
				①施設が岩盤中に設置されているか	
				②施設周辺の地下水位が十分に低いか	
				観点例:周辺地盤における地下水位が施設底版より低い。	
				(2) 液状化検討対象施設の解析手法の選定	
				a. 液状化検討対象施設(建物,構築物)	
				上記(1)にて選定された施設について,液状化等により施設	
				に悪影響を与える恐れがある場合は、地盤の液状化等の影響を	
				考慮した評価を行う(③)。	
				また、対象施設が機器・配管系の間接支持構造物である場合	
				は、床応答の観点も考慮して解析手法を選定するものとする。	
				b. 液状化検討対象施設(建物,構築物を除く)	
				上記(1)にて選定された施設について,施設周辺に改良地盤,	
				マンメイドロック(MMR)及び他構造物(以下,「改良地盤等」	
				という。)があり、液状化又は繰返し軟化(サイクリックモビリ	
				ティ含む)*の影響を緩和している場合,その改良地盤等周辺の	
				地盤の液状化又は繰返し軟化(サイクリックモビリティ含む)	
				により施設に悪影響を与える恐れがあるか判断する。	
				③施設周辺に改良地盤等があり、液状化又は繰返し軟化(サ	
				イクリックモビリティ含む)の影響を緩和しているか	
				④改良地盤等周辺の地盤の液状化又は繰返し軟化(サイクリ	
				ックモビリティ含む)により施設に悪影響を与える恐れが	
				あるか	
				観点例:施設が改良地盤等に囲まれており,液状化等の影	
				響がない。	
				施設周辺の地形等から、側方流動の影響がない。	
				③で施設周辺に改良地盤等がない場合、又は④で悪影響を与	
				える恐れがある場合は,液状化考慮と液状化非考慮で耐震安全	
				性評価上どちらが保守的になるかを確認するため,一次元又は	
				二次元の全応力及び有効応力による地震応答解析を実施した上	
				で、全応力解析と有効応力解析それぞれの結果から構造物上下	
				端の層間変位を比較するなどして,保守的となる解析手法を選	
				定する(⑤)。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		なお、地盤改良が必要となった場合は、上記で選定した解析	
		手法により、その範囲の妥当性を確認する。	
		また、対象施設が機器・配管系の間接支持構造物である場合	
		は、床応答の観点も考慮して解析手法を選定するものとする。	
		以上を踏まえ、詳細設計段階で設定する設計用地下水位に対す	
		る液状化検討対象施設の選定及び解析手法選定の考え方を確認す	
		る目的で,液状化検討対象施設を選定した結果(例)を第4-2-2 表	
		に、選定した液状化検討対象施設(例)に対し、設計基準対象施	
		設・重大事故等対処施設の解析手法について検討した結果(例)	
		を第4-2-3 表に,各施設の設置状況を第4-2-4 図~第4-2-15 図に	
		示す。なお、詳細設計段階で実施する地下水位低下設備を考慮し	
		た浸透流解析の結果を踏まえ、改めて液状化検討対象施設の選定	
		及び選定解析手法の選定を行う。	
		※液状化と繰返し軟化(サイクリックモビリティ含む)の区分に	
		ついては「3. 液状化強度特性の網羅性,代表性」にて説明。	
		第4-2-1 表 液状化検討対象候補施設 一覧	
		施設分類 施設名称 基礎形式 支持層 基礎下端高さ ⁸¹ (EL m) 地下水位の設定方針	
		原子が建物 直接基礎 岩盤 -4.7 タービン建物 直接基礎 名盤 0.0 規築物 廃棄物処理建物 直接基礎 名盤 0.0 規築物 廃棄物処理建物 直接基礎 名盤 0.0	
		制御室建物 自接暴碰 名盤 +0.1 設 指究師 直接暴碰 岩盤 +2.0 計 層外 取水槽 直接暴碰 岩盤 -11.7	
		2 重要 屋外記售分か (クービン建物〜排気筒) 直接基礎 岩盤 +4.9 対 1 大手 (ティビル燃料貯蔵ワンク展 直接基礎 岩盤 +8.35 離構造物 屋外記售分か (ディーゼル燃料貯蔵ワンク~原子炉建物) 直接基礎 岩盤 +10.4	
		設置 防波壁(多重鋼管約式指壁) 机基礎 岩館 -19.1 津波 防波壁(鋼管約式逆下頻壁) 机基礎 岩館 -10.65 防護 防速 (茲反重力頻壁) 直接基礎 岩館 -10.65	
		施設 1号炉取水槽流路縮小工 直接基礎 岩盤 -7.1 自然水位 ¹² 30保守的に設定した 防波原 (防波運通器防波用) 析基礎 岩盤 -15.9 水位 第1つとりブレッ格納槽 直接基礎 岩盤 +0.7	
		低圧原子炉代替注水ボンプ格納槽 直接基礎 岩盤 -1.3 重大事故等 窓島約減所建物 ⁵³ 直接基礎 岩盤 +48.25 整局約減所用燃料地下タンク 直接基礎 岩盤 +46.6	
		ガスタービン発電機建物 ³³ ガスタービン発電機用整合シン落礎 原外記率で / (0.74 - *) 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	
		「「「「「「「」」」」「「」」」」「「」」」」」「「」」」」」「「」」」」」「「」」」」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		第4-2-1 図 設計基準対象施設,重大事故等対処施設, 可撤型重大事故等対処設備保管場所及びアクセスルート 配置図	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所	2 号炉(2019.11.6版)	島根原子力発電所 2号
					屋外配管ダクト (タービン建物〜排気筒) 取水槽 単気筒 5 単気筒 10 レービル燃料貯蔵タンク ~原子炉建物) 15 ディーゼル燃料貯蔵タンク ~原子炉建物) 15 ディーゼル燃料貯蔵タンク基礎 原子炉建物 第1ペントフィルタ格納槽 20 ガスタービン発電機用軽油タンク基礎 ガスタービン発電機用 型油タンク〜ガスタービン発電機 5 30 30
					1,2号炉IU7 「 防速壁 (波返重力)擁壁)
					3号炉エリア 第4-2-3 図 地下水位低下設備が機能しな 算定結果(例)

拉达如河百乙十戏季正	6 /7 县恒	(2017 12 20 世)	七川百二九惑雲正	2 县炬(2010 11 6 炬)	自坦百乙力	双電託 9旦
仰喇叭叭尔丁刀光电川	0/(万次	(2011, 12, 20 7)	<u> </u>	ム ファー (ムロ13.11.0 NX)		元电内 乙万
					取水槽の設置状況を第4-2-4	図に示す。単
					されており,周辺はMMR及び埋	戻土(掘削ズ
					E	1
					E EL(m)	
					+20.0	約33m
					+10.0 0.0 -10.0	+ <u>8.8m</u>
					-20.0	岩盤
					<u>第4-2-4</u> 図	取水槽 断

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		・ 屋外配管ダクト (タービン建物~排気筒)	
		<u>屋外配管ダクト(タービン建物〜排気筒)の設置状況を第4-2-5</u>	
		図に示す。屋外配管ダクト(タービン建物~排気筒)はMMRを介し	
		て岩盤上に設置されており、周辺は埋戻土(掘削ズリ)が分布し	
		<u>ている。</u>	
		s N	
		EL(m) El(m) +20.0 (9-ビン建物~ 北気筒) +10.0 タービン建物 小ち 「泉田官ダクト (協制ズリ) 0.0 -10.0 -10.0 -20.0 0 10 20(m) 第4-2-5 図 屋外配管ダクト (タービン建物~排気筒)	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
			・ディーゼル燃料貯蔵タンク基礎
			ディーゼル燃料貯蔵タンク基礎の設置状況
			す。ディーゼル燃料貯蔵タンク基礎は岩盤
			(((RANR#>>)))
			」 「」 「」 」 」 」 」 」 」 」 」 」 」 」 」 」
			EL(m)
			+20.0
			EL+15.5m
			「ティーゼル燃料貯蔵タン
			岩殿
			-10.0
			-20.0
			0 1
			<u>第4-2-6 図 ディーゼル燃料貯蔵タン</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	・屋外配管ダクト(ディーゼル燃料貯蔵タンク~原子炉建物) 屋外配管ダクト(ディーゼル燃料貯蔵タンク~原子炉建物)の 設置状況を第4-2-7図及び第4-2-8図に示す。屋外配管ダクト(ディーゼル燃料貯蔵タンク~原子炉建物)は岩盤上及びMMRを介して 岩盤上に設置されており、周辺はMMR及び埋戻土(掘削ズリ)が分 布している。	כ~ אוע
		EL(m) EL(m) +20.0 約1.5m EL+11.00m 「一 +10.0 屋外配管ダクト (ディーゼル燃料 防蔵タンク~ 原子炉建物) マ設計地下水位(例) 0.0	
		-10.0 -20.0 -20.0 <u>第4-2-7 図 屋外配管ダクト(ディーゼル燃料貯蔵タンク~原子</u> <u>炉建物)①</u> -①断面図	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 25
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	女川原子力発電所 2号炉 (2019.11.6版)	自根原子力発電所 2 ま (ディーセル燃料 FBR)シクー BF7pEW (HEND) +20.0 (ティーセル燃料 FBR)シクー BF7pEW (HEND) -10.0 (ティーゼル FF7pEW (HEND) -20.0 第4-2-8 図 屋外配管ダクト (ディーゼル D/2中の) (2)-(2)断面目

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉 ・防波壁(多重鋼管杭式擁壁) 防波壁(多重鋼管杭式擁壁)における地下水位・設備の設置状況を第4-2-9回に示す。防波壁(多重鋼管杭式擁壁)は鋼管杭(多重管)により岩盤支持されており,周辺は埋戻土(掘削ズリ),埋 重管)により岩盤支持されており,周辺は埋戻土(掘削ズリ),埋 戻土(粘性土)及び砂礫層が分布している。	備考	
		N EL15m 防波壁 S 被覆コンクリート壁 (鉄筋コンクリート造) 「増戻土」 「細胞スレーマンション・ (協制ズリ) ご設計地下水位(例)		
		新聞の (9 重) 「「「「」」「」」「」」「」」「」」「」」「」」「」」」「」」」「」」		
				自相医スト歌手で、「日
-------------	--------	---------------	----------------------------	-----------------------------
相畸刈羽原子力発電所(6/7 号炉	(2017.12.20版)	女川原子刀発電所 2 号炉(2019.11.6 版)	□
				<u>・防波壁(鋼管杭式逆T擁壁)</u>
				防波壁(鋼管杭式逆T擁壁)の設置状況を
				防波壁(鋼管杭式逆T擁壁)は鋼管杭により
				 周辺は改良地盤及び埋戻土(掘削ズリ)が分
				(1))
				E
				<u>EL15m</u>
				消滅フロック 最短接石 40000
				し ※グラウンドアンカーの
				<u>第4-2-10 図 防波壁(鋼管杭式逆T</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号
		 防波壁(波返重力擁壁)
		防波壁(波返重力擁壁)の設置状況を第4
		壁(波返重力擁壁)はMMRを介して岩盤上に
		は埋戻土(掘削ズリ)が分布している。
		波返重力擁壁(岩盤部) 波返重力擁壁(岩盤部) 波返重力擁壁(山口) アンン(既設護岸) 消波ブロック
		マEL0.46(HWL.) 0.300 イヤヤヤ イヤヤヤ イヤヤヤ メグラウンドアンカーの効果を期待しなくても、ii
		第4-2-11 図 防波壁(波返重力擁壁(約

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		 1号炉取水槽流路縮小工 	
		1号炉取水槽流路縮小工の設置状況を第4-2-12 図に示す。1号	
		炉取水槽流路縮小工は1号炉取水槽 <mark>北側壁</mark> を介して岩盤上に設置	
		されており,周辺はMMR,埋戻土(掘削ズリ)及び埋戻土(粘性土)	
		が分布している。	
		544	
		S /// N	
		MMR U TEL-7 1m U TEL-7 1m	
		· · · · · · · · · · · · · · · · · · ·	
		1号炉取水槽 1号炉取水槽流路縮小工	
		第4-2-12 図 1 号炉取水槽流路縮小 断面図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
		・防波扉(防波壁通路防波扉)	
		防波扉(防波壁通路防波扉(1,2号炉北側))の設置状況を第	
		4-2-13 図に示す。防波扉(防波壁通路防波扉(1,2号炉北側))は	
		鋼官机により岩盤文持されており、周辺は改良地盤, 埋戻土(掘 削ブリ) みび囲戸上(料料土) が八左リブいス	
		屏幅 約5m	
		S N EL+15.0m Bizg ggiét uggit uggit (ggift)(X)) ugget (ggift)(X)) ugget dented bizg ggift ugget (ggift)(X)) ugget dented bizg ggift ugget (ggift)(X) ugget ugget (ggift)(X) ugget ug	
		第4-2-13 図 防波扉(防波壁通路防波扉(1,2号炉北側))	
		正面図	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2	3 号炉(2019.11.6版)	
田崎刈羽原子力発電所	6/7 号炉	(2017.12.20 版)	女川原子力発電所 2	:亏炉(2019.11.6 版)	
					原子好建物
					S EL(m) +20.0 +10.0 -10.0 S EL+15.0m +10.0 C設計地下水位(例) MMR 完成
					-20.0 第4-2-14 図 第1ベントフィルタ

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	及川原于乃党电灯 2 5 7 (2019.11.6 m)	・低圧原子炉代替注水ボンブ格納槽の設置状況を第4-2-15 図に 京丁。低圧原子炉代替注水ボンブ格納槽の設置状況を第4-2-15 図に 京丁。低圧原子炉代替注水ボンブ格納槽は岩盤上に設置されてお ク、周辺はMAR (マンメイドロック)及び埋戻土(掘削ズリ)が分 ホーロいる。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	2月 ろ

