東海第二発電所 (2018.9.18版)	島木	退原子力発電所 2号炉		備考
別紙 31			別紙 16	
地震による損傷の防止に関する耐震設計方針の説明	地震による損傷	の防止に関する耐震設計	方針の説明	
配管設計における荷重の組合せと応力評価について				
格納容器圧力逃がし装置は、ベント使用中は機器が損傷を受けることなく健全であることが求	格納容器フィルタベント系は,設置	許可基準の三十九条におけ	ナる常設耐震重要重大事故防止設	
められる。したがって,設計上の最高使用温度・圧力(200℃, 2Pd)における荷重条件を「供用	備兼常設重大事故緩和設備に該当し,	基準地震動Ssによる地震	<u> 長力に対して重大事故等に至るお</u>	
状態A」及び「供用状態B」として、クラス2機器として各部にかかる応力が許容応力以内であ	それがある事故に対処するために必要	な機能が損なわれるおそれ	れがないものであることとして	
ることを確認する。	M.Z.			
一方で、当該設備は設置許可基準の三十九条における常設耐震重要重大事故防止設備兼常設重	そこで、地震荷重と組み合わせる	荷重を以下の通り設定し、	その荷重により発生する応力を	
大事故緩和設備に該当し、基準地震動Ssによる地震力に対して重大事故に至るおそれがある事	評価している。また、許容応力状態を	·V _A Sとし、さらに重大事	事故等時における運転状態を考慮	
故に対処するために必要な機能が損なわれるおそれがないものであることが求められる。したが	して設定した設計温度にて、許容限界	を設定する。その上で,多	<u> 差生応力が許容限界以下であるこ</u>	
って、地震倚重に対する倚重の組合せを「供用状態D」とし、各部にかかる応力が設計引張応力	とを確認することで, 基準地震動Ss	に対する機器の健全性を	確認している。	
以内であり、なおかつ波労破壊を起こさないことを確認する。				
第1書 配倍設計における広重の組合社と数次に力		7 ハルタ壮罟の耐雪む卦タ	- <i>//</i> +-	・ 次 北 堪 亡 の 相 造
	荷重の組合せ	<u>キャク表直の耐展し日来</u> 許密広力状能	温度条件	● 長根の号にはフィルタ装置に
荷重の組合せ 一次応力 供用状態 一次中二次 適用規格				のいても記載
(曲げ応力を 一次十二次応力 +ビーク応力 1日本ルフル(語) 含む) キビーク応力 第14・24・24	$D + P_{SAD} + M_{SAD} + S s$	$V_A S^{*1}$	T _{S A}	
D + P d + M b $1.5 \cdot S h$ S a (c) - PPC-3520(1) PPC-3520(1)				
D+Pd+(Ma)+Mb 1.8・Sh Sa(d) (A, B) 設計・建設規格 PPC-3520(1)				
PPC-3530(1) Ss地震動のみによる疲労解析 IFAC4601	+			
レード を行い,疲れ累積係数が1以下であること。 が1以下であること。 第3種管の許容 D+Pd+(Ma)+Ss 0.9・Su レードであること。 取AS 応力/第3種管		2 配官の 耐 良 計 余 件	冲击在冲	・評価条件の相違
	何里の組合セ	計谷応刀状態	<u>温</u> 度余件	
【各記号の注釈】	$D + P_{SAD} + M_{SAD} + S s$	$V_A S^{*1}$	T _{S A}	
D :自重及びその他の長期的機械的荷重による応力 Pd : 内国に力				
 M a : その他の短期的機械的荷重による応力(当該設備においては対象外) M b : 二次応力(執応力) 				
S a (c): 一次+二次応力に対する許容応力(短期的荷重を含まない場合) S a (d): 一次+二次応力に対する許容応力(短期的荷重を含む場合)	$*1: V_AS \ge UTIV_AS \ge UTO$	許容限界を用いる。		
Sh : 最高使用温度における材料規格 Part3 第1章 表3に定める値 Ss : 基準地震動Ssにより定まる地震力				
Su :設計引張強さ 設計・建設規格 付録材料図表 Part5 表9に規定される値	【各記号の注釈】			
	D : 死荷重			
	P _{SAD} :重大事故等時の状態(連	転状態V)における運転	犬態等を考慮して当該設備に設計	
	上定められた設計圧力に、	よる荷重		
	M _{SAD} :重大事故等時の状態(運	転状態V)における運転ង	犬態等を考慮して当該設備に設計	
	上定められた機械的荷重			
	Ss:基準地震動Ssにより定ま	る地震力		
	T _{sA} :重大事故における運転状態	態を考慮して設定した設計	温度	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
なお,当該設計における荷重の組合せと許容限界としては,原子力発電所耐震設計技術指針(重	なお、当該設計における荷重の組み合わせと許容限界としては、原子力発電所耐震設計技術指	
要度分類・許容応力編 JEAG4601・補-1984, JEAG4601-1987及びJEAG4601-1991	針(重要度分類・許容応力編 JEAG4601・補‐1984, JEAG4601-1987 及び JEAG JEAG4601-1991 追	
追補版)(日本電気教会 電気技術基準調査委員会 昭和59年9月,昭和62年8月及び平成3年6月)	補版)(日本電気協会電気技術基準調査委員会昭和59年9月,昭和62年8月及び平成3年6	
<u>(以下「JEAG4601」という。)</u> 及び発電用原子力設備規格(設計・建設規格JSME S N	月)及び発電用原子力設備規格(設計・建設規格 JSME S NC1-2005 (2007 追補版含む) (日本機械学	
C1-2005(2007追補版含む)(日本機械学会 2005年9月,2007年9月)(以下「設計・建設規格」	会 2005 年 9 月, 2007 年 9 月)に準拠したものである。	
という。)に準拠したものである。		

島根原子力発電所	2号炉
----------	-----

別紙 32

格納容器圧力逃がし装置の外部事象に対する考慮について

東海第二発電所 (2018.9.18版)

格納容器圧力逃がし装置は、自然現象(地震及び津波を除く。)及び外部人為事象に対して、 原子炉建屋外の地下の格納容器圧力逃がし装置格納槽内に配置する等,第1表(1/4~4/4) のとおり考慮した設計とする。

なお、想定する外部事象は、「設置許可基準規則」第六条(外部からの衝撃による損傷の防止)において考慮する事象、内部溢水及び意図的な航空機衝突とする。ただし、洪水、生物学的事象(海生生物)、高潮の自然現象並びに航空機落下、ダムの崩壊、有毒ガス、船舶の衝突の外部人為事象については、発電所の立地及び格納容器圧力逃がし装置の設置場所等により、影響を受けないことから考慮する必要はない。

格納容器フィルタベント系の外部事象に対する考慮について

格納容器フィルタベント系は、自然現象(地震及び津波を除く。)及び外部人 事象,内部溢水並びに意図的な航空機衝突に対して、原子炉建物外の地下の第1 タ格納槽内に配置する等、表1(1/5~5/5)のとおり考慮した設計とする。 なお、想定する外部事象は、「設置許可基準規則」第四十三条(重大事故等系 いて考慮する事象とする。ただし、洪水、地滑り、生物学的事象(海生生物)、 有毒ガス及び船舶の衝突については、発電所の立地及び格納容器フィルタベント 等により、影響を受けないことから考慮する必要はない。

		東海第	<u></u> 第二発電	所 (2018. 9. 18 版)				島根原	子力発電所 2号炉	備考
	<u>م</u> 1	第1表 格納容器圧力	」逃がし	装置の外部事象に対する考慮 (1∕4)			表1 格納容器フィ	ルタベン	/ト系の外部事象に対する考慮(1/5)	・設計方針の相違
外音	部事象	影響モード	設置 場所	設計方針	外韵	部事象	影響モード	設置 場所	設計方針	島根2号炉は凍結に対して, 屋内に設置されている部位に
	風(台風)	荷重(風), 荷重(飛来物)	屋内屋外	原子炉建屋又は地下の格納容器圧力逃 がし装置格納槽内に設置されている部 位については,外殻の原子炉建屋等によ り防護される。 飛来物による影響は,竜巻による影響に		風(台風)	荷重(風) 荷重(飛来物)	屋内屋外	竜巻による影響に包含される。	ついて,保温材による凍結防 止対策を実施している
	竜巻	荷重(風), 荷重(気圧差), 荷重(飛来物)	屋内	 包含される。 原子炉建屋又は地下の格納容器圧力逃がし装置格納槽内に設置されている部位については、外殻の原子炉建屋等により防護される。 屋外に設置されるフィルタ装置出口配管、圧力開放板等については、竜巻飛来 		竜巻	荷重(風) 荷重(飛来物) 荷重(気圧差)	屋内 屋外	原子炉建物又は地下の第1ペントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 屋外に設置される排気配管,圧力開放板に ついては、竜巻飛来物等により損傷する可 能性があるため、損傷が確認された場合	
				物により損傷する可能性があるため,損 傷が確認された場合は,必要に応じてプ ラントを停止し補修を行う。また,風荷 重,気圧差により,機能が損なわれれる おそれがない設計とする。	自然現		凍結	屋内	は、必要に応じて原子炉の運転を停止し補 修を行う。 原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外気温の影響を受け難く、また、凍結	
自然現象	凍結	温度(低温)	屋内 屋外	原子炉建屋又は地下の格納谷器圧力逃 がし装置格納槽内に設置されている部 位については,換気空調設備により環境 温度が維持されるため,外気温の影響を 受け難い。 屋外に設置,かつ,水を内包する可能性 のある範囲のフィルタ装置出口配管の	泉	現 象 凍 結		屋外	の影響を考慮すべきスクラビング水を内包 するスクラバ容器には、保温材を取り付け ることにより凍結しない設計とする。 屋外に設置されている排気配管について は、雨水排水ラインを設けることにより雨 水が蓄積しない構造とし、凍結により機能	
				ドレン配管には保温等の凍結防止対策 を行い、凍結し難い設計とする。また、 適宜ドレン水を排出することから、フィ ルタ装置出口配管を閉塞することはない。			 浸水 荷重	屋内	が損なわれるおそれがない設計とする。 原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、止水処理を実施することにより、降水 による浸水、荷重の影響は受けない。	
	降	浸水, 荷重	屋内屋外	フィルタ装置は,格納容器圧力逃がし装 置格納槽内に設置し,止水処理を実施す ることにより,降水による浸水,荷重の 影響は受けない。 屋外に設置されるフィルタ装置出口配		水		屋外	屋外に設置される排気配管,圧力開放板 は,滞留水の影響を受け難い位置に設置す るとともに,系統開口部から降水が浸入し 難い構造とすることにより,必要な機能が 損なわれるおそれがない設計とする。	
	水			管, 圧力開放板等は, 滞留水の影響を受け難い位置に設置するとともに, 系統開 口部から降水が浸入し難い構造とする ことにより, 必要な機能が損なわれるお それがない設計とする。						

			。恨原于	一刀発電所 2 亏炉	備考
第1表 格納容器圧力逃がし装置の外部事象に対する考慮	(2/4) 表 1	1 格納容器フィル	/タベン	・ト系の外部事象に対する考慮(2/5)	・記載方針の相違
外部事象 影響モード 設置 設計方金	外部事象	影響モード	設置場所	設計方針	島根2号炉は自然現象の組合 せについても記載している
荷重(積雪), 屋内 原子炉建屋又は地下の格がし装置格納槽内に設置位については、外殻の原り防護する設計とする。 積雪 屋外 屋外に設置されるフィハ管、圧力開放板等についに対して耐性が確保されする。また、系統開口部し難い構造とすることに能が損なわれるおそれな	 納容器圧力逃 されている部 子炉建屋等によ タ装置出口配 ては,積雪荷重 るように設計 から降雪が浸入 より,必要な機 ない設計とす 	荷重(積雪) 閉塞	屋外	原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 屋外に設置される排気配管,圧力開放板に ついては、積雪し難い構造とするととも に、系統開口部から降雪が浸入し難い構造 とすることにより、必要な機能が損なわれ るおそれがない設計とする。なお、多量の 積雪が確認される場合には、除雪を行う 等、適切な対応を実施する。	
広 高。なお、多量の積雪がには、除雪を行う等、適する。 電サージによる 屋内 落雷の影響を考慮すべきでした。 電気・計装設備のしていた。 及び は、原子炉建屋等への通行の 市 6 屋外 地網の布設による接地推定		荷重(積雪) +地震力	屋外	原子炉建物又は地下の第1ペントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 屋外に設置されている排気配管,圧力開放 板については,積雪し難い構造となってお り、積雪と地震を組み合わせても影響は増	
日 二 う等の雷害防止で必要な れるおそれがない設計と れるおそれがない設計と れるおそれがない設計と た 象 荷重, 閉塞, 腐食 屋内 原子炉建屋又は地下の根 がし装置格納槽内に設置 位については,外殻の房 り防護する設計とする。 火 上 屋外 屋外に設置されるフィノ	機能が損なわ 合 する。 自 対容器圧力逃 常 されている部 象 子炉建屋等によ 落 夕装置出口配 第	雷サージによる電気・計装設備の損傷	屋内 屋外	長しない。 なお、多量の積雪が確認される場合には、 除雪を行う等、適切な対応を実施する。 落雷の影響を考慮すべき設備については、 排気筒、各建物等への避雷針、棟上導体の 設置、接地網の布設による接地抵抗の低減 を行う等の雷害防止により、必要な機能が	
の 管, 圧力開放板等につい物の堆積荷重に対して耐るように設計する。またら降下火砕物が侵入し葉ことにより,必要な機能それがない設計とする。物の堆積が確認される抜物) (降 ことにより,必要な機能それがない設計とする。 小枠 や物を除去する等,適切る。 (化学的影響(腐食)防止敷設されるフィルタ装置鋼配管)外面には防食塗	Cは,降下火砕 生が確保され 系統開口部か 小構造とする が構なわれるお なお,降下火砕 合には,降下火 な対応を実施す のため,屋外に 出口配管(炭素 装を行う。	荷重 閉塞 腐食	屋外	損なわれるおそれがない設計とする。 原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 屋外に設置される排気配管,圧力開放板に ついては、降下火砕物が堆積し難い構造と するとともに、系統開口部から降下火砕物 が侵入し難い構造とすることにより、必要 な機能が損なわれるおそれがない設計とす る。なお、降下火砕物の堆積が確認される 場合には、除灰を行う等、適切な対応を実 施する。 化学的影響(腐食)防止のため、屋外に敷 設される排気配管(炭素鋼配管)外面には 防食塗装を行う。	

		東海第	<u></u> 第二発電	所 (2018.9.18版)						島根原	子力発電所 2号炉	備考		
	-	第1表 格納容器圧 <i>力</i>	J逃がし	表置の外部事象に対する考慮(3/4)				長1	格納容器フィ	ルタベン	/ト系の外部事象に対する考慮(3/5)	・記載方針の相違		
外	部事象	影響モード	設置 場所	設計方針		外部事象			影響モード	設置 場所	設計方針	- 島根2号炉は自然現象の組合 せについても記載している		
	生物学的事象	電気的影響 (齧歯類(ネズ ミ等)によるケ ーブル等の損 傷)	屋外	原子炉建屋又は地下の格納容器圧力逃 がし装置格納槽内に設置されている部 位については、外殻の原子炉建屋等によ り防護する設計とする。 地下の格納容器圧力逃がし装置格納槽 外に設置されている端子箱貫通部等に はシールを行うことにより、小動物の侵 入を防止する設計とする。 屋外に設置されている系統開口部から 小動物が浸入し難い構造とすることに より、必要な機能が損なわれるおそれが ない設計とする。			火山の影響と風、積雪との組合せ		荷重(降下 火砕物) +荷重(風) +荷重(積 雪)	屋外	原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 屋外に設置されている排気配管,圧力開放 板については、降下火砕物の堆積及び積雪 し難い構造となっており、火山の影響,風 及び積雪を組み合わせても、影響は増長し ない。なお、降下火砕物の堆積及び積雪が 確認される場合には、除灰、除雪を行う 等、適切な対応を実施する。			
自然現象	森林火災	温度(輻射熱), 閉塞	屋内 及び 屋外	機器を内包する原子炉建屋,地下の格納 容器圧力逃がし装置格納槽及び屋外に 設置される機器は,防火帯の内側に配置 し,森林との間に適切な離隔距離を確保 することで,必要な機能が損なわれるお それがない設計とする。 ばい煙等の二次的影響に対して,ばい煙 等が建屋内に流入するおそれがある場 合には,換気空調設備の外気取入ダンパ を閉止し,影響を防止する。		自然現象	上生物学的事象		電気的影響(小動物の侵入による電気設備の損傷)	屋外	原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護する設計とする。 地下の第1ベントフィルタ格納槽外に設置 されている端子箱貫通部等にはシールを行 うことにより、小動物の侵入を防止する設 計とする。 屋外に設置されている系統開口部から小動 物が浸入し難い構造とすることにより、必			
	爆 発	爆風圧, 飛来物	屋内 及び 屋外	近隣の産業施設,発電所周辺の道路を通 行する燃料輸送車両,発電所周辺を航行 する燃料輸送船の爆発による爆風圧及 び飛来物に対して,離隔距離が確保され ている。		外部火災					温度(輻射 熱)	屋内	要な機能が損なわれるおそれがない設計と する。 機器を内包する原子炉建物,地下の第1ベ ントフィルタ格納槽及び屋外に設置される	
	近隣工場等電	 温度(熱) サージ・ノイズ による計測制御 	屋 及 屋 外 屋 内 び 外	近隣の産業施設,発電所周辺の道路を通 行する燃料輸送車両,発電所周辺を航行 する燃料輸送船及び敷地内の危険物貯 蔵施設の火災に対して,離隔距離が確保 されている。 日本工業規格(JIS)等に基づき,ライ ンフィルタや絶縁回路の設置により、サ			外部火災	森林火災	労基		機器は, 防火帯の内側に配置し, 森林との 間に適切な離隔距離を確保することで, 必 要な機能が損なわれるおそれがない設計と する。 ばい煙等の二次的影響に対して, ばい煙等 が建物内に流入するおそれがある場合に は, 原子炉建物の換気空調設備の外気取入			
	磁 的 障 害	回路への影響	屋外	ージ・ノイズの侵入を防止するととも に,鋼製筐体や金属シールド付ケーブル の適用により電磁波の侵入を防止する 設計とする。							ダンパを閉止し、影響を防止する。			

		東海第	育二発電)	所 (2018. 9. 18 版)				島根原	子力発電所 2号炉	備考
【以】	下,比較	のため,第1表(3/	(4) の記	載を再掲】						
	/ 	第1表 格納容器圧力	」逃がし	<u>装置の外部事象に対する考慮(3/4)</u>		表1	格納容器フィ	ルタベン	/ ト系の外部事象に対する考慮(4/5)	・設計方針の相違
外音	祁事象	影響モード	設置 場所	設計方針						品根 2 号炉は航空機落下について、影響を受けるおそれが
	生	電気的影響	屋内	原子炉建屋又は地下の格納容器圧力逃						あるものと整理した
	物学	(齧歯類(ネズ		がし装置格納槽内に設置されている部						
	白	ミ寺)によるケーブル笙の掲		位については、外殻の原ナ炉建産等により防護する設計とする						
	事	傷)	屋外	地下の格納容器圧力逃がし装置格納槽						
	豕			外に設置されている端子箱貫通部等に						
				はシールを行うことにより, 小動物の侵						
				入を防止する設計とする。						
				より、必要な機能が損なわれるおそれが						
				ない設計とする。						
	森	温度(輻射熱),	屋内	機器を内包する原子炉建屋,地下の格納			1			
	林	閉塞	及び	容器圧力逃がし装置格納槽及び屋外に	夕	▶部事象	影響モード	設置	設計方針	
	災		侄 外	設直される機益は、防火帯の内側に配直 1 森林との間に適切な離隔距離を確保			温度 (執)		近隣の産業施設 発雲所周辺の道路を通行	
				することで、必要な機能が損なわれるお		山山	爆風圧	屋外	する燃料輸送車両,発電所周辺を航行する	
É				それがない設計とする。			飛来物		燃料輸送船及び敷地内の危険物タンク(重	
然				ばい煙等の二次的影響に対して、ばい煙		外 場			油タンク,ガスタービン発電機用軽油タン	
現象				等か建屋内に流入するおそれかある場		部 の			ク等)による火災、爆発による爆風圧、飛	
				を閉止し、影響を防止する。		災災災			米物に対して、離隔地離を確保し、影響を 受けない設計とする	
		爆風圧,飛来物	屋内	近隣の産業施設,発電所周辺の道路を通		• /星				
	偓		及び	行する燃料輸送車両,発電所周辺を航行						
	発		屋外	する燃料輸送船の爆発による爆風圧及			サージ・ノ	屋内	日本工業規格(IIS) 等に基づき ライ	
				い飛米物に対して,離隔距離か確保され ている	部	電磁	イズによる	屋外	ンフィルタや絶縁回路の設置により、サー	
)r	温度 (熱)	屋内	」ている。 近隣の産業施設、発電所周辺の道路を通	人	的	計測制御回		ジ・ノイズの侵入を防止するとともに、鋼	
	の隣		及び	行する燃料輸送車両,発電所周辺を航行		障害	路への影響		製筐体や金属シールド付ケーブルの適用に	
	火工		屋外	する燃料輸送船及び敷地内の危険物貯	象				より電磁波の侵入を防止する設計とする。	
	次			蔵施設の火災に対して,離隔距離が確保		偶	衝突による 衝撃力	屋内	意図的な航空機衝突による影響に包含され	
		サージ・ノイズ	层内	されている。 日本工業相故(IIS) 笙に基づき ライ		発	倒挙刀 火災による	/主/下		
	電	による計測制御	屋内 及び	レマイルタや絶縁回路の設置により、サ		日な一番	熱影響			
	磁	回路への影響	屋外	ージ・ノイズの侵入を防止するととも		航来				
	同障			に, 鋼製筐体や金属シールド付ケーブル		上 空 物 機 物				
	害			の適用により電磁波の侵入を防止する		落下				
				武計とする。						
【再掲	はここす	まで】								

	東海賃	第二発電	所 (2018. 9. 18 版)			島根原	子力発電所 2号炉	備考
	第1表 格納容器圧2	り逃がし	装置の外部事象に対する考慮 (4/4)		表1 格納容器フィ	ルタベン	ント系の外部事象に対する考慮(5/5)	・記載方針の相違
外部事象	影響モード	設置 場所	設計方針	外部事象	影響モード	設置 場所	設計方針	島根2号炉は意図的な航空機 衝突時における対応について
内部溢水	 没水,被水,蒸 気による環境条 件の悪化 	屋内	内部溢水発生時は,自動隔離又は手動隔 離により,漏えい箇所の隔離操作を行 う。また,漏えい箇所の隔離が不可能な 場合においても,漏えい水は,開放ハッ チ部,床ファンネルを介し建屋最地下階 へと導く設計としていることから,ベン ト操作を阻害することはない。 隔離弁については,没水,被水等の影響 により中央制御室からの操作機能を喪 失する可能性があるものの,人力での現 場操作が可能であり機能は維持される。 必要な監視機器については,没水,被水, 蒸気に対する防護対策を講じ,機能を維 持する設計とする。 対象外	内部溢水	没水 被水 蒸気による環 境条件の悪化	屋内	内部溢水発生時は,自動隔離又は手動隔離 により,漏えい箇所の隔離操作を行う。ま た,漏えい箇所の隔離が不可能な場合にお いても,漏えい水は,開放ハッチ部,床フ ァンネルを介し建物最地下階へと導く設計 としていることから,ベント操作を阻害す ることはない。 隔離弁については,没水,被水等の影響に より中央制御室からの操作機能を喪失する 可能性があるものの,人力での現場操作が 可能であり機能は維持される。 必要な監視機器については,没水,被水, 蒸気に対する防護対策を講じ,機能を維持 する設計とする。 対象外	記載している
意図的な航空機衝突	衝突による衝撃 力、火災による 熱影響	屋外屋外	対象外 原子炉建屋又は地下の格納容器圧力逃 がし装置格納槽内に設置されている部 位については,外殻の原子炉建屋等によ り防護されると考えられる。 屋外に設置されるフィルタ装置出口配 管,圧力開放板等については,航空機の 衝突による衝撃力及び航空機燃料火災 による熱影響により損傷する可能性が あるが,フィルタ装置の除去性能に大き な影響はないと考えられる。	意図的な航空機衝突	衝突による衝撃力 火災による熱 影響	屋外屋外	対象外 原子炉建物又は地下の第1ベントフィルタ 格納槽内に設置されている部位について は、外殻の原子炉建物又は第1ベントフィ ルタ格納槽により防護されると考えられ る。 屋外に設置される排気配管,圧力開放板に ついては、航空機の衝突による衝撃力及び 航空機燃料火災による熱影響により損傷す る可能性があるため、損傷が確認された場 合は必要に応じて原子炉の運転を停止して 補修を行う。	

別添1-528r10

	備考
別紙7	
	・設備の相違
	島根2号炉の他系統との隔
	離弁は,全てフェイルクロー
Eな仕様について	ズの空気作動弁及び流量調
と備(ガスタービ	整のための電動駆動弁の2
こより、中央制御	弁構成
おいても事故後	・設備の相違
ら遠隔手動弁操	島根2号炉は,ベント停止後
	に放射性物質の再揮発温度
	に達しないことを確認して
	いるため, フィルタ装置出口
	弁を設置しない
	・設備の相違
	島根2号炉の耐圧強化ベン
	トラインは,新規制基準施行
	以前にアクシデントマネジ
	メント対策として設置して
	おり,設置許可基準規則第48
	条としても必要な容量を有
	する設備であるが, 格納容器
	フィルタベント系を新たに
	重大事故等対処設備として
	設置することから, 耐圧強化
\frown	ベントラインは同規則第 48
	条の自主対策設備として位
	置付け、万一、炉心損傷前に
	格納容器フィルタベント系
	が使用できない場合に耐圧
	強化ベントラインを使用す
	る運用としている。
	なお,格納容器フィルタベン
	ト糸は、同規則第 48 条、第
	50条及び第52条を満足する
	重大事故等対処設備として,
	以下に示すとおり, 信頼性の
	高い糸統構成としている

東海第二発電所 (2018.9.18版)				島根原子力系	発電所 2号炉		
具体的な取り出し位置(貫通孔)については、漏えい経路の増加等による大気への放射性物				表1 各ベン	ト弁の主な仕様		
質の放出リスク増加を最小限に抑えるため,既存の貫通孔の中から十分な排気容量が確保でき			MV217-4	MV217-5	MV217-18	MV217-22	Τ
る口径を有する不活性ガスの貫通孔(600A)を選定し使用する構成としている。	Ę	全番号	(第1弁)	(第1弁)	(第2弁)	(第2升)	
主ラインは不活性ガス系配管(既設),耐圧強化ベント系配管(既設)を経て,格納容器圧			D/W ベントライン	W/W ベントライ	ン		
力逃がし装置配管(新設)によりフィルタ装置に導かれるが、他の系統とは弁で隔離すること	設	置場所	原子炉棟	原子炉棟 地下1 陛	原子炉棟	原子炉棟	
で,他の系統や機器への悪影響を防止する設計としている(3.参照)。		口径	2 P自 600A	600A	400A	400A	+
(2) 格納容器隔離弁		型式		1	バタフライ弁		
格納容器隔離弁の設置要求(実用発電用原子炉及びその付属施設の位置、構造及び設備の基	馬区	動方式		電動駆動	及び遠隔手動弁操作	乍機構	<u>ک</u>
準に関する規則の解釈)に基づき、S/C側及びD/W側それぞれの主ラインに格納容器隔離	開	閉状態		通常時閉	(NC),		通う
弁(第一弁)として電動駆動弁(MO弁)を各1弁設置する構成としている。また,主ライン				フェイルアス	イス (FA1)		
が合流した後に格納容器隔離弁(第二弁)として電動駆動弁(MO弁)を並列に2弁設置する	操	電源			中央制御室		
構成としている。	場	電源	原子炉建物	原子炉建物	原子炉建物	原子炉建物	
(3) フィルタ装置出口弁	所	なし	付属棟2階	付属棟1階	付属棟3階	付属棟3階	,
フィルタ装置出口弁は、ベント実施後にフィルタ装置を大気から隔離するために設置してい							
る。	1.2 設調	計の意図]				
	格	納容器	フィルタベント系	のベント弁は,	第1弁(MV217-	-4/5),第2弁	: ()
1.3 弁の設置位置の妥当性(物理的位置,他からの悪影響)	び第	3 弁(M	₩226-13)で構成	しており、これ	ら第1弁~第3	弁の全てを「『	鞙」
ベント開始に必要な主ラインの隔離弁(S/C側第一弁,D/W側第一弁及び第二弁)の設	納容	器内のフ	ガスがフィルタ装	置に導かれ,格	納容器ベントが	可能な設計と	して
置位置は、弁の設置スペース、人力による遠隔操作性等を考慮して決定している。	格	納容器	フィルタベント系	の第1弁(MV2	17-4/5),第2号	弁 (MV217-18)	に
また、事故後の環境条件を考慮した設計としているため、ベント時においても弁の健全性は	ス制	御系の関	既設の格納容器隔	離弁であり, D	BAでは閉方向	に限定可能でる	ある
確保され、主ラインの隔離弁は、電源がある場合は中央制御室で操作できる。炉心損傷後は弁	動弁	としてい	いたが、SA時(ベント時)に人	力による開閉操	作を行うことる	を考
設置エリアが高線量となるため、現場において弁本体を直接操作することはできないが、遠隔	弁に	設計変列	更した。さらに、	第2弁(MV217-	-23)は,第1弁	と同様に弁を	多重
人力操作機構を設けることで駆動源喪失時においても人力による開閉操作が可能である。	L,	開の信頼	頃性向上を図る設	計としている。			
なお、遠隔人力操作機構の操作場所は、遮蔽効果が得られる二次格納施設外とし、さらに、	ま	た, 第	3 弁(MV226-13)	については, 上	流で分岐してい	る非常用ガスダ	処珇
必要な遮蔽及び空気ボンベを設置し、作業員の被ばく低減に配慮している。	ン等	を使用す	する場合に閉とす	るが, ベント時	の開要求を達成	する観点から,	, 通
遠隔人力操作機構は、フィルタ装置入口配管付近に敷設されることから高線量、高温雰囲気	なる	ように積	権実な管理をする	。それぞれの弁	の駆動方式・弁	の状態及び選び	定理
による機能への影響の可能性があるため、これらの耐性を確認した。	に示	す。					
(1) 耐放射線性について				表 2 ベン	ト弁の選定理由		
フィルタ装置入口配管近傍における積算線量は,有効性評価で確認している 19 時間ベント	番号	· 弁	名称 駆動方式	た 弁の状態		理由	
で約19kGy/7日と評価している。これに対し,配管と同エリアにある機器の積算線量は36kGy	1	第	1弁		 ·SA時に要求さ 	れる遠隔手動	弁換
/7日と保守的に設定している。遠隔人力操作機構を構成する部品のうち、フレキシブルシャ	2	MV2 MV2	217-4 217-5	NC	 ・格納容器隔離: 	9 るため, 电興 弁であるため,	J向白雪 NC
フトの被覆(シリコンゴム)及び摺動部に使用される潤滑油は、長期的には放射線による劣化	3	第	2 弁	FAI	・ベントのタイミ	ングや弁の操	作は
が考えられる。	4	MV2	17-18 17-93 雪動		よって行う設計。	としているため), F
ただし、フレキシブルシャフトの被覆は、据付時等の製品保護用であり、劣化(硬化)して		IVI V Z	<u>11 23</u> 电勤 駆動		 SA時に要求さ 	れる遠隔手動	
も機能への影響はない。		bet.			が可能なものと	するため、電動	駆
また、潤滑油については、隔離弁の操作時間のような短期間で劣化(粘度増加)することは	5	第 MV9	3开 26-13	NO FAT	・ベント時の開 NO とすろ	要求を確実に調	 重成
なく機能への影響はない。		111 1 2		1 /11	・ベントのタイミ	ングや弁の操	作は
(2) 耐熱性について					よって行う設計	としているため), F

別添1-529

NC:通常時閉

号炉				備考
な仕様				・ベント弁(第1弁及び第2
	NW04 5 00			弁)の並列2重化及び操作
[7-18 9 金)	MV217-23 (笛 2 金)	MV226-13 (笛3五)		機構の多様化によるベン
ム カフ				ト会開放の信頼性を確保
炉棟	原子炉棟	原子炉棟		「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
階	3階	3 階		・他糸統との隔離井の直列と
AOC	400A	300A		重化による格納容器フィ
↑ 弁 → お → お や お # 4	→+₩ +#			ルタベントラインの隔離
助 开 探 仰	- 筬 「	通党時期 (NO)		機能の信頼性を確保
		西市時用(NO), フェイルアズ		
)		イズ (FAI)		
字				
±				
炉建物 歯っ��	原子炉建物 付尾捕 9 階	原子炉建物 仕屋棟 2 眺		
自じる本	门周休日泊	门周休日泊		
(MV217-	4/5), 第2弁	(MV217-18/23)	及	
~第3日	牟の全てを「閗	町 とすること~	で格	
ントボア	「能か設計レ」	ている	- 14	
✓ □//**		ノ く マ つ し ~ フ ユ か=	ŧ.JJ	
,	+ (MV217-18)	についしは金		
閉方向は	こ限定可能であ	りることから空気	贰作	
開閉操作	乍を行うことを	考慮して電動	沤動	
第1弁。	と同様に弁を多	多重化(並列配計	置)	
してい	る非常用ガス如	L理系への連絡。	ライ	
を達哉-	よろ組占から	· 工作: (NO)	Ъ	
で正成し	ブ゙む商加示 レブり, か止始 T マ ハローフ			
式・开(の状態及び選び	E理田について表	女 2	
理由				
	理由			
こ要求さ	れる遠隔手動弁	▶操作機構の設置		
ものとう 竪隔離チ) るため, 電動 主であスため	駆動开とする。 NC とすス		
tirl們栖ナ りタイミ	r こめなにめ, ングや立の堝M	いしこりる。 乍什人間の判断に	-	
う設計と	・ノ、ハの深し	, FAI とする。	-	
こ要求さ	れる遠隔手動弁	▶操作機構の設置	1	
ものとう	けるため、電動	駆動弁とする。		
時の開墾	要求を確実に達	E 成する観点から		
っ りタイミ	ングや弁の撮	乍は人間の判断に	_	
う設計と	こしているため	, FAIとする。		
		-	-	
			1	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
ベント時のフィルタ装置入口配管は,表面温度を170時程度(別紙30)と評価しているが,	NO:通常時開	
周囲の温度が 60℃程度になるように保温を施工する設計としている。	FAI:駆動源喪失時状態維持	
フレキシブルシャフト被覆(シリコンゴム)の耐熱温度は 200℃以上であり,また,遠隔人		
力操作機構を構成するフレキシブルシャフトの被覆以外の部品については金属材料であり、温	格納容器フィルタベント系のベント弁は新設した弁であり、ベント弁(第3弁)は通常運転	
度上昇が機能に影響することはない。	中より全開運用としており、ベントを実施する際は、ベント弁(第1弁及び第2弁)を全開と	
よって、遠隔人力操作機構は、フィルタ装置人口配管付近に敷設される環境でも、機能への		
影響はない。	格納谷器フィルタベント糸の設計流量 (9.8kg/s (格納谷器圧力 0.427 $MPa[gage]$ において))	
速隔入力操作機構 / レイシノルシャノトの構造を用 2 図に, 主ノイノの隔離井の配直位直及 び人力による清原場佐位置を第 2 図~第 5 図に示す	は、これらのハントナを主用とりることを削促としていることから、ハントナ(第1十及の第 9 金)を今期とすることを手順に定めている。また、右効性証価報転においてもベント金を今	
	2 元)を主用とすることを手順にためている。よた、有効圧計価件がにおいても、シー元を主 闘 することを条件として解析を実施している	
	1.3 弁の設置位置の妥当性	
	ベント弁は原子炉棟内に設置されており、事故後の環境(温度、放射線等)を考慮した設計と	
	しているため、ベント時においても弁の健全性は確保され、電源がある場合は中央制御室から操	
	作できる。燃料破損後は弁設置エリアは高線量となるため、現場において弁本体を直接操作する	
	ことはできないが,遠隔手動弁操作機構の操作場所を現場へのアクセス及び作業環境を考慮して	
	原子炉建物付属棟(二次格納施設外)としていることから、駆動源喪失時においても人力による	
	開閉操作は可能である。ベント弁の設置位置を図2~5に示す。	
第2図 遠隔人力操作機構フレキシブルシャフトの構造		
第3図 第一弁(S/C側)配置図		

	備考
]	

	東海第二発電所 (2018.	9.18版)		島根原子力発電所 2号炉
ベント実施	i前は,格納容器バウンダリの維持が要	求される。格納容器圧力逃がし装置の	嗝	
離弁(第一弁,第二弁)は常時「閉」であり、中央制御室の操作スイッチにカバーを取り付			付	
けて誤操作防	5止を図っていること, 駆動源喪失時も	その状態が維持(フェイルアズイズ)	さ	
れるため, 確	実に隔離状態は維持される。			
b. ベント実	至施後			
ベント実施	後は,格納容器圧力逃がし装置の隔離:	弁を閉とし格納容器と隔離する。さらに	-,	
フィルタ装置	出口弁を閉とし、フィルタ装置を大気	と隔離する。		
格納容器と	格納容器圧力逃がし装置の隔離につい	て,格納容器からの除熱機能が使用可	能	
となり、格納	容器及び格納容器圧力逃がし装置の窒	素置換後に、ベント実施時に開弁した	鬲	
離弁(第一弁	・)を閉とし,格納容器バウンダリを復	旧する。閉操作の確実性は、(1)開の	確	
実性と同様に	実施できる。			
フィルタ装	置と大気の隔離について、放射性物質	を含むスクラビング水の移送が完了し	,	
捕集した放射	性物質の崩壊熱が除去できた後に, フ	ィルタ装置下流に設置したフィルタ装	置	
出口弁を閉と	し、フィルタ装置を大気と隔離するこ	とができる。この弁の操作は、ベント	実	
施後に放射線	量が高くなるフィルタ装置設置エリア	に入域せずに実施できるよう,地下の	格	
納容器圧力逃	Sがし装置格納槽内に遮蔽壁(コンクリ	ート遮蔽 1.3m) を設け, 遠隔人力操	作	
機構を設置す	ることで、フィルタ装置設置エリア外	から人力で操作できる設計としている	0	
				図5 格納容器フィルタベント系 弁の設置位置(その4)
2. 弁の種類				
2.1 主ライン	ンの弁構成の考え方		1.	4 諸外国の弁構成
空気作動弁	・(A0 弁) は, 駆動源喪失時の弁状態	を選択(フェイルオープン,フェイル	ク	格納容器フィルタベント系を設置している諸外国の弁構成を以下に示す。
ローズ) する	箇所に用いる。電動駆動弁(MO 弁)に	は駆動源喪失時に弁状態を維持(フェー	1	
ルアズイズ)	する箇所に用いる。また, MO 弁は遠隔	扇人力操作機構が設置できる。		(1) フィンランド
格納容器圧	力逃がし装置の主ラインの弁は,中央	制御室からの遠隔操作と人力による遠	鬲	フィンランドのBWRプラントにて設置されているフィルタベントの概略
手動操作が両	i立できること、駆動源喪失時の弁状態	維持(フェイルアズイズ)の観点から	,	示す。V1 と V20 は圧力開放板である。ベントラインに設置している弁は全て
MO 弁を採用し	こている。			成されている。D/W のラインにはバイパスラインが設置されており, V2, V3
格納容器圧	力逃がし装置主ラインの弁に採用する	場合の駆動方式の違いによる特徴を第	1	となっている。また, V21, V23 についても通常時「開」となっている。その
表に示す。				ベントラインに設置された弁の「開」操作を実施しなくても、格納容器圧力
	第1表 主ラインの弁に採用する場	合の駆動方式の特徴		上昇し, V1 と V20 の圧力開放板が開放すれば, D/W のバイパスラインより格
駆動方式	メリット	デメリット		自動的に開始される。
	 M0 并に対して必要な電源容量が 小さい 	 ・ 駆動源として事故時に使用可能 か電源に加えて 空気 (圧縮空) 		
AO	1.64	気設備)が必要		
(空気作動)		・ 人力による遠隔人力操作機構の		
	取動派売仕住は スの世能大が	設置が困難		
	 ・ 恥動原喪大時は、その状態を維 持(フェイルアズイズ)する 	 A0 升に対して必要な電源谷重 が大きい 		
МО	・電源以外のサポート系が不要			
(電動駆動)	 人力による遠隔人力操作機構の 			
				

	備考
)	
概略系統図を図6に	
全て手動駆動弁で構	
V3 は通常時「開」	
そのため、操作員が	
圧力が既定の値まで	
り格納容器ベントは	

	東海第二発電所 (2018.9.18版)						
	2.2 主	ライン上の	り主な弁の仕様				
	È	ミラインの主	存について, 主な仕	に様を第2表に示す	- 0		
_	_		第2	2表 主ラインの3	牟の仕様		
		× 4 TL	第一弁	第一弁	**	フィルタ装置	
	·	-名称	(S/C側)	(D/W側)		出口弁	
		五日	0.0CD 10	0.000.10	F001A,	FOOL	
	ナ	*番亏	2-26B-10	2-20B-12	F001B	F005	
		型式		バク	マフライ弁		
		口径	600A	600A	450A	600A	
	ECT	***		電動駆動		手動	
⁽ 交流)							
	遠	遠隔人力					
	操	作機構	有				
	弁	の状態		常時閉(NC)			
	フェ	イルクロ	無				
	ース	く (FC)	(フェイルアズイズ	·)	_	
			原子炉建屋	原子炉建屋	原子炉建屋	格納容器圧力逃がし	
	⇒л.	四相 記	1 階	4 階	4 階	装置格納槽内	
	衣	直场灯	(二次格納	(二次格納	(二次格納	(フィルタ装置設置	
			施設内)	施設内)	施設内)	エリア)	
		通常時		中央制御室		牧姉宏聖正も逃ぶし	
	操		原子炉建屋	原子炉建屋	原子炉建屋	俗納谷辞圧力処かし	
	場	電源	付属棟1階	付属棟屋上	付属棟3階	(ファルタ壮罟 辺罟	
	所	喪失時	(二次格納	(二次格納	(二次格納	(ノイルク表直成直	
			施設外)	施設外)	施設外)	- y / 2N/	

2.3 設計の意図

格納容器圧力逃がし装置主ラインに設置する隔離弁の駆動方式の採用理由は,「2.1 主 ラインの弁構成の考え方」に示すとおり,開弁時には駆動源喪失時にもその状態を維持(フ ェイルアズイズ)する必要があることから,M0弁を採用している。これらの弁について は、ベント時以外に開弁することがないことから,通常時の格納容器バウンダリの維持の ため、常時閉(NC)とし、中央制御室の操作スイッチにカバーを取り付けて誤操作防止を 図っている。

また、フィルタ装置を大気から隔離するフィルタ装置出口弁は、ベント実施後に使用するため、排気の妨げとならないよう常時開(N0)とする。

なお,第一弁(S/C側,D/W側)に並列して設置されているバイパス弁 (2-26V-9,2-26B-11)は,通常運転中,主蒸気隔離弁等の定期試験を実施することにより 窒素が格納容器内へ流入し,格納容器圧力が徐々に上昇するので,格納容器の圧力降下操

図6 格納容器フィルタベント系概略系統図(フィンランド)

(2) ドイツ

ドイツのBWRプラントに設置されている格納容器フィルタベント系の概 に示す。格納容器フィルタベント系は、2ユニットで共有する設計となって インには、格納容器隔離のための電動弁が2つ、ユニット間の切り替えのた つ設置されている。また、フィルタ装置の出口側には逆止弁が設置されている

	備考
低略系統図を図7 こいる。ベントラ こめの電動弁が1	
る。 	

東海第二発電所 (2018.9.18版)

作のため、一時的に開弁することがある。これらの弁はフェイルクローズ(FC)機能を設 ける必要があるため、空気作動弁を採用している。また、事故時に自動的かつ確実に閉止 されるように、格納容器隔離信号により閉止する機能を設けている。これらバイパス弁は、 通常運転中に常時の使用はないため、常時閉(NC)運用としている。

3. 格納容器圧力逃がし装置と接続する各系統の隔離弁の数と種類

3.1 各系統の隔離弁の数と種類

格納容器圧力逃がし装置には,換気空調系,原子炉建屋ガス処理系及び耐圧強化ベント 系が接続する。各系統の隔離弁の数と種類等の仕様を第3表に,系統概略図を第6図に示 す。

第3表 他系統隔離弁(格納容器隔離弁)の仕様

系統名	換気空調系		原子炉建屋 ガス処理系		耐圧強化ベント系	
個数		2	2		2	
番号						
(第5図	1	2	3	4	5	6
中の表記)						
弁番号	SB2-14	追設	追設	SB2-3	2-26B-90	追設
型式	バタフライ弁					
駆動方式		空気	駆動		電動	駆動
口径		60	OOA		30	OOA
弁の状態	常時閉 (NC) ^{※1}		常時開 (NO)		常時閉 (NC)	
フェイル					ĥ	m.
クローズ	-		有			荒
(FC)機能					(フェイル	(チスイス)

※1 通常運転中,主蒸気隔離弁等の定期試験を実施することにより窒素が格納容器内へ流入し, 格納容器圧力が徐々に上昇する。格納容器の圧力降下操作のため,一時的に開弁することがある。

図7 格納容器フィルタベント系概略系統図(ドイツ)

(3) スイス

スイスのBWRプラントに設置されている格納容器フィルタベント系の構 に示す。ベントラインには電動弁が2つ設置されており、格納容器から1つ 「開」、2つ目の弁は通常時「閉」となっている。また、2つ目の弁をバイ が設置されており、バイパスラインには圧力開放板が設置されている。その 2つ目の弁の「開」操作を実施しなくても、格納容器圧力が規定の値まで上 板が開放すれば格納容器ベントは自動的に開始される。

Venting", 02-Jul-2014.

	備考
04 350	
既略系統図を図8 つ目の弁は通常時 イパスするライン りため,操作員が	
上昇し, 圧力開放	
tainment	

別添1-535r10

東海第二発電所 (2018.9.18 版)	島根原子力発電所 2号炉
3.2 設計の意図	2.2 格納容器フィルタベント系の他系統への影響
格納容器からフィルタ装置へ至る配管は、ベントを実施する際、接続する他系統と隔離し、	(1) 格納容器フィルタベント系の主ライン構成及び他系統との分岐位置
流路を構成する必要がある。	格納容器フィルタベント系の主ラインの概略構成を図 10 に, ベント弁
重大事故時以外に開操作する可能性のある隔離弁は, 駆動源喪失時においても格納容器バ	4に示す。
ウンダリを維持できるようフェイルクローズが可能な空気作動弁を選定する。また、重大事	ウェットウェル側のベントラインとドライウェル側のベントラインは,
故時に開操作する可能性のある隔離弁については, 駆動源喪失時においても人力による手動	容器側から見て第1弁(MV217-4/5)下流で合流し, 第2弁 (MV217-18
操作が容易な電動駆動弁を選定し、常時閉(NC)運用とする。	(MV226-13) を経由してフィルタ装置に接続する。
なお、万一のこれらの隔離弁の漏えいを考慮し、第3表及び第6図のとおり、上流と同仕	格納容器フィルタベント系に接続する他系統としては、原子炉棟空調換
様の弁を新規に設置する。	ス処理系及び耐圧強化ベントラインがあり、原子炉棟空調換気系は第15
(1) 換気空調系との隔離	非常用ガス処理系及び耐圧強化ベントラインは第2弁と第3弁の間の配行
換気空調系との隔離は、第6図中①SB2-14及び②追設弁の2弁より、格納容器圧力	おり,接続配管には隔離弁を2重に設置することで隔離機能の信頼性向_
逃がし装置主ラインから隔離できる構成となっている。	ている。
これら隔離弁は、通常運転時の格納容器の圧力降下操作時においても、重大事故が発	また、本隔離弁は、通常時閉(NC)とするとともに、格納容器フィノ
生した際には確実な閉止が求められるが、中央制御室からの操作が可能であり、駆動源	ラインから見て第1弁については空気作動弁を採用し、重大事故等時に
が喪失した際のフェイルクローズ(FC)機能を有し, SB2-14 については格納容器隔離	駆動源喪失時においても自動的に隔離できるようフェイル・クローズ(
信号により閉止する機能を設けていることから、確実な隔離が実施できる。	している。
(2) 原子炉建屋ガス処理系との隔離	第2弁については電動駆動弁を採用し、他系統と接続状態において流
原子炉建屋ガス処理系との隔離は、第6図中③追設弁及び④SB2-3の2弁より、格納	設計としている。
容器圧力逃がし装置主ラインから隔離できる構成となっている。	MV226-16 AV226-12
これら隔離弁は,駆動源が喪失した際のフェイルクローズ (FC)機能を有し,SB2-3	
については通常運転時に開弁することはなく、また、格納容器隔離信号により閉止する	④ ³ ³ (3) ³ ⁴ (1) ⁴
機能を設けていることから,確実な隔離が実施できる。	→ 分岐点 ^{ライン} NC 分岐点 NC (D/W MO (水平) - (水平) -
(3) 耐圧強化ベントラインとの隔離	フィルタ装置 NO WV217-5 WV217-5 WV217-5
耐圧強化ベントラインとの隔離は, 第 5 図中⑤2-26B-90 及び⑥追設弁の 2 弁より, 格	(上向き) AV226-11 NC AV217-19 NC (W/W
納容器圧力逃がし装置主ラインから隔離できる構成となっている。	$\begin{array}{c} \hline \bullet \\ \hline \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \hline \hline \bullet \\ \hline \hline \hline \hline$
これら隔離弁は、重大事故時に開操作する可能性があるため、駆動源喪失時においても	
人力による手動操作が容易な電動駆動弁を選定し、常時閉(NC)運用とする。	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	図 10 格納容器フィルタベント系 主ライン概略構成図
.3 格納容器からの取り出し高さ	
各主要高さを示した図を第7図に示す。	表4 ベント弁の選定理由
	弁の分類(番号) 駆動方式 弁の状態 理由
	第1隔離弁 NC ・弁の駆動源喪失時において (①@@) 空気 FC ずまる
	(1)300) FC Cさる。 第2隔離弁 NC ・他系統との接続状態におい
	(246)電助FAI可能な設計とする。
	NC:通常時閉
	NO:通常時開
	F C: 駆動源喪失時「閉」
	FAI · 駆動源喪失時狀能維持

	備考
の選定理由を表	
それぞれの格納 7/23)及び第3弁	
気系,非常用ガ 弁と第2弁の間, 管から分岐して 上を図る設計とし	
レタベント系の主 想定される弁の (FC)の設計と	
量調整を可能な	
· π.Λ·	
)	
ウェル /)	
自動的に隔離 て流量調整が	

別添1-537r3

	備考
第1开(MV217-4	
で他未祝との喃	
-20, AV226-11,	
負荷がかかるが,	
いかる負荷も低下	
影張黒鉛製である	
との懸念がない。	
る機能低下が想定	
環境トにおいて并 他なまらに三十	
件を衣りに小り。	
ベントライン	
MV226-15* 1	
電動駆動	
膨張黒鉛 NC + FAI	
NC TAI	
使用温度:171℃)	
00℃における許	
弁耐圧部の健全	
C, 2 Pd 未満で設	
た。	
ぶ考えられるが,	
こし荷重が作用し	
か 単 田 は 評 恤 対 象	
へ心力」に対する	

(2) ドイツ

ドイツのBWRプラントに設置されている格納容器圧力逃がし装置の概略系統図を第2 図に示す。格納容器圧力逃がし装置は、2 ユニットで共有する設計となっている。ベントラ インには、格納容器隔離のための電動駆動弁が2つ、ユニット間の切替えのための電動駆動 弁が1つ設置されている。また、フィルタ装置の出口側には逆止弁が設置されている。

(3) 他系統との隔離弁までの位置関係及び水素滞留について

他系統との隔離弁までの配管容積及び配管ルート鳥瞰図を図12に示す。

格納容器フィルタベント系の主ラインから他系統との隔離弁までの配管に 配管における混合ガス(水素・酸素)蓄積防止に関するガイドライン」に基 換気可能な構成としている。

原子炉棟空調換気系との隔離弁(AV217-19)及び耐圧強化ベントラ (AV226-11) までの配管については、水平枝管であり閉止端までの長さが短い 積することはない。

また,非常用ガス処理系との隔離弁(AV226-12)までの配管については,」 組合せ枝管であり閉止端までの長さが長いため、ベント時に水素を連続して主 るバイパスラインを設置することとしており、水素が蓄積することはない。

なお、ウェットウェルベント時はドライウェル側の第1弁(MV217-4)まて 管となるが,水平枝管であり閉止端までの長さが短いため,水素が蓄積する イウェルベント時はウェットウェル側の第1弁(MV217-5)までの配管が分岐 水平分岐で下向きの枝管であるため、水素が蓄積することはない。

	備考
図 11 に示すとお る。これにより,	
300	
ついては,「BWR づき評価設計し,	
インとの隔離弁 いため,水素が蓄	
上向きで分岐する 上配管に排出させ	
この配管が分岐枝 ことはない。ドラ 友枝管となるが,	

東海第二発電所 (2018.9.18版)					
第4表 放出量評価条件					
項目	評価条件	備考			
原子炉熱出力 (MW)	3, 293	東海第二発電所定格熱出力			
原子炉運転時間(日)	2,000	+分な運転時間として仮定 した時間			
冷却材中濃度 (Ⅰ-131) (Bq/g)	約 4. 61)(³	I-131 の冷却材中濃度に応じ 他のよう素の組成を拡散組 成として考慮			
追加放出量(I-131)(Bq)	2.22) (I ¹⁴	I-131 の追加放出量に応じ他 のよう素及び希ガスの組成 を平衡組成として考慮,希ガ スについてはよう素の2倍の 値			
原子炉冷却材重量 (t)	289	設計値から設定			
原子炉冷却材浄化系流量(g/s)	1.68 却材浄4	設計値から設定			
主蒸気流量 (g/s)	1.79 量(定 ⁶	設計値から設定			
原子炉冷却材浄化系の除染係数	10	「発電用軽水型原子炉施設 周辺の線量目標値に対する 評価指針」に基づき設定			
追加放出されたよう素の割合(%)	有機よう素 : 96 無機よう素 : 4	「発電用軽水型原子炉施設 の安全評価に関する審査指 針」に基づき設定			
原子炉圧力容器気相部への移行割 合(%)	希ガス:100 有機よう素:10 無機よう素:約8.1	残り 90%の有機よう素は原 子炉冷却材中で分解され,無 機よう素と同様の割合で気 相に移行する。			
スクラビングの除去効果	考慮しない				
耐圧強化ベント開始時間	事象発生 28 時間後	事象発生 28 時間後までの自 然減衰を考慮			