柏崎刈羽原子力発電所 6/7号	·炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
		<u>6.2</u> 解析コード「FLIP」の構成則と特徴		・資料構成の相違
		FLIP(Finite element analysis of Liquefaction Program)は,		【女川2】
		1988 年に運輸省港湾技術研究所(現,(独)港湾空港技術研究所)		女川2では解析コー
		において開発された平面ひずみ状態を対象とする有効応力解析法		ドについて説明してい
		に基づく,2次元地震応答解析プログラムである。		3
		FLIP の主な特徴として、以下の①~⑤を挙げることが出来る。		
		①有限要素法に基づくプログラムである。		
		②平面ひずみ状態を解析対象とする。		
		③地盤の液状化を考慮した地震応答解析を行い、部材断面力や		
		<u> 残留変形等を計算する。</u>		
		④土の応力-ひずみモデルとして、マルチスプリングモデルを		
		採用している。		
		⑤液状化現象は有効応力法により考慮する。そのために必要な		
		<u>過剰間隙水圧発生モデルとして井合モデルを用いている。</u>		
		砂の変形特性を規定するマルチスプリングモデルは、任意方向		
		のせん断面において仮想的な単純せん断バネの作用があるものと		
		し、これらのせん断バネの作用により、土全体のせん断抵抗が発		
		<u>揮されるものである。</u>		
		<u>土の応力-ひずみ関係は、このせん断バネの特性によって種々</u>		
		<u>の表現が可能であるが、「FLIP」では双曲線(Hardin-Drnevich)型</u>		
		モデルを適用している。また、履歴ループについては、その大き		
		<u>さを任意に調整可能なように拡張したMasing</u> 則を用いている。		
		マルチスプリングモデルの概念図を第6.2-1 図に, 排水条件で		
		の土の応力-ひずみ関係の概念図を第6.2-2 図に示す。		
		任意力向せん横面の応力~ひずみ。 ↑ 応力べ力#Fに応じて		
		<u>秋川線 (H-D 型) の</u>		
		$\frac{1}{(\sigma_i - \sigma_j)^2}$		
		$ \begin{array}{c} (x_1, y_1, y_2, y_3) \\ (x_1, y_3) \\ (x_1, y_2, y_3) \\ (x_1$		
		$\mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \gamma_{g} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P} - \left\{ \begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right\} \\ \mathbb{P}$		
		<u>第6.2-1図 マルチスプリングモデルの概念図</u>		
		1 / An-		
		$h = \frac{1}{4d} \cdot \frac{dW}{W}$		
		第6.2-2図 排水条件での土の応力-ひずみ関係の概念図		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
			6.3 有効応力解析に用いる地下水位設定について		・資料構成の相違
			設計基準対象施設及び重大事故等対処施設の設計においては,		【女川2】
			防潮堤下部の地盤改良等により地下水が遮断され、地下水位が地		女川2では地下水位
			表面付近まで上昇するおそれがあることを踏まえ,地下水位を一		設定について説明して
			定の範囲に保持する地下水位低下設備を設置し、この効果が及ぶ		いる
			範囲においてはその機能を考慮した設計用地下水位を設定する。		
			地下水位低下設備の効果が及ばない範囲においては,自然水位よ		
			り保守的に設定した水位又は地表面にて設計用地下水位を設定す		
			<u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9. 設置許可段階における構造物評価の見通し			・資料構成の相違
9.1 代表構造物の抽出			【柏崎6/7】
設置許可段階における構造物評価の見通しについて、代表構造			柏崎6/7では構造物評
物を選定した。第11-9-1 表に設置許可段階における構造物評価の			価の見通しについて説
見通しを検討する代表構造物の選定を示す。			明している
			(以下, 柏崎 6/7 の 9
地盤の液状化による構造物評価への影響としては、地中に埋設			章はすべて同じ理由で
した構造物への影響が考えられることから、代表構造物の選定に			ある)
当たっては基礎形式に着目し、直接基礎形式及び杭基礎形式のそ			
れぞれから選定する。			
直接基礎構造物には、取水路・スクリーン室、補機冷却用海水			
取水路がある。補機冷却用海水取水路はマンメイドロックを介し			
て西山層に支持しているため、直接基礎の代表構造物としては、			
<u>支持地盤が古安田層である「取水路・スクリーン室」を抽出する。</u>			
<u>杭基礎構造物には、軽油タンク基礎、燃料移送系配管ダクト、</u>			
常設代替交流電源設備基礎及び格納容器圧力逃がし装置基礎があ			
る。地盤が液状化した場合には変形が大きくなる傾向となること			
から、杭基礎構造物が地盤の変形の影響を受ける程度に着目する			
と, 杭部は杭長が長いほど, 鉄筋コンクリート部は地中部の側面			
高さが高いほど影響が大きくなると考えられる。このため、杭基			
礎の代表構造物としては、杭長が他の構造物よりも長く、鉄筋コ			
ンクリート部の地中高さが高い「常設代替交流電源設備基礎」を			
抽出する。			
選定した代表構造物について代表断面を選定し、代表断面につ			
いて構造物影響評価を実施する。構造物評価の成立性及び必要に			
応じた追加対策は、代表断面における構造物評価の結果をそれ以			
外の位置・構造物の見通しに展開する。			
第11-9-1 表 設置許可段階における構造物評価の見通しを検討す			
る代表構造物の選定			
設備分類 設備名称 基礎形式(抗 長) 支持地盤 鉄筋コンクリ ート部の地中 部の側面高さ 構造概要			
設計 取水路・スクリーン室 直接基礎 古安田層 ー 鉄筋コンクリート構造			
業 屋外重要 補機冷却用海水取水路 直接基礎 西山層 ¹⁰¹ ー 鉄筋コンクリート構造 対 土木構造物 #100,000 第1,000 第1,000 100,000 100,000			
※ 施 設 ・ 1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>			
重大事故等対処施設 電大事故等対処施設			
格納容器圧力逃がし装置基礎 杭基礎(約 30m) 西山層 約 2.5m 鉄筋コンクリート構造 ※1:マンメイドロックを介して西山層に支持			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.2 取水路			
9.2.1 構造概要及び評価断面			
「取水路・スクリーン室」について液状化による設備への影響			
の見通しとして、液状化現象の影響が最も大きいと考えられる断			
面を選定し,構造物の評価を実施する。第11-9-1 図に取水路にお			
ける代表断面の選定フローを示す。			
構造物評価への液状化の影響として、地盤条件の観点から①液			
状化層(埋戻土層)の分布厚さ,西山層より浅部の地盤での地震			
動増幅特性の観点から②西山層の上限面の高さに着目し、代表断			
面を選定する。			
液状化層(埋戻土層)の分布厚さは、6/7 号炉ともに取水路(一			
般部)から取水路(漸拡部)にかけて厚くなっている。西山層の			
上限面高さは、6 号炉では取水路(一般部)において、7 号炉で			
はスクリーン室から取水路(一般部)にかけて,深くなっている。			
両者の影響が重複する区間として、6/7 号炉ともに取水路のうち			
一般部の区間が抽出される。詳細を第11-9-2 図に示す。			
6/7 号炉の取水路(一般部)を比較すると,双方ともに取水路			
(一般部)の断面は古安田層を掘り込んでいるものの,7 号炉の			
南側の側方は埋戻土層となっている。構造物側方に分布する古安			
田層の変形抑制効果を考慮すると、取水路(一般部)は、6号炉			
よりも7号炉の方が、液状化現象が構造物の耐震性に与える影響			
が大きいと考えられる。詳細を第11-9-3図に示す。			
以上のことから、代表断面として、7号炉取水路(一般部)を			
選定し、2次元有効応力解析(FLIP)による評価を実施する。			
取水路			
(地盤条件))			
③:①,②の影響が重複する区間の抽出			
·			
④:液状化による影響が最も大きい断面の検討			
設置許可段階における代表断面の選定			
<u>第11-9-1 図 取水路における代表断面の選定フロー</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<complex-block></complex-block>			
 9.2.2 評価方針 取水路は,設計基準対象施設のうち屋外重要土木構造物に分類 される鉄筋コンクリート製の地中埋設構造物である。7 号炉取水 路の平面図を第11-9-4 図に、一般部の断面図を第11-9-5 図に示 す。 取水路の耐震評価では、設計基準対象施設として第11-9-2 表の 項目に示す評価を行う。 構造部材の健全性評価については、地震応答解析に基づく鉄筋 コンクリートの発生応力等が許容限界を超えないことを確認す る。また、基礎地盤の支持性能については、鉛直方向の最大合力 (最大鉛直力)が許容限界を超えないことを確認する。取水路の 評価フローを第11-9-6 図に示す。 			

柏崎刈羽	羽原子力発電所	6/7号	}炉 (2017.1 2	2.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
	23100 17725 500055 500055 500055 500055 500055 500055 500055 500055 500055 500055 500055 500055 500055 500055 50005 500	48100 1 0 0 0 0 0 0 0 0 0 0 0 0 0		PN			
T. N. S. L. 20.0- 10.0- -10.0- -20.0- -30.0- <u>第</u>	^{埋展土層} ±層(Ⅲ) 511-9-5 図 7 -	<u>1,600</u> 1,000 <u>4,200</u> 1,000 <u>1,000</u> 10 <u>1,000 1,00</u> <u>1,000 1,000 1,00</u> <u>1,000 1,</u>	○ T. # S. L. +12.0 (G. L.) ○	/価対象層)))) (単位:rr (丁 <u>〇</u>			
	<u>第11-9-2</u>	表 取水路	の評価項目				
評価方針	評価項目 地震力	部位	評価方法	許容限界			
構造 構造 者 者 オ オ ス ス ト	造部材の 全性 Ss	鉄筋コンク リート	発生応力等が許容限 界を超えないことを 確認	限界層間変形 角, せん断耐力			
相ずること	礎地盤の 基準地震動 持性能 Ss	基礎地盤	鉛直方向の最大合力 が許容限界を超えな いことを確認	極限支持力			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号灯 (2017.12.20版) ・ ・ ・	女川原子力発電所 2 号炉 (2019.11.6版)	島根原子力発電所 2 号炉	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.2.3 適用規格			
適用する規格、基準等を以下に示す。			
・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ			
アル, 土木学会原子力土木委員会, 2005 年6 月			
・コンクリート標準示方書[構造性能照査編]((社)土木学会, 2002			
年制定)			
・道路橋示方書(I 共通編・IV下部構造編)・同解説((社)日本			
道路協会, 平成14年3 月)			
・港湾の施設の技術上の基準・同解説((社)日本港湾協会,2007			
<u>年版)</u>			
9.2.4. 評価条件			
9.2.4.1 解析方法			
地震応答解析は、構造物と地盤の動的相互作用を考慮できる2			
次元動的有限要素法解析を用いて,基準地震動Ss に基づき設定し			
た水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻			
歴非線形応答解析を行う。取水路の側方及び上方は埋戻土層で囲			
まれていることから, 過剰間隙水圧の上昇を適切に評価するため,			
<u>有効応力モデルを用いる。</u>			
地震応答解析は, 埋戻土層の液状化の影響を考慮する必要があ			
<u>るため, 解析コード「FLIP Ver.7.2.3_5」を使用する。</u>			
(1) 構造部材			
取水路の構造部材は、非線形はり要素でモデル化し、曲げモー			
メントー曲率関係の非線形性を修正武田モデルで考慮する。			
(2) 地盤			
<u>地盤は, Hardin-Drnevich モデルを適用し, 動せん断弾性係数</u>			
及び減衰定数の非線形特性を考慮する。			
(3) 減衰定数			
減衰特性は、固有値解析にて求まる固有振動数及び減衰比に基			
づくRayleigh 減衰と,地盤及び構造物の履歴減衰を考慮する。			
9.2.4.2 荷重及び荷重の組合せ			
荷重及び荷重の組合せは、以下のとおり設定する。			
(1) 耐震安全性評価上考慮する状態			
取水路の耐震安全性評価において, 地震以外に考慮する状態を			
以下に示す。			
<u>a. 運転時の状態</u>			
発電用原子炉施設が運転状態にあり、通常の条件下におかれ			

柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
ている状態とする。				
ただし、運転時の異常な過渡	変化時の影響を受けないことか			
ら考慮しない。				
b. 設計基準事故時の状態				
設計基準事故時の影響を受け	ないことから考慮しない。			
<u>c.</u> 設計用自然条件				
地中埋設構造物であることか	ら、積雪及び風は考慮しない。			
<u>d.</u> 重大事故時の状態				
重大事故時の影響を受けない	ことから考慮しない。			
(2) 荷重				
<u>地震応答解析において考慮する</u>	荷重を以下に示す。			
<u>a. 固定荷重(G)</u>				
固定荷重として、構造物及び	内水の自重を考慮する。			
<u>b. 地震荷重(K_{ss})</u>				
ー 地震荷重として,基準地震動	Ss による地震力を考慮する。			
(3)荷重の組合せ				
荷重の組合せを第11-9-3 表にえ	示す。			
<u>第11-9-3 表</u> 7	苛重の組合せ			
外力の状態	荷重の組合せ			
地震時 (Ss)	G+ Kss			
ここで, G : 固定荷重				
Kss : 地震荷重				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
9.2.4.3 入力地震動			
地震応答解析に用いる入力地震動は、解放基盤表面で定義され			
る基準地震動Ss を,1次元波動論によって地震応答解析モデルの			
下端位置で評価したものを用いる。			
入力地震動の算定には,解析コード「SLOK Ver2.0」を使用する。			
入力地震動算定の概念図を第11-9-7 図に示す。			
抽畫さ笑解析エデル			
取水路			
山口口, マ 報道子デル工作の際(新作権界) のいつき の			
入力地震動			
一次元波動論			
による応答計算			
岩 盤			
<u>T.M.S.L-155m</u>			
(上昇波) (下降波)			
第11-9-7 図 入力地震動算定の概念図			
<u>地震心答解析モデルを第11-9-8 図に示す。</u> (1) 認に ていた。			
(1) 脾竹 頃域 解析領域は 側面管界及び底面管界が 構造物の広笑に影響)			
かいよう 構造物と側面境界及び底面境界との距離を十分に広く			
設定する。			
(2) 境界条件			
解析領域の側面及び底面には、エネルギーの逸散効果を評価す			
るため、粘性境界を設ける。			
(3) 構造物のモデル化			
構造物は、非線形はり要素でモデル化する。			
(4) 地盤のモデル化			
地盤は、地質区分に基づき、平面ひずみ要素でモデル化する。			
<u>(5) ジョイント要素</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
構造物と地盤の境界部にジョイント要素を設けることにより,			
構造物と地盤の剥離・すべりを考慮する。			
(6) 水位条件			
保守的に考慮するために、朔望平均満潮位(T.M.S.L.+0.49m)に			
会裕を考慮したT.M.S.L.+1.00m とする。			
Avring and average Avring and average Avring and average Avring average Avring and average Avring average Avring and average Avring average Avring average Avring average			
9.2.4.5 使用材料及び材料の物性値			
<u>(1) 構造物の物性値</u>			
使用材料を第11-9-4 表に,材料の物性値を第11-9-5 表に示す。			
<u>第11-9-4 表 使用材料</u>			
材料 諸元			
コンクリート 設計基準強度 23.5N/mm ² (240kgf/cm ²)			
鉄筋 SD345 相当 (SD35)			
第11-9-5 表 材料の物性値			
単位体積重量 ヤング係数 ポマソンは			
(kN/m ³) (kN/mm ²)			
コンクリート 25 ^{※2} 0.2 ^{※2}			
鉄筋 200 ^{*2} 0.3 ^{*2}			
※1 鉄筋コンクリートとしての単位体積重量 ※2 「コンクリートに進進テすま[構造性能昭本編] ((社) 土大学会 2002 年制定)」に其べき語			
※2 「コンククタート標準小力者(神道圧能無互補)((社) 上小子云, 2002 中間と)」に塗りされ 定する			