第5表 換気系の評価条	第5表	換気系の評価条件
-------------	-----	----------

項目	評価条件	備考
非常用ガス再循環系	よう素除去効率:90% 再循環率:4.8回/日	非常用ガス処理系等の起動
非常用ガス処理系	よう素除去効率:97% 換気率 :1回/日	を考慮し保守的に評価
原子炉建屋漏えい	考慮しない	原子炉建屋内の放射性物質 による線量率を保守的に評 価

(4) 他系統と隔離する弁の運用上の影響について

格納容器フィルタベント系の系統概略図を図13に示す。

格納容器フィルタベント系に接続する他系統としては,①原子炉棟空調換 ガス処理系及び③耐圧強化ベントラインがあり,接続配管には隔離弁を2重 で隔離機能の信頼性向上を図る設計とし,当該隔離弁は通常時「閉」とする。

島根原子力発電所 2号炉

当該隔離弁について,第1隔離弁(主配管側)は,駆動源喪失時において できるよう,フェイルクローズの設計とするとともに,第2隔離弁は,代替 ら受電し,開閉操作が可能な設計としているため,

フィルタベント実施までにベントラインと確実に隔離できることから,フィ には影響はない。

以下に、①から③に示す系統の運用上の影響を示す。

① 原子炉棟空調換気系

原子炉棟空調換気系の当該ラインは,通常運転中の格納容器圧力調整 気圧低下時)の際に使用することがある。(図14,15参照)

図 15 に示す③, ⑤の第1隔離弁(格納容器側)及び⑥の第2隔離弁(系 容器隔離弁のため格納容器隔離信号にて自動で全閉する。また, 駆動源喪 自動的に隔離できるよう, フェイルクローズの設計としている。

格納容器圧力調整中は、図15に示す④の隔離弁(MV217-20)は調整開状 常が発生した場合には、通常時の系統構成に戻すことを手順の基本として 制御室より全閉操作を実施する。仮に、非常用電源が喪失した場合でも、 源から受電し、当該弁の閉操作を実施することが可能な設計としている。

したがって、格納容器隔離弁によりバウンダリが保持されていること、 ベント実施までには時間的余裕があることから、同時使用することはなく 含め確実に隔離操作が実施できることから、フィルタベント実施に影響はな なお、原子炉棟空調換気系は、通常運転時の原子炉棟の換気に使用するが、2 離弁によって格納容器フィルタベント系と確実に系統隔離されており、フィル には、事前確認項目として他系統と隔離されていることを確認する旨を手順に 離されていることを確認する。

② 非常用ガス処理系

非常用ガス処理系の当該ラインは、運転中には使用しない。

窒素又は空気の漏えいにより,格納容器圧力が上昇した場合のプラント 格納容器圧力を減圧させるために使用する。また,プラント停止後の作業 に使用する。このため,格納容器フィルタベント系との同時使用はなく, 施しない。

なお,非常用ガス処理系は,事故時に原子炉棟を負圧に維持するために

	備考
高气玄 ①北帝田	
そえ来, ②非吊用 言に設置する ~ と	
。 こも自動的に隔離	
春交流動力電源か	
ィルタベント実施	
(台圃笶に伴ら大	
「日風寺に干ノ八	
系統側)は,格納	
要失時においても	
犬態であるが,異	
こいるため、中央	
代替交流動力電	
並びにフィルタ	
、切替え操作を	
ない。	
2重に設置した隔	
レタベント実施時	
こ定め, 確実に隔	
停止後において,	
έ環境確保のため	
切替え操作も実	
こ使用するが,2	

		東海第二発電所 (2018.9.18版)			島根原子力発電所 2号炉
	第6表	建屋内に漏えいした放射性物質による外部被	ぼく条	件	重に設置した隔離弁によって格納容器フィルタベント系と確実に系統隔離 して使用すること及びフィルタベント実施時には、事前確認項目として他
項目		評価条件		選定理由	ていることを確認する旨を手順に定め、確実に隔離されていることを確認
	D = 6.2 D 6.2 $\times 10^{-14}$	× $10^{-14} \cdot Q_{\gamma} \cdot E_{\gamma} \cdot (1 - e^{-\mu \cdot R}) \cdot 3600$: 放射線量率 (Sv/h) : サブマージョンによる換算係数($\frac{dis \cdot m^3}{MeV \cdot B}$	³ ·Sv Bq·s		③ 耐圧強化ベントライン 耐圧強化ベントラインは、万一、炉心損傷前に格納容器フィルタベント い場合に使用する。このため、格納容器フィルタベント系との同時使用は 作も実施しない。
サブマージ ョンモデル (評価式)	V_{γ} E_{γ} μ R V_{R}	: 原子炉建産内の放射性物負張度(bd/ (0.5MeV 換算値) : ガンマ線エネルギ(0.5MeV/dis) : 空気に対するガンマ線エネルギ吸収存 (3.9に対す ⁻³ /m) : 操作場所の空間体積と等価な半球の (m) $R = \sqrt[3]{\frac{3 \cdot V_R}{2 \cdot \pi}}$: 操作場所の空間体積(m ³)	× m ⁻) 系数)半径		なお、耐圧強化ベントラインは、2重に設置した隔離弁によって格納容 ト系と確実に系統隔離されており、フィルタベント実施時には、事前確認 統と隔離されていることを確認する旨を手順に定め、確実に隔離されてい ることから格納容器フィルタベント系と耐圧強化ベントラインは相互に影 はない。
操作場所の 空間体積 (m ³)		2, 200m ³		原子炉建屋ガス 処理系フィルタ 室の空間体積	島根2号炉の耐圧強化ベントラインは、新規制基準施行以前にアクシデ ト対策として設置しており、設置許可基準規則第48条(最終ヒートシンク 設備)としても必要な容量を有する設備であるが、格納容器フィルタベン
		第7表 線量換算係数,呼吸率等	1		大事故等対処設備として設置することから,耐圧強化ベントラインは設置 48 条の自主対策設備として位置付け,万一,炉心損傷前に格納容器フィル
項	目	評価条件		選定理由	用できない場合に耐圧強化ベントラインを使用する運用とする。
線量換算係数	汝	成人実効線量換算係数を使用 I-131 : 2.0510 ⁻⁸ Sv/Bq I-132 : 3.1510 ⁻¹⁰ Sv/Bq I-133 : 4.0510 ⁻⁹ Sv/Bq I-134 : 1.5510 ⁻¹⁰ Sv/Bq I-135 : 9.2510 ⁻¹⁰ Sv/Bq	ICRP に基・	Publication 71 づき設定	なお,格納容器フィルタベント系は,設置許可基準規則第48条,第50% 満足する重大事故等対処設備として,以下に示すとおり,信頼性の高い系 る。 ・ベント弁(第1弁及び第2弁)の並列2重化及び操作機構の多様化に 放の信頼性を確保 ・他系統との隔離弁の直列2重化による格納容器フィルタベントライン
呼吸率		1.2m ³ /h	成人 を設)	活動時の呼吸率 定	れ111 で14年1末 1111 - 111
耐圧強化べ、管から評価、距離	ント系配 点までの	配管表面から 30cm	操作設定	場所を考慮して	
非常用ガスタ イルタ等か までの距離	処理系フ ら評価点	非常用ガス再循環系フィルタ:2.0m 非常用ガス処理系フィルタ :2.7m	操作設定	場所を考慮して	

	備考
応隔離され,各々独立	
て他系統と隔離され	
を確認することから格	
とはない。	
ジント系が使用できな	
を用はなく, 切替え操	
各納容器フィルタベン	
前確認項目として他系	
いていることを確認す	
瓦に影響を与えること	
シデントマネジメン	
ノンクへ熱を輸送する	
マベント系を新たに重	
は設置許可基準規則第	
フィルタベント系が使	
育 50 条及び第 52 条を	
高い系統構成としてい	
後化によるベント弁開	
ラインの隔離機能の信	

東海第二発電所 (2018.9.18版)		
	第8表 線量率の評価	結果
被ばく	経路	線量率 (mSv/h)
建屋内の放射性物質	外部被ばく	約4.6ばく射 ⁻²
による線量率	内部被ばく	約4.9ばく射 ⁰
非常用ガス処理系	非常用ガス処理系 フィルタ	約 4.3×10 ⁻²
線量率	非常用ガス再循環 系フィルタ	約2.6ガス再-1
配管からの線量率		約2.1らの線 ⁰
合計線量率		約7.3 量率線 ⁰
作業線量(10分/個)		約 1.2/(線 ⁰ mSv

(参考) フレキシブルシャフトにおける線量影響について

フィルタ装置入口配管内の放射性物質による直接ガンマ線におけるフレキシブルシャ フトへの線量影響について以下のとおり確認した。

線量評価条件を第9表に示す。また、評価モデルを第4図に示す。

この結果,フィルタ装置入口配管からの直接ガンマ線の7日間の積算線量は約19kGyで あり,設計値の36kGyを超えないことを確認した。

なお,配管内に浮遊した放射性物質(希ガスを含む)からの直接ガンマ線は,評価結果 の約19kGyと比較して1桁程度小さく影響は小さい。

 東海第二発電所 (2018.9.18版)				
第9表 線量評価条件				
項目	評価条件	備考		
想定事象	格納容器破損モード「雰囲気圧力・ 温度による静的負荷(格納容器過 圧・過温破損)」	代替循環冷却系を使用できない 場合		
放出量条件	事象発生から 19 時間ベント (D/Wベント)	サプレッション・プール水での スクラビングによる除去係数に 期待しないD/Wベントを選定		
線源条件	総放出量の 10%の放射性物質(希 ガスを除く)が均一に付着	別紙 30 参照 付着した放射性物質のガンマ線 線源強度を第 10 表に示す。		
配管条件		配管板厚が薄い第一弁付近の配 管を想定し設定 配管長は 100m と設定		
評価位置	配管表面から 25cm 地点	配管表面からフレキシブルシャ フトの最短距離から設定。(配管 から 25cm 以上離して敷設する 設計)		
直接ガンマ線 評価コード	QAD – CGGP2R	三次元形状を扱う遮蔽解析コー ド		

ガンマ線エネルギ	線源強度
(MeV)	(cm ⁻³)
0.01	1.508 ネルギ ¹⁵
0.025	2.468 ネルギ ¹⁵
0.0375	5. 970510 ¹ ⁴
0.0575	3. 101510 ¹⁴
0.085	1. 015510 ¹⁵
0.125	2. 659510 ^{1 4}
0. 225	4. 315510 ¹⁵
0.375	2. 861510 ¹⁶
0.575	6. 549510 ¹⁶
0.85	3. 620510 ^{1 6}
1.25	8. 533510 ¹⁵
1.75	8. 737510 ¹⁴
2.25	5. 644510 ^{1 4}
2.75	1. 334510 ^{1 3}
3.5	1. 149510 9
5.0	2. 541510 ³
7.0	2. 924510 ²
9.5	3. 366510 ¹

第10表 フィルタ装置入口配管付着のガンマ線線源強度

図15 格納容器圧力調整中に格納容器隔離信号が発生した場合の系統

3. 格納容器からの取り出し位置について

格納容器からの排気ラインの取り出し位置は、ドライウェル及びサプレッシ のそれぞれに設け、どちらからでも排気が可能な設計としている。格納容器フ の系統における格納容器からの取り出し位置(ドライウェル及びウェットウェル を図 16 に示す。

ウェットウェルベントラインについては、サプレッション・チェンバの水面 保し、ドライウェルベントラインについては、有効燃料棒頂部よりも高い位置 けることにより、長期的にも溶融炉心及び水没の悪影響を受けない設計とする。

	備考
統構成	
/ョン・チェンバ / ィルタベント系 ルベントライン)	
5からの高さを確 量に接続箇所を設 。	

 (基本1) 金融(広大インの環路会の展開)にやいこ (基本1) 金融(広大インの環路会)の展開)にやいこ (基本は、オンパンの環路会員の見ていた)、 (基本は、オンパンの環路会員の見ていた)、 (基本は、海洋学校の知らしていたる)に、電気構成などうなご優になったの時代の知らいる (基本は、海洋学校の知らしていた)、 (基本は、海洋学校の日本は、 (基本は、海洋学校の日本は、 (基本は、海洋学校の日本は、 (基本は、海洋学校の日本は、 (基本は、 (基本	 (連内) 単振振さインの機能や可能にないで 構成のコンパントの人気が大いたいにない、ため、大きかいない、クロームのように、単小能ないないたいないたいない、ため、ためたいないたいでは、ためたいないたいたいでは、ためたいないたいでは、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたい、ためたいないたいたいたいでは、ためたいない、ためたいないたい、ためたいないたいたい、ためたいないたいたい、ためたいない、ためたいない、ためたいないたいたい、ためたいない、ためたいないたいたいたい、ためたいない、ためたいない、ためたいない、ためたいないたいたい、ためたいないない、ためたいない、ためたいない、ためたいない、ためたいない、ためたいないない、ためたいないない、ためたいないない、ためたいないないないない、ためたいない、ためたいない、ためいないないない、ためたいない、ためたいない、ためたいない、ためたいない、ためたいない、ためにいないないない、ためいないないのいのいのいのののシンスタインのないのかいのいのいのののシンスタインのないないのいないののかい、そりのないないのいのかいのいのいののいののかいのいのいののいのののいのののいのののい	東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
		東海第二発電所 (2018. 9. 18 版)	 島根原子力発電所 2 号炉 (参考1) 窒素供給ラインの隔離弁の頑健性について 窒素供給ラインの楔略系統図を図1に示す。 粘約客器フィルタベント系を使用している際に、窒素供給ラインにベントガスが逆流し、フィルタを経由せずにベントガスが大気に抜出されないように、窒素供給ラインに逆止弁(V226-14) を設置している。逆止弁(V226-14)は、東大事放時においても窒素注入ラインの逆流を防止す るため、設計量度200℃、設計圧力0.930Paとしている。 また、仮に逆止弁(V226-14)のシートリークを想定した場合でも、手動弁(V2B3-82)を設置 しているため、窒素供給ラインにベントガスが逆流することはない。なお、手動弁(V2B3-82)を設置 しているため、窒素供給ラインにベントガスが逆流することはない。なお、手動弁(V2B3-82)の は、設計量度66℃、設計圧力0.930Paとしているものの、200℃、2Pd(0.8530Pa)の環境下に おいても、隔離機能が確保されることを確認している。手動弁(V2B3-82)の構造図を図2に示 す。 ・弁耐圧部:当該弁は圧力クラス1.030Paのクラス2 弁として設計されており、図3に示 すとおり、200℃における許容圧力は1.530Paであることから、2Pd(0.8530Pa) を上回る。 シール部:弁体シート部はメタルであり、弁ふた及びグランドシール部は膨果黒給製であ るため十分なシール性能を有している。 	備考

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(参考2) 放出端の雨水防止対策について	
	(参考2) 放出端の雨水防止対策について 格納容器フィルタベント系出口配管の放出端は、図1に示すとおり、放出方向を水平とし、水平部を1m以上確保したうえで、先端を48度で斜切りした形状としていたが、さらに、図2に示すとおり、先端を約 10度で斜切りした形状に変更することで、出口配管内に雨水が優くし難いような対策を図る。なお、放出端には、奥物混入防止のためバードスクリーンを設置する。 上記の対策により、出口配管内への雨水の侵入はほぼないと考えているが、出口配管下端の雨水排水ラインの止め分について、格納容器フィルタベント系の系統特機時に詰れる弁状態を問運用から関運用に変更することとし、系統待機時に雨水排水ラインに雨水が溜まらない運用とする。 面本様木ラインの止め分については、ベント実施前に入力で確実に閉爆作する運用とする。 図1 格納容器フィルタベント系出口配管(放出端及び雨水排水ライン) 図1 格納容器フィルタベント系出口配管(放出端及び雨水排水ライン) 加出端角度 (45度)	
	変更後 図2 放出端角度 (約70度)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
別紙 34	
各運転モードにおける系統構成と系統内の水素濃度について	
格納容器からのベント中は、系統内に流れがあり水素が局所的に蓄積することはない。一方、	
ベント停止後はフィルタ装置内に捕集した粒子状放射性物質によるスクラビング水の放射線分	
解により、蒸気とともに水素、酸素が発生する。	
発生する水素は蒸気に比べて十分少なく約0.2%と評価され、蒸気発生量に対して一定となる。	
さらに,入口配管に接続された窒素供給ラインより窒素を供給することで,系統内の水素濃度は	
低くなる。	
フィルタ装置入口配管の水素濃度は、窒素供給を実施することで、約0.02%と評価される。	
一方,出口配管の水素濃度は、上述のとおり窒素供給を考慮せずに約0.2%と評価され、窒素供	
給を考慮することでさらに低減される。	
出口配管は大気放出端まで連続上り勾配となり,水素は蒸気とともに放出端に導かれることか	
ら、系統内に水素が蓄積することはない。	
一方,入口配管については,系統内の蒸気が凝縮してフィルタ装置に戻ると非凝縮性ガスであ	
る水素及び酸素の濃度が上昇し、可燃限界に至るおそれがあることから、窒素供給による系統パ	
ージ停止後において,水素が長期的に系統内に滞留しないことを確認するために水素濃度計で入	
口配管の水素濃度を監視する。	
以上より、東海第二発電所の格納容器圧力逃がし装置の水素濃度計は、フィルタ装置の入口側	
に設置を計画している。	
(参考)各運転モードにおける系統構成と系統内の水素濃度について	
格納容器圧力逃がし装置の各運転モード(系統待機時、ベント開始時、ベント停止後)におけ	
る系統状態及び系統内の水素濃度について以下に示す。	
1. 系統待機時	
糸統待機時においては、格納容器隔離弁が閉止されており、隔離弁から圧力開放板の間は	
窒素により不活性化されている。	
糸統符機時の状態を第1凶に示す。	
糸統符機状態においては、糸統内への水素流入はなく、また、糸統内における水素発生はな 、、	
k ' _o	

備考
・資料構成の相違
島根2号炉は「別紙2 水素
滞留に対する設計上の考慮に
ついて」にて記載

島根原子力発電所 2号炉

2. ベント実施時

(1) 系統状態

炉心の著しい損傷が発生した場合のベント開始後には,格納容器内における水-金属反応 や水の放射線分解により発生する水素が格納容器圧力逃がし装置系統内に流入するととも に,フィルタ装置にて捕捉した放射性物質によるスクラビング水の放射線分解により,フィ ルタ装置内において水素が発生する。

この状態においても、系統の初期の不活性化及び格納容器及びフィルタ装置において崩壊 熱により発生する多量の水蒸気による水素の希釈により、可燃限界には至らない。また、フ ィルタ装置出口配管が大気開放端に向かい連続上り勾配となるよう設計しており、系統全体 にベントガスの流れがあることから、局所的な水素ガスの滞留及び蓄積は発生しない。

ベント実施時の状態を第2図に、ベント停止前の窒素供給時の状態を第3図に示す。 (2) 水素濃度(ベント実施時)

格納容器圧力逃がし装置へ流入するベントガスの水素濃度については,格納容器内での水 の放射線分解による水素発生量と,同時に発生する水蒸気発生量の割合から求める。

その結果、格納容器より系統内へ流入するベントガスの水素濃度は約0.2%となる。

水蒸気発生量=Q×1,000/(飽和蒸気比エンタルピ

一飽和水比エンタルピ)×1,000/分子量×22.4×10⁻³×3,600
 水素発生量=Q×10⁶×G値^(分子/100eV)/100/(1.602×10⁻¹⁹)^{*1}
 /(6.022×10²³)^{*2}×22.4×10⁻³×3,600×放射線吸収割合

水素濃度=水素発生量/(水蒸気発生量+水素発生量)×100

Q :崩壊熱(MW)

備去
開行
1

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ [J]}$		
※2 アボガドロ数 6.022×10^{23}		
以上の式に事故発生7日後の状態を想定した条件を適用し,水素濃度を求める。		
・格納容器圧力はベント実施時の圧力として 200kPa [abs] とする。		
・格納容器内の冷却水は沸騰していると想定し水素発生量のG値は 0.4 とする。		
・放射線吸収割合は1.0とする。		
・事故発生7日後を想定するため、崩壊熱は約10MWとする。		
水蒸気発生量=10×1,000/(2706.24-251.15 ^{**3})×1,000/18		
$\times 22.4 \times 10^{-3} \times 3,600 = 18247.8 \text{ m}^3 \text{[N]/h}$		
※3 飽和水比エンタルピは60℃条件とする。		
水素発生量=10×10 ⁶ ×0.4/100/(1.602×10 ⁻¹⁹)/(6.022×10 ²³)		
$\times 22.4 \times 10^{-3} \times 3,600 \times 1.0 = 33.44 \text{ m}^3 \text{[N]/h}$		
水素濃度=33.44/(18247.8+33.44)×100=約0.2%		
次に、フィルタ装置において発生する水素濃度については、フィルタ装置内のスクラビ		
ング水の放射線分解による水素発生量と、同時に発生する水蒸気発生量の割合から求める。		
水素濃度は系統へ流入するベントガスの水素濃度を求める式と同様の式を用いて計算す		
る。		
その結果、フィルタ装置より発生する水素濃度は約0.2%となる。		
水素濃度の計算条件は以下のとおりとする。		
・水の放射線分解に寄与する熱量は 500kW を想定する (設計条件)。		
 ・スクラビング水は沸騰しているものと想定し水素発生量のG値は0.4とする。 		
 ・放射線吸収割合は1.0とする。 		
水蒸気発生量=0.5×1,000/(2675.53-418.99)×1,000/18		
$\times 22.4 \times 10^{-3} \times 3,600 = 992.65 \text{ m}^3 \text{[N]/h}$		
水素発生量=0.5×10 ⁶ ×0.4/100/(1.602×10 ⁻¹⁹)/(6.022×10 ²³)		
$\times 22.4 \times 10^{-3} \times 3,600 = 1.67 \text{ m}^3 \text{[N]/h}$		
水素濃度=1.67/(992.65+1.67)×100		
=約 0.2%		
(3) 水素濃度(ベント停止前,窒素供給時)		
窒素供給を開始することで,(2)で評価した値よりさらに水素濃度が低くなることから,格		
納容器を含め系統の水素濃度は約0.2%を上回ることはない。		

備去
開行
1

備去
開行
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
3. ベント停止後	
(1) 系統状態	
ベント停止後,可搬型窒素発生装置により系統内への窒素供給を開始する。系統内に連続	
的に窒素を供給することで、系統内の水素を希釈、掃気する(フィルタ装置出口側への流れ	
が形成される)ため、フィルタ装置入口配管内に水素が滞留することはなく、スクラビング	
水の放射線分解により発生した水素もこの流れにより、大気開放端から掃気される。また、	
フィルタ装置出口側については、スクラビング水が飽和状態にある場合は、水蒸気発生量が	
水素発生量を大きく上回るため、水素濃度が可燃限界に至ることはない。ベント停止後の状	
態を第4図に示す。	
(2) 水素濃度(隔離弁~フィルタ装置)	
フィルタ装置入口配管側へ逆流する水素濃度について、窒素供給量、水素発生量の割合か	
ら求める。その結果,水素濃度は約0.02%となる。	
なお、フィルタ装置入口配管側に逆流する可能性のある水素発生量は以下に示した式を用	
いて計算する。	
フィルタ装置内水素発生量=Q×10 ⁶ ×G値 ^(分子/100eV) /100	
/ (1.602×10 ⁻¹⁹) $/$ (6.022×10 ²³) ×22.4×10 ⁻³ ×3600	
入口配管内への水素流量=フィルタ装置内水素発生量	
×ガス入口配管断面積/フィルタ装置断面積	
水素濃度=入口配管への水素流入量	
/(入口配管への水素流入量+窒素供給量)×100	
水素濃度の計算条件は以下のとおりとする。	
・ スクフビンク水は沸騰しているものと想定し水素発生量のG値は0.4 とする。	
•水の放射線分解に奇与する熱重は 500kW を想定する。(格納谷器圧力逃かし装直設計条件)	
・ 放射線吸収割合は $1.0 29$ る。	
・ 至柔供	
フィルタ装置内水素発生量=0.5×10 ⁶ ×0.4/100/(1.602×10 ⁻¹⁹)	
$(6.022 \times 10^{23}) \times 22.4 \times 10^{-3} \times 3600$	
$=1.67 \text{ m}^{3} [\text{N}] / \text{h}$	
入口配管内への水素流量=1.67×0.144/9.1	
$= 0.026 \text{ m}^3 [N] / h$	
水素濃度=0.026/(0.026+200)×100	
=約 0.02%	

備去
開行
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2	2 号炉
(3) 水素濃度(フィルタ装置~大気解放端)		
格納容器への窒素供給時の水素濃度については,窒素供給量,水素発生量の割合から求め		
る。その結果,水素濃度は約0.2%以下となる。		
なお,ベント停止後のフィルタ装置出口側の水素濃度は 2. (2)に示した式を用いて計算す		
る。		
水素濃度の計算条件は以下のとおりとする。		
・フィルタ装置出口が解放しているため、フィルタ装置圧力は大気圧であると想定する。		
 ・スクラビング水は沸騰しているものと想定し水素発生量のG値は0.4とする。 		
・崩壊熱はQとする。		
・窒素供給は考慮しない。		
水蒸気発生量=Q×1,000/(2675.53-418.99)×1,000/18×22.4×10 ⁻³ ×		
$3600 = 1985.3 \times Q \text{ m}^3 \lfloor N \rfloor / h$		
h = 32 + 10		
水系先生 $= Q \times 10^{-3} \times 0.4 / 100 / (1.602 \times 10^{-3}) / (6.022 \times 10^{-3})$		
$\times 22.4 \times 10^{-5} \times 3,600 = 3.344 \times Q \text{ m}^{\circ} [\text{N}] / \text{n}$		
水 表) 一 2 3440 / (1085 3 \pm 2 344) 0 × 100		
一約0.2%		
排気筒		
原子炉格納容器:窒素で不活性化維持		
原子炉格納容器		
蜜素供給装置用 電源再 電源再 「加」」」 「加」」」 「加」」」 「加」」」 「加」」」 「加」」」 「加」」」 「「」」 「加」」」 「」」 「		
具空ボンブより 処理設備へ 原子炉建量 原子炉建量原子炉棟 原子炉建量付属棟		
地下格納槽 17 10時限 格納容器圧力逃がし装置:窒素供給により,水素の滞留なし スクラビング水からの水素は,水蒸気とともに大気へ排出される 水素濃度4%以下を維持する		
第4図 ベント停止後状態概要図		

備去
開行
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
4. 評価の保守性について	
各運転モードにおける系統内の水素濃度評価は、水素発生量のG値を用いて算出している。	
G値には,許認可の安全解析に用いられる値(沸騰域 0.40 分子/100eV)を使用することに	
より、評価結果に保守性を持たせている。	
実際にシビアアクシデントが発生した状況を想定した場合の水素発生量のG値は、電力共同	
研究報告書「シビアアクシデントにおける可燃性ガスの挙動に関する研究」において評価され	
ており,その値(沸騰域 0.27 分子/100eV)は許認可で用いられるG値に対して低い値となっ	
ている。	
水素が発生する過程では酸素も発生するが、この量を評価に見込まないことで若干の保守性	
を有することとなる。	
以上より、各運転モードにおける水素濃度評価は適切に行われているものと考える。	

備考
5

東海第一発電所 (2018.9.18版)	鳥根原子力発電所 2号炉	備考					
別紙35							
ベント実施によるプルーム通過時の要員退避について	ベント実施によるプルーム通過時の要員退避について						
(1) プルーム通過時における要員退避の考え方 炉心損傷後のベント実施時には、放出されるプルームの影響によって発電所周辺の放射線 線量率が上昇する。そのため、プルーム通過時において、 <u>災害対策要員</u> は、緊急時対策所及 び中央制御室待避室等で待避又は発電所構外へ一時退避する。緊急時対策所及び中央制御室 待避室 <u>等</u> については、空気加圧することでプルームの流入を抑え、放射線影響を低減させる。 発電所構外への一時退避については、発電所から離れることでプルームの拡散効果により放 射線影響を低減させる。	(1) プルーム通過時における要員退避の考え方 炉心損傷後のベント実施時には、放出されるプルームの影響によって発電所周辺の放射線 線量率が上昇する。そのため、プルーム通過時において、 <u>緊急時対策要員</u> は、緊急時対策所 及び中央制御室待避室で待避又は発電所構外へ一時退避する。緊急時対策所及び中央制御室 待避室については、空気加圧することでプルームの流入を抑え、放射線影響を低減させる。 発電所構外への一時退避については、発電所から離れることでプルームの拡散効果により放 射線影響を低減させる。	 ・体制の相違 ・運用の相違 島根2号炉は、ベント実施後、 中央制御室に退避する。東海 第二は、現場でのベント実施 者が現場に待機する運用 					
(2) 必要要員数 <u>災害対策本部(全体体制)の要員は111名であるが、8名についてはオフサイトセンター</u> <u>へ派遣されるため、</u> 発電所にて重大事故等対応を行う要員は <u>103名</u> である。プルーム通過時 の必要要員である <u>72名</u> は緊急時対策所又は中央制御室待機室等で待機することとしてお り、それ以外の <u>31名</u> については発電所構外へ退避する。	(2) 必要要員数 発電所にて重大事故等対応を行う要員は <u>101名</u> である。プルーム通過時の必要要員である <u>69名</u> は緊急時対策所又は中央制御室待避室で待機することとしており、それ以外の <u>32名</u> に ついては発電所構外へ退避する。	 ・体制の相違 オフサイトセンター派遣要員 は,緊急時対策要員とは別の 要員で構成 					
(3) 移動時間 発電所構外へ一時退避する場合には、原子力事業所災害対策支援拠点へ退避することとしている。 <u>原子力事業所災害対策支援拠点の候補として6施設あり、事象発生後に風向等に基づいて③定する。</u> これらの施設は、発電所から <u>10km~20km</u> の地点に立地しており、最も遠い施設まで徒歩による一時退避を行う場合の所要時間は約6時間と評価している。 緊急時対策所へ待避する場合の移動時間については、アクセスルートのうち、緊急時対策 所から最も距離のある地点 <u>(放水口)</u> から緊急時対策所へ第1図に示すアクセスルートを徒 歩移動によって退避した場合の移動時間は約24分である。	(3) 移動時間 発電所構外へ一時退避する場合には、原子力事業所災害対策支援拠点等へ退避することとしている。これらの施設は、発電所から約12~13kmの地点に立地しており、最も遠い施設まで徒歩による一時退避を行う場合の所要時間は約4時間と評価している。 緊急時対策所へ待避する場合の移動時間については、アクセスルートのうち、緊急時対策 所から最も距離のある地点(放水接合槽)から緊急時対策所へ図1に示すアクセスルートを 徒歩移動によって待避した場合の移動時間は約50分である。	 運用の相違 一時退避箇所の選定箇所の相違及び発電所からの距離の相違 					
J	東海第二発電所 (2018.9.18版)					島根原子力発電所 2号炉	ĵ
---	---	---	---------	---------------------	---	---	---
第1図 放水口が 第1図 放水口が (4) 有効性評価シナリオでの a. <u>サプレッション・プール</u> 有効性評価のうち,炉 負荷(格納容器過圧・過 時退避及び待避開始時間)	•6緊急時対策所への最も距離 退避タイミング <u>*水位通常水位+6.5m 到達</u> によ し損傷後のベントシナリオです 温破損)(<u>代替循環冷却系</u> を使 及びベント時間の関係を第13	のあるアクセスルート こるベント ある「雰囲気圧力・温度によ ご用できない場合)」における 表に示す。	る 要 前 一	(4) a.	図1 <u>放水接合構</u> 有効性評価シナリオでの <u>サプレッション・プー</u> 有効性評価のうち, 炉 負荷(格納容器過圧・通 一時退避及び待避開始時 を図2に示す。	なから緊急時対策所への最も距離 の退避タイミング ル通常水位+約1.3m 到達による 同心損傷後のベントシナリオであ 過温破損)(残留熱代替除去系を 時間及びベント時間の関係を表1	6のあるアクセスルー 5ベント 5る「雰囲気圧力・i 使用できない場合) しに、ベント実施に付
<u>第1衣</u>	(にわける、シート 単開时 同及	東毎発生からの利達時間		Г	<u>衣1</u> 肝内身	」「「「「「「」」」」 「「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」 「	<u>車角発生からの到</u>
2日 2	巫中 S ∕P 水位通堂水位+4 5m	新13時間後		-	発音の構めへの一時退避	<u>奉</u> 中 格納容哭压力 640kPa[gaga]到達	<u> </u>
緊急時対策所への待避	S/P水位通常水位+5.5m	約 16.5 時間後		-	緊急時対策所への待避	サプレッション・プール	約31時間後
ベント操作	S/P 水位通常水位+6.5m	約 19.5 時間後			ベント操作	曲市水位+約1.2m 到達 サプレッション・プール 通常水位+約1.3m 到達	約 32 時間後
				< a. b. c.	復旧班要員> 緊急時対策所への待避 緊急時対策所加圧操作 運転員> 原子炉注水流量調整(崩壊熱相当) 中央制御室待避室加圧操作 第1弁(S/C側)「全開」操作	S/P水位 通常水位+約1.2m (ベント実施判断の約1時間前) 10分 図2 ベント実施に係る対	S/P水位 ベント実施 50分 5分 5分 10分 †応の流れ

東海第二発電所 (2018.9.18版)				島根原子力発電所 2号炉	i	備考
第1表に示すとおり,発電所構外への一時退避については,移動開始からベント操作ま			表1に示すとお			
で約6.5時間あることから最も遠い退避施設への退避が可能であり,緊急時対策所への待			<u>約5時間</u> あること			
避については,移動	開始からベント操作まで <u>約3時間</u> あ	ることからベント実施判断基準到	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー			
達までに緊急時対策	所への待避可能である。そのため,	ベント操作開始に影響を与えるこ	までに緊急時対策所への待避可能である。そのため、ベント操作開始に影響を与えること			
とはない。また、中共	央制御室の運転員については, ベン	ト実施後速やかに中央制御室待避	はない。また,中	央制御室の運転員については, ベン	ト実施後速やかに中央制御室待避室	
室へ退避する。			へ待避する。			
			※復旧班要員:	待避時間(約50分)及び緊急時対象	⑤所の加圧操作時間(約5分)に	
				余裕を考慮し設定		
			連転員 :	原子炉への汪水流量調整(約10分)	及び甲央制御室待避室の加圧操作	
				时间(約5分)を踏まえ,復旧姓安 乳空	貝の侍避開始と回しタイミンクに	
第9素及び第9図	に示すとおり プルーム通過時の屋	:内待避期間(証価上5時間)にお	素2及び図3に	□反と 「示すとおり」 プルーム通過時の待避	期間 (評価上 10 時間) において	
いて、実施する必要(のある現場操作及び作業がないため	. 要員が退避することに対する影	燃料補給を実施す	る必要がある。プルーム通過中に燃料	料補給を実施した場合でも、約8mSv	・運用の相違
響はない。			<u> で あ り 作 業 実 施 は </u>	<u>「</u> 可能である。		島根は一時待避時において,
						燃料プールの冷却を継続する
第2表 ベン	ト実施の待避期間中における格納家	容器の状態及び操作	表2 べ	ント実施の待避期間中における格納	容器の状態及び操作	ため大型送水ポンプ車に燃料
作業項目	待避期間中における状況	作業の要否	作業項目	待避期間中における状況	作業の要否	補給を実施する
原子炉注水	低圧代替注水系(常設)による 注水を継続	待避期間における 流量調整は不要	原子炉注水	低圧原子炉代替注水系(常設) による注水を継続	待避期間における 流量調整(崩壊熱相当)は不要	
格納容器スプレイ	ベント実施前に停止	_	格納容器スプレイ	ベント実施前に停止	_	
電源	常設代替高圧電源装置 により給電	自動燃料補給により作業不要	電源	ガスタービン発電機により給電	自動燃料補給により作業不要	
水源	代替淡水貯槽の水を使用	待避期間中における 補給は不要	水源	低圧原子炉代替注水槽 の水を使用	待避期間中における 補給は不要	
燃料	可搬型設備を使用していない	_	燃料	大型送水ポンプ車を使用	待避期間中の運転継続のため 燃料補給が必要	
b. 格納容器酸素濃度 4.3vo1%到達によるベント			b. <u>格納容器酸素濃度</u>	<u>ドライ条件で 4.4vol%及びウェット</u>	条件で 1.5vo1% 到達によるベント	 運用の相違
炉心損傷後においては、格納容器内での水素燃焼を防止する観点から、格納容器酸素濃			炉心損傷後にお	いては,格納谷器内での水素燃焼を	の止する観点から、格納谷器酸素濃	格納容器酸素ベント基準の相
度かドフイ条件において <u>4.3vo1%</u> に到達した場合, ペント操作を美施することとしてい ス			度かトライ 余件に	.わいく <u>4.4vo1%及びワエツ下余件(</u> ととしている	<u>1.5V01%</u> に到達した場合、ハント	
る。 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用)			1米IFを天肥りるこことしいる。 索囲気圧力・温度による静的自荷(格納容器過圧・過温破指)(残留執代基隆去系を伸			
する場合)においては、水素及び酸素の発生割合(G値)の不確かさが大きく、あらかじ			用する場合)にお			
め待避基準を設定で	め待避基準を設定できないため,酸素濃度の上昇速度から <u>4.3vo1%</u> 到達時間を予測し,			じめ待避基準を設定できないため、酸素濃度の上昇速度からドライ条件で <u>4.4vo1%及び</u>		
退避を実施する。ま	 退避を実施する。また,退避開始からプルーム通過時の退避時において,実施する必要の			り ウェット条件で 1.5vo1% 到達時間を予測し,退避を実施する。また,退避開始からプル		
ある現場操作及び作業がないため、要員が退避することに対する影響はない。			ーム通過時の退避時において、実施する必要のある現場操作及び作業がないため、要員が			
			退避することに対する影響はない。			

別添1-556r18

	# T
i	
	解积上市遗吐于
	れたり始ら天然によりれたりの 解析上考慮せず 的芯可能な実践により対応する
	解作上考慮せず
Logon to	7000-10.14
ノーム通道期間中は、 、制御室待避室へ待3	 連転員は 避する
	解析上考虑⊄√
立其有	や会開御室特通室に送差する前に用子戸注水調査を明 編熟料らに調整する。
	教教言語ペント会と所に第三回内部ペルポルペル。
通光沉阳	PPNの単ペント単に加生水手が作用党大規を進みに し、気急時が要求へ特徴。低に用すた見対水増を追れ たすることにより特徴やも注水を維持できる。 特殊解説は作家エリアの放射経費開始後となる。
道生灵地	解析上考虑4个
	每忙上考虑 仁 广
	解析上考慮せ? 解析上考慮せ?
70.00	解析上考慮せず
ax24	5日元月還です 解約上月慮せず
	解析上考慮せて 解析上考慮せて
	タンタロージ現象に応じて高生板油タンタから補助 単純容器ペント的に可能型改善・世形補助を当論(
语主发电	私送待日常用へ作用、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
	解約上年進ビデ 解約上年進ビデ
	解析 上考慮せず
	ローンフラー・ 解釈上予念せず ロントラー・
	8年上月唐七千 福行上月唐七千
	解析上考慮せず
	毎年上考慮せず 世界ブール水道MCG下藤特
指)	
1月/	
抜粋)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 36	別紙 10	
エアロゾルの保守性について	エアロゾルの保守性について	
(1) 格納容器圧力逃がし装置の設計条件について	(1) 格納容器フィルタベント系の設計条件について	
格納容器圧力逃がし装置の設計条件としては、エアロゾル移行量を <u>400kg</u> に設定してい	格納容器フィルタベント系の設計条件としては,エアロゾル移行量を <u>300kg</u> に設定してい	・設備の相違
る。(別紙2)	る。(別紙9)	原子炉定格熱出力が相違する
(2) 事故シナリオに応じたエアロゾル移行量について	(2) 事故シナリオに応じたエアロゾル移行量について	ため、エアロゾル移行量が異
a. エアロゾルが発生する事故シナリオの選定について	a. エアロゾルが発生する事故シナリオの選定について	なる
ベント実施時には、希ガスやガス状よう素(無機よう素及び有機よう素)を除く核分裂	ベント実施時には、希ガスやガス状よう素(無機よう素及び有機よう素)を除く核分裂	
生成物及び構造材がエアロゾルとして格納容器圧力逃がし装置に流入する。エアロゾルが	生成物及び構造材がエアロゾルとして格納容器フィルタベント系に流入する。 エアロゾル	
発生する事故シナリオは,格納容器破損防止対策の有効性評価の対象とする事故シーケン	が発生する事故シナリオは,格納容器破損防止対策の有効性評価の対象とする事故シーケ	
スのうち,以下に示すMAAP解析上の特徴を踏まえ,原子炉圧力容器が健全な事故シー	ンスのうち、以下に示すMAAP解析上の特徴を踏まえ、原子炉圧力容器が健全な事故シ	
ケンスである「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環	ーケンスである「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(残留熱	
治却系を使用できない場合)」を選定している。	代替除去系を使用しない場合)」を選定している。	
(a) 原子炉圧力容器内に溶融炉心が存在する場合は、炉心が再冠水し溶融炉心の外周部が	(a) 原子炉圧力容器内に溶融炉心が存在する場合は、炉心が再冠水し溶融炉心の外周部が	
固化した後でも、溶融炉心中心部は溶融プール状態を維持する。一方、原子炉圧力容器	固化した後でも、溶融炉心中心部は溶融プール状態を維持する。一方、原子炉圧力容器	
破損時は,原子炉圧力容器破損前に水張りしたペデスタル部で溶融炉心の一部が粒子化	破損時は, 原子炉圧力容器破損前に水張りしたペデスタル部で溶融炉心の一部が粒子化	
するとともに、最終的にはクエンチする。エアロゾル移行量は溶融炉心の温度が高い方	するとともに、最終的にはクエンチする。エアロゾル移行量は溶融炉心の温度が高い方	
がより多くなるため、原子炉圧力容器が健全な場合がより保守的な評価となる。	がより多くなるため、原子炉圧力容器が健全な場合がより保守的な評価となる。	
(b) 原子炉圧力容器内に溶融炉心が存在する場合は,溶融炉心冠水時において溶融炉心上	(b) 原子炉圧力容器内に溶融炉心が存在する場合は,溶融炉心冠水時において溶融炉心上	
部の水によるスクラビング効果を考慮していない。一方,溶融炉心がペデスタル部に存	部の水によるスクラビング効果を考慮していない。一方,溶融炉心がペデスタル部に存	
在する場合は、溶融炉心上部の水によるスクラビング効果を考慮している。以上より、	在する場合は,溶融炉心上部の水によるスクラビング効果を考慮している。以上より,	
スクラビング効果を考慮していない原子炉圧力容器が健全な場合がより保守的な評価	スクラビング効果を考慮していない原子炉圧力容器が健全な場合がより保守的な評価	
となる。	となる。	
(c) 東海第二発電所では, MCCI対策としてコリウムシールドを設置するため, 原子炉		・設備設計の相違
圧力容器が破損した場合でも溶融炉心による侵食は発生しない。したがって、原子炉圧		島根2号炉では、ペデスタル
力容器破損後に特有のエアロゾルの発生源はないと考えられる。(別紙38)		壁面の溶融炉心による侵食が
b. 対象シーケンスにおけるエアロゾル移行量について	b. 対象シーケンスにおけるエアロゾル移行量について	発生する
「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使	「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(残留熱代替除去系を	
用できない場合)」シーケンスにおける格納容器圧力逃がし装置へ流入するエアロゾル移	使用 <u>しない</u> 場合)」シーケンスにおける <u>格納容器フィルタベント系</u> へ流入するエアロゾル	
行量を第1表に示す。本シーケンスの有効性評価ではS/Cベントを優先して実施するこ	移行量を表1に示す。本シーケンスの有効性評価ではW/Wベントを優先して実施するこ	
ととしているが、ここではD/Wベントを実施した場合のエアロゾル移行量もあわせて示	ととしているが, ここではD/Wベントを実施した場合のエアロゾル移行量もあわせて示	
している。第1表より、エアロゾル移行量はS/Cベント時よりD/Wベント時の方が多	している。表1より,エアロゾル移行量はW/Wベント時よりD/Wベント時の方が多く	
く <u>約5kg</u> であるが,格納容器圧力逃がし装置で設計上想定するエアロゾル移行量はこれを	<u>約3.5kg</u> であるが,格納容器フィルタベント系で設計上想定するエアロゾル移行量はこれ	・解析結果の相違
十分上回る <u>400kg</u> である。	を十分上回る <u>300kg</u> である。	・設備の相違
		原子炉定格熱出力が相違する
		ため、エアロゾル移行量が異

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉

<u>第1表</u>静的負荷シーケンスにおけるFPエアロゾル移行量

放出する系統	F Pエアロゾル移行量
S/Cベント	約0.001kg
D/Wベント	約5kg

島根原子力発電所 2号炉		備考	
		なる	
表1 静的負荷シーケンス	におけるFPエアロゾル移行量	・設備の相違	
放出する系統	FPエアロゾル移行量	原子炉定格熱出力が相違する	
W/Wベント	約0.0018kg	なる	
D/Wベント	約3.5kg		

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
別紙 37		
希ガスの減衰効果に期待したドライウェルベント実施時の影響評価		
(1) 格納容器圧力逃がし装置にて除去できず, ベント時の外部被ばくの主因となる希ガスについ		
ては、可能な限り格納容器内に保持することで時間減衰させることが有効である。		
そのため、ベント実施タイミングを可能な限り遅くするため、サプレッション・チェンバ側		
からのベント排気ライン水没を防止する観点から設定したサプレッション・プール水位通常水		
位+6.5mに到達するまでは,格納容器スプレイを実施する手順としている。		
この手順に基づき,格納容器破損防止対策の有効性評価「雰囲気圧力・温度による静的負荷		
(格納容器過圧・過温破損)(代替循環冷却系を使用できない場合)」においては、事象発生後		
約 19 時間後に格納容器スプレイを停止し、サプレッション・チェンバ側からのベントを実施		
することとしている。		
ここでは、より希ガスを格納容器内に保持する観点から19時間以降も格納容器スプレイを		
継続させ、ドライウェル側からのベントを実施した場合について、公衆被ばくへの影響を評価		
する観点から、外部被ばくの主因となる希ガス及び長期土壌汚染の要因となるCs-137放出		
量を対象に、事象発生後約 19 時間後にサプレッション・チェンバ側からベントを実施した場		
合と比較する。		
(2) 評価ケース		
a. サプレッション・チェンバ側からのベント(19 時間ベント)		
格納容器破損防止対策の有効性評価における「雰囲気圧力・温度による静的負荷(格納容		
器過圧・過温破損)」と同様のベント方法であり、事象開始から約19時間後にサプレッショ		
ン・プール水位が通常水位+6.5mに到達した時点で格納容器スプレイを停止し、サプレッ		
ション・チェンバ側からベントを実施する。圧力推移を第1図に示す。		
b. ドライウェル側からのベントケース(34時間ベント)		
a.の事故シナリオにおいて、スプレイ停止基準であるサプレッション・プール水位が通		
常水位+6.5mに到達した後も格納容器スプレイを継続させた評価を実施した。圧力推移を		
第2図に示す。		
MAAP解析の結果、ドライウェル空間体積の減少に伴い格納容器スプレイ効果が低減		
し、約34時間時点で格納容器圧力が限界圧力を下回る620kPa「gage」に到達する結果とな		
ったことから、約34時間後にドライウェルベントを実施した。		
(3)評価結果		
サプレッション・チェンバ側からのベントケースの放出量を1として規格化した場合のド		
ライウェル側からのベントケースの放出量の相対値を第1表に示す。		

備考
・資料構成の相違
島根2号炉は D/W 側のベント
を実施する場合でも, S/C 側
ベント基準(注水制限)以降
も余分に保持することを想定
していない。

東海第二発電所 (2018.9.18版)					
第1表 ドライウェルベントケースにおける希ガス及びCs-137放出量					
	河年を一つ	べいし時間	放出量		
	評価クース	、、 、 ト 时 间	希ガス	C s -137	
	サプレッション・チェンバ側か らのベント	約 19 時間	1	1	
	ドライウェル側からのベント	約 34 時間	約 0.80	約1.76×.74	

希ガスの放出量はサプレッション・チェンバ側からのベントに対してドライウェル側からの ベントケースは約0.8倍であり、希ガスの減衰効果は限定的となっている。これは、第3図の 希ガスの減衰曲線に示すように、事象発生後から12時間程度の間は大きく減衰するものの、 これに比べて事象発生19時間後から34時間後までの間の減衰効果は小さいためである。

C s -137 の放出量に関しては、サプレッション・チェンバ側からのベントに対してドライ ウェル側からのベントは約1.76×10⁴倍と大きく増加する結果となった。これは、ドライウェ ル側からのベントの場合、サプレッション・チェンバ側からのベントに対してサプレッショ ン・プール水でのスクラビング効果が得られなくなるためである。

(4)まとめ

上記のとおり,有効性評価の事故シナリオにおいて,ドライウェル側からのベント時の希ガ スの減衰効果は限定的となる。そのため,長期にわたる土壌汚染を抑制する観点から,サプレ ッション・チェンバ側からのベントを選択することが好ましいと考えられることから,東海第 二ではサプレッション・チェンバ側からのベントを優先することとしている。

備老

/共 共
加考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
別紙 38	
コリウムシールド侵食時のガス及びエアロゾル発生について	
MCCI発生時には、コンクリートが加熱・分解されることに伴い、水蒸気やCO ₂ が発生す	
 る。また、この水蒸気やCO。が、溶融炉心中のZrと反応し、H。及びCOが発生する。これ	
6の気体が気泡となり溶融炉心内を上昇する間に、溶融炉心中の低沸点物質が蒸発し気泡内に取	
り込まれ、溶融恒心の外へ放出された際に凝縮することで、エアロゾルが発生する※1	
アンコンション・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン	
い。したかって、仮に俗融炉心によって使良された場合にも、カスは光生せり、使良に伴りエノ	
ロソルの発生も発生しない。	
*1 D.A.Powers, J.E.Brockmann, A.W.Shiver, "VANESA: A Mechanistic Model of	
Radionuclide Release and Aerosol Generation During Core Debris Interactions With	
Concrete", NUREG/CR-4308, 1986.	

備考
・島根2号炉は、エアロゾルの
想定に十分な保守性があるこ
と、コリウムシールドの侵食
時のガス及びエアロゾル発生
ハッパノスクーノ ロノル 九上
当貨科なし。

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 39	別紙 17	
格納容器圧力逃がし装置使用後の保管管理	格納容器フィルタベント系使用後の保管管理	
	格納容器フィルタベント系使用後には、フィルタ装置には多量の放射性物質が捕捉されるた	
	め、捕捉された放射性物質が環境に放出することがないよう、適切に保管する必要がある。格納	
	容器フィルタベント系使用後のフィルタ装置の保管方針を以下に示す。	
格納容器圧力逃がし装置使用後には、フィルタ装置には多量の放射性物質が捕集される。その	【スクラバ容器】	
ため、フィルタ装置に捕集された放射性物質が環境に放出することがないよう、格納容器圧力逃	格納容器フィルタベント系使用後は、スクラビング水を格納容器へ移送し、スクラビング	
がし装置使用後は、フィルタ装置内のスクラビング水を格納容器へ移送し、気中保管する。	水に捕捉された放射性物質が環境へ放出しないよう気中保管とする。	
なお、「別紙10」に記載のとおり、フィルタ装置に放射性物質を含んだスクラビング水が保管	なお、スクラバ容器内にスクラビング水が保管されていたとしても、後段の金属フィルタ	
されていたとしても、ペンチュリスクラバから境境への放射性物質の再揮発は防止可能である	により、スクラビンク水から境境への放射性物質の放出を防止可能であるが、放射性物質の	
か、成射性物質の放出リスクをさらに低減するにめ、スクラビンク水を格納谷益へ移送する。	<u> 放出リスクを更に低減するにめ、スクプビンク水を格納谷益へ移送する。</u>	
また 「別紙 9」に記載のとおり 金属フィルタに捕集した放射性物質は フィルタ装置使用後	また。金属フィルタは「捕捉したエアロゾルの崩壊熱が」周囲への放熱によって十分冷却	
にベントガス流れがない状態においても、崩壊熱に伴う金属フィルタの過熱による放射性物質の	されるため、金属フィルタの過熱による放射性物質の再浮游は生じないことを確認している。	
再浮遊は生じないことを確認している。	(別紙 36)	
	【銀ゼオライト容器】	・設備の相違
	格納容器フィルタベント系使用後は、気中保管とする。	島根2号炉の銀ゼオライト容
よう素除去部で捕集した放射性よう素は、「別紙 11」に記載のとおり、高温状態で数時間程度	銀ゼオライトフィルタで捕集したガス状放射性よう素については , <u>銀ゼオライトからのよ</u>	器はスクラバ容器と別容器
水素を通気した場合によう素の再揮発が起こるが、スクラビング水を格納容器へ移送すること	う素の脱離反応が考えられ、400 ℃以上の高温状態かつ、数時間程度水素を通気した場合に	
で、よう素除去部に水素が流入しないようにし、よう素除去部からの放射性よう素の再浮遊を防	<u>起こることが知られている。(別紙 38)</u>	
止 <u>する</u> 。	しかし、上記のとおり、スクラビング水を格納容器へ移送することにより、放射線分解に	
	より発生する水素を銀ゼオライトフィルタへ流入しないようにし、ガス状放射性よう素の再	
		コキナリッセキ
	<u> さらに、捕捉したカス状放射性よう素の崩壊熱か、周囲への放熱によって十分冷却される</u> ため、温度の知られてはガス性な射性とら声の再度発けたじたいこした変烈していて、(即)が	・記載力針の相遅
なお、格納容器圧力逃がし装置使用後には、フィルタ装置出口配管に設置している放射線モニ	 なお,格納容器フィルタベント系使用後には,放出口手前に設置している放射線モニタにて,	
タにて、フィルタ装置からの放射性物質の放出がないことを確認する。	フィルタ装置からの放射性物質の放出がないことを確認する。	