柏崎X	则羽原子力発電所 6/	~7 号炉	(2017.1	2.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(2) 地盤	の物性値						
a. 液状(と試験の結果						
液状化層		:非液状化	層と判定	するが念のた	<u>-</u>		
め液状化剤		野砂質十層	(Π) の	有効応力解析	- f		
に用いる液	<u>家状化パラメータけ</u> 縞	<u>に 火 上 </u> 転し わじ	りせん断	<u>1)////////////////////////////////////</u>	<u> </u>		
<u>他市で</u> 設定する					-		
<u>取たする。</u> 畑戸上国)の栃州福	ちち 第11_0	し6 主にティ			
			<u>車で 舟11 3</u>	<u> </u>	<u>•</u>		
一時限加力			皮田稼ど	<u> 第11-9-9 凶</u>			
	<u>ビハフメータを用11-9-7</u>	「衣に不ら		<u> </u>			
<u>保寸的(</u> 術	<u> 彼状化しやすい)に評価</u>		<u>うに,液</u>	<u> 状化ハフメー</u>			
<u>タを設定す</u>	する(試験結果より繰返	<u>とし回数が</u>	<u>少ない状</u>	態で同程度の	$\frac{2}{2}$		
<u>ひずみが</u>	発生するように設定する	らことから	,液状化	が発生しやす	-		
<u>い設定とた</u>	<u>なっている)。</u>						
	<u>第11-9-6</u> 表	長 試験結果	<u>果</u>				
	(埋戻	土層)		_			
	必要とする	物性値	1				
	名称	記号	単位	物性値			
物理的	単位体積重量	ρ	t/m ³	2.00			
性質	間隙率	n	—	0.41			
	液状化強度曲線	_	_	第11-9-9図			
力学的	せん新弾性係数	Gma	kN/m ²	参照 5 11E+04	-		
性質	内部摩擦角	φ	0	41.1			
	粘着力	С	kN/m ²	0.0			
	履歷減衰上限值	h _{max}	_	0.271			
	(洪積砂質-	上層(Ⅱ))				
	必要とする	物性値					
	名称	記号	単位	物性値			
物理的	単 位 休 積 重 量	0	*/m ³	1.90	4		
性質	間隙率	n	—	0.53			
	液状化強度曲線	_	_	第11-9-9図	1		
	(液状化パラメータ)		2	参照			
 力学的 性質 	せん断弾性係数	G _{ma}	kN/m [∠] ∘	2.0/E+05	4		
		C V	kN/m ²	0.0	1		
	履歷減衰上限値	h _{max}		0.155	1		
					-		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
10 10 10 10 10 10 10 10 10 10			
(埋戻土層)			
10 0			
(洪積砂質土層(Ⅱ))			
<u>第11-9-9 図 液状化強度曲線</u>			
<u>第11-9-7 表 液状化パラメータ</u> 液状化パラメータ φ _p (°) w ₁ p ₁ p ₂ c ₁ S ₁ 埋戻土層 28.0 2.400 0.500 0.800 1.920 0.005 洪積砂質土層(II) 28.0 4.600 0.500 0.600 3.910 0.005			
 <u>b.解析用地盤物性値</u> <u>地盤の物性値を第11-9-8</u>表に示す。埋戻土層及び洪積砂質土層 (Ⅱ)の物性値については、地震時における過剰間隙水圧の上昇 を適切に評価するため、繰返しねじりせん断試験を基に設定した 液状化特性を設定する。 			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第11-9-8 表 地盤の物性値			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
<u>c. ジョイント要素の設定</u>			
構造物と地盤の境界部にジョイント要素を設けることにより,			
構造物と地盤の剥離・すべりを考慮する。ジョイント要素の特性			
は法線方向,接線方向に分けて設定する。法線方向では,常時状			
<u>態における鉛直応力以上の引張が生じた場合,剛性及び応力をゼ</u>			
ロとして剥離を考慮する。接線方向では、構造物と地盤のせん断			
抵抗力以上のせん断応力が発生した場合、剛性をゼロとし、すべ			
りを考慮する。静止摩擦力τ _f はMohr-Coulomb 式により規定され			
<u>る。C,φは「道路橋示方書(I 共通編・IV下部構造編)・同解説((社)</u>			
日本道路協会, 平成14 年3 月)」(第11-9-9 表)に基づき, 第			
11-9-10 表に示すとおり設定する。			
第11-9-9 表 摩擦角と付着力(日本道路協会)			
条件 摩擦角 φ ₈ (摩擦係数 tan φ ₉) 付着力 c ₈			
土とコンクリート $\phi_S = \frac{2}{3}\phi$ $c_B = 0$			
土とコンクリートの間に栗石を敷く場合 $tan \phi_a = 0.6 \\ \phi_a = \phi$ の小さい方 $c_a = 0$			
岩とコンクリート $\tan \phi_B = 0.6$ $c_B = 0$			
土と土又は岩と岩 $\phi_B = \phi$ $c_B = c$			
たたし、 ϕ :文符地盤のせん所想抗判(「) c :文持地盤の粘着刀($kD(m^{\circ})$			
第11-9-10 表 ジョイント要素の強度特性			
<u></u>			
埋戻土層 0 27.4			
洪積粘性土層(II) 0 18.2			
ジョイント要素のばね定数は、数値解析上不安定な挙動を起こ			
さない程度に十分に大きな値として、港湾構造物設計事例集(沿			
岸開発技術センター) に従い、kn=ks=1.0×10 ⁶ (kN/m ³)とする。			
(3) 荷重の入力方法			
a. 固定荷重			
まえ 構造物の断面の大きなに広じて管定する			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
b. 地震荷重			
地震荷重である地震力は9.2.4.3 章にて設定している入力地震			
動をモデル底面に入力する。			
9.2.4.6 許容限界			
(1)曲げに対する許容限界			
曲げに対する照査は第11-9-10 図に示すとおり、「原子力発電所			
<u>屋外重要土木構造物の耐震性能照査指針・マニュアル,土木学会</u>			
原子力土木委員会, 2005 年6 月」(以下「土木学会マニュアル」			
とする)に基づき、照査用層間変形角が限界層間変形角を下回る			
<u>ことを確認する。</u>			
<u>土木学会マニュアルでは、曲げ系の破壊に対する限界状態は、</u>			
コンクリートの圧縮縁のかぶりが剥落しないこととされている <u>。</u>			
圧縮縁コンクリートひずみが1%の状態及び層間変形角1/100 に			
至る状態は、かぶりコンクリートの剥落が発生する前の状態であ			
ることが、屋外重要土木構造物を模したラーメン構造の破壊実験			
及び数値シミュレーション等の結果より確認されている。これら			
の状態を限界値とすることで構造全体としての安定性が確保でき			
るとして設定されたものである。土木学会マニュアルに従い、層			
間変形角が1/100 以下であれば, 圧縮縁コンクリートひずみが1%			
の状態以下であると判断できるため、許容限界を1/100 と設定す			
<u> 3.</u>			
<u>また,曲げ照査に用いる照査用層間変形角は,地震応答解析に</u>			
より得られた層間変形角に安全係数(構造物解析係数)1.2 を乗			
<u>じる。したがって、当該値を許容限界として設定することで、曲</u>			
<u>げ破壊に対して安全余裕を見込んだ評価を実施することが可能で</u>			
<u>ある。</u>			
なお,曲げに対する照査については,最大の水平相対変位が生			
<u>じる時刻について,層間変形角による評価を実施する。</u>			
$\gamma_{i} : \frac{R_{d}}{R_{d}} \leq 1.0$ $R_{d} : !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$			
Ru γa :構造解析除数(=1.20) R :応答計算による最大層間変形角(=Δ/H)			
△ :最大層間変位[m] H :層間高さ[m]			
H R。 線界層間変形角(=1/100)			
<u> 第11-9-10 図 </u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
(2) せん断に対する許容限界			
ん断耐力評価式(等価せん断スパン比)を用いた方法」により第			
定する			
<u>a. ぜん </u>			
1) 棒部材式			
$V_{yd} = V_{cd} + V_{sd}$			
ここに、 V_{cd} : コンクリートが分担するせん断耐力			
V_{sd} : ぜん御俑強筋か分担するぜん断耐刀			
$f_{vcd} = p_d p_p p_n p_n p_a f_{vcd} p_w q f_{bc}$ $f_{vcd} = 0.20\sqrt[3]{f'_{cd}}$			
ただし, $f_{vcd} > 0.72$ (N/mů)となる場合は $f_{vcd} = 0.72$ (N/mů)			
$\beta_d = \sqrt[4]{1/d}$ ただし、 $\beta_d > 1.5$ となる場合は $\beta_d = 1.5$			
$\beta_p = \sqrt[3]{100P_v}$ ただし、 $\beta_p > 1.5$ となる場合は $\beta_p = 1.5$			
$\beta_n = 1 + M_o / M_d (N'_d \ge 0)$ ただし、 $\beta_n > 2.0 となる場合は\beta_n = 2.0$			
=1+2 M_o/M_d (N' _d < 0) たたし、 $\beta_n < 0 \ge なる場合は\beta_n = 0$			
$\beta_a = 0.75 + \frac{1.4}{\alpha/d}$ ただし、 $\beta_a < 1.0 となる場合は \beta_a = 1.0$			
f'cd:コンクリート圧縮強度の設計用値(N/und)で設計基準強度f'ckを材料係			
数γ _{mc} (1.3)で除したもの			
$p_{v} = A_{s}/(b_{w} \cdot d) : 引張鉄筋比$			
A_s :引衆側鋼材の町面積 b ・部はの右効幅			
d : 部材の有効高さ			
N' _d :設計軸圧縮力			
M_d :設計曲げモーメント			
$M_o = N'_d \cdot D/6$: M_d に対する引張縁において、軸方向力によって発生する			
応力を打消すのに必要なモーメント(デコンプレッショ			
ンモーメント) D ・断面高さ			
a/d : せん断スパン比			
γ _{bc} :部材係数(1.3)			
$V_{sd} = \{A_w f_{wyd} (\sin \alpha + \cos \alpha) / s\} z / \gamma_{bs}$			
Aw : 区間 s におけるせん断補強鉄筋の総断面積			
f _{wyd} : せん断補強鉄筋の降伏強度を材料係数γ _{ms} (1.0)で除したもので, 400N/			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
mil以下とする。ただし、コンクリートの圧縮強度の特性値f'ckが 60N/mil			
以上のときは, 800N/mii以下とする。 α ・ せん断補確鉄筋と部材軸のなす角			
s : せん断補強鉄筋の配置間隔			
z : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で d/1.15 とす			
る。			
γ_{bs} : 部材係数(1.1)			
2) ディープビーム式			
$V_{ydd} = V_{cdd} + V_{sdd}$			
ここに、 V _{cdd} : コンクリートが分担するせん断耐力			
<i>V_{sda}</i> : せん断補強筋が分担するせん断耐力			
$V_{cdd} = \beta_d \cdot \beta_p \cdot \beta_a \cdot f_{dd} \cdot b_w \cdot d/\gamma_{bc}$			
$f_{dd} = 0.19\sqrt{f'_{cd}}$			
$p_d = \sqrt{1/a}$ ただし、 $p_d > 1.5 c 4 3 物 \Box 4 p_d = 1.5$ $\beta = \frac{3}{100P}$ ただし、 $\beta > 15 b t \delta 3 \square 6 D \beta d = 15$			
$p_p = \sqrt{100} p_p = 1.5$			
$\beta_{\alpha} = \frac{1}{1 + (\alpha/d)^2}$			
γ_{bc} :部材係数(1.3)			
$V_{sdd} = \varphi \cdot V_{sd}$			
$\varphi = -0.17 + 0.3a / d + 0.33 / p_{wb} \pounds \not E \cup, 0 \le \varphi \le 1$			
p_{wb} : せん断補強鉄筋比(%)			
十木学会マニュアルでは、コンクリート標準示方書におけるせ			
ん断耐力式のうち棒部材式において等価せん断スパンにより設定			
可能なβaを考慮している。これは、地中に埋設されたラーメン			
構造で、分布荷重が卓越、スパン内に曲げモーメントの反曲点が			
存在する等の載荷形態にある条件下では、せん断耐力が増大する			
という実験的知見を踏まえ、より合理的なせん断耐力を与えるよ			
う、コンクリート標準示方書のせん断耐力式を精緻化したもので			
ある。			
また,土木学会マニュアルにおけるせん断耐力式における評価			
においては、複数の安全係数(部材係数、構造解析係数)を見込			
<u>む。</u>			
なお、せん断に対する照査については、地震応答解析において			
部材のせん断照査が厳しくなる時刻(層間変形角最大時刻)につ			
いて、土木学会マニュアルに基づき、等価せん断スパンを考慮し			
た照査手法を用いて評価を実施する。層間変形角が最大となる時			
刻と、せん断力が最大となる時刻の整合性は、補足確認する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(3) 安全係数の考え方			
耐震安全性評価に当たっては、構造部材の曲げ照査については			
限界層間変形角を、構造部材のせん断照査についてはせん断耐力			
を許容限界値とした終局状態を想定した評価を実施する。			
耐震安全性評価では、当該許容限界値に対して、妥当な安全余			
裕を確保するため、構造部材の照査の過程において複数の安全係			
数を考慮する。			
安全係数は、材料係数、部材係数、荷重係数、構造解析係数及			
び構造物係数の5 種に分けられる。それぞれの安全係数の考え方			
を第11-9-11 図に示す。			
安全係数の設定については、取水路の構造的な特徴を踏まえ、			
その適用性を判断した上で参考とする規格・基準類を9.2.3 章か			
ら選定した。			
第11-9-11 表に,曲げ及びせん断照査に用いる安全係数とその			
設定の考え方を示す。			
安全係数については、各規格・基準類で、必ずしも一定の値が			
定められているわけではないことから, 取水路の特徴, 耐震評価			
における解析手法及び物性値の設定根拠等を考慮し,第11-9-11			
表に示すとおり設定する。			
<u>また、地盤物性のばらつきの考慮として、周辺地盤の変形特性</u>			
<u>について、平均値を基本ケースとした場合に、平均値±1.0×標準</u>			
<u>偏差(σ)のケースにおける影響の程度を安全係数として考慮し</u>			
た照査を、工事計画認可段階において実施する。			
設計基準強度 設計強度 設計用断面耐力			
荷重の特性値────────────────────────────────────			
ア _f ア _a 方舌係数 様法留析係数			
※上記に加えて、 地盤物性のはらつさに関する女全係数を考慮する			
第11-0-11 回 左 合反粉の考え士			
<u> 毎11-9-11 凶 女王休毅の考え力</u>			

$\frac{\mathbf{B}(-\mathbf{a}) + \mathbf{C}(\mathbf{a})}{ \mathbf{a} ^2} = \frac{\mathbf{C}(\mathbf{a}) + \mathbf{C}(\mathbf{a}) + $	柏崎刈羽原子ス	力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
$\frac{1}{10} \frac{1}{10} \frac$	<u>第11-9-11</u> 表	(1)曲げ評価において考慮する安全係数			
$ \frac{1}{2} 1$	安全係数	値 設定根拠			
$ \frac{ \mathbf{x} _{\mathbf{x}}}{ \mathbf{x} _{\mathbf{x}}} = \frac{ \mathbf{x} _{\mathbf{x}}}{ \mathbf{x} _{$	++*1.1で米ケ	地震応答解析により応答値を求めていることから、照査手法に整合す			
$\frac{ \mathbf{w}_{1} _{1}}{ \mathbf{w}_{2} _{1}} + \frac{ \mathbf{w}_{1} _{1}}{ \mathbf{w}_{1} _{1}} + \frac{ \mathbf{w}_{1} _{1}}{ \mathbf{w}_{1} _{1}} + \frac{ \mathbf{w}_{2} _{1}}{ \mathbf{w}_{1} _{1}} + \frac{ \mathbf{w}_{2} _{1}}{ \mathbf{w}_{2} _{1}} + $	11 种作标数	1.00 る適用規格より設定			
$\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	部材係数 Уъ	適用規格に基づき,限界層間変形角の設定に当たっては保守的な配慮 、 1.00			
$\frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}} = \frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}$		が行われていることから設定			
$\frac{1}{10000000000000000000000000000000000$	構造物係数 γ	適用規格に基づき,基準地震動 Ss による地震力を適用することで十分 1.00 に表慮されていることから認定			
$ \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$	荷重係数 ッ。	1.00 適用規格より設定			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	構造解析係数 у,	1.20 適用規格より設定			
$u_1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$					
$\frac{1}{1148} \frac{1}{124} 1$		(ヘンシン)をデタントン・イオキトスウムケッ			
u = u = u $u = u = u = u$ $u = u = u = u = u = u = u = u = u = u =$	<u></u> <u></u>	(2) せん			
HINE Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementatin Implementatin	安全係数	値 設定根拠			
$ \begin{array}{ c c c } \hline v & v & v & v & v & v & v & v & v & v$	材料係数 コンクリート γ uc	1.30 適用規格より設定			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ _n 鉄筋 γ _{us}	1.00 適用規格より設定			
$\frac{ v }{ u _{x}} \frac{ v }{ v _{x}} \frac{ v }{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} \frac{ v _{x}}{ v _{x}} v $	部材係数 コンクリート y be	1.30 適用規格より設定			
$ \frac{1}{44000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$	γ _b 鉄筋 γ _{bs}	1.10 適用規格より設定			
中国・中国・中国・中国・中国・中国・中国・中国・中国・中国・中国・中国・中国・中	構造物係数 y;	適用規格に基づき,基準地震動 Ss による地震力を適用することで十 1.00			
$\frac{ \mathbf{u}_{1} _{\mathbf{u}_{1}}}{ \mathbf{u}_{1} _{\mathbf{u}_{1}}} = \frac{ \mathbf{u}_{1} _{\mathbf{u}_{1}}}{ \mathbf{u}_{1} _{\mathbf{u}_{1}}} = \frac{ \mathbf{u}_{1} _{\mathbf{u}_{1}}}{ \mathbf{u}_{1} _{\mathbf{u}_{1}}}$ $(1) \mathbf{E} \mathbf{u}_{1} \mathbf{u}_{1}$		分に考慮されているとして設定			
(1) 工業単価数(2) (注) (2) (⊥) (2	荷重係数 y ₁	1.00 適用規格より設定			
(1) 花環地域の支持性能に対する手容限型 基礎地域の支持性能に対する単容取基 用する動面力向の最大会力(最大統正力)地域定在 力力協定、以下部構造術)・回帰達((注))北道路協会、平成社在 3 用)」に基づき算定した破漠支持力を下回ることを確認する。 確認支持力算定式(直接基礎) Qa=4.{mのが5.+montext Qa=4.{montext 度に成ら体素は、支持力能数の寸に効果と考定した地域の制度支持力(以) c:mbondeを考定した地域の制度支持力(以) c:mbondeを考定した地域面向 d:mbondeを考定した地域面向 d:mbondeを考定した地域の制度支持力(以) c:mbondeを考定した地域の制度支持力(以) c:mbondeを考定した地域の制度支持力(以) c:mbondeを考定した地域の制度支持力(以) c:mbondeを考定した地域の制度支援(し) c:mbondeを考定した地域の制度支援(し) c:mbondeを考定した対力を表示しい) c:mbondeを考定した支援(し) d:mbondeを表定した対力を表示し、 c:mbondeを考定した支持が成構 c:mbondeを考定した支持が成構 c:m	構造解析係数 γ。	1.05 適用規格より設定			
(1) 主要地盤の支持性能に対する許容報見 基連線の方支持性能に対する解表見、取水路定版下の地盤に作用する能力が「道路権示方書(1) 用する範方内の最大分力(最大範定取) 単正確(い下節構造器)・同解題((計)) 本道路協会,平成14 生 当1)1 に基づき算正にた権限支持力を下面ることを確認する。 確認(大能(取)) (4)1 に基づき算正にた権限支持力を下面ることを確認する。 (5)1 に基づき算正にた権限支持力を下面ることを確認する。 (5)1 に基づき算正にた権限支持力を下面ることを確認する。 (4)1 に基づき算正にた権限支持力を下面ることを確認する。 (5)1 に基づき算正にた権限支援力を下面ることを確認する。 (6)1 (2014) (5)1 に基づき算正にな権限支援力を下面ることを確認する。 (6)1 (2014) (6)1 (2014) (6)1 (2014) (7)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014) (8)1 (2014)					
基礎地址の文装特性能に対する現在には、広水路応数下の地型に作用する約省方向の最大合力(最大約省方)が「道路橋示方書(1 共通編・NY部路構造職・同無数((注)日本道路違念,平成14年 3月)」に広づき筆定した極限支持力を下回ることを確認する。 御広東市会社での「日本道路違念,平成14年 登録、「日本道路違念,平成14年 登録、「日本道路違念」、平成14年 Q.= 年人(www.K,++wp.K,++2,n.0,N,K) で、「日本道路違心」、「日本道路違心」、「日本道路」、 登録、「日本道路違心」、「日本道路」、 日本道路違言、「日本道路」、 日本地域部長、 日本道路」、 日本道路」、 日本道路」、 日本道路」、 日本道路」、 日本 道路」、 日本 道路」、 日本 道路」、 日本 道路」、 日本 道路」、 日本 道路」、 日本 道路」、 日本 通知 一本 日本 通知 一本 日本 日本	(4) 基礎地盤の支持	寺性能に対する許容限界			
田田で名称(近方田の坂大合力(支大部直力)) 田内で名称(近方田の坂大合力(支大部直力)) 田戸で名称(近方田の坂大合力(支大部直力)) 田戸で名称(近方田の坂大合力(支大部直力)) 田戸で名称(近方田の坂大合力(支大部直力)) 田戸で名称(近方田の坂大合力(支大部直力)) 田 田 ヨー 田市で名(広田)) 田(支大部西口)) 田(支持力) 田 田(支持力) 田(支持力力) 田(支持力力) 田(支持力力) 田(支持力力) 田(支持力力) 田(支持力力) 田(支持力力)) 田(支持力力) 田(支持力力)) 田(支持力力)) 田(支持力力)) 田(支持力力)) 田(支持力力))	甘本地般の支持				
<u>出する名前進方間の数人公式 (数人気) か) 近畿階級の方者 []</u> <u>走通編・IV下落構造編)、同解説 ((社) 日本道路協会, 平成14 年</u> 3.1) I E 基づき算定した極限支持力気を下回ることを確認まする。 <u>権限支持力算定式 (直接基礎)</u> $q_s = a_s [accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5}]$ ここに、 $q_s = (a_s (accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5})$ ここに、 $q_s = (a_s (accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5})$ ここに、 $q_s = (a_s (accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5})$ ここに、 $q_s = (a_s (accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5})$ ここに、 $q_s = (a_s (accN_{5} + sqN_{5} a_{s}^{-1} + gD_{5} N_{5}^{-5})$ $q_s = 2a_s$ $B_s = a_{c} a_s$ $B_s = a$	<u>本</u> に地盤の又行	主能に対りる照直は、取八路底版下の地盤に下			
$\pm i = 4iii + 1V^{-1} E^{ii} E^{i$	用する鉛直方向の量	最大合力(最大鉛直力)が「道路橋示方書(I			
3 月)」に基づき寛介した城限支持力を下回ることを確認する。 振行力算方式(自接基礎) Q _a = 4 _a {acct/b ₂ S ₊ ± xq/b ₂ S ₊ ± ½ xβB _a /b ₃ S ₂ Citic, Q _a 荷爾 の個に承載、支持方係数の甘滋効果を考慮した地態の期限支持力(kN) e: 地態の端教 か (kNm) q: 上載荷有 (LNmi) で, q=y ₂ D _i A _a - 行教統留任 (m) D _a - 2-z ₀ B _a - 2-z ₀ S _a - Kun O _a (m) G _a : 建成の現分成長 (m) G _a : ジェ観の方照大橋を (m) G _a : ジェ街の成式長 (m) G _a : ジェ観の方服大橋を (m) G _a : ジェ観の方照大橋を (m) G _a : ジェ観の方振大橋 (m) G _a : ジェ観の方振大橋を (m) G _a : ジェ観の方能の低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低低	共通編・IV下部構造	造編)・同解説((社)日本道路協会,平成14 年			
	3 月)」に其づき管	定した極限支持力を下回ろことを確認する			
極限支持力算定式(直接基礎) $q_e = A_e [arcxN_s d_e + t_s \eta_B g_h N_s S_s]$ ここに、 $q_e = A_e [arcxN_s d_e + t_s \eta_B g_h N_s S_s]$ ここに、 $q_e : \pi \oplus \alpha G_e (\pi g_h t_h t_s t_h t_h t_k g_h \sigma t_s t_h t_k g_h \sigma t_h t_h t_h t_h t_h t_h t_h t_h t_h t_h$					
$\begin{array}{c} Q_{\mu} = A_{\mu} \left[acc N_{\nu} \xi_{\nu} + xq N_{\nu} \xi_{\nu} + \frac{1}{2} \gamma_{\mu} B_{\nu} M_{\nu} S_{\nu} \right] \\ \hline \\ \textbf{c.c.} \\ \hline \\ Q_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\nu} G_{\nu} G_{\nu} + \frac{1}{2} \gamma_{\mu} B_{\nu} M_{\nu} S_{\nu} \\ \hline \\ Q_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\nu} G_{\nu} G_{\nu} + \frac{1}{2} \gamma_{\mu} B_{\mu} M_{\nu} S_{\nu} \\ \hline \\ Q_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\nu} G_{\nu} G_{\nu} + \frac{1}{2} \gamma_{\mu} B_{\mu} M_{\nu} S_{\nu} \\ \hline \\ Q_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ P_{\mu} : P_{\mu} : 2 F_{\mu} F_{\mu} B_{\nu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} G_{\mu} \\ \hline \\ \hline \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} \\ \hline \\ \hline \\ \hline \\ \hline \\ B_{\mu} : B_{\mu} G_{\mu} G_{\mu} \\ \hline \\ $	極限支持力算定式	(直接基礎)			
czck, Q_u : 南重の幅心模科, 支持与依数の非法効果を考慮した地盤の極限支持力 (kN) c: 地盤の結着力 (kN/m) c: 地盤の結着力 (kN/m) q: 上報荷重 (kN/m) c, q=>2 D_f A: : 有効磁荷面積 (m) A_{c} p. : f_{c} f_{c} g: 面面偏心を積重量 (kN/m) A_{c} b: 成電の価心を積重量 (kN/m) A_{c} b: 成電の価心を積重量 (kN/m) A_{c} b: 成電の価心を積重量 (kN/m) A_{c} b: 方面の価心を考慮した基礎の有効報荷幅 (m) B_{c} b: 最高の価心を考慮した基礎の有効最有価値 (m) B_{c} b: 最優の価心 B_{c} b: 最優の有効根人北環念 (m) B_{c} c: (A A)和効果に対する物道依教 (m) B_{c} c: (A A)和参求に大力特力係教 B_{c} g: (A K)和効果に対する物道依教 (m) B_{c} c: (B A)和効果に対する物道に係数 B_{c} g: (S g_{c} , g_{c} ; 支持力係教の B_{c} g: (S g_{c} , g_{c} ; 支持力係教 B_{c} g: (S g_{c} , g_{c} ; 支持力係教 B_{c}	$Q_u = A_e \left\{ \alpha \kappa c N_c S_c + \kappa c \right\}$	$qN_qS_q + \frac{1}{2}\gamma_1\beta B_e N_\gamma S_\gamma$			
Q _k : 荷車の偏心模斜, 支持力係数の寸法効果を考慮した地盤の極限支持力 (kN) c: 地盤の粘着力 (kN/m) q: 上載荷重 (kN/m) q: 上載荷重 (kN/m) q: 子菊独藏荷面貌 (m) A _e : 行動空防晶心を考慮した基礎の有効載荷幅 (m) D _e : 荷重の偏心を考慮した基礎の有効載荷幅 (m) B _e : 荷重の偏心を考慮した基礎の有効載荷機能 B _e : 荷重の偏心を考慮した基礎の有効載荷幅 (m) B _e : 荷重の偏心を考慮した B _e : 荷重の偏した G _e : 荷重の偏くな量 (m) B _e : ブ街車の係数を適用) r: 根入れ効果に対する割増係数 (=1) N _e , N _e : グ街車の條数を考慮した支持力係数 S _e : S _e : S _e : S _e : 支持力係数の		- ,			
v_{a} , 時重の福祉方(KNm) c: 地緣の粘着方(KNm) q: 上載荷重(kNm) q: 上載荷重(kNm) r_{a} : 有劲城荷面積(m) p_{a}, p_{2} : 支持地盤及び根入打地壁窗単位体積重量(kNm) cだし、地下水位以下では水中単位体積重量を用いる。 B_{c} : 荷重の偏心を考慮した基礎の有效載荷幅(m) $\theta_{c} = B - 2e_{b}$ B: 基礎幅(m) e_{B} : 基礎幅(m) e_{B} : 基礎幅(m) p_{i} : 基礎の幅心量(m) D_{i} : 基礎の形状係数(m) D_{i} : 基礎の形状係数(m) a, β : 基礎の形状係数(m) c : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ c : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ c : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ r_{i} : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ k : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ k : $R_{L}Andym_{L}varto 訪問解释_{K}w(m)$ k : $R_{L}Andym_{L}varto for the formula of $	- こに, 0 ・ 荷重の信心値	「斜」支持力体粉の寸注効果を考慮」た地般の極限支持力(LN)			
は、記載の研研の「個の町) 毎、注載の重代(N面) で、 $(=\gamma_2 D_f$ $A_e: 有効載荷面積(nl)$ $\gamma_1, \gamma_2: 艾特地盤及び根入れ地盤の単位体積重量を用いる。 B_e: 荷重の編心を考慮した差慮の有効載荷幅(m)B_e: 毎 = 0 - 2e_{\theta}B: 基礎幅(m)e_{g}: 荷重の編心量(m)p_i: 基礎の形状係数(e_1), 帶状基礎の係数を適用) e: ft uth add ut add uth $	c・抽般の粘着ナ				
A: 1 - 5 (4) (1) A: : 有 効素 荷雨様 (n) ア1, Y2: 支持 抄 整要 び 報入 和 地 整の 単位 体積重量 (kN/ ml) ただし、地下水位以下では水中単位 体積重量を用いる。 B: : 活 頭 の 偏 心 を 考慮 した 基礎の 有効載 荷幅 (m) B: = 8 - 2 e_B B: 基礎師 (m) e _B : : 奇 重 の 偏 心 量 (m) D: : 基礎の 有効 報 荷配 D: : 基礎の 有効 報 人 和 業 5 (m)	 a:上載荷重(k) 	N/m^2 $\mathcal{O}_{\alpha} = \nu_2 D_{\alpha}$			
Nue Weinhaus (Ku) Nue Weinhaus (Ku) アue Yz 支持地盤及び根入れ地盤の単位体積重量を用いる。 ただし、地下水位以下では水中単位体積重量を用いる。 ただし、地下水位以下では水中単位体積重量を用いる。 Be: 荷重の偏心を考慮した基礎の有効載荷幅 (m) Be: 基礎領 (m) eg: 荷重の偏心を考慮した基礎の有効載荷幅 (m) B: 基礎領 (m) eg: 荷重の偏心量 (m) Dry: 基礎の存効根入れ深さ (m) a, β: 基礎の形状係数 (=1, 帯状基礎の係数を適用) k: 根入れ効果に対する割増係数 (=1) Ne, Nq, Ng: 荷重の傾斜を考慮した支持力係数 Se, Sq, Sy: 支持力係数	4: <u></u> 4。: 有効載荷面和	音 (m ²)			
ただし、地下水位以下では水中単位体積重量を用いる。 E_e :荷重の偏心を考慮した基礎の有効載荷幅(m) $B_e = B - 2e_g$ B:基礎幅(m) e_g :荷重の偏心量(m) D_f :基礎の有効很入れ深さ(m) α 、β:基礎の係数を適用) κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_e, S_q, S_y :支持力係数の寸法効果に関する補正係数	ν ₁ ,ν ₂ :支持地盤及(び根入れ地盤の単位体積重量(kN/㎡)			
B_e :荷重の編心を考慮した基礎の有効載荷幅(m) $B_e = B - 2e_B$ B :基礎幅(m) e_B :荷重の偏心量(m) D_f :基礎の有効根入れ深さ(m) α , β :基礎の形状係数(=1,帯状基礎の係数を適用) κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_c, S_q, S_Y :支持力係数の寸法効果に関する補正係数	ただし、地下	下水位以下では水中単位体積重量を用いる。			
$B_e = B - 2e_B$ B:基礎幅(m) e_B :荷重の偏心量(m) D_f :基礎の有効根入れ深さ(m) α 、β:基礎の形状係数(=1,帯状基礎の係数を適用) κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_c, S_q, S_y :支持力係数の寸法効果に関する補正係数	B _e :荷重の偏心を	と考慮した基礎の有効載荷幅 (m)			
B:基礎幅(m) e_B :荷車の偏心量(m) D_f :基礎の有効根入れ深さ(m) α, β :基礎の形状係数(=1,帯状基礎の係数を適用) κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷車の傾斜を考慮した支持力係数 S_c, S_q, S_y :支持力係数の寸法効果に関する補正係数	$B_e = B - 2e_B$				
e_B :荷重の偏心量(m) D_f :基礎の有効根入れ深さ(m) α , β :基礎の形状係数(=1,帯状基礎の係数を適用) κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_c, S_q, S_y :支持力係数の寸法効果に関する補正係数	B :基礎幅(m)				
D _f :基礎の有効根入れ深さ(m) α,β:基礎の形状係数(=1,帯状基礎の係数を適用) κ:根入れ効果に対する割増係数(=1) N _c , N _q , N _y :荷重の傾斜を考慮した支持力係数 S _c , S _q , S _y :支持力係数の寸法効果に関する補正係数	e _B :荷重の偏心量	赴 (m)			
α, β:基礎の形状係数(=1,帯状基礎の係数を適用) κ:根入れ効果に対する割増係数(=1) N _c , N _q , N _y :荷重の傾斜を考慮した支持力係数 S _c , S _q , S _y :支持力係数の寸法効果に関する補正係数	$D_f: 基礎の有効相$	艮入れ深さ(m)			
κ :根入れ効果に対する割増係数(=1) N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_c, S_q, S_y :支持力係数の寸法効果に関する補正係数	α , β :基礎の形状係	系数(=1, 帯状基礎の係数を適用)			
N_c, N_q, N_y :荷重の傾斜を考慮した支持力係数 S_c, S_q, S_y :支持力係数の寸法効果に関する補正係数	κ:根入れ効果に	こ対する割増係数(=1)			
S_c, S_q, S_γ :支持力係数の寸法効果に関する補正係数	N_c, N_q, N_γ :荷重の傾斜を	を考慮した支持力係数			
	S_c, S_q, S_γ :支持力係数の	寸法効果に関する補正係数			