東海第二発電所 (2018.9.18版)			子力発電所 2号炉		備考
			別紙 1	・島根2号炉では、風洞実験結	
					果を用いて、ベント位置を排
ベント放出高さの違いによる被ばくへの影響について	ベント方法	気筒とした場合にも有意な影			
					響がないことを確認している
格納容器圧力逃がし装置の放出高さ(原子炉建屋屋上放出,排気筒放出)の違い(補足1参照)	島根原子力発電	電所の敷地は,北側を日本	本海に面し,他の三方を標	高 150m程度の山に囲まれた	
による被ばくへの影響を評価した結果、以下に述べるとおり有意な影響はないことを確認した。	特徴を有している	る(図1参照)。この地形	の特徴を踏まえた格納容器	器フィルタベント系からの放	
	出位置の妥当性な	を確認するため,発電所敷	な地内気象観測データ及び	敷地内・敷地周辺の地形を模	
(1) 炉心損傷前のベント実施時における被ばく評価への影響	擬した風洞実験	*1結果を用い,放出位置	別の相対濃度及び相対線量	量の比較や地表濃度の比較を	
炉心損傷前のベント実施時における,非居住区域境界外の実効線量は,原子炉建屋屋上放	検討実施した。				
出(地上放出)では約0.16mSv, 排気筒放出では約0.019mSv であり, 判断基準(5mSv)に対	また,島根原子	子力発電所2号炉において	こは、格納容器フィルタベン	ント系を用いた格納容器ベン	
して十分余裕がある値となっている(補足2参照)。	トを実施する際,	サプレッション・チェン	バの排気ラインを使用した	と格納容器ベント(以下,「W	
(2) 炉心損傷後のベント実施時における被ばく評価への影響	/Wベント」とい	いう。)の他に、ドライウ	ウェルの排気ラインを使用	した格納容器ベント(以下,	
炉心損傷後のベント実施時におけるCs-137の放出量は、判断基準である 100TBqを十分	「D/Wベント」	」という。)を実施するこ	ことも可能である。		
下回る値となっているが、セシウムによる長期土壌汚染の観点から、遠距離地点の地上濃度	ここでは, 炉心	い損傷に至る代表的な事故	タシーケンスである「雰囲気	気圧力・温度による静的負荷	
について放出高さの違いによる影響を評価した。その結果, 排気筒放出に比べ, 風下距離 5km	(格納容器過圧	・過温破損)」の事故シー	-ケンスにて、ベントライン	ン(W/WベントまたはD/	
~30kmで約1.1倍~約1.7倍であり影響は小さいことを確認した(補足3参照)。	Wベント)を変更	更することによる公衆被に	よくへの影響を評価した。		
さらに,発電所周辺地形及び実際の放出位置を模擬できる3次元移流拡散コードによる評 (ににいいてき) 同族のは思い得られた(は日本教网)			をたままに思わて同次のない		
価においても、回等の結果が得られた(補足4参照)。 また、ジントまたに似る動地内佐業の佐業号地域となっいてき原ス病決局長した出し地方	※1「島恨原子」	り発電所敷地収変及い気象 なまい	R午変更に関する風洞実験」	」(平成 30 年 9 月, 別団法	
また、ハント夫施に伴う知地内作業の作業貝倣はくについても原于炉建産産工成田、排気	人 電力中央研究	无P/T)			
	(1) 故出位置即	の相対濃度及び相対線景	のと乾		
	(1) 放山位直が、 枚納 宏 哭 フ	ノルタベント系排気管抜出	♡ル靫 円(FI 約65m)と主排気管	奇故史(FI 約130m)とした	
	場合の相対濃い	すみび相対線量の比較を表	〒(出:赤すの細)と土所へに 長1に示す。この結果より	相対濃度及び相対線量が地	
	上放出に比べ	て大幅に低減されること	及び格納容器フィルタベン	/ ト系放出と主排気筒放出の	
 格納容器圧力逃がし装置は、耐圧強化ベントとともに、格納容器からの除熱機能を有する設備	差が敷地境界に	こおいても限定的であるこ	ことを確認している。		
であるため、格納容器圧力逃がし装置の屋外配管は原子炉建屋の南面に設置することで、原子炉					
 建屋の北面から東面に設置されている既設の耐圧強化ベント系の屋外配管から極力位置的分散	表1	相対濃度χ/Q(s/m3)	及び相対線量 D/Q(Gy/Bq)	の比較	
を図った設計としている。このように位置的分散を図ることで、大規模な自然災害等の共通要因			大気拡散条件(敷地境界)	
による機能喪失を回避できる可能性が高まる。			 ②フィルタベント排気 		
格納容器圧力逃がし装置の屋外配管及び耐圧強化ベント系の屋外配管(非常用ガス処理系排気		①地上放出	管放出(EL.約65m)	③主排気筒放出 (FL 約 130m)	
筒)の位置関係を第1図に示す。 <u>格納容器圧力逃がし装置</u> 排気口は原子炉建屋南側屋上(地上約			(現設計)		
55m)付近に設置しており,非常用ガス処理系排気筒の放出口は原子炉建屋東側地上約140mの位		$\chi / Q : 3.5 \times 10^{-4}$	$\chi/Q: 3.1 \times 10^{-5}$ (甘木ケースの約8.0%)	$\chi / Q: 8.8 \times 10^{-6}$ (甘本なースの約2.5%)	
置にある	気象指針に基		(基本/ 二入()示) 0.9%)	(基本ケースの新12.5%)	
	1 97 97 7010				
	ベム 「光竜」	Dボナル他設の女王胜竹号 Bび大気安定曲かじ気色ら	テに戻りるX1豕17町」に産 データ笠を田いて計管(囲:	フさ 2009 中の世时の風印, 諸出珇超度 07% 値)	
	/武/玉/	スロハズタ圧皮はこX1家/	/ すて用いて目昇(糸/	/1只□1-7519只/又 21 /01巴/	

	東海第二発電所	(2018.9.18版)				島村	良原子ナ]発電所	2 号炉					備考
 補足2 短期被ばくの (非居住区域) 格納容器圧力逃れには放射性希ガス2 置は原子炉建屋屋」 地上放出としている 及び放射性よう素の 排気筒放出の場合の 放出高さの違いに 放出とした場合約 また,3次元移済 という。)を用い、 気拡散評価から実好 価位置等は、第23 AREDESに、 5mSvに対して十分 	 まは第二先電所 (2010.5.16 MC) 非民生2 短期被ばくの主因となる放射性希ガス及びよう素による影響 (非居住区域境界周辺への影響) <u>格納容器圧力逃がし装置</u>によって粒子状の放射性物質は大幅に低減されることから,短期的 には放射性希ガス及びよう素による被ばくが支配的となる。<u>格納容器圧力逃がし装置</u>の放出位 置は原子炉建屋屋上としているが,非居住区域境界外の被ばく評価では,放出高さを保守的に 地上放出としている。ここでは,排気筒放出と仮定した場合の放射性希ガスによる外部被ばく 及び放射性よう素の吸入による内部被ばくの実効線量の合計を比較して第1表に示す。また、 非気筒放出の場合の放出源の有効高さは、東海第二発電所での風洞実験結果を用いる。 放出高さの違いによる実効線量の差異については、地上放出とした場合約0.16mSv,排気筒 放出とした場合約0.019mSvと評価され、5mSvに対していずれも十分余裕がある。 また、3次元移流拡散評価コードである緊急時環境影響評価システム(以下「AREDES」 という。)を用い、<u>格納容器圧力逃がし装置</u>からの放出(原子炉建屋屋上放出)を想定した大 気拡散評価から実効線量を計算した結果を第1表に示す。また、AREDESの入力条件、評 価位置等は、第2表及び第2図に示す。なお、AREDESの詳細については補足4に示す。 AREDESによるシミュレーションの結果においても、実効線量は約0.08mSv であり、 5mSv に対して十分余裕がある。 				 は欧原丁刀発電所 2万沖 (2) 放出位置別の地表濃度の比較 放出位置別の地表濃度への影響を方位別に確認するため、風洞実験で得られた敷地境界及び 5km地点での地表濃度結果を方位別に確認するため、風洞実験で得られた敷地境界及び 5km地点での地表濃度結果を方位別に読み取り(図2参照)、格納容器フィルタベント系排気 管放出時の地表濃度を1に規格化した相対値を算出した。表2にその結果を示す。 主排気筒放出時の敷地境界での相対値は平均が約0.7 であり、格納容器フィルタベント系排 気管放出時よりも低いが、風向によって約0.3 から約1.5 と相対値が変わる結果となり、風向 によっては格納容器フィルタベント系排気管放出時のほうが低い場合もあることがわかった。 主排気筒放出時の相対値が1を超えるケースは、風下側の敷地内(近距離)に主排気筒より標 高が高いエリアがあり、敷地境界の標高も高いこと等によるものであると考えられる。 ちkm地点での相対値の平均は約1.0で、敷地境界での相対値の平均よりも高く、放出地点か らの距離が長くなることで、放出位置の違いによる影響は全般的には少なくなることがわかった。 なお、表2において、地形の特異性がみられる(相対値が1を大きく超える)風下方位が西 南西の地点の値を除いたうえで、再度、地表濃度の相対値の平均を算出すると、敷地境界では 約0.6 (0.611)、5km地点では約1.0 (0.977)となり、放出地点からの距離による放出位置の 影響が少なくなる結果に大きく影響しないことがわかった。 以上に示すとおり、発電所周辺の地形形状を考慮すると、放出位置の違いは敷地境界におい 									
第1表 項 目	放出高さの違いによる非規 建屋屋上放出*1	居住区域境界外での実家 排気筒放出	 効線量等の比較 AREDESによる評 	表	2 主 (フ	俳気筒放出 ィルタベン	時の地 ト排気	表濃度の ² 管放出時	泪対値 ひ地表濃	度を1とし	た場合)		
放出高さ (m)	0 (地上)	95~115 (排気筒)	·····································	風下方位 (陸方向) 評価点	東北東	東東東	南東	南南東	南 南 西	南西	互 有 西 互	西北西	北西	
風向風速 データ	地上風 (地上高 10m)	排気筒風 (地上高 140m)	2005 年度の平均風速か ら気流計算					平均值	約 0.7	(0.685)				
評価方位	NW	W	W	为天王也之无少下	1.0	0.7 0.7	0.6	0.3 (.3 0.3	0.3 1	.5 0.9	0.7	0.9	
相対線量 (Gy/Ba)	約 4.0×10 ⁻¹⁹	約 8.1×10 ⁻²⁰	約 3. 1×10 ⁻¹⁹	5 km 地点	1.1	1.1 1.0	1.0	平均恒	.8 0.8	0.9 1	.0 1.1	1.0	1.0	
(s/m ³)	約 2.9×10 ⁻⁵	約 2.0×10 ⁻⁶	約 8.4×10 ⁻⁶					<u> </u>	1		1			
実効線量 ^{**4} (mSv)	約 0.16 ^{※2}	約 0.019	約 0.08											
 ※1 申請書ではベン ※2 炉心損傷防止対 ※3 AREDESを ※4 実効線量の評価 う素の放出量は 	ト放出について保守的に 策の有効性評価における 用いて,原子炉建屋屋上 に用いる希ガスの放出量 約 2.3×10 ¹¹ Bq(I-131 等	地上放出と想定し被ば 非居住区域境界外での) のベント放出位置(地. は約 1.5×10 ¹⁴ Bq(ガ 等価量)	く評価している。 周辺公衆の実効線量 上 57m)からの放出を評価 ンマ線 0. 5MeV 換算値),よ											

別添1-567

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉									備考									
補足3 長期土壌汚染の主原因となる放射性セシウム等による影響	(3) 放出位置別の風向出現頻度の比較																		
(遠距離地点への影響)	敷地	内で観測	された	と, 格	系納容	容器フ	イル	タベン	ントネ	系排気	〔管放	出(I	EL.約	65 n	n) と	主排	気筒放	出	
	(EL.約130m)における風向出現頻度を表3に示す。各標高における風向出現頻度を比較する																		
格納容器圧力逃がし装置は広域の地表汚染を防止するために設置するものであり,風下距離	と,陸伯	則の大部	分のフ	ち位に	おい	ヽて差	は50	%未清	満と た	えって	おり	,各构	標高~	で風向	可の現	れ方に	こ大き	な	
で 5km, 10km, 20km, 30km 地点での放出高さの影響を検討する。また,参考として非居住区域	差は見	られなか	った。																
境界外での影響を確認した。	従って、放出位置の違いによる風向の影響は小さいと判断できる。																		
土壌汚染は大気中に拡散した放射性セシウム等が地表に沈着することによって生じること																			
から、地上空気中濃度に依存する。このため、放出高さを排気筒と仮定した場合と原子炉建屋							表3	風	向出现	現頻周	吏								
屋上の場合の上記の地点における地上空気中濃度を比較して第3表に示す。また、風下距離に				1		1					気	象年	: 200)9 年 [1月~	~2009	年12,	月	
よる地上空気中濃度の変化を第3図に示す。ここで、放出高さは排気筒放出の場合は東海第二		マナナル													北	41-	北北		
発電所の風洞実験で風向ことに求めた値の平均値(105m),原子炉建屋屋上放出の場合は地上		風下力位 ∖	東北	東	東南	南	南南	南	南南	南	西南	西	西 北	北	西	11 () () () () () () () () () () () () ()	東東		
(0m) とし、入気女足度は中立、風速は1m/s、放田率は1Bq/sとした。地工空気中優度は、 国子振舞長長も按照の現合には批写管按照の現合にはず、国子振磁に示づけ約17位、10km	標高		東		東	來	東		西	면	西		西	Ц	(海	西	(海) (海)	Ê	
原子炉建屋屋上放出の場合には排気筒放出の場合に比べ,風下距離 5km では約 1.7 倍,10km では約 1.3 倍,20km では約 1.2 倍,30km では約 1.1 倍であり,風下距離とともにその差は小 さくなる																		_	
		風向																	
なお、格納容器圧力逃がし装置での放射性物質の低減効果(粒子状物質で1/1000)を考慮	的 65m	山·玩 頻度	4.1	4.7	7.3	7.8	9.4	7.3	3.8	2.1	3.1	3.1	2.9	6.7	14.71	15.24	4.8 3.	0	
すれば、土壌汚染抑制の観点からは原子炉建屋屋上放出と排気筒放出では大差はないと考え		(%)																	
る。	EL.	風向																	
	約	出現 頻度	6.1	6.4	6.7	5.7	4.6	3.2	4.6	10.4	7.8	4.0	3.8	6.1	5.5	8.0 8	8.9 8.	4	
	130m	(%)																	

	東海第二発電所 (2018. 9. 18 版)		島根原子力発電所 2号炉
第:	3表 遠距離地点の地	上空気中濃度の比較		(4) ベントラインの違いによる影響
風下距離	建屋屋上 (Bq/cm ³)	排気筒 (Bq/cm ³)	備 考 (屋上:排気筒)	W/WおよびD/Wベントラインにおける敷地境界被ばく評価結果を図3には、ベントラインの違いによる影響を明確にするため、大破断LOCA(W/W
5km	約1.1×10 ⁻⁵	約 6.3×10 ⁻⁶	1.7:1	リオ時の評価値を1に規格化した相対値を示した。 大破断LOCA(D/Wベント)シナリオ時の相対値は約1.1となった。この
10km	約 4.0×10 ⁻⁶	約 3.1×10 ⁻⁶	1.3:1	ントラインの違いによる敷地境界外の被ばくへの影響は限定的であると考えられ
20km	約 1.5×10 ⁻⁶	約 1.3×10 ⁻⁶	1.2:1	<影響評価ケース> a. ウェットウェル(W/W)ベントケース(図 4-1) 約 32 時間後にW/Wからのベントを実施
30km	約 8.4×10 ⁻⁷	約 7.8×10 ⁻⁷	1.1:1	b. ドライウェル (D/W) ベントケース (図 4-2) 約 32 時間後にD/Wからのベントを実施

第3図 風下距離による地上空気中濃度の変化 ※1 放出点からNW方向の非居住区域境界は600m ※2 放出点からW方向の非居住区域境界は530m ○希ガス

希ガスについては、W/Wベントにおいてもスクラビングによる除去は期待でき ントラインの違いによる希ガス放出量には差異がほぼない。ベント時の希ガス放 D/WベントのケースはW/Wベントケースの約1.0倍となる。

〇よう素

D/Wベントでは、W/Wスクラビング効果がなくなり、よう素放出量は増加-での内部被ばくに関して、D/WベントケースではW/Wベントケースの約1 る。

○C s −137

D/Wベントにおいては、ベント時のW/Wスクラビング効果がなくなり、C : は増加する。ベント時のC s -137 放出量に関して、D/Wベントケースでは ケースの約 1600 倍に増加する。

以上に示すとおり、D/Wベントとすることで、内部被ばくを含めた総被ばく また、C s - 137放出量も増加することから、W/Wベントを選択することが好られる。

	備考
3に示す。ここで //Wベント)シナ	
このことから, べ えられる。	
きできないため, ベ 「ス放出量に関して	
卽加する。敷地境界 約 1.1 倍に増加す	
C s -137 放出量 ではW/Wベント	
ばく量が増加する。 が好ましいと考え	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
補足4 AREDESを用いた放出高さの違いによる影響評価	
a. AREDESについて	

放出高さの違いによる拡散効果への影響について、3次元移流拡散評価コードであるAR EDESを用いて評価を行った。AREDESには、東海第二発電所周辺の地形データが入 力されており、地形の形状を考慮した大気拡散評価が可能である。AREDESにより、単 位放出量当たりの拡散係数(相対濃度(χ/Q)及び相対線量(D/Q))を評価し、放出 高さの違いによる拡散効果への影響を評価した。

b. AREDESへの入力条件について

東海第二発電所における放出高さの違いによる拡散効果の影響を確認するために,原子炉 建屋屋上(格納容器圧力逃がし装置排気口)及び排気筒の2つの放出高さを設定した。

拡散効果を確認するために、各高度における一定の気象条件(風向,風速,大気安定度) を入力条件として評価を行った。なお、AREDESは地形影響を考慮できるため、放出高 さは実際の放出位置を設定した。

主な入力条件を第4表に示す。また、AREDESの評価画面を用いた評価位置を第4図 に示す。

図3 敷地境界における被ばく量の相対値

(ベントラインの違いによる影響)

	備考
部被ばく	
部被ばく	

別添1-572r2

東海	毎第二発電所 (2018.9.18月	į)		島根原子力発電所 2号炉	備考
c. AREDESによる評価結果	Ę			(5) まとめ	
AREDESによるシミュ	/ーション結果を第5表に示	F.		敷地境界における被ばくについてベントラインの変更による影響は限定的である。また、被	
気象指針に基づいた評価と同	司様,遠距離地点においては	原子炉建屋屋上放出と排気	筒放出	ばく量及び長期にわたる土壌汚染を抑制する観点では、W/Wベントを選択することが好まし	
の拡散効果の差異が小さく、そ	その差は約2倍~3倍となっ	-0		いと考えられる。	
				放出位置を変更しても、島根原子力発電所周辺の地形形状の効果により、被ばくへの影響は	
第5表	遠距離地点の χ/Q 及びD	∕Qの比較		限定的である。	
評価地点 拡散係数	屋上放出 排気筒放 (地上 57m) (地上 140	1 屋上:排気筒)			
χ/Q W方位 (s/m³)	2. 1×10^{-6} 9. 0×10^{-7}	2.3 : 1			
5km D/Q (Gy/Bq)	9. 1×10^{-20} 5. 6×10^{-2}	1.6 : 1			
x / Q NW方位 (s/m ³)	1. 7×10^{-6} 6. 4×10^{-7}	2.7 : 1			
5km D/Q (Gy/Bq)	1. 0×10^{-19} 5. 2×10^{-2}	1.9 : 1			
d. AREDESの評価結果の表 AREDESによる大気拡載 大気拡散評価結果との比較を行 放出におけるW方向の周辺監結 果,第7表に示すとおりAR あり,AREDESの評価結果 また,AREDESについて ョンとの比較検証結果が示され トレーサ拡散実験との比較が行 っていることが記載されている ワークシステム(SPEEDI の評価結果に対して外部線量に る。 参考図書1: N.Suzuki,K.	妥当性について 教評価結果の妥当性について 行い確認した。評価条件は, 見区域境界を評価点における EDESによる評価結果が気 とのとなるることを確認し ては、以下の参考図書1には、 行われており、風下距離10km 5。また、参考図書2には、)との比較検証を実施した結 ま0.8倍~3.1倍、甲状腺線量	気象指針の基本拡散式に 第6表に示すとおりとし, 相対濃度の評価を行った。 象指針に基づく評価結果と こ。 ーサ拡散実験や他のシミュ 米国にて実施された屋外に 以内において非常に良い相 緊急時迅速放射能影響予測 果, AREDESはSPE は 0.4倍~1.3倍と記載さ i, H. Suwa, Y. Kato, F. H.	基排そ同 レお関ネEれ Liu,と前結で シるなトIい		
and S.Kodama Dose (注)本参考 A, A ードで ある。 参考図書 2: Masatoki Su Prediction Accidents	a: Construction of Syste 等図書1はDIANAコード REDESともに電力共通程 ざある。よって、本参考図書 uzuki and Yoshitaka Yosh Technology for Emergency	for Environmental Eme 関するものであるが, D 完の成果を用いており同 はAREDESにも適用 da : Development of a Protection Area at No	rgency I A N ーのコ 可能で Rapid clear		

東海第二発電所 (2018.9.18版)

第6表 評価条件

		为 0 衣 时 画 木 日				
項目	AREDES	気象指針	備考			
風速	地上10m:3.1m/s 地上81m:5.1m/s 地上140m:5.4m/s	地上140m:5.4m/s	東海第二発電所構内で観測された 各高度の年間(2005年度)の平均 風速から設定			
風向	E方向	E方向	地上放出時,排気筒放出時の主風向 を参考に設定			
大気安定度	D型(中立)	D型(中立)	東海第二発電所構内で観測された 大気安定度のうち,年間(2005年 度)で最も出現頻度の高い大気安定 度			
放出高さ	地上 140m (排気筒高さ)	115m ^{※1} (放出源有効高さ)	非常用ガス処理系の放出位置から 設定			
評価地点	W方向:530m	W方向:530m	放出点からW方向の周辺監視区域 境界までの距離			

※1 風洞実験結果に基づく放出源有効高さ

第7表 排気筒放出における大気拡散評価結果

相対濃度	AREDES	気象指針
χ / Q (s/m ³)	約 1.8×10 ⁻⁶	約1.2×10 ⁻⁶

備考

東海第二発電所 (2018.9.18版)				島根原子力発電所 2号炉
補足5 ベント実施に	伴う敷地内作業の作業	員被ばくの放出高る	さの違いによる影響	
ベント実施に伴う敷	牧地内作業(S∕Cから	のベント実施時の第		
スクラビング水補給及	ひ 窒素供給作業)の作	業員被ばくについ	て,格納容器圧力逃がし装置	
の放出位置を原子炉	建屋屋上放出,排気筒 加	改出と仮定した場合	についてそれぞれ評価を行	
い、放出高さの違いは	こよる影響を確認した。	評価結果を第8表		
ベント実施に伴う敷	数地内作業の作業員の被	なばく評価において	は,非常用ガス処理系が起動	
する前(事象発生~2	時間後)までに、炉心	損傷に伴い原子炉類	建屋から地上放出される放射	
性物質の地表沈着に。	こる被ばくが大半を占め	っている。このこと	から、格納容器圧力逃がし装	
置の放出位置の違いは	こよる、ベント(事象発	巻生 19 時間後)に住	半う敷地内作業の作業員被ば	
くへの影響は小さい。			the factor of the second se	
なお、被ばく評価に	「当たっては,気象指針	に基づき保守的な多	気象条件で評価を行っている 、、 こ、(約束 約m)	
が,現実的な条件で記	¥恤を行った場合は線量	すが低くなると考え	られる(参考参照)。	
र्षा र	ました山古との書いる	トッル光日本バイ	では、	
用 8	表 放出局さの遅いに	よる作業貝倣はく(ひざいし安佐味)	り評価結果	
	(5/02060			
作業内容	建屋屋上放出	排気筒放出	備考	
弁開 第一弁操	乍 約 37mSv	約 37mSv	ベント実施前作業	
操作時第二弁操作	乍 約 28mSv	約 23mSv	ベント実施時作業	
スクラビング水補約	合約13mSv/h	約 13mSv/h	事象発生から7日後の作業	
窒素供給作業	約3.6mSv/h	約3.6mSv/h	事象発生から7日後の作業	

備考

	東海第二発電所 (2018.9.18片	反)	島根原子力発電所	2 号炉
		参考		
Ħ	見実的な気象条件における評価につい	いて		
事故時の大気拡散評価	iに係る気象条件は,気象指針に基づ	き整理しており、これを参考に	次	
式(相対濃度の場合)に	より風下方位が陸側の全ての方位を	対象に現実的な気象条件として	中	
央値を求めた。				
$1 \sum_{T}^{T}$	$\langle 0 \rangle$. S			
$\chi \neq Q = \frac{1}{T} \sum_{i=1}^{K} (\chi)$	$\langle \mathbf{Q} \rangle_{i} \cdot 0_{i}$			
~ ~ ~				
$\gamma \langle \Theta \rangle$	・実効放出継続時間中の相対濃度	(s/m ³)		
T	: 実効放出継続時間(h)			
$(\chi \swarrow Q)_i$:時刻 i における相対濃度(s/m ³)		
$\delta_{\mathbf{i}}$:時刻 i において風向が陸に向うた	<i>5</i> 位にあるときδ, =1		
	時刻 i において風向が海に向うた	r位にあるときδ, =0		
		1		
気象指針に基づいた保	会中的な気象条件(97%相当値)と現	実的な気象条件(中央値)で評	価	
した相対濃度,相対線量	を第9表に示す。保守的な評価結果	果に比べ現実的な評価結果は 1	×2	
程度となった。				
	第9表保守的及び現実的な評価	結果		
	気象指針に基づく 保守的な評価	現実的な評価		
相対線量 (Gy/Bq)	約 4.0×10 ⁻¹⁹	約 2.3×10 ⁻¹⁹		
相対濃度(s/m ³)	約 2.9×10 ⁻⁵	約 1.6×10 ⁻⁵		

備考

東海第二発電所 (2018.9.18版)				島根原子力発電所 2号炉	備考
別紙 41			別紙 41	別紙 23	
スクラビング水の p H について				スクラビング水の p Hについて	
スクラビング水は、無機よう素をスクラビング水中に捕集・保持するためにアルカリ性の状態				スクラビング水の p H が低下した場合,気相中への無機よう素の再揮発が促進されることが	
(pH7以上)に維持する必	公要があるが, 重大事	事故等時においては, 格 約	衲容器内のケーブルから	考えられることから,スクラビング水の薬液として を初期添加することに	
放射線分解,熱分解等により	り塩化水素(HC1)等	の酸として放出され,~	ジント実施により格納容	より, 薬剤の補給が不要な設計としている。	
器からフィルタ装置(スク	ラビング水)に移行	するため, p Hが低下す	る可能性がある。	スクラビング水の p Hを低下させる要因として, 重大事故時に格納容器内において発生する	
これに対して, スクラビン	ノグ水は、待機時にま	おける重大事故等時に発	生する可能性がある酸の	酸性物質を含むベントガスのスクラバ容器への流入が挙げられる。	
量に対して十分な塩基量を確	確保することにより,	· ベント実施中の p H 監	視を実施することなく、		
確実にアルカリ性の状態を約	進持することとしてい	いる。			
なお, スクラビング水の1	pHについては, pH	H計を設置し, p Hがアノ	レカリ性の状態となって		
いることを原子炉停止中に	<u> 適宜確認する。</u>				
 (1) 格納容器内の酸性物質 重大事故等時に格納容器 /CR-5950において検討 炉水,サプレッション・ス 部コンクリートが掲げられ が含まれており,酸として 酸性物質,塩基性物質を多く 	及び塩基性物質 器内において発生す 討が実施されており、 プール水溶存窒素、格 れている。これに加え て硝酸、塩基としてフ 発生源ごとに第1表に 第1表 主な酸性	る酸性物質と塩基性物質 その発生源として燃料 各納容器内塩素含有被覆 え,格納容器内の塗料に アンモニア等の発生源と ニ示す。	については, NUREG (核分裂生成物), 原子 材ケーブル, 格納容器下 ついても成分元素に窒素 なる可能性がある。主な	主な酸性物質としては、塩素含有被覆材ケーブルの放射線分解による塩化水素、窒素が溶存 するサプレッション・プール水の放射線分解による硝酸等が既往知見により知られている。原 子炉圧力容器が破損した場合においては、溶融炉心による加熱でペデスタル内のケーブルが熱 分解することによる塩化水素の発生、MCCIによるコンクリート骨材からの炭酸ガスの発生が 考えられる(NUREG/CR-5950)。 また、スクラビング水量の変動に伴う希釈もpH低下の要因となる。 以下に、の初期添加量の算定に資する酸性物質、希釈量についての評価 を示す。	
発生源	酸性物質	塩基性物質	備考		
燃料(核分裂生成物)	よう化水素 (HI)	水酸化セシウム (CsOH) 等			
原子炉水	_	五ほう酸ナトリウム (Na ₂ B ₁₀ 0 ₁₆)	ほう酸水注入系によ りほう酸水を原子炉 へ注入した場合		
サプレッション・プール 水溶存窒素	硝酸(HNO ₃)	_			
格納容器内塩素含有 被覆材ケーブル	塩化水素(HC1)	_			
格納容器下部 コンクリート (溶融炉心落下時)	二酸化炭素(CO ₂)	_			
格納容器内塗料	硝酸(HNO ₃)	アンモニア (NH ₃)			
L	1	1	<u> </u>		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
これらのうち,酸性物質が発生することが知られているサプレッション・プール水溶存窒素の	
放射線の照射により発生する硝酸,原子炉圧力容器が破損した場合に MCCI により発生する二酸	
化炭素に加え, p Hへの寄与が大きいと考えられる塩素含有被覆材ケーブルの放射線分解及び熱	
分解により発生する塩化水素、スクラビング水中で分解する際に塩基を消費する	
が、スクラビング水の塩基量を評価する上で重要であることから、以下では、これらの発生量を	
評価することとする。	
	1. 格納容器内で発生する酸性物質生成量
a. 格納容器内ケーブルの被覆材の放射線分解による酸の発生量	(1) 放射線分解による酸性物質生成量
格納容器内の <u>塩素含有被覆材</u> ケーブルについて,放射線分解により発生する塩化水素量を	格納容器内のケーブルについて, 放射線分解により発生する塩化水素量を
NUREG/CR-5950の放射線分解モデルに基づき評価した。なお、ケーブル量について	の放射線分解モデルに基づき評価した。なお、ケーブル量については、実機
は、実機調査を行った(参考)。	(参考)。
	<u>また、窒素が溶存するサプレッション・プール水が放射線分解することに</u>
	硝酸についても評価対象とした。
有効性評価シナリオ「 <u>雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代</u>	有効性評価シナリオ「 <u>格納容器過圧・過温破損モード(大 LOCA+SBO+ECC</u>
<u> 替循環冷却系を使用できない場合)</u> 」において、ベント時(事象発生から <u>約19時間</u> 後)には	において, ベント時(事象発生から <u>32 時間</u> 後)には <u>約</u> [mol], 7日後
mol,7日後には mol,60日後には molの酸性物質が格納容器内で生	では約 [mo1], 60 日後 (1440 時間後) では約 [mo1]の酸性物
	内で生成されると試算した。
	放射線分解により生成される酸性物質量の時間変化を図1に示す。
	~ ****
	図1 放射線分解で生成する酸性物質量の時間変化

	備考
NUREG/CR-5950 幾調査を行った	
<u>こより生成する</u> CS 機能喪失)」 後(168 時間後) 物質が格納容器	 ・資料構成の相違 東海第二の S/P 水から発生す る硝酸の評価は、「(1)c. サプレッション・プール水での放射線分解による硝酸の発生 量」に記載
J	・記載方針の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
 b.格納容器内電気ケーブルの被覆材の熱分解による酸の発生量 熱分解については、原子炉圧力容器損傷前の格納容器内環境(200℃以下)ではケーブルからの塩酸の発生はほとんどないことから、炉心損傷などによるデブリ接近によりケーブル温度が著しく上昇した場合を想定した酸性物質の放出量を評価した。 ここでは、格納容器ペデスタル内に配置された塩素を含有するケーブルの被覆材から塩化水素が放出されると仮定し、ペデスタル内ケーブルの塩酸含有量 kgの全量が放出されるものとして、の酸が発生すると評価した。 c.サプレッション・プール水での放射線分解による硝酸の発生量 	 (2) 熱分解による酸性物質生成量 ケーブルは高温環境にさらされると熱分解により塩化水素を放出するが、ケーブルの熱分 解は200℃まではほとんど発生しないため、有効性評価シナリオ「格納容器過圧・過温破損 モード(大LOCA+SB0+ECCS機能喪失)」においては、熱分解による塩化水素の放出量は無 視できる程度と考えられる。 原子炉圧力容器破損を想定した場合は、溶融炉心から熱を直接受けるケーブル、即ちペデ スタル内に存在するケーブルが熱分解により塩化水素を放出すると考えられる。また、この 際に生じる MCCI により発生する炭酸ガスの発生量は、十分小さく無視できる程度と考えら れる。なお、ペデスタル内のケーブル量は、保守的にペデスタル内に接続されるケーブルの 全長(ペデスタル外も含む)を集計した。 原子炉圧力容器破損が想定する際に、約 [mol]の酸性物質が熱分解により生成され ると試算した。 ・ペデスタル内ケーブルの熱分解による塩化水素生成量:約 [mol](約 kg) 	 ・評価方針の相違 島根2号炉は,他の酸性物質 の発生量が支配的であるため,評価に含めていない(以 下,別紙仮41においては,① の相違) ・資料構成の相違
<u> c. サブレッション・ブール水での放射線分解による朝酸の発生重</u> 重大事故等時において、サプレッション・プール水中ではサプレッション・プール水溶存 窒素の放射線の照射によって硝酸が生成される。 なお、格納容器内に放出されたエアロゾルの一部はフィルタ装置のスクラビング水に移行 し、フィルタ装置内での硝酸の発生に寄与すると考えられるが、ここでは、格納容器内に放 出された放射性よう素を全てエアロゾル(CsI)とし、サプレッション・プール水に全ての エアロゾルが移行するものとして、硝酸の発生量を評価した上で、発生した硝酸は全てフィ ルタ装置に移行し、スクラビング水の塩基と反応するものとして評価している。このため、 ラジオリシスによるスクラビング水のpHの影響は保守的に評価されている。		 ・資料構成の相違 島根2号炉のS/P水から発生 する硝酸の評価は、「1.(1). サプレッション・プール水で の放射線分解による硝酸の生 成量」に記載
NUREG-1465, Reg. Guide. 1. 183及びNUREG/CR-5950に基づき, サプレッション・プール水の積算吸収線量から硝酸の生成量を評価した結果, ベント時(事象発生から約19時間後)には mol, 7日後には mol, 60日後には molとなる。 $\left[HNO_{3}\right] = \frac{G \times 10}{1.602 \times 10^{-19} \times 6.022 \times 10^{23}} \times \left(E(t)^{\gamma} + E(t)^{\beta}\right)$		
ここで, [HNO ₃] :硝酸濃度 (mol/L) G :HCO ₃ の水中におけるG値 (個/100eV) E(t)γ, E(t)β:γ線とβ線の積算吸収線量 (kGy)		

	宙海第二発雲所 (2018 9 18 版)	自根百子力涨震所	9
d	MCCIに上り発生する ^一 酸化出表の発生量	四位示175元电//	
u.	MCCI対策としてコリウムシールドを設置するため 原子恒圧力突毀が破損した場合で		
	MOUTAR COULT A COUL		
	食を見込み評価する		
	<u> </u>		
	べてしたいのではない一般化炭素のほどんとは、同価素発行において存起がたた日本化		
	▲ 二酸化炭素は塩化水素ほど溶解度が大きくないため、ファルタ准置内では会長がフクラビ		
	<u>一敗</u> [[灰光は塩][[小光はと俗件及が八さくないたの], ノイルク 表直的 には主重が $($		
	シン小に俗件りることはなく、また初散のため、酸性物質としてヘンノビンン小に子たる影響は小さいと考えるが、本証価では保空的にフクラビング水のトロに影響を与えて融仕物質		
	当は小さいころんるか、本計価では休寸的にヘクノビンク小のpnに影響を与える酸性物真 トレイジーナス		
<i>.</i>	無操とう妻の揖集にとり消费される指其の景		
	· 二版より示の抽来により行員で4003/00400年 ベンチュリスクラバに流入する無機上う表の畳を以下のとおり設定した		
	・事故時に恒内に内蔵されるとう表示表量		
	BWRプラントにおける代表恒心(ABWR)の平衡恒心末期を対象としたORI		
	GEN2コードの計算結果に対して 東海第二発電所の熱出力 (3 293MW) を考慮し		
	て算出した結果、約24.4kgとする。		
	NUREG-1465に基づき、格納容器内へのよう素の放出割合を 61%とする。		
	 ・格納容器に放出されるよう素の元素割合 		
	よう素 4%とする。		
	以上より,ベンチュリスクラバに流入する無機よう素(分子量 253.8g/mol)の量は約		
	13.6kg(約 53.6mol)となる。		
	(ベンチュリスクラバに流入する無機よう素の量)		
	24. $4[kg] \times 61\% \times 91\% = 13. 6[kg]$		
	13.6×10 ³ [g]/253.8[g/mol]=53.6[mol]		
	(1)式に示すとおり、無機よう素はベンチュリスクラバにて薬剤())		
	との反応により捕集される。		
	\cdot \cdot \cdot \cdot (1)		
	この反応によって消費される塩基の量は mol となる。なお,この反応において		
	mol 消費される。		

備考
・評価方針の相違
①の相違
・評価方針の相違
①の相違

	備考
する環境下にお	
2	
,この影響は	
想定して消費さ	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(2) フィルタ装置での塩基の消費量	2. スクラバ容器での塩基の消費量
(1)項で生成した酸性物質は、ほとんどが液相に溶解してサプレッション・プールに移行し、	重大事故時に格納容器内で発生した酸性物質は,スクラバ容器へ移行する前
ベント時にはサプレッション・プール水に残留してフィルタ装置には移行しない可能性もある	の自然沈着,格納容器スプレイ及びサプレッション・プールのスクラビング等
が、保守的に全量が移行するとして評価する。スクラビング水の消費される塩基の量は、以下	受けるため、移行量は減少する。また塩酸や硝酸については格納容器内の液相
のとおりとなる。	<u>zisho.</u>
	以上の事象影響を無視し、格納容器内で生成した酸性物質が保守的に全量和
	と,スクラバ容器の塩基の消費量は,7日後(168時間)において約[
	(1440時間)において約 [mo1]との試算となる。
【事象発生7日後での塩基の消費量 (mol)】	【7日後(168時間)の塩基の消費量(約 [mol])内訳】
・ケーブルの放射線分解の塩化水素で消費される塩基の量 mol	・放射線分解による酸性物質生成量:約 [mo1]
 ・ケーブルの熱分解の塩化水素で消費される塩基の量 	・熱分解による酸性物質生成量:約 [mol]
 ・S/P*水から発生する硝酸で消費される塩基の量 mol 	
・MCCIで発生する二酸化炭素で消費される塩基の量 mol	
・無機よう素の捕集により消費される塩基の量 mol	
・の分解により消費される塩基 mol	 ・スクラビング水中で酸化分解により消費される塩基性物質量:約
【事象発生60日後での塩基の消費量 (mol)】	【60 日後(1440 時間)の塩基の消費量(約 mol])内訳】
・ケーブルの放射線分解の塩化水素で消費される塩基の量 mol	・放射線分解による酸性物質生成量:約 [mol]
 ケーブルの熱分解の塩化水素で消費される塩基の量 	・熱分解による酸性物質生成量:約 [mol]
 · S / P*水から発生する硝酸で消費される塩基の量 	
 MCCIで発生する二酸化炭素で消費される塩基の量 	
・無機よう素の捕集により消費される塩基の量 mol	
の分解により消費される塩基 mol	 ・スクラビング水中で酸化分解により消費される塩基性物質量:約
※ <u>S/P:サプレッション・プール</u>	
	3. 水位変動によるスクラビング水の希釈について
	待機時のスクラビング水の通常水位における水量は約 である。スクラ
	大水量は約 であるため、ベントガスの凝縮により、スクラビング水の薬液濃
	倍に希釈される。

	備考
前に格納容器内 等の除去効果を 目への溶解も考 移行したとする [mol], 60 日後	
mol	 ・評価方針の相違 ①の相違
nol	 ・評価方針の相違 ①の相違
ラビング水の最 濃度は	・記載方針の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(3) スクラビング水のpH評価結果	4スクラビング水のpH影響評価
フィルタ装置は無機とき素(L)を捕集及び促時するためであるため、2ヶ日でとき素が土	スクラビング水のpH影響評価
クォルク 蒸風 は 無機よ フ ※ (12) を 捕 乗及 い 保持 す る も の て め る た め, 2 ゲ 方 て よ フ ※ ハー	→2/2/14台(は無機よ)系(12)を捕集及び保持するものであるため、222
分減衰することを考慮し,スクラビング水には保守的に設定した60日後の塩基の消費量	十分減衰することを考慮し、スクラビング水には保守的に設定した 60 日後(
(mol)を考慮する。	の塩基の消費量(約) [mo1])を考慮する。
進費される <u>noioua基に相当する</u> 空は 空は となることから、これに余裕を考慮して、スクラ ビング水の 選度は、待機時最低水位 時に wt%とする。 この場合、初期のp.日は 20日後のスクラビング水のp.日は であり、スクラビ ング水はアルカリ性の状態を維持できる。	スクラバ容器においては、上記にさらに余裕をみて水酸化ナトリウム濃度あ 〕 において約 〕 において約 通常木位における 濃度が 」のとき、酸性物質の し、日つベントガスによるスクラビング水の希釈も考慮した場合のスクラビン 濃度は… 上記でルカリ性を維持できる。… なお、放射性物質により 水溶液が放射線分解してもpH 化しない。(参考図書3) 事故後のスクラビング水のpH挙動評価を図2に示す。

	備考
2カ月でよう素 <u>は</u> 後(1440 時間後)	
度を通常水位(約	
重の移行量を考慮 ビング水の	
p.Hはほとんど変	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2 号炉
<u>なお、電気ケーブルに含まれる酸</u> 性物質の総量(<u> に移行した場合であっても60日後の塩基の消費量は</u> <u> であり、待機時にスクラビング水に含まれる</u> の量は十分である。この場合、 スクラビング水のp日は ことなる。	図2 事故後スクラビング水のpH挙動評価 ここで、スクラビング水のpH挙動への影響が小さいとして上記で考慮して 質について以下のとおり検討した。 格納容器内のケーブルに含まれる全ての酸性物質を想定した場合、追加され 発生量は、約 [mol]となる。

	備考
こていない酸性物	・評価方針の相違 島根2号炉は、スクラビング 水のpH挙動への影響が小さ い残りのケーブル量等を更に 考慮しても常設の薬液タンク により、アルカリ性を維持で きる設計としている
<u>とセシウム等の塩</u> <u> 着料等の有機物が</u> <u> す弱酸であり水中</u> 考えられる。 ることで, ベント	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(4) 薬液の劣化・濃度均一性	5薬液の劣化・濃度均一性
フィルタ装置スクラビング水に添加するの水系の相平衡については、「Cmelins Handbuch	スクラビング水に添加するの水系の相平衡については, 『Gmelins
der anorganischer Chemie, Natrium,8 Auflage, Verlag Chemlie, Berlin 1928」より,第1図	anorganischer Chemie, Natrium, 8 Auflage, Verlag Chemie, Berlin 1928』より,
のとおり示されている。第1図より、フィルタ装置スクラビング水の添加濃度である	されている。図1より,スクラビング水の添加濃度である [wt%]では,
では,水温が0℃以上であれば相変化は起こらない(つまり析出することはない)ことがわかる。	上であれば相変化は起こらない(つまり析出することはない)ことがわかる。スク
フィルタ装置は格納容器圧力逃がし装置格納槽の地下埋設部に設置することとしており,スクラ	1ベントフィルタ格納槽内に設置しており、スクラビング水は0℃以上となる。」
ビング水は0℃以上となる。よって、フィルタ装置待機中に が析出することはない。	器フィルタベント系の待機中にが析出することはない。
また, は非常に安定な化学種であり,フィルタ装置待機中,フィルタ装置は圧力開放板に	また, は非常に安定な化学種であり,格納容器フィルタベント系の待機
より外界と隔離され,窒素雰囲気に置かれることから,フィルタ装置待機中において,薬液が変質	器内部は圧力開放板より外界と隔離され,窒素雰囲気に置かれることから,格納客
することはない。	ント系待機中において、薬液が変質することはない。
また、フィルタ装置を使用すると、ベンチュリノズルから噴射されるベントガスによりバブリ	また,フ <u>ィルタ</u> 装置を使用すると,ベンチュリノズルから噴射されるベント
ングされ、 しは均一に拡散されると考えられる。	リングされ, は均一に拡散されると考えられる。
	図3 の水系相平衡図
第1図 の水系相平衡図	

	冶 李
	加方
ns Handbuch der	
),図1の通り示	
t, 水温が 0℃以	
くクラバ容器は第	
よって,格納容	
幾中, スクラバ容	
内容器フィルタベ	
、ガスに上りバブ	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(5) スクラビング水の管理について	6. スクラビング水の管理について	
(3)に記載したとおり、スクラビング水は待機時に十分な薬剤の量を確保しておくことで、	4. に記載したとおり,スクラビング水は待機時に十分な薬剤の量を確保しておくことで,	
ベントを実施した際に格納容器から酸が移行した場合においても、スクラビング水はpH7以	ベントを実施した際に格納容器から酸が移行した場合においても、スクラビング水は p H 7 以	
上を維持できる。以上を踏まえ、スクラビング水の管理について以下に示す。なお、系統待機	上を維持できる。以上を踏まえ、スクラビング水の管理について以下に示す。なお、系統待機	
時の管理については、原子炉施設保安規定に規定する。	時の管理については,原子炉施設保安規定に規定する。	
a. 系統待機時の管理	a. 系統待機時の管理	
 ・施設定期検査時に の濃度が であること及び p Hが13以上 	 ・施設定期検査時に の濃度が であること及び 	
であることを確認する。	であることを確認する。	
・スクラビング水が通常水位の範囲内であることを確認する。	・スクラビング水が通常水位の範囲内であることを確認する。	
b. ベント中の管理	b. ベント中の管理	
・スクラビング水の水位を監視し、水位低に至る場合においては、水を補給する。	・スクラビング水の水位を監視し、水位低に至る場合においては、水を補給する。	
	 ・スクラビング水の水位を監視し、水位高に至る場合においては、スクラビング水をサプ 	・運用の相違
	レッション・チェンバへ移送した後,薬剤の補給を行う。	島根2号炉は、待機時に十分
c. ベント停止後(隔離弁閉止後)	c. ベント停止後(隔離弁閉止後)	な量の薬剤を保有しており、
 ・ベント停止後において、フィルタ装置に異常がないことを確認するため、フィルタ装置 	 ・ベント停止後において、スクラバ容器に異常がないことを確認するため、スクラバ容器 	格納容器ベント後においても
<u>水位計</u> にて,スクラビング水の水位が確保されていること(フィルタ装置のスクラビン	<u>水位計</u> にて,スクラビング水の水位が確保されていること(スクラバ容器のスクラビン	アルカリ性を維持可能である
グ水の移送後を除く)を確認する。	グ水の移送後を除く)を確認する。	が、スクラビング水の排水に
		合せて, 薬剤の補給を行う
〈参考図書〉	〈参考図書〉	
1. NUREG/CR-5950 "Iodine Evolution and pH Control", Dec.1992	1. NUREG/CR-5950 "Iodine Evolution and pH Control", Dec.1992	
2. NUREG/CR-5564 "Core-Concrete Interactions Using Molten U02 With	2. NUREG/CR-5564 "Core-Concrete Interactions Using Molten U02 With	
Zirconium on A Basaltic Basement", Apr.1992	Zirconium on A Basaltic Basement", Apr.1992	
	3. 堂前 雅史等 フィルタベントスクラバ水への放射線照射効果, 2016年3月(日本原子力学会	
	2016年春の大会)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(参考) <u>東海第二発電所</u> 格納容器内ケーブル量調査	(参考) 島根原子力発電所2号炉 格納容器内ケーブル量調査	
p H低下に寄与する支配的な物質とされるケーブルに含有される塩化水素量を評価するため,	p H低下に寄与する支配的な物質とされるケーブルに含有される塩化水素量を評価するた	
格納容器内のケーブル量を建設記録及び工事記録により調査を行った。	め、格納容器内のケーブル量を建設記録および工事記録により調査を行った。	
格納容器内のケーブル量調査フロー	〔 格納容器内のケーブル量調査フロー 〕	
①建設記録よりケーブル量を調査・集計	①建設記録よりケーブル量を調査・集計	
(線種,サイズごとに本数と長さを集計)	(線種,サイズ毎に本数と長さを集計)	
↓ ②工事記録におけるケーブル取替,敷設実績を調査・反映	↓ ②工事記録におけるケーブル取替,敷設実績を調査・反映	
◆ ③格納容器ペデスタル内に限定したケーブル量の調査・集計	◆ ③格納容器ペデスタル内に限定したケーブル量の調査・集計	
(ペデスタル内に接続されるケーブルの全長を保守的に集計)	(ペデスタル内に接続されるケーブルの全長を保守的に集計)	
↓ ④ケーブル被覆材ごとに表面積,塩化水素含有量を算出	↓ ④ケーブル被覆材毎に表面積,塩化水素含有量を算出	
(今後の設備更新等を想定し,保守的に算出)	(今後の設備更新等を想定し、保守的に算出)	
以上により集計した格納容器内のケーブル量調査結果を第1表に示す。	以上により集計した格納容器内のケーブル量調査結果を表1に示す。	
	表1 格納容器内のケーブル量調査結果	
	(次頁に続く)	

		東海第二発電所 (2018.9.	. 18 版)		島根原子力発電所 2号炉	備考
		第1表 格納容器内のケーブル	量調査結果			
	用 途	ケーブル仕様	シース表面積	酸の量	(前頁の続き)	
┢			(m ²)	(mol)		

	東海第二発電所 (2018.	9.18版)		島根原子力発電所	2 号炉
用途	ケーブル仕様	シース表面積 (m ²)	酸の量 (mol)		

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<u>別紙 42</u> 計装設備が計測不能になった場合の推定方法,監視場所について (1) 計装設備の個数の考え方について <u>格納容器圧力逃がし装置</u> の計装設備は,系統運転時において計装設備の機能喪失が <u>格納容</u> <u>器圧力逃がし装置</u> の機能維持のための監視及び放射性物質の除去性能の監視に直接係るパ ラメータについては,計器を多重化する設計としている。 多重化対象の監視パラメータは以下のとおりである。 ・フィルタ装置水位 ・フィルタ装置出口放射線モニタ(高レンジ)	別紙 29 計装設備が計測不能になった場合の推定方法,監視場所について (1) 計装設備の個数の考え方について <u>格納容器フィルタベント系</u> の計装設備は,系統運転時において計装設備の機能喪失が <u>格納</u> <u>容器フィルタベント系</u> の機能維持のための監視及び放射性物質の除去性能の監視に直接係 るパラメータについては,計器を多重化する設計としている。 多重化対象の監視パラメータは以下のとおりである。 ・ <u>スクラバ容器水位</u> ・ <u>スクラバ容器正力</u> ・ <u>スクラバ容器温度</u> ・ <u>第1ベントフィルタ出口放射線モニタ</u> (高レンジ)	 ・設備の相違 島根2号炉は,多重化している
 (2) 計測不能となった場合の推定方法について <u>格納容器圧力逃がし装置</u>の計装設備は、計器の放障等により計測ができない場合において も代替パラメータによる推定方法を第1表に、計装設備概略構成図を第1図に示す。 (3) 計装設備の監視場所の考え方について <u>格納容器圧力逃がし装置</u>の計装設備は、中央制御室において集中監視を行う設計としてい る。また、中央制御室の運転員を介さず、事故状態を把握できるよう緊急時対策所において も監視可能とする。なお、フィルク装置水位と<u>フィルク装置圧力</u>は、スクラビング水の補給・ 移送操作<u>及び窒素置換操作</u>時に現場でも確認できるように、現場計器も設置する<u>計画であ</u> <u>る。</u> 	 (2) 計測不能となった場合の推定方法について <u>格納容器フィルタベント系</u>の計装設備は、計器の故障等により計測ができない場合においても代替パラメータによる推定が可能である。各主要パラメータに対する代替パラメータ及び代替パラメータによる推定方法を表1に、計装設備概略構成図を図1に示す。 (3) 計装設備の監視場所の考え方について <u>格納容器フィルタベント系</u>の計装設備は、中央制御室において集中監視を行う設計としている。また、中央制御室の運転員を介さず、事故状態を把握できるよう緊急時対策所においても監視可能とする。なお、<u>スクラバ容器</u>水位は、スクラビング水の補給・移送操作時に現場でも確認できるように、現場計器も設置する。 	 ・設備の相違 島根2号炉は、スクラバ容器 水位について、現場計器も設 置している
送		

R		
定		
推		
N		
Ц		
N		
X		
1		
$\tilde{\mathbf{x}}$		
IN		
×		
莕		
Ł		
6		
鮰		
峩		
43		
逃		
R		
H		
船		
欲		
裧		
卷		
表		