柏崎刈羽	原子力発	「電所 6/7	7 号炉 (2017	7.12.20版)	女川原子力発電所	2 号炉(2019.11.6版)	島根原子力発電所	2 号炉	備考
9.2.5. 評価結果									
9.2.5.1 曲げに対する照査結果									
				取水路 (一般)	8)				
の昭杏田層間	変形角け	ト いずれまき	午 容 限 界 値 (限	界層間変形角					
<u>い下である</u>		<, <) \\ U U H			-				
	-								
	体110	10 末 出述)。	・シートフロ大社	• H					
	<u>第11-9-</u>	· <u>12</u> 表 囲けに	- 対する照省結	i <u>朱</u>					
基準地震動	評価位置	照查用層間変形角 Ra ^{※1}	限界層間変形角 B.	照查值 Ra/Ru					
Ss-1	頂版~底版	0.25/100	1/100	0.25					
Ss-2	頂版~底版	0.15/100	1/100	0.15					
Ss-3	頂版~底版	0.30/100	1/100	0.30					
Ss-4	頂版~底版	0.13/100	1/100	0.13					
Ss-5	頂版~底版	0.23/100	1/100	0.23					
Ss-6	ⅠⅠ版~広阪 佰版~底版	0.22/100	1/100	0.22					
Ss-8	頂版~底版	0.18/100	1/100	0.18					
※1 照査用層間	変形角Rd=最	大層間変形角R×構造的	解析係数γa						
地盤物性の	ばらつきに関す	る安全係数を乗じてい	ない値						
9.2.5.2 せん	断に対す	「る照査結果							
せん断に対	する昭香	<u></u>	9-13 表に示す	-	5几 177				
<u> しい時代に対</u> 部)の昭本田	せん断ナ	ルナー いずわせ	いたの新聞力評		<u>+</u>				
<u>助かの派遣所</u> 法に上ス許宏	限界储		リ下である		<u>,,,</u>				
なたる前谷		(ビル西回り))	<u>め」てのる。</u> 計力証価式を用	ー	z				
よわ, 照直			り刀叶囲丸で用		<u>2</u>				
セルタークター ひんり しんり しんり しんり しんり しんり しんり しんりょう しんりょう しんしょう しんりょう しんりょ しんりょ しんりょ しんりょ しんりょ しんりょ しんりょ しんりょ	上凹る场	方には、「原子」	<u>力光电別座2下車</u> 上逆へ広え上						
<u> 展性能照査</u>	: ~ * * * * * * * * * * * * * * * * * *			工个安良会,20					
<u>年6月」に基</u>	つき,種	賃 造 部 材 の 形 状	大,作用何重及	なび鉄筋コンク	<u> </u>				
<u>ートの非線形</u>	特性を躍	「まえた材料す	F線形解析を実	ミ施することに					
<u>り,より高い</u>	精度で求	くめたせん断而	耐力で照査を行	うと, せん断	<u> </u>				
対する照査結	課は, +	一分な裕度を有	育している。						

柏崎刈羽	羽原子力系	発電所 6/7	、号炉 (2017	. 12. 20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第11-9-	13 表 せん断り	こ対する照査編	牛果			
		照査用せん断力	せん断耐力	照查值			
基準地震動	評価位置	V _d (kN)*1	V _{yd} (kN)	V _d /V _{yd}			
	頂版	1032	2758	0.37			
Ss-1	底版	1172	3085	0.38			
	側壁	1177	1708	0.69			
	隔壁	725	898	0.81			
	」	759	2776	0.27			
Ss-2	低版	832	2894	0.29			
	间壁	750	1588	0.47			
	T百 bu	000	913	0.61			
	真版	1005	2008	0.32			
Ss-3	和辟	1077	1574	0.55			
	隔時	829(833) ^{*2}	875(1941) ^{*2}	0.08 0.95(0.43) ^{*2}			
	頂版	735	2749	0.27			
	底版	833	2941	0.28			
Ss-4	側壁	717	1571	0.46			
	隔壁	498	920	0.54			
	頂版	836	2646	0.32			
	底版	1003	2952	0.34			
Ss-5	側壁	739	1389	0.53			
	隔壁	689	891	0.77			
	頂版	825	2741	0.30			
Sarf	底版	946	2993	0.32			
55-0	側壁	1050	1689	0.62			
	隔壁	652	891	0.73			
	頂版	802	2680	0.30			
Ss-7	底版	956	3016	0.32			
	側壁	1048	1625	0.64			
	隔壁	766	871	0.88			
	頂版	755	2685	0.28			
Ss-8	底版	838	2858	0.29			
	側壁	648	1400	0.46			
	隔壁	607	878	0.69			
※1 照查用也	ん厨刀▼₫=9	全生せん) 明トスウム (5米)まず	挥机环绕双γa				
地盤物性(りはらつさに	関する女主係数を来					
※2 材料非線	16解析を用い	た方法による結果を	()内に示す				

柏崎刈羽原子力発電所	6/7号炉 (201	17.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.2.5.3 基礎地盤の支持性能	に対する照査結果				
基礎地盤の支持性能に対す	る照査結果を第11-	-9-14 表に示す。			
最大鉛直力は,いずれも許容	限界值(極限支持)	力)以下である。			
第11-9-14 表 基礎地想	室の支持性能に対す	る照査結果			
北 進出電利 最大鉛直力	極限支持力	照査値			
基準地震動 V(kN) ^{※1}	Q _u (kN)	V/Q_u			
Ss-1 5750	24000	0.24			
Ss-2 5120	29600	0.17			
Ss-3 5690	25800	0.22			
Ss-4 4880	52900	0.09			
Ss-5 4890	48400	0.10			
Ss-6 5130	24200	0.21			
Ss-7 5200	19000	0.27			
Ss-8 5080	29300	0.17			
※1 地盤物性のばらつきに関する安全	係数を乗じていない値				
9.2.6 まとめ 設置許可段階において液状 表構造物として選定した7 号 に対する構造物評価の見通し 地震応答解析(有効応力解 基準地震動Ss に対し,構造部 用する最大鉛直力が許容限界 強度を有している見通しを得	<u>:化に伴う構造物の</u> : : : : : : : : : た。 : : : た。 : : : : : : : : : : : : :	<u>影響を検討する代</u> <u>の基準地震動Ss</u> <u>路(一般部)は,</u> <u>及び基礎地盤に作</u> から,十分な構造			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
補足資料1			
構造物の浮き上がりに係る評価方針について			
本資料では、中空断面を有する構造物における液状化発生時の			
場圧力の増加を考慮した、力の釣り合いに基づく方法であり、共			
同溝設計指針(日本道路協会, 1986),トンネル標準示方書(土木			
学会,2006),鉄道構造物等設計標準・同解説(鉄道総合技術研究)			
所, 2012)及び水道施設耐震工法指針・解説(1997)に示されて			
いる。			
各指針の概要を第11-9-15 表に整理する。			
<u>浮き上がりに対する安全率Fsの算定は,共同溝設計指針,トン</u>			
ネル標準示方書及び鉄道構造物等設計標準・同解説では、いずれ			
も同じ評価方法が採用されている。これは、水道施設耐震工法指			
<u>針・解説は円形の管路を対象としており、他3者は矩形構造物を</u>			
対象としているためと考えられる。柏崎刈羽地点の評価対象構造			
物は、矩形のボックスカルバート構造であることから、共同溝設			
計指針、トンネル標準示方書及び鉄道構造物等設計標準・同解説			
に示される以下の式を用いて評価を実施する。			
$F_{s} = (W_{s} + W_{B} + Q_{s} + Q_{B}) / (U_{s} + U_{D})$			
Ws:上載土の荷重(水の重量を含む)			
W _B :構造物の自重			
Qs:上載土のせん断抵抗			
Q _B :構造物側面の摩擦抵抗			
Us:構造物底面に作用する静水圧による揚圧力			
U _D :構造物底面に作用する過剰間隙水圧による揚圧力			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
第11-9-15 表 浮き上がり計算法の比較			
共同講談計指針 (日本道路協会, 1986) トンネル標準示方書 (土木学会, 2006) 鉄道構造物等 設計標準・同解説 (鉄道総合技断研究所, 2012) 水道施設耐震工法 (日本道路協会, 1986) (土木学会, 2006) (鉄道総合技断研究所, 2012) (日本水道協会, 1997)			
$\frac{\bigotimes \mathbb{A} \oplus F _{S} \sigma}{ \# \mathbb{C} \mathfrak{X}^{\oplus}} \frac{W_{s} + W_{n} + Q_{s} + Q_{n}}{U_{s} + U_{D}} \frac{W_{s} + W_{n} + 2Q_{s} + 2Q_{n}}{\gamma_{+} (U_{s} + U_{D})} \frac{W_{s} + W_{n} + 2Q_{s} + 2Q_{n}}{\gamma_{+} (U_{s} + U_{D})} \frac{W_{n} + Q_{i}}{V_{0} \cdot \gamma_{s}} = \frac{W_{s} + W_{n} + 2Q_{s} + 2Q_{n}}{V_{0} \cdot \gamma_{s}}$			
$ D D \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$			
適用構造物 共同漆(矩形) 間前トンネル(矩形) 間前トンネル(矩形) 管路(円形)			
所要安全率 1.1 1.0 1.0 1.0 1.0			
※共同講設計指針とトンネル標準示方書,鉄道構造物等設計標準・同解説の算定式の相違は、力の定義におけるせん断抵抗Qs・摩擦抵抗 Qaを,片側で「Q」とするか「Q/2」とするかの表記上の相違であり、算定内容は同一。			
<u>非液状化層におけるせん断抵抗Q_s及び摩擦抵抗Q_Bの算定は、</u>			
柏崎刈羽地点の評価対象地盤は、砂質土に限らず粘性土や地盤改			
良層が分布しており, せん断抵抗角 φ と粘着力 c を用いた回帰式			
が最も適していること,地盤改良の効果は主に粘着力 c として表			
現されることから、トンネル標準示方書に示される以下の式を用			
いて評価を実施する。			
$Q_{s} = f_{uw} (c + K_{0} \cdot \sigma'_{v} \cdot t a n \phi) H'$			
$Q_B = f_{us} (c + K_0 . \sigma'_v \cdot t a n \phi) H$			
c:粘着力			
 			
K ₀ :静止土圧定数			
σ'_{v} :有効上載上			
ロ:悟垣物の同さ f f · 流せ化時の浮き上がりに関する宏令低粉			
I_{uw} , I_{us} . (f = 1.0 f = 1.0 Models			
所要安全率は、最も保守的な設定としている共同溝設計指針を			
踏まえ, 1.1 とする。			
また、評価の結果を踏まえ、必要に応じて構造物周辺の地盤改			
良等の浮き上がり防止対策を実施する。			
浮き上がり防止対策の設計方針を第11-9-16 表に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第11-9-16 表 浮き上がり防止対象の設計力 「 「 山 山			
【参考文献】 ・日本道路協会:共同講設計指針,1986. ・土木学会:トンネル標準示方書 開削工法・同解説,2006. ・鉄道総合技術研究所編:鉄道構造物等設計標準・同解説 耐震設計,2012. ・日本水道協会:水道施設耐震工法指針・解説 1997 年版,1997.			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
補足資料2			
洪積砂質土層の液状化の有無について			
7 号炉取水路 (一般部)の基準地震動Ss に対する地震応答解析			
(有効応力解析FLIP)の結果から、洪積砂質土層の液状化の有無			
について示す。			
本検討における液状化パラメータは、液状化層と判定する埋戻			
土層と、非液状化層と判定するが念のため液状化強度特性を設定			
する洪積砂質土層(Ⅱ)とに設定する。さらに,液状化特性が保			
(9.2.4.5 章参照)			
<u>最大過剰間隙水圧比について、曲げ及びせん断の照査が最も厳</u>			
しい結果となった基準地震動Ss-3 の解析結果を第11-9-12 図に			
示す。埋戻土層においては、構造物周辺以外の領域では最大過剰			
間隙水圧比が0.95 を超えていることから,液状化が生じる解析結			
果となっている。洪積砂質土層(Ⅱ)においても,最大過剰間隙			
水圧比が0.95 を超える領域があることから,部分的に液状化が生			
じる解析結果となっている。			
以上のことから、保守的な液状化パラメータにおける結果とし			
ては、洪積砂質土層は部分的に液状化が生じる評価となる見通し			
である。			
埋戻土層(不飽和)			
建庚土屬 (飽和)			
是士强制团的水压计			
0.60 0.80 0.80 0.90 0.90 0.95			
0.95 1.00			
第11-9-12 図 7 号炉取水路(一般部)の最大過剰間隙水圧比			
<u>(Ss-3)</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
補足資料3			
取水路の沈下量について			
7 号炉取水路 (一般部) の基準地震動Ss に対する地震応答解析			
 (有効応力解析FLIP)の結果から、取水路の沈下量について示す。			
本検討における液状化パラメータは、液状化層と判定する埋戻			
土層と、非液状化層と判定するが念のため液状化強度特性を設定			
- する洪積砂質土層(Ⅱ)とに設定する。さらに,液状化特性が保			
- 守的に評価されるよう,液状化パラメータを設定している。			
(9.2.4.5 章参照)			
<u> 取水路の変位量について、曲げ及びせん断の照査が最も厳しい</u>			
結果となった基準地震動Ss-3 の解析結果を第11-9-17 表に示す。			
沈下量は,時刻歴最大で約2cm,残留で約1cm 程度となっている。			
また,水平変位量は,時刻歴最大で約20cm,残留で1cm 以下程度			
となっている。			
なお、上述の変位量は、評価断面における対象ブロック単体の			
変位量であるが,耐震ジョイントの健全性評価に当たっては,隣			
接ブロックとの相対変位量により評価を実施する。			
第11-9-17 表 7 号炉取水路(一般部)の変位量(Ss-3)			
(1) 鉛直変位量(沈下量)			
地震動 算定位置 時刻歷最大 (cm) 残留 (cm)			
Ss·3 底版中央 2.07 0.86			
(2) 水平変位量			
地震動 変位方向 時刻歷最大 (cm) 残留 (cm)			
Ss-3 右変形時(北向き) 11.6 - Ss-3 左変形時(南向き) 20.6 0.54			
1			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
補足資料 4			
取水路の取水機能維持に関する評価方針			
<u>取水路の取水機能に係る基本設計方針として,検討項目を第</u>			
11-9-18 表に示す。検討に際しては、地盤の液状化の影響を考慮			
<u> </u>			
構造部材の健全性及び基礎地盤の支持性能に係る評価は、本編			
資料に示した見通しのとおりである。			
<u>耐震ジョイントの健全性は、工事計画認可の段階において、隣</u>			
接ブロックとの相対変位として確認を行う方針としている。耐震			
ジョイントの限界変位量は、モックアップ試験による変形許容限			
界の確認を行う方針としている。			
発生変位量(水平変位,沈下)は、補足資料3 に示すとおり、			
基準地震動Ss に対する地震応答解析(有効応力解析FLIP)の結果			
を参照する。			
浮き上がり量は、補足資料1に示すとおり、浮き上がりが発生			
しないことを確認することから、変位量は小さい見通しである。			
以上のとおり、構造部材の健全性、基礎地盤の支持性能に加え			
て、発生変位量(水平、沈下、浮き上がり)がジョイント変形許			
<u>谷限界を超えないことを確認することにより、取水機能維持を確</u>			
認する方針としている。			
<u>第11-9-18 表 取水路の取水機能に係る検討項目</u>			
評価方針 評価項目 地震力 部位 評価方法 許容限界			
構造部材の 基準地震動 鉄筋コンク 発生応力等が許容限 限界層間変形 健全性 Ss リート 界を超えないことを 毎、骨ん断面力			
通水断面を 維持すること 基礎地盤の 支持性能 基準地震動 Ss 基礎地盤 鉛直方向の最大合力 が許容限界を超えな いことを確認 極限支持力			
耐震ジョイ 基準地震動 ジョイント 浮き上がり) がジョ ケトの健全 Ss ジョイント イント変形許容限界 変形許容限界			
¹¹ を超えないことを確 認 認			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号
なお、取水路ブロック間の相対変位に伴い取水路に勾配が生じ		
る可能性については、第11-9-18 表に示す通水断面を維持するこ		
とを確認することにより、取水機能に影響がないことを確認でき		
る見通しである。		
<u>津波水位低下時については、原子炉補機冷却海水ポンプの継続</u>		
運転が可能となるよう、ポンプの取水可能水位が6 号炉		
T.M.S.L5.24m, 7 号炉T.M.S.L4.92m に対して, 設置高さ		
T.M.S.L3.5m の海水貯留堰を設置し, 十分な量の海水を貯留す		
る。(第11-9-13 図)		
<u>また,補機冷却用海水取水路は,西山層又はMMR(マンメイ</u>		
ドロック)に設置していることから、タービン建屋との相対変位		
<u>量は小さい見通しである。(第11-9-14 図)</u>		
<u>第11-9-13 図 取水路の概要(6号炉の例)</u>		
油褐灰水湖。没算位置 凡會		
(6		
弗11-9-14 区 取水路仍地質萩树区		
<u>3.3.1</u> 伊坦 風女及しず 四 四		
<u> 中区11年入りに电源取価金硬に フィーマ収入しによる取価、の影響</u> の目通しとして 海状化現象の影響が最もナキいと考えられる野		
凹て医圧し,)		

~炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
常設代替交流電源設備基礎は、第一ガスタービン発電機基礎と			
燃料タンク基礎で構成され、鉄筋コンクリート構造の躯体(基礎			
版及びタンク格納槽)と、それを支持する鋼管杭からなる。常設			
代替交流電源設備基礎の平面図を第11-9-15 図に,常設代替交流			
電源設備基礎のうち第一ガスタービン発電機用燃料タンク基礎の			
断面図(NS 断面)を第11-9-16 図に示す。			
常設代替交流電源設備基礎は基礎構造物であり、各断面で地盤			
条件に大きな差異はないことから、近接構造物に着目し、代表断			
面を選定する。			
第一ガスタービン発電機基礎と燃料タンク基礎は東西方向に隣			
接して配置されており, EW断面では, 互いの変形抑制効果が期待			
できる。第一ガスタービン発電機基礎の北側に7 号炉タービン建			
屋があることから, NS 断面の評価ではこの変形抑制効果が期待で			
きるが、燃料タンク基礎の北側はタービン建屋よりも海側のエリ			
アとなるため, NS 断面の評価ではタービン建屋の変形抑制効果が			
期待できない。			
<u>以上のことから、代表断面として、第一ガスタービン発電機用</u>			
燃料タンク基礎NS 断面を選定し,2 次元有効応力解析 (FLIP) に			
よる評価を実施する。評価は、基準地震動Ssに対して第一ガスタ			
ービン発電機用燃料タンク基礎に要求される機能の維持を確認す			
るために、地震応答解析(有効応力解析)に基づき実施する。			
$A = \begin{bmatrix} A \\ B \\ B' \\ B' \\ C \\ $			
7 号炉ターピン建屋 (単位:m)			
第11-9-15 図 常設代替交流電源設備基礎 平面図			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
--	--------------------------	--------------	----
I.I.S. (A9) III.S. (A9) III.S. (A1) III.S.			
(1) 第一ガスタービン発電機基礎及び燃料タンク基礎 (EW 断面)			
T.M.S.L (A9) 20.0 T.M.S.L 10.0 T.M.S.L.			
(2) 第一ガスタービン発電機基礎(NS 断面)			
1. U. S.L (尺例) 20.0 1.1.1.2.28 1.1.1.2.28 1.0.0 1.4.01 1.10.0 1.10.0 0.0 U. U. S.L. +15.2 U. U. S.L. +15.2 U. U. S.L. +15.2 0.0 U. U. S.L. +15.2 U. U. S.L. +15.2 U. U. S.L. +15.2 0.0 U. S.L. +15.2 U. U. S.L. +15.2 U. U. S.L. +15.2 0.0 U. S.L. +15.2 U. U. S.L. +15.2 U. U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15.2 1.00 U. S.L. +15.2 U. S.L. +15.2 U. S.L. +15			
(3) 第一ガスタービン発電機用燃料タンク基礎 (NS 断面) 第11-9-16 図 常設代替交流電源設備基礎断面図			

柏崎	刈羽原子	力発電所	6/7号	}炉 (2017.12	2.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
9.3.2 評価方針								
第一ガ	スタービ	ン発電機用	用燃料タン	/ク基礎の耐震	評価では,基			
礎構造物	として第	11-9-19 🛓	長の項目に	こ示す評価を行う	<u>ð.</u>			
構造部	構造部材の健全性評価については,地震応答解析に基づく鉄筋							
<u>コンクリ</u>	ート及び	鋼管杭の著	^後 生応力等	等が許容限界を起	超えないこと			
を確認す	る。また	,基礎地位	盤の支持性	挂能については,	最大鉛直力			
が許容限	界を超え	ないことを	を確認する	る。第一ガスタ-	ービン発電機			
用燃料タ	ンク基礎	の評価フロ	コーを第1	1-9-17 図に示す	<u>す。</u>			
<u>第11-9-</u>	19 表 第-	ーガスター	-ビン発電	<u> 『機用燃料タンク</u>	ウ基礎の評価			
			<u>項目</u>	1				
評価方針	評価項目	地震力	部位	評価方法	許容限界			
		基準地震動	鉄筋コンク	発生応力等が許容限	限界層間変形			
	構造部材の	\mathbf{Ss}	(4)	確認	角、せん断耐力			
構造強度を	健全性	基進地震動		発生応力等が許容限	終局曲げ強度.			
有すること		Ss	鋼管杭 	界を超えないことを 確認	終局せん断強度			
				最大鉛直力が許容限				
	基礎地盤の 支持性能	基準地震動 Ss	基礎地盤	界を超えないことを 確認	極限支持力			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
解析モデルの作成 基準地震動 Ss			
(水平方向・新直方向)			
常時応力解析 入力地震動の算定			
2 次元有限要素法解析 1 次元波動論による地震応答解析			
地震応答解析 2 次元動的有限要素法解析 (水平・鉛直同時加振)			
構造部材の応答値算定			
応答値が 耐力・変形・応力度の 基準値を超えていない			
評価終了			
※検討の内容に応じて、必要なプロセスへ戻る			
第11-9-17 図 第一ガスタービン発電機用燃料タンク基礎の評価			
70-			
9.3.3 適用規格			
適用する規格、基準等を以下に示す。			
・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ			
アル, 土木学会原子力土木委員会, 2005 年6 月			
・コンクリート標準示方書[構造性能照査編]((社)土木学会, 2002			
年制定)			
・鉄筋コンクリート構造計算規準・同解説 – 許容応力度設計法–			
((社) 日本建築学会, 1999 改訂)			
・鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,			
2010 改訂)			
・道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)日本			
道路協会, 平成14年3 月)			
・港湾の施設の技術上の基準・同解説((社)日本港湾協会,2007			
年版)			
・乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設			
計に関する技術規程 JEAC4616-2009, 日本電気協会原子力規格			
委員会, 2009 年12 月			

9.3.4 評価条件 9.3.4 評価方法 地震応客解析は、構造物と地盤の動的相互作用を考慮できるこ 次元動的有限要素法解析を用いて、基準地震動Ss に基づき設定した 大水平地震動と約直地震動の同時加速による茎次時間分の時刻 歴志線影応客解析を行う。第一ガスクービン準電機用燃料タンク 基慮応客解析と、加戻土層、新期砂層及び法積砂質土層が存在するこ どか・過剰間際水圧の上昇を適切に詳価するため、有効応力 ブルをれいろ。 地震た客解析と、加戻土層、新期砂層及び法積砂質土層が被け レの影響を考慮する必要があるため、解析ヨード「FLTP Ver, 7.2.3.51 を使用する。 11. 構造面和 施拓構造である鉄筋コンクリート構造の躯体及び前音面の要性 均等値向出の平面のすみ要素で、鋼管抗は非線形はり要素でモデ ル化する。	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.3.4.1 解析方法 地度応答解析は、構造物と地館の動的相互作用を考慮できる2 次元動的有限要素法解析を用いて、基準地震動%。に基づき設定した水平地震動と適益距裂動の同時加振による逐次時間積分の時刻 医非級形応答解析なたり、第一ガスタービン発電機加燃外クンク 基塞備刀には坦泉土島、新期砂層及び洗醋砂質土層が存在することとから、通剰間酸水圧の上昇を適切に評価するため、有効応力モジジェンクロビン発電機加強的空力 ビルを引いる。 地震応答解析は、坦泉土局、新期砂層及び洗醋砂質土層の波洗化の影響を考慮する必要があるため、解析コード「FLIP」 Ver.7.2.3.5.1 を使用する。 (1) 構造部料 価把構造である鼓筋コンクリート構造の駆体及び前音面の変強 出等価即性の平面のすみ要素で、鋼管杭は非線形はり要素でモジ ル化する。	9.3.4 評価条件			
地度応答解析は、構造物と地盤の動的相互作用を考慮できる2 次元動的有限要素法解析を用いて、基準地震動S:に基づき設定した水平地震動と給口地震動S:に基づき設定した水平地震動と給口地震力 左水平地震動と給口地震力 歴北線応容解析を行う。第ーガスクービン発電機用燃料クンク 基礎周辺には理屋上層、新明砂層及び機積砂質上層が存在すること シから。「急潮間酸水圧の上昇を適切に評価するため、有効応力モデジルを用いる」 ブルを用いる。 地度応容解析は、畑戻土層、新明砂層及び機積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「FLIP Ver.7.2.3.5 jを使用する。 11. 構造部材 番密構造である鉄筋コンクリート構造の躯体及び前音面の要璧 比率範疇地 (1) 現着旅行は非線形はり要素でモデ ル化する。	9.3.4.1 解析方法			
次元動的有限要素法解析を用いて、基準地震動Ss に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻 定水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻 歴非線形応答解析を行う。第ーガスタービン発電機用燃料タンク 基礎周辺には埋戻上層、新期砂層及び洗積砂質土層が存在することから、通動間隙水圧の上昇を適切に評価するため、有効応力モ ブルを用いる。 地震応答解析は、埋戻土層、新期砂層及び洗積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「PLP」 Ver. 7.2.3.5) を使用する。 (1) 構造部材 箇形構造である鉄筋コンクリート構造の躯体及び前背面の表壁 は等価剛性の平面のずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	地震応答解析は、構造物と地盤の動的相互作用を考慮できる2			
た木平地震動と鉛直地震動の同時加振による逐次時間積分の時刻 歴非線形応答解析を行う。第一ガスタービン発電機用燃料タンク 基礎周辺には埋戻土層、新期砂層及び洪積砂質土層が存在するこ とから、過剰間隙水圧の上昇を適切に評価するため、有効応力モ ブルを用いる。 地震応答解析は、埋戻土層、新期砂層及び洪積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「FLP Ver. 7.2.3_51 を使用する。 (1) 構造部材 縮形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面のずみ要素で、鋼管抗は非線形はり要素でモデ ル化する。	次元動的有限要素法解析を用いて,基準地震動Ss に基づき設定し			
歴非線形応答解析を行う。第ーガスタービン発電機用燃料タンク 基礎周辺には埋戻土層、新期砂層及び決積砂質土層が存在するこ とから、過剰間隙水圧の上昇を適切に評価するため、有効応力モ デルを用いる。 地震応答解析は、埋戻土層、新期砂層及び洗積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「FLIP Ver. 7.2.3_5」を使用する。 (1) 構造部材 箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は準価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	た水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻			
基礎周辺には埋戻土層、新期砂層及び洪積砂質土層が存在することから、過剰間隙水圧の上昇を適切に評価するため、有効応力モブルを用いる。. 並虎応答解析は、埋戻土層、新期砂層及び洪積砂質土層の液状化の影響を考慮する必要があるため、解析コード「FLIP Ver, 7.2.3.5」を使用する。. (1) 構造部材 摘形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデル化する。.	歴非線形応答解析を行う。第一ガスタービン発電機用燃料タンク			
とから、過剰間隙水圧の上昇を適切に評価するため、有効応力モデルを用いる。 デルを用いる。 地震応答解析は、埋戻土層、新期砂層及び決積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「FLIP Ver. 7. 2. 3.5」を使用する。 (1) 構造部材 <u>箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁</u> は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	基礎周辺には埋戻土層、新期砂層及び洪積砂質土層が存在するこ			
ブルを用いる。 地震応答解析は、埋戻土層、新期砂層及び洪積砂質土層の液状 化の影響を考慮する必要があるため、解析コード「FLIP Ver.7.2.3_5」を使用する。 (1) 構造部材 痛形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ 少化する。	とから、過剰間隙水圧の上昇を適切に評価するため、有効応力モ			
<u>地震応答解析は、埋戻土層、新期砂層及び洪積砂質土層の液状</u> 化の影響を考慮する必要があるため、解析コード「FLIP Ver.7.2.3_5」を使用する。 (1) 構造部材 <u>箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁</u> は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	<u>デルを用いる。</u>			
化の影響を考慮する必要があるため,解析コード「FLIP Ver.7.2.3_5」を使用する。 (1)構造部材 箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で,鋼管杭は非線形はり要素でモデ ル化する。	地震応答解析は,埋戻土層,新期砂層及び洪積砂質土層の液状			
Ver. 7. 2. 3_5」を使用する。 (1) 構造部材 箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	化の影響を考慮する必要があるため, 解析コード「FLIP			
(1)構造部材 箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。	<u>Ver.7.2.3_5」を使用する。</u>			
(1)構造部材 箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ ル化する。				
箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁 は等価剛性の平面ひずみ要素で,鋼管杭は非線形はり要素でモデ ル化する。	(1) 構造部材			
は等価剛性の平面ひずみ要素で,鋼管杭は非線形はり要素でモデ ル化する。	箱形構造である鉄筋コンクリート構造の躯体及び前背面の妻壁			
ル化する。	は等価剛性の平面ひずみ要素で、鋼管杭は非線形はり要素でモデ			
	<u>ル化する。</u>			
<u>地盤は、Hardin-Drnevich モデルを適用し、動せん</u> 研弾性係 <u>数</u> みてがすっ字粉の土角で味味たままます。	<u> 地盤は、Hardin-Drnevich モアルを適用し、動せん研弾性係数</u> エズボニニングの北京に使用し、動せん研弾性係数			
及び風気に致の非線形特性を考慮する。	及い佩袞正毅の非極形特性を考慮する。			
(3) 减毒完粉	(3) 减音完粉			
(1) 成長と数 減豪特性は、固有値解析にて求まる固有振動数及び減衰比に基	(1) 成衣と数 減衰特性け 因有値解析にて求まる因有振動数及び減衰比に其			
	づくRayleigh 減衰と 地般及び構造物の履歴減衰を考慮すろ			
9.3.4.2 荷重及び荷重の組合せ	9.3.4.2 荷重及び荷重の組合せ			
<u>一番重及び荷重の組合せは、以下のとおり設定する。</u>	荷重及び荷重の組合せは、以下のとおり設定する。			
(1) 耐震安全性評価上考慮する状態	(1) 耐震安全性評価上考慮する状態			
第一ガスタービン発電機用燃料タンク基礎の耐震安全性評価に	第一ガスタービン発電機用燃料タンク基礎の耐震安全性評価に			
おいて、地震以外に考慮する状態を以下に示す。	おいて,地震以外に考慮する状態を以下に示す。			
a. 運転時の状態	a. 運転時の状態			
発電用原子炉施設が運転状態にあり、通常の条件下におかれて	発電用原子炉施設が運転状態にあり、通常の条件下におかれて			
いる状態とする。ただし、運転時の異常な過渡変化時の影響を受	いる状態とする。ただし、運転時の異常な過渡変化時の影響を受			
けないことから考慮しない。	けないことから考慮しない。			
b. 設計基準事故時の状態	b. 設計基準事故時の状態			
設計基準事故時の影響を受けないことから考慮しない。	設計基準事故時の影響を受けないことから考慮しない。			

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
<u>c.</u> 設計用自然条件				
地中埋設構造物であることから、積雪	及び風は考慮しない。			
d. 重大事故時の状態				
<u>重大事故時の影響を受けないことから</u>	考慮しない。			
(2) 荷重				
	以下に示す。			
<u>a. 固定荷重(G)</u>				
 固定荷重として,構造物の自重及び機	器荷重を考慮する。			
<u>b.</u> 地震荷重(K _{Ss})				
□	る地震力を考慮する。			
(3) 荷重の組合せ				
第11-9-20 表 荷重の	組合せ			
 外力の状態	荷重の組合せ			
地震時(Ss)	G+ Kss			
ここで, G : 固定荷重				
Kss : 地震荷重				
9.3.4.3 入力地震動				
地震応答解析に用いる入力地震動は、	解放基盤表面で定義され			
る基準地震動Ss を,1次元波動論によっ	て地震応答解析モデルの			
下端位置で評価したものを用いる。				
入力地震動の算定には,解析コード「S	GLOK Ver2.0」を使用する。			
入力地震動算定の概念図を第11-9-18 図	に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
地際応答解析モデル 第一ガスタービン 第電検用 燃料タンク基礎			
TMSL-155m TMSL-155m AHig CHig CHig CHig CHig CHig CHig CHig C			
 9.3.4.4 解析モデル <u>地震応答解析モデルを第11-9-19 図に示す。</u> (1)解析領域 解析領域は,側面境界及び底面境界が,構造物の応答に影響し ないよう,構造物と側面境界及び底面境界との距離を十分に広く 設定する。 			
 (2) 境界条件 <u>解析領域の側面及び底面には、エネルギーの逸散効果を評価す</u> るため、粘性境界を設ける。 (3) 構造物のモデル化 			
 鉄筋コンクリート構造の躯体は平面ひずみ要素で,鋼管杭は非 線形はり要素でモデル化する。 (4) 地盤のモデル化 地盤は,地質区分に基づき,平面ひずみ要素でモデル化する。 			
 (5) ジョイント要素 構造物と地盤改良の境界部及び地盤改良と地盤の境界部にジョ イント要素を設けることを基本とし、境界部での剥離・すべりを 考慮する。 (6) 水位条件 			

柏崎刈羽原子	·力発電所 6/	7号炉 (2017	. 12. 20 版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
第一ガスタービ	ン発電機用燃料	タンク基礎周辺	の地下水位は,			
地震荷重に伴う液	秋化による変形	を保守的に考慮	するために, 朔			
望平均満潮位(T.M	M. S. L. +0. 49m) (3	余裕を考慮した	T. M. S. L. +1. 00m			
とする。						
伽 」 T.M.S.L.(m) 境	带止 地盤收良	200n 地盤攻良 _ 新期砂屑Ⅱ(地下水以浅)	↓ 「「「「「「「「」」 「「「」」」			
0.0	2. Ga 建成十層(地下水以後) 新期砂層1(地下水以後)	新潮砂两貫(地下水以源) 理	界 一〇二一 一〇二			
	(他下水以為)		反上所(地下水以深)			
	对极新生业时间 外田區	开 3 5 L - 33n 以波				
-40.0_	P(I)	P59944 「. 東. S. L 33m 以際				
-60.060.0), <u>m</u>					
		/ / / / / / / / / / / / / / / / / / /	」他下水位:T. ML S. I., +1. Om			
<u>第</u>	11-9-19 図 地震	袁応答解析モデル	<u>/</u>			
<u>9.3.4.5</u> 使用材料	及び材料の物性	値				
(1) 構造物の物性	<u>三値</u>					
使用材料を第11	1-9-21 表に, 材	料の物性値を第	11-9-22 表に示			
す。						
	<u>第11-9-21</u> 表	<u> 使用材料</u>				
材料		諸元				
コンクリート	設計	基準強度 30N/	/mm ²			
鉄筋		SD490				
		SKK490				
				1		
	tata					
	第11-9-22 表 7	材料の物性値				
材料	単位体積重量	ヤング係数	ポアソン比			
	(KIN/m ³)	(KIN/mm²)	0.9**2			
<u>ユンクリート</u> (4)的	24^{*1}	200*2	0.2*2			
鋼管杭	77	200	0.3			
※1 鉄筋コンクリートと	しての単位体積重量	-00	0.0			
※2 「コンクリート標準:	示方書[構造性能照査編]	((社)土木学会,200	92 年制定)」に基づき設			
定する						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
(2) 地盤の物性値			
<u>a.</u> 液状化試験の結果			
液状化層と判定する埋戻土層と非液状化層と判定するが念のた			
設定する。			
及び地盤物性値は、追加調査を実施することとしているため、設			
<u>一</u> 埋戻土層の値を用いる。			
 試験結果から設定した解析上の液状化強度曲線を第11-9-20 図			
が保守的(液状化しやすい)に評価されるように、液状化パラメ			
ータを設定する(試験結果より繰返し回数が少ない状態で同程度			
のひずみが発生するように設定することから、液状化が発生しや			
すい設定となっている)。			
第11-9-23 表 試験結果			
(埋戻土層)			
必要とする物性値			
名称 記号 単位 物性値			
物理的 単位体積重重 ρ t/m° 2.00 性質 間隙率 n - 0.41			
液状化強度曲線 _ 第11-9-20図			
(液状化パラメータ) 参照 参照			
力学的 せん断弾性係数 G_{ma} kN/m^2 5.11E+04 性質 内部摩擦角 ω \circ 41.1			
北着力 C kN/m ² 0.0			
履歷減衰上限値 hmax - 0.271			

柏崎メ	刘羽原子力発電所 6/	~7 号炉	(2017.1	2.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	(洪積砂質土層(Ⅱ))						
	必要とする	物性値					
	名称	記号	単位	物性値			
物理的	単位体積重量	ρ	t/m ³	1.90			
性質	間隙率	n	—	0.53			
	液状化強度曲線 (液状化パラメータ)	_	-	第11-9-20図 参照			
力学的	せん断弾性係数	G _{ma}	kN/m ²	2.07E+05			
性質	内部摩擦角	φ	0	45.0			
	粘着力	С	kN/m ²	0.0			
	履歷減衰上限值	h _{max}	-	0.155			
	10 09 00 00 00 00 00 00 00 00 00 00 00 00	- · · · · · · · · · · · · · · · · · · ·	度曲級(祭新上) (祭新上) (((((((((((((0			
	(埋戻	土層)					
十十七世第7十	10 09 08 07 06 05 04 03 02 01 01 1 10 据少逻口的	→ 液状化強度 → 液状化強度 → 100 100 文 N(回)	(保好.E)) (中秋(保好.E))	0			
	(洪積砂質-	上層(Ⅱ))				
	笛11-9-90 図 ž	。 炭化 齢 暗	宇曲線				
液状化パラ 埋戻土 洪積砂質土	<u>第11-9-20</u> 図ぞ 第11-9-24 表 液 ダータ φ _p (°) w ₁ 層 28.0 2.400 層(II) 28.0 4.600	x4人1口7里度 x状化パラ p1 0.500 0.500	<u>メータ</u> <u>p2</u> 0.800 1. 0.600 3.	$\begin{array}{c cc} c_1 & S_1 \\ \hline 920 & 0.005 \\ 910 & 0.005 \\ \end{array}$			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
b. 解析用地盤物性值			
地盤の物性値を第11-9-25 表に示す。 埋戻土層及び洪積砂質土			
層(Ⅱ)の物性値については、地震時における過剰間隙水圧の上			
昇を適切に評価するため、繰返しねじりせん断試験結果を基に設			
定した液状化特性を設定する。			
第11-9-25 表 地盤の物性値			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
c. ジョイント要素の設定			
構造物と地盤改良の境界部及び地盤改良と地盤の境界部にジョ			
イント要素を設けることを基本とし、境界部での剥離・すべりを			
考慮する。ジョイント要素の特性は法線方向、接線方向に分けて			
設定する。法線方向では、引張応力が生じた場合、剛性及び応力			
をゼロとして剥離を考慮する。接線方向では、構造物と地盤改良			
の境界部及び地盤改良と地盤の境界部のせん断抵抗力以上のせん			
断応力が発生した場合、剛性をゼロとし、すべりを考慮する。静			
<u>止摩擦力τ_fはMohr-Coulomb</u> 式により規定される。構造物と地 <u>盤</u>			
改良との境界部のC, φは「港湾の施設の技術上の基準・同解説			
<u>((社)日本港湾協会, 2007 年版)」に基づき, C=0, φ=15° とす</u>			
<u>る。また、地盤改良と地盤との境界部のC、 </u>			
共通編・IN下部構造編)・同解説((社)日本道路協会,平成14年3			
月) (第11-9-26 表)」に基づき, 第11-9-27 表に示すとおり設定			
<u>する。</u>			
第11-9-26 表 摩擦角と付着力(日本道路協会)			
条件 摩擦角角。(摩擦係数 tan / b) 付着力 c _B			
$\frac{\pm \varepsilon = 2 \cdot \rho \cdot y - k}{\epsilon_B = 0}$			
土とコンクリートの間に栗石を敷く場合 $d_{\mu} = \phi$ の小さい方 $c_{\mu} = 0$			
オとコングリート $tan \phi_{2} = 0.6$ $c_{B} = 0$ 土と土又は岩と岩 $\phi_{n} = \phi$ $c_{n} = c$			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<u>第11-9-27 表 ジョイント要素の強度特性</u>			
粘着力 C (kN/m ²) 内部摩擦角(°)			
構造物-地盤間 0 15.0			
改良体-地盤間 0 41.1			
ジョイント要素のばね定数は、数値解析上不安定な挙動を起こ			
さない程度に十分に大きな値として、港湾構造物設計事例集(沿			
岸開発技術センター)に従い、kn=ks=1.0×10 ⁶ (kN/m ³)とする。			
(3) 荷重の入力方法			
a. 固定荷重			
 固定荷重である自重は、鉄筋コンクリート及び鋼管杭の単位体			
着重量を踏まえ、構造物の断面の大きさに応じて算定する。機器			
荷重は、機器の設置位置で付加重量として考慮する。			
b. 地震荷重			
動をモデル底面に入力する。			
9.3.4.6 許容限界			
a. 曲げ			
 鋼管杭の曲げに対する許容限界は、「乾式キャスクを用いる使用			
済燃料中間貯蔵建屋の基礎構造の設計に関する技術規程			
(以下「キャスク指針」とする) に基づき算定する終局曲げ強度			
に対応する曲率(終局曲率)とする。			
b. せん断			
 鋼管杭のせん断に対する許容限界は、「キャスク指針」に基づき			
算定する終局せん断強度とする。			
(2) 躯体に対する許容限界			
a. 曲げ			
造物の耐震性能照査指針・マニュアル、土木学会原子力土木委員			
会, 2005 年6 月」(以下「土木学会マニュアル」とする)に基づ			
き,層間変形角1/100 とする。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<u>b. せん断</u>			
躯体のせん断に対する許容限界は、工事計画認可における設計			
では、「土木学会マニュアル」に基づき算定したせん断耐力等とす			
るが、設置許可段階における見通しを得るための構造物評価にお			
いては、コンクリート標準示方書[構造性能照査編]((社)土木学			
会, 2002 年制定)及び壁部材は鉄筋コンクリート構造計算規準・			
同解説-許容応力度設計法-((社)日本建築学会,1999 改訂)			
に基づき、保守的に鉄筋コンクリートの短期許容せん断応力度と			
する。			
(3) 基礎地盤の支持性能に対する許容限界			
基礎地盤の支持性能に対する照査は、杭頭に作用する最大鉛直			
力が「道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)			
日本道路協会, 平成14 年3 月)」に基づき算定した極限支持力と			
<u>する。</u>			
極限支持力算定式(杭基礎)			
$R_a = \frac{\gamma}{n}(R_u - W_s) + W_s - W$			
ここに,			
R _a : 杭頭における杭の軸方向許容押込み支持力(kN) n : 安全率 (=19 キャスク指針に従い S e 地震時を適用)			
γ:極限支持力推定法の相違による安全率の補正係数(=1.0,支持力推定式を適用)			
R. ^{※1} : 地盤から決まる杭の極限支持力(kN)			
W _s : 杭で置換えられる部分の土の有効重量(kN)			
W:杭及び杭内部の土の有効重量(kN)			
R_u : 地盤から決まる杭の極限支持力(kN)			
A :杭先端面積(m ²)			
U:杭の周長(m)			
L_i :周面摩擦力を考慮する層の層厚 (m)			
(液状化影響評価対象層の周面摩擦力は考慮しない) f.・周面摩擦力を考慮すろ層の最大周面摩擦力度(kN/m ²)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.3.5 評価結果			
9.3.5.1 鋼管杭に対する照査結果			
鋼管杭の照査位置は, 第11-9-21 図に示すとおり, 杭頭部, 地			
層境界部1(地盤改良と洪積粘性土層Ⅱとの境界)並びに地層境界			
部2(洪積砂質土層Ⅱと洪積粘性土層Ⅲとの境界)を選定する。			
鋼管杭の曲げに対する照査結果を第11-9-28 表に示す。鋼管杭			
の照査用応答値は、いずれも許容限界値(終局曲率)以下である。			
せん断に対する照査結果を第11-9-29 表に示す。鋼管杭の照査			
用応答値は、いずれも許容限界値(終局せん断強度)以下である。			
(凡例)			
T. M. S. L. 14.00			
20.0 <u>131 12.32 131</u> <u>1.4.64 4.64</u> <u>1.8.1.+15.6</u> 1.00 1.00			
10.0- 理典主席(1) 工業(1.4.2) 研究			
0.0 新報時備(II) 地層境界部 1 地層境界部 1			
-10.0- 地層境界部 2			
-20.0-			
Ψ Ψ Ψ (単位:m) □====			
-30. 0-			
第11-9-21 図 鋼管杭の照査位置図			

柏崎メ	间羽原子力到	発電所 6/7	′号炉 (2017.	12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
	第11-9-28	表 鋼管杭の曲	げに対する照る	查結果			
-	and from the same of a	照查用曲率 ^{※2}	終局曲率				
基準地震動	評価位置**1	φ (1/m)	φ u(1/m)	照査値			
	杭頭部	3.123E-04	6.666E-03	0.05			
Ss-1	地層境界部1	1.285E-03	6.627E-03	0.19			
	地層境界部2	1.339E-03	6.619E-03	0.20			
	杭頭部	1.639E-04	8.966E-03	0.02			
Ss ⁻ 2	地層境界部1	4.096E-04	9.150E-03	0.04			
	地層境界部2	4.570E-04	9.103E-03	0.05			
	杭頭部	4.281E-04	6.189E-03	0.07			
Ss-3	地層境界部1	1.936E-03	6.462E-03	0.30			
	地層境界部2	3.365E-03	6.171E-03	0.55			
	杭頭部	2.127E-04	8.563E-03	0.02			
Ss-4	地層境界部1	5.862E-04	8.021E-03	0.07			
	地層境界部2	4.283E-04	8.040E-03	0.05			
	杭頭部	2.170E-04	8.367E-03	0.03			
Ss ⁻⁵	地層境界部1	6.139E-04	7.840E-03	0.08			
	地層境界部2	4.892E-04	7.855E-03	0.06			
	杭頭部	2.601E-04	7.597E-03	0.03			
Ss ⁻⁶	地層境界部1	7.302E-04	7.582E-03	0.10	-		
	地層境界部2	5.358E-04	7.565E-03	0.07	-		
	杭頭部	2.525E-04	7.722E-03	0.03	-		
Ss-7	地層境界部1	7.874E-04	7.712E-03	0.10			
	地層境界部2	5.255E-04	7.645E-03	0.07	-		
	杭頭部	2.334E-04	7.467E-03	0.03	-		
Ss ⁻ 8	地層境界部1	8.224E-04	7.452E-03	0.11	-		
	地層境界部2	5.352E-04	7.467E-03	0.07			
※1 地層境界音	81:地盤改良と洪 70. 洪珪功敏 - 国	は積粘性土層Ⅱとの境界	の応用				
地層現介音 ※2 地般物性の	№2:供植砂貧工暦 のげらつきに闘す2	¶Ⅱと供槓枯性工増Ⅲと る安全係数を乗じていた	い頃発				
		UQEM WEAUCT					