			東海	海第二発電	電所	(2018.9.	18版)							島根原	子力発	電所 2号	炉		備考
代替パラメークによる推定方法	①フィルク装置水位の1チャンネルが故障した 場合は、他チャンネルのフィルク装置水位により計測する。	_ ^{※4} ①容器内は飽和状態であるため、スクラビング	水温度からフィルク装置圧力を推定する。 _ ^{業4}	①常用側検出素子が故障した場合は、予備側検 出素子により計測する。 ②容器内は飽和状態であるため、フィルタ装置 圧力からスクラビング水温度を推定する。	- # 4	①フィルク装置出口放射線モニタの1 チャンネ しが故障した場合は、他チャンネルのフィルタ 装置出口放射線モニタにより計測する。	③フィルタ装置出口の放射能は系統外に放出されるため、モニタリング・ポスト又は可搬型 れるため、モニタリング・ポスト又は可搬型 モニタリング・ポストの指示値から放射線量 率を推定する。	①フィルク装置入口水素濃度の1チャンネルが 故障した場合は、他チャンネルのフィルタ装置入口水素濃度により計測する。	+ # T	高レンジ)のみ他チャンネルにより計測する。 ス雄 岩 古 注	代替パラメータによる推定方法	①スクラバ容器水位の1チャンネルが故障した場合は、他チャンネルのスクラバ容器水位により測定する。	①スクラバ容器圧力の1チャンネルが故障した場合は、他チャンネルのスクラバ容器圧力により測定する。 ャンネルのスクラバ容器圧力により測定する。 ②ドライウェル圧力(SA)又はサブレッション・チェンバ 圧力(SA)の傾面に見により格納容器圧力逃がし装置の 触全性を推定する。	①スクラバ容器温度の1チャンネルが故障した場合は、他チャンネルのスクラバ容器温度により推定する。	** 	①第1ペントフィルタ装置出口水素濃度が松降した場合は、 予備の第1ペントフィルタ出口水素濃度により推定する。 ②原子炉格納容器内の水素ガスが格納容器フィルタペント 系の配管内を通過することから、格納容器水素濃度及び格 納容器水素濃度(SA)により推定する。	①第1ベントフィルタ出口放射線モニタの1チャンネルが故障 した場合は、他チャンネルの第1ベントフィルタ出口放射線 モニタにより測定する。 2第1ベントフィルタ出口の放射能は系統外に放出されるた め、モニタリング・ポストレは可搬式モニタリング・ポストから放射線線量率を推定する。	** 	 ・設備の相違 設備設計の相違による構 相違
代替パラメーク	①フィルク装置水位	-	ラビング水温度 - ^{※ 4}	 ①フィルタ装置スク ラビング水温度(予 備側検出素子使用) ③フィルタ装置圧力 	ж]	 ① フィルタ装置出口 ① か射線モニタ^{※2} 	③モニタリング・ボス ト又は可搬型モニ タリング・ポスト	 ①フィルタ装置入口 水素濃度 	т Ж 	ノク装置出口放射線モニタ(体裁パラスータにトン	代替バラメータ		バラバ客器圧力 ライウェル圧力(SA) プレッション・チェンバ圧力 SA)	 「 」 」		 ベントフィルク装置出口水素 (1) <l< td=""><td> ベントフィルタ出口放射線 ・ベントフィルタ出口放射線 ・タリング・ポスト </td><td>-# </td><td></td></l<>	 ベントフィルタ出口放射線 ・ベントフィルタ出口放射線 ・タリング・ポスト 	-# 	
監視目的	フィルタ装置性能維持のための水位監視	系統運転中に格納容	器雰囲気ガスがフィ ルタ装置に導かれて いることの確認	フィルタ装置の温度 監視	系統待機時の窒素封 入による不活性状態 の離認	系統運転中に放出さ	れる放射性物質濃度 の確認	事故収束時の系統内 の水素濃度の確認	フィルタ装置性能維 持のための <u></u> 出 監視	る。 ※2:フィル こよる推定は除く。	視目的	器性能維持のた 現	 ご格納容器内券 ご格納容器内券 (0.7.7. フィルク装置へ サ ウ (1.9. 	器の温度監視 ①スク	の窒素封入によ 態の確認	の系統内の水素 (1) の系統内の水素 (2) 格納 格納	 ①第1 ①第1 ①第1 でたいたいろん でたいたい でたい (1) (1	器性能維持のた 見	K とにより計測する。 5推定は除く。
計測範囲	80~5, 500mm		l.OMPa[gage]	0~300°C	100kPa[gage_	²~10⁵Sv∕h	³ ~10 ⁴ mSv/h	0~100vo1%	pH0~14	メント) してい 香バラメーク(な幼穴 男し	288 	スクラバ容	系統運転中 (e) 囲気ガスが 導かれてい	スクラバ容	[ge] 系統待機時 る不活性状	 / 事故収束時 	 加 系統運転中 外性物質濃 小 	スクラバ谷 めの p H 腔	ち。 し、 し、 し、 し、 し、 し、 し、 し、 し、 し、
視場所	制御室, 時対策所 1	現場 制御室,	時対策所 現場	制御室, 時対策所	制御室, 時対策所 0~	制御室, 時対策所 10	制御室, 時対策所 10 ⁻	制御室, 時対策所	制御室, 時対策所	(ダブルコレ 希設備のため付 地 1 本	上		. 0∼1MPa[ga£	0~300°C	0~100kPa[ga	0~20vo1%	南レンジ: 10 ⁻² ~10 ⁵ Sv: 低レンジ: 10 ⁻³ ~10 ⁴ mSv	. pH 0∼14	● ○ ● ○ 章 全家 小家 小家 小家 小家 小家 小家 小家 小家 小家 御師 ● ○ かい う り う う う う う う う う う う う う う う ひ う ひ う
個数	2 聚急	1 ^{*3} 中央	- 緊急 1 ^{*3}	1 ^{※1} 中央 緊急	1 授予 初 行	2 聚日 税	1 平 中 中 小 一 梁 ()	2 緊急	1 短令 行 一一一一一一一	※子は2重化 ※4:自主対 3 (4) 3 (4) 3 (4) 3 3 4 3 5 4 3 5 4 3 5 3 5 4 3 5 5 5 5 5	監視場所	中央制御室 緊急時対策所 現場	中央制御室緊急時対策所	中央制御室緊急時対策所	中央制御室 緊急時対策所	中央制御室 緊急時対策所	- 中央制御室 緊急時対策所	中央制御室 緊急時対策所	マック数字は図1(インク出口放射) ※4:自主/
主要パラメータ	①フィルク装置水位		②フィルタ装置圧力	③フィルタ装置スク ラビング水温度	 ④フィルタ装置排気 ライン圧力 *3 		放射線モータ(高 マンジ・低マンジ)	 ⑥フィルク装置入口 水素濃度 	①フィルタ装置スク ラビング木 ₃ H ^{*3}	※1:温度検出器の検出 ※3:自主対策設備 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	監視バラメータ 個数	 ①スクラバ容器 水位 	 ③スクラバ容器 4 圧力 	 ③スクラバ容器 4 温度 	④フィルタ装置出口配管圧力**3	 ③第1ベントフ イルタ装置出 イルタ装置出 「予備1) 	() 第1ベントフ イルタ出口放 射線モニタ 2	①スクラバ水 p 2 H ^{#3}	※ ※ ※ - 監告:: 2 ※ ※ - 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2

備考
・設備の相違
・ 政 個 り 和 遅
設備設計の相違による構成の
相逞

	東海第二発	電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
		別紙 43	別紙 20	
	ステンレス構造材,膅	彭張黒鉛パッキンの妥当性について	ステンレス構造材,膨張黒鉛パッキンの妥当性について	
<u>フィルタ装置</u> ビング水の通常 保持すること(注 いる。	や入口配管等のスクラビ、 犬態での性状(高アルカリ 汚染水の貯蔵)を考慮して	ング水の接液部については, 内部に保有しているスクラ リ性)と重大事故等時に放出される放射性物質を捕集・ て, 耐食性に優れたステンレス鋼を材料として選定して	スクラビング水接液部に使用するパッキン類には、使用環境(温度,圧力,放射線量,高 アルカリ環境)を考慮して膨張黒鉛を選定することとしている。 また,スクラバ容器や入口配管等のスクラビング水の接液部については、容器内部に保有 しているスクラビング水の通常状態の性状(高アルカリ性)及び重大事故時に放出される放 射性物質の捕集・保持(汚染水の貯蔵)を考慮して、耐食性に優れたステンレス鋼を材料と して選定している。	・資料構成の相違
第1表にスク	ラビング水接液部の材質し	こついて記載する。	材料選定にあたって考慮した事項について、以下にまとめた。	
			(1) <u>ステンレス等構造材の選定根拠について</u> フィルタ装置や入口配管等のスクラビング水の接液部については、図1に示すように、内 部に保有しているスクラビング水の通常状態の性状(高アルカリ性)及び重大事故時に放出 される放射性物質の捕集・保持(汚染水の貯蔵)を考慮して、耐食性に優れたステンレス鋼	・資料構成の相違
	第1表 ス	クラビング水接液部の材質		
		材質		
	容器	SUS316L		
バウンダリ	入口配管接液部 接続配管	SUS316LTP SUS316LTP		
		(計表配管,ドレン配管, 給水配管)SUS316I		
内部構造物	ジル(次)、又内部内守 ベンチュリノズル			
	金属フィルタ	ドレン配管:SUS316LTP		
乙一川山	よう素除去部	枠材:SUS316L		
ての他	ガスケット類	膨張黒鉛系シール材		
スクラビング 局部腐食(孔食,	水は p Hの強アルス すきま腐食)及び応力履	カリ性であることから,各材料については,全面腐食, 腐食割れが想定されるため,これらについて検討する。	図1 フィルタ装置 (スクラバ容器) 構造図 スクラビング水はpH の強アルカリ性であることから,各材料について,全面腐食, 局部腐食 (孔食,すきま腐食) 及び応力腐食割れが想定されるため,これらについて検討する。	・資料構成の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(1) ステンレス鋼の腐食評価 a. 全面腐食 公面腐食は、金属表面の全面にわたってほぼ同一の速度で侵食が進む腐食形態である. SUS304 は第1回に示すとおりpH2以上で不動態化するため、強アルカリ腐壊では、全面 腐全に対する面性がある(塗素図書1) 系統待機時はpH □ で水質が維持されることから、不動態化が保てることとなる。 同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向 を示すことから、全面腐食の発生は考え難い。 単通確(Pe) 10 月*(R)で 304 次ランレス鋼 304 ズランレス鋼 9-10 pH (Pe) 304 ズランレス鋼 0.(R業剤)で 不動態 2 第1回 大気中酸素に接する水中環境におけるSUS304の腐食形態とpHの関係	 (2) ステンレス鋼の庫食評価 4. 全面腐食は、金属表面の全面にわたってほとんど同一の速度で浸食が進む腐食形態である。オーステナイト系ステンレス鋼は、図2に示すように、pH2以上では不動態化するため、実機のようなアルカリ環境を維持している環境においては全面腐食に対して十分な拡<u>ただかある。</u> 菜様待機時はpH □ で水質が維持されることから、不動態化が保てることとなる。同じオーステナイト系ステンレス鋼であるSUS316L 等の適用材料についても同様の傾向を示すことから、全面腐食の発生は考え難い。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
b. 孔食 孔食は、ステンレス鋼のように表面に生成する不動態化膜によって耐食性が保たれている 金属において、塩化物イオン等の影響で不動態化膜の一部が破壊され、その部分において局 部的に腐食が進行する腐食形態である。	b. 孔食 孔食は、ステンレス鋼のように表面に生成する不動態化膜によって耐食性が保たれてい る金属において、塩化物イオン等の影響で不動態皮膜の一部が破壊され、その部分におい て局部的に腐食が進行する腐食形態である。	
第2図にSUS304の塩化物イオン濃度と温度が腐食形態に及ぼす影響を示す(参考図書2)。 れ食発生の領域はpH7と比べpH12のほうが狭く、アルカリ環境に <u>なるほど</u> れ食発生のリ スクは低減 <u>する。</u> 同じオーステナイト系ステンレス鋼であるSUS316L等 <u>の適用材料についても</u> 同様の傾向 <u>を示すものと評価する。</u> なお、系統待機時はpH であり、塩化物イオンの濃度も十分低いと考えられるの で、孔食は発生しないものと考えられる。	孔食の過程としては pHの低下によって生じる脱不動態化現象を想定しており、孔食発生の領域は図3に示すように、SUS304では pH7と比べ pH12のほうが狭く、アルカリ環境においては孔食発生のリスクは低減される。同じオーステナイト系ステンレス鋼であるSUS316L等においても同様の傾向となり、実機のような高アルカリを維持している環境では孔食が起こる可能性は低い。 なお、系統待機時は pH であり、塩化物イオンの濃度も十分低いと考えられるので、孔食は発生しないものと考えられる。 <u>また、無機よう素については、フィルタ装置(スクラバ容器)に移行するものの、その大部分についてはスクラビング水中に捕集されることから、気相部における無機よう素の濃度は非常に低く、ベントガスに0,はほとんど含まれないことから、腐食が起こる可能性は低いと考えられる。</u>	・資料構成の相違
$\frac{1}{9} + \frac{1}{9} + $	y = 0 y = 0	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
c. すきま腐食	c. すきま腐食	
<u>すきま腐食は</u> ,ステンレス鋼表面の異物付着,構造上のすきま部分において進行する腐食	ステンレス鋼表面上の異物付着,構造上のすきま部分において進行する腐食形態であり,	
形態であり,その成長過程は孔食と類似している。第3図に SUS304と SUS316の中性環境に	その成長過程は孔食と類似している。第4図に SUS304 と SUS316の中性環境におけるすき	
おけるすきま腐食発生に対する塩化物イオン濃度と温度の影響を示す(参考図書3)。	ま腐食発生に対する塩化物イオン濃度と温度の影響を示す(参考図書3)。	
SUS304 及び SUS316 のいずれも塩化物イオン濃度が低い中性環境では、すきま腐食の発生	すきま腐食のすきま部の腐食環境は、孔食の食孔内部の環境に類似しているおり, pH の	
の可能性は低い。前述のとおりアルカリ環境では中性環境より孔食の発生リスクが低いこと	低下によって生じる脱不動態化現象のために局部的に腐食が進展するが、アルカリ環境で	
から、同様な成長過程のすきま腐食についても発生の可能性が低減されるものと考えられ	は中性環境に比べて孔食の発生リスクが低減されることが前述の図3に示されており,実	
<u>Z</u>	機のような高アルカリを維持している環境ではすきま腐食が起こる可能性は低い。	
同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向 を示すものと評価する。	同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向 を示すものと評価する。	
Chloride ion concentration	Chloride ion concentration	
第3図 SUS304 と SUS316 の中性環境におけるすきま腐食に対する 塩化物イオン濃度と温度の影響	図4 SUS304と SUS316の中性環境におけるすきま腐食に対する 塩化物イオン濃度と温度の影響	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
d. 応力腐食割れ	d. 応力腐食割れ_(<u>SCC</u>)
応力腐食割れ(以下, SCCという)は、腐食性の環境におかれた金属材料に引張応力が作	腐食性環境におかれた金属材料に引張応力が作用して生ずる割れであり、
用して生ずる割れであり,材料,応力,環境の三要因が重畳した場合に発生する。以下にア	環境の3要因が重畳した場合に発生する現象である。
ルカリ環境及び 環境における SCC 発生に関する評価結果を示す。	
・アルカリ環境におけるSCC	
第4図に SUS304, SUS316の 濃度に対する SCC 発生限界を示す(参	環境でのステンレス鋼の耐食性の検討は、一般産業の
考図書 4)。フィルタ装置の使用環境は,	実績があり、その一例を図5に示す。 スクラビング水に添加する
なる。また、ベント時でスクラビング水が最低水位となった場合の	であるため, SUS304 及び SUS316 に SCC が発生するとしている領域
となる。いずれの場合においても SCC の	れており、SCC が発生する可能性は低い。
発生領域から外れており問題のないことがわかる。	
使用する材料である SUS316L や等については, 耐 SCC 性に優れた材料であ	
ることから、さらに信頼性が高いものと評価する。	
第4因 303304, 303310 07 谷攸中切附良性	
	図 5 SUS316 の の耐食性(参考図書4)

	備考
材料,応力,	
の分野で豊富な	
或から大きく外	
-	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
・ 環境下における SCC 第5回に 水溶液中の SUS304 の低ひずみ速度試験(SSRT)の結果を示	また,図6ににおける SUS304の低ひずみ遠
す_(参考図書 5)。この試験は室温(23°C)において、 の水溶液中で行った試験であり、鋭敏化していない試験片については、SCC の発生が認められなかったことを示している。実機の 濃度も同等であり、SUS316L や ●	結果を示す。本試験における である。この試験で観察された SCC に 食剤れ(IGSCC)であり、鋭敏化していない試験片では IGSCC の発生は認め この IGSCC は鋭敏化による耐食性の低下が原因となって生ずるもので、鋭無 い材料の採用によって防止可能である。 実機においては、低炭素ステンレス鋼である SUS316L 等のような鋭敏化し 用していることから、で IGSCC が生じる可能
第5図 水溶液中における 304 ステンレス鋼の SSRT 結果	図 6における 304 ステンレス鋼の SSRT (参考図書 5)

	備考
東度試験(SSRT)	
は粒界型応力腐られていない。	
敗化を起こし難	
_難い材料を使	
結果	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2 号炉
(2) ベンチュリノズルの耐エロージョン性	(3) ベンチュリノズルの耐エロージョン性
a. JAVA PLUS 試験時に使用したベンチュリノズルの確認	a. JAVA PLUS 試験時に使用したベンチュリノズルの確認
	ベントガスによる影響の有無を確認した。
第6図に示すとおり,	
第6図 ベンチュリノズル内面観 察部位	図7 ベンチュリノズル内面観 察部位

<u>ا</u>
備考

島根原子力発電所 2号炉

東海第二発電所 (2018.9.18版)

第7図及び第8図に

液滴衝撃エロージョンは蒸気とともに加速されるなどして高速となった液滴が,配管等の 壁面に衝突したときに,局部的に大きな衝撃力を発生させ,それにより配管等の表面の酸化 膜や母材が侵食される現象である。液滴衝撃エロージョンは非常に進展の速い減肉の一種で あることから,発生ポテンシャルがあれば,第7図及び第8図に示す_______も のと考えられる。

したがって、ベンチュリノズルは液滴衝撃エロージョンを含むベント時の環境に対して十分 な耐性がある<u>と考える。</u> ベンチュリノズル内面観察部位及び結果を図7,表1に示す。

液滴衝撃エロージョンは蒸気とともに加速されるなどして高速となった液滴が,配管等の 壁面に衝突したときに,局部的に大きな衝撃力を発生させ,それにより配管等の表面の酸化 膜や母材が侵食される現象である。液滴衝撃エロージョンは非常に進展の速い減肉の一種で あることから,発生ポテンシャルがあれば,表1に示す ものと考えられる。

したがって、ベンチュリノズルは液滴衝撃エロージョンを含む実際のベント環境に対して 十分な耐性がある。

東海第二発電所 (2018.9.18版)		島根原子力発電	所 2号炉	備考
	表1 ベンチュリノズル内面観察結果			
	部	未伸田品	使用後	
	117	术仪用曲		
	(2)			
	3			
	(4)			
	(5)			
第7図 ベンナュリノスル内面 SEM 観察結果(1/2)				

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
第8図 ベンチュリノズル内面 SEM 観察結果(2/2)		

備考
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
 b. ベントガス流速におけるエロージョン発生の評価 (a)評価部位 ベンチュリノズルのように高速で流体が流れる部位の減肉モードとしては,流れ加速 型腐食及び液滴衝撃エロージョンが対象となるが, 	b. ベントガス流速におけるエロージョン発生の評価 (a)評価部位 ベンチュリノズルのように高速で流体が流れる部位の減肉モードとし 型腐食及び液滴衝撃エロージョンが対象となるが,
液滴衝撃エロージョンは,高速の液滴が壁面に衝突し,発生する衝撃力によって壁面 が局所的に減肉する現象であり,ある一定の衝突速度以上の場合において,液滴の衝撃 速度が速いほど,また,衝突角度が90度に近いほど減肉が発生しやすい。 第9図に示すように,ベンチュリノズルは	液滴衝撃エロージョンは,高速の液滴が壁面に衝突し,発生する衝撃力 が局所的に減肉する現象であり,ある一定の衝突速度以上の場合において 速度が速いほど,また,衝突角度が90度に近いほど減肉が発生しやすい。 図8に示すように,ベンチュリノズルは,
(b) 液滴の衝空速度	液滴衝撃エロージョンの発生は考え難い。 (b) 液滴の衝空速度
液滴の衝突速度は, 液滴が衝突する速度を(1)式を用いて算出した。計算に 用いるベンチュリノズル部におけるガス流速は,流速が速いほど液滴衝撃エロージョン が発生しやすいことから, <u>東海第二発電所</u> の運転範囲における最大値である とした。	液滴の衝突速度は, 液滴が衝突する速度を以下の式を用い 計算に用いるベンチュリノズル部におけるガス流速は,流速が速いほど ジョンが発生しやすいことから, <u>島根原子力発電所2号炉</u> の運転範囲にま あるとした。

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
東海第二発電所 (2018.9.18 版) 計算の結果。 」となる。 (c)評価結果 」 」となる。 配管減肉管理に関する規格 (2005年度版) (増訂版) ISME S CA1-2005」によるステンレス鋼のエロージョンは果実流速である70m/xを下回っていることから、東海第二発電所のペント時の運転範囲において、液滴衝撃エロージョンは発生しないものと考えられる。	は、 は、 は、 は、 は、 は、 は、 は、 は、 は、

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
第9因 インチュリノスル内のカスの加鉛について	図る「ハンチュリノスル内のカスの流路について	
(3) 膨張黒鉛パッキンの評価 格納容器圧力逃がし装置に使用する弁等には、耐漏えい性確保のため、使用環境(温度、圧 力、放射線量、高アルカリ環境)を考慮して膨張黒鉛系のパッキン、ガスケットを使用する。 膨張黒鉛は、天然黒鉛の優れた耐熱性や耐薬品性を維持しつつ、シート状に形成することで 柔軟性、弾性を有した材料で、パッキン、ガスケットの材料として幅広く使用されている。パ ッキン類は系統の設計条件である、最高使用圧力2Pd、最高使用温度200℃について満足する仕 様のものを使用する。	 (4) 黒鉛パッキン類の選定根拠について 格納容器フィルタベント系に使用する弁等には、耐漏えい性確保のため、使用環境(温度,	
また,メーカーの試験実績より の照射に対しても機械的性質に変化はみられな いことが確認されており,無機物であることから十分な耐放射線性も有し,アルカリ溶液にも 耐性があり,100%の に対しても適用可能である。 劣化については,黒鉛の特性として,400℃以上の高温で酸素雰囲気下では酸化劣化が進む ため,パッキンが痩せる(黒鉛が減少する)ことでシール機能が低下することが知られている が, <u>格納容器圧力逃がし装置</u> を使用する環境は200℃以下であることから,酸化劣化の懸念は ない。 したがって,膨張黒鉛パッキンは系統待機時,ベント時のいずれの環境においても信頼性が あるものと評価する。	また、メーカーの試験実績より の照射に対しても機械的性質に変化はみられな いことが確認されており、無機物であることから十分な耐放射線性も有し、アルカリ溶液にも 耐性があり、100%の に対しても適用可能である。 劣化については、黒鉛の特性として、400℃以上の高温で酸素雰囲気下では酸化劣化が進む ため、パッキンが痩せる(黒鉛が減少する)ことでシール機能が低下することが知られている が、 <u>格納容器フィルタベント系</u> を使用する環境は200℃以下であることから、酸化劣化の懸念 はない。 したがって、膨張黒鉛パッキンは系統待機時、ベント時のいずれの環境においても信頼性が あるものと評価する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
〈参考図書〉	〈参考図書〉	
1. 腐食・防食ハンドブック,腐食防食協会編,平成12年2月	1. 腐食・防食ハンドブック,腐食防食協会編,平成12年2月	
2. J.E.Truman, "The Influence of chloride content, pH and temperature of test solution	2. J.E.Truman, "The Influence of chloride content, pH and temperature of test solution	
on the occurrence of cracking with austenitic stainless steel", Corrosion Science, 1977	on the occurrence of cracking with austenitic stainless steel", Corrosion Science, 1977	
 3. 宮坂松甫:荏原時報,腐食防食講座-海水ポンプの腐食と対策技術(第5報), No. 224, 2009	3. 宮坂松甫: 荏原時報, 腐食防食講座-海水ポンプの腐食と対策技術(第5報), No. 224, 2009	
年	年	
4. ステンレス鋼便覧 第3版 ステンレス協会編	4. ステンレス鋼便覧 第3版 ステンレス協会編	
5. 電力中央研究所報告、研究報告:280057. "チオ硫酸ナトリウム水溶液中におけるSUS304ス	5. 電力中央研究所報告、研究報告:280057. "チオ硫酸ナトリウム水溶液中におけるSUS304ス	
テンレス鋼のSCC挙動"財団法人電力中央研究所 エネルギー・環境技術研究所 昭和56年10	テンレス鋼のSCC举動"財団法人電力中央研究所 エネルギー・環境技術研究所 昭和56年10	
^ / / / / / / / / / / / / / / / / / /	- ^ * 6 発電用設備規格 配管減肉管理に関すス規格(2005年度版)(増訂版) ISMF S CA1-2005	

別紙4 エアロゾルの粒径分布が除去性能に与える影響について JAVA 試験における試験用エアロゾルの粒径は、JAVA 試験装置からエアロゾルをサンブリング し、 ご電線することにより、粒径分布を測定している、遮断事故解析コード (MAA Pコード)より得られる粒径について、JAVA 試験において得られたエアロゾルの粒径との比較 検証を行い、想定される粒径分布の全域を包絡できていることを確認することで、重大事故等時 に想定される芯アロゾルの粒径分布においても、JAVA 試験と同様の除去性能 (DF1,000 以上) が適用可能であることを確認した。 (1) JAVA 試験における本でロゾルの粒径分布 JAVA 試験における本ではたまたす。 (1) JAVA 試験におけるエアロゾルの粒径分布 JAVA 試験におけるエアロゾルの粒径分布 JAVA 試験における本でも、JAVA 試験と同様の除去性能(DF1,000 以上) が適用可能であることを確認した。 (1) JAVA 試験における本でも、JAVA 試験と同様の除去性能(DF1,000 以上) が適用可能であることを確認した。 (1) JAVA 試験における数値分布の全域を匀称できていることを確認することで、電力で対応を構成です。、JAVA 試験と同様の除去性能(の) jAVA 試験におけるエアロゾルの粒径分布 jAVA 試験におけるたたて、 (1) エアロゾルの粒径分布 jAVA 試験のおいでは、エアロゾルの粒径分布 jAVA 試験のおいでは、エアロゾルの粒径分布 jAVA 試験におけるがなどのなら、それぞれの意識用エアロゾルの質量中央径(以下、JAVA μ m μ m μ m μ m μ m μ m μ m μ m μ m μ m μ m <td< th=""></td<>
これらの試験用エアロゾルの粒径分布は と使用した測定を行っており、ベンチュ リスクラバ上流側より採取したガスを粒径測定用フィルタに通過させ、粒径測定用フィルタ表 面の粒子を エアロゾルの量及び粒径を確認している。 JAVA 試験装置のサンプリングラインを <u>第11図</u> に、サンプルガスの取出し部分の概要を第2 図に示す。 JAVA 試験装置のサンプリングラインを第11図に、サンプルガスの取出し部分の概要を第2

	備考
別紙 48	
いよいプリング	
$T \supseteq - F (MA)$	
の粒径との比較	
,重大事故等時	
F1,000以上)	
、て用いており、	
重のフィルタ装	
観測を用いてエ	
則定誤差は,	
である。	
ンを <u>図2</u> に, サ	・資料構成の相違

別添1-609r10

	7115 Ja
	備考
疑集効果及び沈	
プール水におけ	
平価している。	
では、ある粒径	
径分布形成のイ	
10	
より	
→ 粒径	
7	
aion) 17 FM	
510N) により,	
径の粒子は特に	
に示す。	
an coagulation	
きいことを意味	
こめ, Dp2の違い	
	1