柏崎X	小羽原子力系	発電所 6/7	号炉 (2017.	12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
<u> </u>	<u>第11-9-29</u> 表	長 鋼管杭のせん	い断に対する照	查結果			
	start for all some We	照査用せん断力*2	終局せん断強度	照査値			
基準地震動	評価位置**1	Q(kN)	Qu(kN)	Q/Qu			
	杭頭部	499	9420	0.05			
Ss-1	地層境界部1	3705	9420	0.39			
	地層境界部2	2802	9420	0.30			
	杭頭部	358	9420	0.04			
Ss-2	地層境界部1	1745	9420	0.19			
	地層境界部2	917	9420	0.10			
	杭頭部	599	9420	0.06			
Ss ⁻ 3	地層境界部1	4177	9420	0.44			
	地層境界部2	3353	9420	0.36			
	杭頭部	411	9420	0.04			
Ss-4	地層境界部1	2314	9420	0.25			
	地層境界部2	411	9420	0.04			
	杭頭部	423	9420	0.04			
Ss ⁻⁵	地層境界部1	2380	9420	0.25			
	地層境界部2	580	9420	0.06			
	杭頭部	455	9420	0.05			
Ss ⁻⁶	地層境界部1	2955	9420	0.31			
	地層境界部2	576	9420	0.06			
	杭頭部	428	9420	0.05			
Ss-7	地層境界部1	2955	9420	0.31			
	地層境界部2	523	9420	0.06			
	杭頭部	405	9420	0.04			
Ss-8	地層境界部1	2599	9420	0.28			
※1 地國接周朝	□ 地層境界部 2 〒1. 地般改良し洲	455 - 建料サム展TLの接用	9420	0.05			
※1 地層現かす 地層境界部	№1:地盤以長と供 	€慣和性工産Ⅱこの現外 Ⅲと洪積粘性土層Ⅲとの	D境界				
※2 地盤物性6	りばらつきに関する	6安全係数を乗じていな	い値				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)					女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
9.3.5.2 躯体に対する照査結果							
躯体の曲	げに対する	る照査結果を第	第11-9-30 表に	示す。躯体の照			
查用応答値	は, いずれ	ぃも許容限界値	直(限界層間変	形角)以下であ			
せん断に対する昭本結果を第11-9-31 表に示す。躯体の昭本田				躯体の昭杏田			
広 な 値 け	いずれよ	<u>4</u> 次限界値(4	よん新耐力)以	<u>。 北井 5 灬 上 川</u> 下であろ			
<u>心白</u> 胆は,	V 9400						
	竺11 0 90	ま 飯休の曲	げいおナフ昭木				
	<u> 第11-9-30</u>	衣靴件の曲					
基準地震動	評価位置	照查用層間変形角 R₁ ^{※1}	限界層間変形角 R.	照查值 Ra/Ra			
Ss-1	頂版~底版	0.015/100	1/100	0.02			
Ss-2	頂版~底版	0.007/100	1/100	0.01			
Ss-3	頂版~底版	0.015/100	1/100	0.02			
Ss-4	頂版~底版	0.008/100	1/100	0.01			
Ss ⁻⁵	頂版~底版	0.010/100	1/100	0.01			
Ss ⁻⁶	頂版~底版	0.010/100	1/100	0.01			
Ss-7	頂版~底版	0.010/100	1/100	0.01			
Ss ⁻⁸ ※1 昭本田屋即	□ 頂版~底版 亦形色 P 早十	0.013/100 屋町亦形Ap>株と細	1/100	0.01			
地盤物性の	ばらつきに関する	る安全係数を乗じていた	cい値				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		2.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考		
第11-9-31	表 躯体	のせん断に対す	る照査結果(頂版	反,底版,側壁,			
[] [] [] [] [] [] [] [] [] [] [] [] [] [
		四本田井山城広力	毎期許容社(新広力	昭本結			
基準地震動	評価位置	$\tau_{\rm d}$ (N/mm ²) ^{*1}	τ_{a} (N/mm ²)	τd/τa			
	頂版	0.20	1.12	0.18			
Ss-1	底版	1.19	2.09	0.57			
	调壁	0.42	1.40	0.30			
	頂版	0.09	1.12	0.08			
Ss-2	底版	0.47	2.09	0.22			
	側壁	0.34	1.40	0.24			
		0.27	1.12	0.24			
	底版	1.36	2.09	0.20			
Ss-3	側壁	0.47	1.40	0.34			
	隔壁	0.54	1.12	0.48			
	頂版	0.09	1.12	0.08			
Ss-4	低版	0.57	2.09	0.27			
	隔壁	0.32	1.12	0.23			
	頂版	0.11	1.12	0.10			
Ss-5	底版	0.63	2.09	0.30			
	側壁	0.34	1.40	0.24			
	· 喃壁 「 佰版	0.37	1.12	0.33			
	底版	0.62	2.09	0.30			
Ss ⁻⁶	側壁	0.37	1.40	0.26			
	隔壁	0.37	1.12	0.33			
	頂版	0.12	1.12	0.11			
Ss-7	個壁	0.67	2.09	0.32			
	隔壁	0.37	1.12	0.33			
	頂版	0.15	1.12	0.13			
Ss-8	底版	0.73	2.09	0.35			
	側壁 尾岸	0.44	1.40	0.31			
※1 昭香月	<u> MW玉</u> せん断応力	<u>0.48</u> _て a=発生せん断応力×	<u>1.12</u> 構造解析係数 v a	0.43			
11 一 加 般 出	地のげらつ	きに関する安全係数を	重じていない値				
	VIII. () () () ()						

柏崎刈羽	原子力発電所 (6/7号炉 (201	7.12.20版)	女川原子力発電所 2号炉 (2019.11.6版)	島根原子力発電所 2号炉	備考
第11-9-3	31 表 躯体のせん	し断に対する照査編	吉果(妻壁)			
基準地震動	照査用せん断応力	短期許容せん断応力	照查值			
Se-1	$\tau_{\rm d} (\rm N/mm^2)^{\approx 1}$	τ_{a} (N/mm ²)	$\tau d/\tau a$			
Ss-2	0.58	2.10	0.28			
Ss-3	1.26	2.10	0.60			
Ss-4	0.63	2.10	0.30			
Ss ⁻⁵	0.69	2.10	0.33			
Ss-6	0.72	2.10	0.34			
Ss-7	0.63	2.10	0.30			
Ss-8	1.07	2.10	0.51			
※1 地盤物性の	はらつきに関する安全的	系数を乗じていない値				
9.3.5.3 基礎	地盤の支持性能に	こ対する照査結果				
基礎地盤の	支持性能に対する	る照査結果を第11-	9-32 表に示す。			
最大鉛直力は	, いずれも許容障	限界値(極限支持力	<u> 力) 以下である。</u>			
<u>第11-9-</u>	-32 表 基礎地盤	の支持性能に対す	る照査結果			
其淮地震動	最大鉛直力**1	極限支持力	照查値			
	V(kN)	Qu(kN)	V/Q _u			
Ss-1	15600	34100	0.46			
Ss-2	5750	34100	0.17			
Ss-3	19400	34100	0.57			
Ss-4	7170	34100	0.21			
Ss ⁻⁵	8550	34100	0.25			
Ss-6	10100	34100	0.30			
Ss-7	9970	34100	0.29			
Ss-8	10800	34100	0.32			
L ※1 地盤物性の	 ばらつきに関する安全伯	系数を乗じていない値				
000+14						
9.3.6 220						
設置許可段	階において液状化	ヒに伴う構造物の影	影響を検討する代			
表構造物とし	て選定した第一ス	ガスタービン発電機	幾用燃料タンク基			
礎の基準地震	動Ss に対する構	造物評価の見通し	について確認し			
た。						
	析 (有効広力解構	近の結果 第一ヵ	ガスタービン登雪			
	方甘びれる 甘油		推進如けの曲ば			
1茂川 窓村グン	ン					
せん断及び基	曖地盤に作用する	る最大鉛直力が許容	谷限界値以下であ			
ることから,	十分な構造強度な	を有している見通し	しを得た。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
10 参考文献		<u>5</u> 参考文献	
・(社)日本道路協会(2012):道路橋示方書・同解説(V耐震設計		 ・道路橋示方書:道路橋示方書・同解説(V耐震設計編),(社) 	
編), <u>平成24 年3 月</u> .		日本道路協会, <u>H24.3</u>	
・安田進(1991):液状化の調査から対策工まで,鹿島出版会,1991		・港湾基準:港湾の施設の技術上の基準・同解説, (社) 日本港湾	
<u>年5.月.</u>		協会, <u>H19年版</u>	
・地盤工学会(2009):地盤材料試験の方法と解説,平成21 年11 月.		・港湾構造物設計事例集,沿岸技術研究センター,H19年版	・参考文献の相違
・土木学会(2003):過剰間隙水圧の発生過程が地盤の地震応答に		・地盤工学会基準JGS4001:性能設計概念に基づいた基礎構造物等	【柏崎6/7】
与える影響,土木学会地震工学委員会レベル2地震動による液			島根2号炉では港湾
状化研究小委員会 レベル2地震動による液状化に関するシン		・地盤工学会, <u>H21</u> :地盤材料試験の方法と解説,平成21 年11 月	構造物設計事例集及び
ポジウム論文集, pp397-400, <u>2003 年6 月</u> .		・安田, <u>H3</u> :液状化の調査から対策工まで <u>,安田進</u> , 鹿島出版会,	その他の文献を追加し
・地盤工学会(2000):土質試験の方法と解説(第一回改訂版),平		<u>H3. 5</u>	ている
成12 年3 月.		・吉田,H22:地盤の地震応答解析,吉田望,鹿島出版会,H22.10	
・地盤工学会(2006):地盤工学用語辞典, pp219-220, 平成18 年3		・土木学会, <u>1115</u> :過剰間隙水圧の発生過程が地盤の地震応答に与	
月.		える影響、土木学会地震工学委員会レベル2地震動による液状化	
・井合進(2008):サイクリックモビリティCyclic Mobility,地盤		研究小委員会 レベル2地震動による液状化に関するシンポジウ	
工学会誌, 56-8, 2008 年8 月.		ム論文集, pp397-400, <u>H15.6</u>	
・吉見吉昭 <u>(1991)</u> :砂地盤の液状化(第二版),技報堂出版, <u>1991</u>		・地盤工学会, <u>H18</u> :地盤工学用語辞典, pp219-220, <u>H18.3</u>	
<u>年,5月.</u>		・井合進 <u>,H20</u> :サイクリックモビリティCyclic Mobility,地盤工	
・永瀬英生(1984):多方向の不規則荷重を受ける砂の変形強度特		学会誌, 56-8, H20.3	
性, 東京大学博士論文, 1984.		・吉見吉昭 <u>,H3</u> :砂地盤の液状化(第二版),技報堂出版, <u>H3.5</u>	
・井合進,飛田哲男,小堤治(2008):砂の繰返し載荷時の挙動モ		・井合進,飛田哲男,小堤治(<u>H20)</u> :砂の繰返し載荷時の挙動モデ	
デルとしてのひずみ空間多重モデルにおけるストレスダイレイ		ルとしてのひずみ空間多重モデルにおけるストレスダイレイタン	
タンシー関係,京都大学防災研究所年報,第51 号, pp. 291-304,		シー関係,京都大学防災研究所年報,第51号,pp.291-304, <u>H20</u>	
2008.		•鉄道総合技術研究所(H24):鉄道構造物等設計標準•同解説,H24.9	
・日本港湾協会(2007):港湾の施設の技術上の基準・同解説, 平		• Iai, S., Matsunaga, Y. and Kameoka, T(1992): STRAIN SPACE	
成19 年7 月.		PLASTICITY MODEL FOR CYCLIC MOBILITY, SOILS AND FOUNDATIONS,	
• Iai, S., Matsunaga, Y. and Kameoka, T(1992): STRAIN SPACE		Vol, 32, No. 2, pp. 1-15.	
PLASTICITY MODEL FOR CYCLIC MOBILITY, SOILS AND		• Iai. S., Morita, T., Kameoka, T., Matsunaga, Y. and Abiko, K.	
FOUNDATIONS, Vol, 32, No. 2, pp. 1-15.		(1995): RESPONSE OF A DENSE SAND DEPOSIT DURING 1993	
• Iai. S., Morita, T., Kameoka, T., Matsunaga, Y. and Abiko, K.		KUSHIRO-OKI EARTHQUAKE, SOILS AND FOUNDATIONS, Vol, 35, No. 1,	
(1995):RESPONSE OF A DENSE SAND DEPOSIT DURING 1993		pp. 115-131.	
KUSHIRO-OKI EARTHQUAKE, SOILS AND FOUNDATIONS, Vol, 35,		・コンクリート標準示方書[構造性能照査編],(社)土木学会, H14	
No. 1, pp. 115-131.		年制定	
・龍岡文夫(1980):サイクリック・モビリティ (Cyclic Mobility),		・建築物荷重指針・同解説,日本建築学会,H16年版	
土と基礎, 28-6, 1980年6 月.		・建築物の構造関係技術基準解説書,国土交通省住宅局建築指導	
・国生剛治,吉田保夫,西好一,江刺靖行(1983):密な砂地盤の		課,国土交通省国土技術政策総合研究所,独立行政法人建築研究	
地震時安定性評価法の検討(その1)密な砂の動的強度特性,		所, 日本建築行政会議 監修, H19.8	
電力中央研究所報告 研究報告: 383025, 昭和58 年10 月.		・森田ら、H9:液状化による構造物被害予測プログラムFLIPにおい	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2019.11.6版)	島根原子力発電所 2号炉	備考
・鉄道総合技術研究所(2012):鉄道構造物等設計標準・同解説,		て必要な各種パラメタの簡易設定法,運輸省港湾技術研究所,港	
平成24 年9 月.		湾技研資料, No. 869, H9.6	
• 亀井祐聡, 森本巖, 安田進, 清水善久, 小金井健一, 石田栄介		・第四期FLIP研究会14年間のまとめWG, H23:液状化解析プログラ	
(2002):東京低地における沖積砂質土の粒度特性と細粒分が液		ムFLIPによる動的解析の実務,財団法人沿岸技術研究センター,	
状化強度に及ぼす影響,地盤工学会論文報告集, Vol. 42, No. 4,		<u>H23. 8</u>	
<u>101–110.</u>		・地盤工学会,H22:土質試験 基本と手引き	
・吉見吉昭(1994):砂の乱さない試料の液状化抵抗~N 値~相対		 ・兵庫県南部地震による港湾施設の被害考察:運輸省港湾技術研 	
密度関係, 土と基礎, Vol.42, No. 4, pp. 63-67, 1994.		究所,港湾技研資料, No. 813, H7	
• Imai T. & Tonouchi K. (1982) : Correlation of N Value with ESOPT			
II S-wave Velocity and shear Modulus.			