別添1-610

	備考
が小さくなると	
対着することで	
子径が大きいほ	

	ما <u>ر ۱</u> ۲۲۰
	備考
(におけるスク	
、プレイ効果及	
大女び慣性餌	
コゾルの粒径	
は最大値が約1	
大粒径の粒子	
また分布の幅	

別添1-612r10

	備考
る間に <u>図8</u> に示 <u>ちは,重力沈降,</u> される。 <u>サプレ</u> イメージを図8 実験結果の例を	・資料構成の相違
生衝突	
ゾル除去原理	
(参考図書3)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
3) 重大事故等時に想定される粒径分布 重大事故等時に想定される粒径は、上記1)、2)に示したエアロゾルの除去効果により 主にサブミクロン(0.1から1µm程度)になると考えられる。その代表径として、粒径 分布のMMDを0.5µmにもつ粒径分布を重大事故等時に想定される粒径分布とした。	 3) 重大事故等時に想定される粒径分布 重大事故等時に想定される粒径は、上記 1), 2)に示したエアロゾルの除去効果により主 にサブミクロン(0.1から1µm程度)になると考えられる。その代表径として、粒径分 布の MMD を 0.5µmにもつ粒径分布を重大事故等時に想定される粒径分布とした。 	
<u>b. MAAPコードにより得られる粒径分布</u>	(参考1) エアロゾル粒径と除去係数の関係	
	除去係数(以下,「DF」という。)は、フィルタ装置に流入したエアロゾル重量とフィルタ装置から放出したエアロゾル重量の比として、以下の式で表される。また、表1にベント位置の 違いによる粒径分布を示す。	
	$\mathbf{DF} = \frac{\mathbf{M}_{\mathrm{mAllexTruynm}\underline{\mathbb{I}}\underline{\mathbb{I}}}}{\mathbf{DF}} = \frac{\int \mathbf{M}(\phi)_{\mathrm{mAllexTruynm}\underline{\mathbb{I}}\underline{\mathbb{I}}\underline{\mathbb{I}}}}{\mathbf{f}}$	
	$\mathbf{M}_{\mathrm{btll} \mathrm{btrrpinm} \mathrm{bt}}$ $\int \mathbf{M}(\phi)_{\mathrm{btll} \mathrm{btrrpinm} \mathrm{bt}} \mathrm{d}\phi$	
		・資料構成の相違
第1表 想定事故シナリオのエアロゾル粒径分布	表1 想定事故シナリオのエアロゾル粒径分布	
想定事故シナリオ ベント び量中央径 幾何標準 エアロゾル 想定事故シナリオ 時間[b] 位置 (MID)[um] 信差 g g [-] 最[g]		
雰囲気圧力・温度によ W/W 0.32 1	雰囲気圧力・温度によ W/W 0.19 1.8	
る静的負荷(格納容器) 19 過圧・過温破損) D/W 0.36 5,000	る静的負荷(格納容器 32 過圧・過温破損) D/W 0.27 3,500	
ドライウェルベントと比較してウェットウェルベントではエアロゾル量が少なくなる。こ れはウェットウェルベントでは、サプレッション・プール水でのクラビング効果により、エ アロゾルが除去されるためと考えられる。また、ドライウェルベントではウェットウェルベ ントと比較して MMD が大きくなっているが、エアロゾル量が多いことから、エアロゾル同士 の衝突頻度が高くなり、より大きい粒径のエアロゾル粒子が生成されやすくなるためと考え られる。	<u>ドライウェルからのベントを行う場合は、サプレッション・プール水におけるスクラビング</u> 効果による大粒径のエアロゾルの除去が行われないことから、上式のフィルタ装置に流入した エアロゾルの重量が大きくなる。このため、ドライウェルからのベントを行う場合は、サプレ ッション・チェンバからのベントを行う場合と比較して、高いDF が確保される。	

	備考
→	
径	
れらの試験用	
ラビング効果	
比べフィルタ	
る粒径分布の	
を行うことで,	
ヨン・チェン 径のエアロゾ	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
〈参考図書〉	《参考図書》	
1. NEA/CSNI/R(2009)5 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS	1. NEA/CSNI/R(2009)5 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS	
2. California Institute of Technology FUNDAMENTALS OF AIR POLLUTION ENGINEERING	2. California Institute of Technology FUNDAMENTALS OF AIR POLLUTION ENGINEERING	
3. 22nd DOSE/NRC Nuclear Air Cleaning and Treatment Conference Experimental study on	3. 22nd DOE/NRC Nuclear Air Cleaning and Treatment Conference Experimental	
Aerosol removal effect by pool scrubbing, Kaneko et al. (TOSHIBA)	study on Aerosol removal effect by pool scrubbing, Kaneko et al. (TOSHIBA)	
4. A Simplified Model of Aerosol Removal by Containment Sprays (NUREG/CR-5966)		
5. A Simplified Model of Decontamination by BWR Steam Supprssion Pools (NUREG/C		
<u>R-6153 SAND93-2588)</u>		
6. Overview of Main Results Concerning the Behaviour of Fission Products and Structural		
Materials in the Containment (NUCLEAR ENERGY FOR NEW EUROPE 2011)		
	(参考2)粒径分布の妥当性について	・記載方針の相違
	JAVA 試験の試験用エアロゾルと MAAP により想定される粒径分布を,図1のとおり比較するこ	
	とにより,使用した試験用エアロゾルにて MAAP により想定される粒径分布の全域を包絡できて	
	いることを確認している。	
	一方, MAAP により想定される粒径分布は、炉心状態、事故後の経過時間及び原子炉核格納容	
	器内におけるエアロゾル粒子の濃度の違いにより、変化することが考えられるため、その影響	
	について考察した。	
	図1 試験用エアロゾルと MAAP より想定される粒径分布	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(a)炉心状態	
	MAAP 解析においては、エアロゾル量を保守的に評価するため、炉心状態として燃焼サイク	
	ル末期を想定している。	
	炉心状態としてサイクル末期を想定した場合、初装荷炉心と比べ、原子炉格納容器内に放	
	出される核分裂生成物の総量は大きくなり、原子炉格納容器内のエアロゾル粒子の濃度が高	
	くなる。エアロゾル粒子の濃度が高くなると、エアロゾル粒子同士の衝突の頻度が高くなり、	
	より大きい粒径のエアロゾル粒子が生成されやすくなる。その結果として、原子炉格納容器	
	内の粒径分布はより大きい方向にシフトすることになる。	
	ウェットウェルベントの場合、エアロゾルはスクラバ容器に流入する前にサプレッショ	
	ン・プールでスクラビングされ、より粒径の大きい粒子が特に多く除去されるため、初装荷	
	炉心の粒径分布との差異が小さくなることから、炉心状態が粒径分布に与える影響は限定的	
	と考える。	
	(b) 事故後の経過時刻	
	エアロゾルの流入量が多い時間帯はベント直後であることから、粒径分布としてベント直	
	後を想定している。	
	ベント後長期においては、ベント直後と比較して、格納容器内の粒径分布が変化すること	
	が考えられるが、前項に示したとおり、ウェットウェルベントの場合、エアロゾルけスクラ	
	バ容器に流入する前にサプレッション・プールでスクラビングされ、上り粒径の大きい粒子	
	が特に多く除去されるため、スクラビング前の粒径分布の差異が、スクラビング後け上り小	
	さくわることとわる	
	したがって、ベント時間帯の違いが粒径分布に与える影響は限定的と考える。	
	(c) 中・低揮発性核種の放出割合の変更	
	別紙 33(参考4)に示したとおり スクラバ容器に流入するエアロゾル量を評価する際	
	bhl ($ b = b + 1 $) ($ b = b = b = b = b = b = b = b = b = b $	
	MIREG-1465 の知見を利用している。このことけ、原子恒圧力容異から原子恒格納容罢内に流	
	入する中・低揮発性核種のエアロゾル島を上り小かく評価していることに相当している。 そ	
	へりる干・磁準光圧後催のエアロアル重をより少なく計画していることに相当している。 のため、上記の評価手注を取り入れることで、原乙恒枚納容哭肉のエアロゾル濃度け小さく	
	のため、上記の計画手伝を取り入れることで、床上が招利在船内のエノロノル儀伎は小さく 証価され、エアロゾル粒子の粒径公本は小さい古向にシフトオスト考えられるが、前面に子	
	計画され、エノロノル松丁の松住力和は小さい力向にノノトリると考えられるか、前項に小	
	したとわり、リェットリェルシントの場合、エテロノルはヘクノハ谷奋に加入りる前にリノ	
	レッション・ノールでスクラビンクされ、より私住の人さい私士が特に多く味去されるため、	
	スクフビンク前の私住分布の差異か,スクフビンク後はより小さくなることとなる。 	
	したかって、中・ば揮発性核種の放出割合の変更することが粒径分布に与える影響は限定	
	的と考える。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 45	別紙 33	
エアロゾルの密度の変化が慣性衝突効果に与える影響について	エアロゾルの密度の変化が慣性衝突効果に与える影響について	
<u>AREVA 社製</u> のフィルタ装置は、ベンチュリスクラバと金属フィルタを組み合わせてエアロゾル	Framatome 社 (旧 AREVA 社) 製のフィルタ装置は、ベンチュリスクラバと金属フィルタを	
を捕集するが、このうちベンチュリスクラバは、慣性衝突効果を利用してエアロゾルを捕集する	組み合わせてエアロゾルを捕集するが、このうちベンチュリスクラバは、慣性衝突効果を利	
ことから、エアロゾルの密度によって、除去効率への影響が表れることが考えられる。しかし、	用してエアロゾルを捕集することから, エアロゾルの密度によって, 除去効率への影響があ	
重大事故等時に格納容器に発生するエアロゾルの密度の変化に対して、ベンチュリスクラバの除	らわれることが考えられる。しかし、重大事故等時に格納容器に発生するエアロゾルの密度	
去効率の関係式(参考図書1)を用いて除去効率に与える影響を評価した結果,エアロゾルの密	の変化に対して、ベンチュリスクラバの除去効率の関係式(参考図書1)を用いて除去効率	
度の変化に対する除去効率の変化は小さいと評価できること,また,JAVA 試験で複数の種類の	に与える影響を評価した結果,エアロゾルの密度の変化(<u>g/cm³</u> に対する除去	
エアロゾルを用いた試験において除去効率に違いが見られていないことから,AREVA 社製のフィ	効率の変化は小さいと評価できること,また,JAVA 試験で複数の種類のエアロゾル (
ルタ装置は重大事故等時に発生するエアロゾルの密度の変化に対して除去効率への影響は小さ		
いと評価できる。	Framatome 社 (旧 AREVA 社) 製のフィルタ装置は重大事故等時に発生するエアロゾルの密度	
	の変化に対して除去効率への影響は小さいと評価できる。	
(1) ペンチュリスクラバの除去効率	(1) ベンチュリスクフバの除去効率	
a. エアロソル密度と除去効率の関係	a. エアロソル密度と际去効率の関係	
ペンナュリスクラバでは、ペンナュリノスルを通過するペントカスとペンナュリノスル内	ベンナュリスクラバでは、ベンナュリノスルを通過するベントカスとベンナュリノスル	
に吸い込んにスクラビンク水の液滴の速度差を利用し、慣性衝突効果によう(ヘントガスに	内に吸い込んにスクラビンク水の液間の速度差を利用し、慣性衝突効果によってヘントカ	
さまれるエノロジルを捕集する。参考図書1にわいて、ハンテュリスクラハにおける味去効 素は、NTのプロトゥエまされる	人に召まれるエノロソルを捕集する。 参考図書 1 にわいて、 ヘンテュリスクラハにわける 除土効率は、 NITのゴにト - マまされて	
率は、以下の式によって衣される。	味去効率は,以下の式によって 衣される。	
$P_{t} = \exp\left(-\frac{V^{*}}{V}\right) = \exp\left(-\frac{V^{*}Q_{L}}{VQ_{L}}\right) \cdot \cdot \cdot \cdot (1)$	$P = \operatorname{ovn} \begin{pmatrix} V^* \\ V \end{pmatrix} = \operatorname{ovn} \begin{pmatrix} V^* Q_L \end{pmatrix}$	
$(\mathbf{v}_{g}) (\mathbf{v}_{L} \mathbf{v}_{g})$	$I_t = \exp\left(-\frac{V_s}{V_s}\right) = \exp\left(-\frac{V_L}{V_L}Q_s\right)$ (1)	
$V^* = \int_0^{\infty} \eta_d u_d - u_g A_d dt \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2)$		
$\eta_{\rm d} = \frac{K^2}{(K+0.7)^2} = \frac{1}{(1+^{0.7}/_{\rm K})^2} \qquad \cdots \qquad \cdots \qquad (3)$	$V^* = \int_0^T \eta_d u_d - u_g A_d dt \qquad \dots $	
$= 2\tau_n u_d - u_\sigma = 2C\rho_n d_n^2 u_d - u_\sigma $	K^2 1	
$K = \frac{-p_{f} - d_{g}}{d_{d}} = \frac{-p_{f} - p_{f} - d_{g}}{18\mu d_{d}} \qquad \cdot \cdot \cdot \cdot (4)$	$\eta_d = \frac{\pi}{(K+0.7)^2} = \frac{1}{(1+0.7/\kappa)^2}$	
	$\wedge \land \land$	
	$2\tau_p u_d - u_g = 2C\rho_p d_p^{-2} u_d - u_g $	
	$K = \frac{18\mu d_d}{18\mu d_d} = \frac{18\mu d_d}{18\mu d_d}$	

	東海第二発電所	(2018.9.18)	版)		島根原子	一力発電所	2号炉
ここで,				ここで,			
\mathbf{P}_{t}	:透過率			P_t	:透過率		
V*	: 液滴通過ガス体積	au _p	:緩和時間	V*	: 液滴通過ガス体積	$ au_{ m p}$:緩和時間
V_{g}	: ガス体積	A_{d}	: 液滴断面積	Vg	: ガス体積	A_{d}	: 液滴断面積
V_L	: 液滴体積	К	: 慣性パラメータ	$V_{\rm L}$:液滴体積	К	: 慣性パラメータ
${ m Q_g}$: ガス体積流量	С	: すべり補正係数	Q_{g}	: ガス体積流量	С	: すべり補正係数
Q_L	: 液滴体積流量	μ	: ガス粘性係数	Q_{L}	:液滴体積流量	μ	: ガス粘性係数
η $_{ m d}$: 捕集効率係数	$ ho$ $_{ m p}$:エアロゾル密度	η _d	: 捕集効率係数	$ ho$ $_{ m p}$:エアロゾル密度
u _g	: ガス速度	d_p	:エアロゾル粒径	ug	: ガス速度	d_p	:エアロゾル粒径
u _d	: 液滴速度	d_{d}	: 液滴径	u _d	: 液滴速度	d_{d}	: 液滴径

これらから,透過率 P_t(除去係数DFの逆数)は,慣性パラメータKによって決まる捕集 効率係数 η_dによって影響を受けることが分かる。

(4)式で表される慣性パラメータKは、曲線運動の特徴を表すストークス数と同義の無次 元数であり,その大きさは,エアロゾル密度 ρ_v,エアロゾル粒径 d_v,液滴径 d_d,ガス粘性 係数μ,液滴・エアロゾル速度差によって決まる。

エアロゾル粒径 d₀が同じ場合でもエアロゾル密度ρ₀が増加すると,慣性パラメータ K が 増加し、除去効率は増加する。

b. 重大事故等時に発生するエアロゾルの密度

格納容器に放出されるエアロゾルの密度は,エアロゾルを構成する化合物の割合によって 変化する。別紙2の第5表に示す化合物について、NUREG-1465に記載されている割 合を用いてエアロゾル密度を計算すると第1表のとおり となる。

代表 化学形態	炉内内蔵量 (kg)	Gap Release	Early-In -vessel	Ex-vessel	Late-In -vessel	合計
CsI		0.05	0.25	0.30	0.01	0.61
CsOH		0.05	0.20	0.35	0.01	0.61
TeO ₂ , Sb ^{%1}		0	0.05	0.25	0.005	0.305
Ba0, Sr0 ^{%1}		0	0.02	0.1	0	0.12
MoO_2		0	0.0025	0.0025	0	0.005
CeO_2		0	0.0005	0.005	0	0.0055
La_2O_3		0	0.0002	0.005	0	0.0052
密度 (g/cm ³)						
	※1 複数0	の代表化合物	を持つグルー	-プでは,各化	合物の平均値	を使用した

第1表 格納容器の状態とエアロゾルの密度

		島根原子力	発電所 2号	5炉			備考
ここで,							
P_{t}	:透過率						
V^*	:液滴通過ガス	体積	τ _p :緩	和時間			
V_{g}	: ガス体積		A _d :液	滴断面積			
V_L	:液滴体積		K :慣	性パラメータ			
Q_{g}	: ガス体積流量		C : †	べり補正係数			
Q_L	:液滴体積流量		μ :ガ	ス粘性係数			
η _d	: 捕集効率係数		$ ho_{p}$:I	アロゾル密度			
ug	: ガス速度		d _p :エ	アロゾル粒径			
u_d	: 液滴速度		d _d :液	滴径			
これらから,透過率 P _t (除去係数 DF の逆数)は,慣性パラメータ K によって決まる捕 集効率係数 η_d によって影響を受けることが分かる。 (4)式で表される慣性パラメータ K は,曲線運動の特徴を表すストークス数と同義の無 次元数であり,その大きさは,エアロゾル密度 ρ_p ,エアロゾル粒径 d _p ,液滴径 d _d ,ガス 粘性係数 μ ,液滴・エアロゾル速度差によって決まる。 エアロゾル粒径 d _p が同じ場合でもエアロゾル密度 ρ_p が増加すると,慣性パラメータ K が増加し,除去効率は増加する。 b. 重大事故等時に発生するエアロゾルの密度 格納容器に放出されるエアロゾルの密度は,エアロゾルを構成する化合物の割合によ って変化する。NUREG1465 に記載されている割合を用いてエアロゾル密度を計算すると 麦1のとおり g/cm^3 となる。							
代表 化学形態	炉内内蔵量 (kg)	Gap Release	Early-In- Vessel	Ex-vessel	Late-In- vessel	合計	
CsI	\ <u>0</u> /	0.05	0. 25	0.30	0.01	0.61	
CsOH		0.05	0.20	0.35	0.01	0.61	
TeO₂, Sb ※		0	0.05	0.25	0.005	0.305	
Ba0, Sr0X		0	0.02	0.1	0	0.12	
MoO ₂		0	0.0025	0.0025	0	0.005	
CeOa		0	0, 0005	0.005	0	0,0055	
La ₂ 0 ₃		0	0.0002	0.005	0	0.0052	
密度 (g/cm ³)							
※複数	の代表化合物を	持つグルーン	プでは、各化	合物の平均値	を使用した		

	備考
)	
2)	
2)	
2)	
示す。エアロ	
ロゾル密度算	
の捕集効率係	
の比を求める。	
作动家区粉亦	
レ評価できる	
マッコ サローマートン・コー	うおナタのおみ
スル部におけ	・記載力針の相遅
ル密度の範囲	
ごれの化る肺	
/ こすい//161日初	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
b. 空気力学的質量中央径による比較	b. 試験用エアロゾルと想定されるエアロゾルの空気力学径の比較
エアロゾルの粒径の指標の一つに「空気力学径」を用いる場合があり、これは様々な密度 の粒子に対して、密度 1g/cm ³ の粒子に規格化したときの粒径を表すものである。 空気力学径が同じであれば、その粒子は密度や幾何学的な大きさとは関係なく、同じ空気 力学的挙動を示し、空気力学的質量中央径(AMMD)と質量中央径(MMD)は以下の関係があ る。 AMMD = $\sqrt{\rho}$ MMD	 ・ 質量中央径 (MMD) 全質量の半分がその粒径よりも小さい粒子によって占められ、残りの半 よりも大きい粒子によって占められる関係にある粒径 ・ 空気力学径 (AMMD) その粒子と同じ沈降速度を持つ単位密度 (1g/cm³)の球の直径であり について基準化したもの MAAP コードによる評価では MMD を用いることから、以下の式により AMMD する。 AMMD = ρ, MMD ここで ρ₂はエアロゾルの密度 (g/cm³) である。
重大事故等時に想定される主要なエアロゾルの密度及び空気力学的質量中央径を第2表 に、JAVA 試験にて使用したエアロゾルの密度及び空気力学的質量中央径を第3表に示す。 重大事故等発生時に想定される主要なエアロゾルの空気力学的質量中央径の範囲は であり、JAVA 試験にて使用したエアロゾルの空気力学的質量中央径の範囲は となっている。 JAVA 試験にて使用した質量中央径(MMD) の空気力学的質量中央径(AMD)はそれぞれ であるが、JAVA 試験における除去効率に大きな違いは見られていな い。 以上より、AREVA 社製のペントフィルタでは、重大事故等時のペンチュリスクラバの液滴・ ガス速度差が大きいため、重大事故等時に想定されるエアロゾルの密度 の範囲では、フィルタ装置の除去効率に与える影響は小さく、その除去性能の評価は質 量中央径(MMD)、空気力学的質量中央径(AMMD)どちらを用いても変わらない。	MAAP 解析により得られた MMD と AMMD の関係を表 2 に、JAVA 試験で使用し ロゾルの MMD と AMMD の関係を表 3 に示す。この結果、試験用エアロゾルの) と AMMD (約) は、実機に想定される MMD (約 と AMMD (約)) のいずれについても、よく代表していると言え

東海第二発電所 (2018.9.18版)			島根原子力発電所 2号炉				
第2表 重	大事故等時に想定されるエ	アロゾルの密度及び名	已気力学的中央径		表2 実機想定エス	アロゾルの MMD と AMMD	
代表 エアロゾル	質量中央径 (MMD)	密度	空気力学的 質量中央径(AMMD)	想定エアロゾル	MMD (d_p)	密度(ρ _p) g/cm ³	(d _p
CsI		約4.5 g/cm ³			サプレッション・チェン	4.5	
CsOH		約3.7 g/cm ³	-		からのベント: ※	3.7	
TeO ₂		約5.7 g/cm ³	-		不り	5.7	
Te ₂		☆30.2 g/ cm (参考図書2)					
第3表 J	AVA試験にて使用したエア	ロゾルの密度及び空気	贰力学的中央径 		表3 試験用エア	ロゾルの MMD と AMMD	
エアロゾル	質量中央径	密度	空気力学的 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	試験用エアロゾル	MMD (d_p)	密度(ρ _p)g/cm ³	(
<参考図書> 1. OECD/NEA, "STA 2. 理化学辞典第4版 3. 理化学辞典第4版 4. Hazardous Chemica 5. 理化学辞典第3版 6. Aerosol Measurement by P. Kulkarni, I	TE-OF-THE-ART REPORT ON 増補版 als Desk Reference 増補版 ent : Principles, Techniq P.A. Baron, and K. Wille	NUCLEAR AEROSOLS", ues, and Applicatior ke (2011)	(2009) ns, Third Edition. Edited	《参考図書》 1. OECD/NEA, "STATE-OF 2. 理化学辞典第4版 3. 理化学辞典第4版增 4. Hazardous Chemicals 5. 理化学辞典第3版增 6. Aerosol Measurement by P. Kulkarni, P. A.	Y-THE-ART REPORT ON N 甫版 E Desk Reference 甫版 E Principles, Techniqu Baron, and K.Willeke	UCLEAR AEROSOLS", (2009 ues, and Applications, Th (2011)) ird Edi

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別添 (参考1)エアロゾルの粒径と除去係数の関係について	
エアロゾルの粒径と除去係数の関係について		
	(1) 除去係数と重量及び放射能の関係	
(1) 除去係数と重量及び放射能の関係	除去係数(以下,「DF」という。)は、フィルタに流入した粒子の重量とフィルタを通過し	
除去係数(以下,「DF」という。)は、フィルタに流入した粒子の重量とフィ	ルタを通過した た粒子の重量の比で表される。エアロゾルに放射性物質が均一に含まれている場合, DFはフ	
粒子の重量の比で表される。エアロゾルに放射性物質が均一に含まれている場合	, DFはフィル ィルタへ流入した粒子の放射能とフィルタを通過した粒子の放射能の比で置き換えることが	
タへ流入した粒子の放射能とフィルタを通過した粒子の放射能の比で置き換える	っことができる。できる。	
(2) 粒径分布(個数分布と累積質量分布)	(2) 粒径分布(個数分布と累積質量分布)	
エアロゾルは一般的に、単一粒径ではなく、粒径に対して分布を持つ。粒径に	対する個数分布 エアロゾルは一般的に、単一粒径ではなく、粒径に対して分布を持つ。粒径に対する個数分	
及の累積質量分布の関係を別添図1に示す。	布及び案積質重分布の関係を図1に示す。 	
田米モニードタ		
0.06		
	函数分布 累積質量分布 0.02 0	
双量中央征 双量平均在	双量中央征 双量中均还	
0 0 10 20 50 0 位 50 0) () 位) ())) ())) ())) ())) ())) ())) ())) ())) ())))) ())))) ())))))) ()))))))))))))	0 0 0 0 0 10 20 30 40 50 0 質量中央径 粒径 (Jum) (Jung)	
別称図1 個数分布と累積質量分布	図1 個数分布と累積質量分布	
(左図出典:W.C.ハインス,エアログルテクアロシー,(株)井上書院(1985))	(左図出典:W.C.ハインス,エアロソルテクノロシー,(株)升上書院(1985))	
個数モード径 最も存在個数の比率の多い粒径	個数モード径 最も存在個数の比率の多い粒径	
	って占められ、 質量中央径 (MMD) 全質量の半分がその粒径よりも小さい粒子によって占めら	
残りの半分がその粒径よりも大きい粒子によっ	て占められる関 れ,残りの半分がその粒径よりも大きい粒子によって占められ	
係にある粒径	る関係にある粒径	
を表す。別添図1のような粒径分布の場合、小さい粒径のエアロゾルの個数は	多いが,総重量 を表す。図1のような粒径分布の場合,小さい粒径のエアロゾルの個数は多いが,総重量に	
に占める割合は小さいことが分かる。よって、大きい粒径のエアロゾルに比べて	小さい粒径のエ 占める割合は小さいことが分かる。よって、大きい粒径のエアロゾルに比べて小さい粒径のエ	
アロゾルがDFに与える影響は小さい。	アロゾルがDFに与える影響は小さい。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(3) JAVA 試験における除去係数と重量及び放射性物質の関係 ベンチュリスクラバでは,慣性衝突効果を利用しエアロゾルを捕集しており,重大事故等時に おけるエアロゾルの密度変化を考慮しても,慣性衝突効果によるDFへの影響は小さいと評価し ている。また,AREVA 社製のフィルタ装置では,慣性衝突効果,さえぎり効果,拡散効果による 除去機構によってエアロゾルを捕集するものであり,JAVA 試験において,小さい粒径のエアロ ゾルを含む を使用した場合においても,高い除去効率を発揮することを確認している。	(3) JAVA 試験における除去係数と重量及び放射性物質の関係 ベンチュリスクラバでは,慣性衝突効果を利用しエアロゾルを捕集しており,重大事故等時 におけるエアロゾルの密度変化を考慮しても,慣性衝突効果によるDFへの影響は小さいと評 価している。また,Framatome社(旧AREVA社)製のフィルタ装置では,慣性衝突効果,さえ ぎり効果,拡散効果による除去機構によってエアロゾルを捕集するものであり,JAVA 試験に おいて,小さい粒径のエアロゾルを含む を使用した場合においても,高い除去効率を 発揮することを確認している。	
(参考)質量中央径(MMD)と空気力学的質量中央径(AMMD) 分布を持つエアロゾルの粒径を表す方法として,質量中央径(MMD)を使用する場合と,空気 力学的質量中央径(AMMD)を使用する場合があるが,カスケードインパクターのような慣性衝突 効果を利用した粒径の測定を行う場合には AMMD で測定され, のような画像分析を利用し た粒径の測定を行う場合には MMD で測定される。AREVA 社製のフィルタは,慣性衝突効果の他に, さえぎり効果,拡散効果を利用したエアロゾルの捕集を行っており,フィルタ装置の除去性能の 評価には MMD を使用している。	(参考2)質量中央径(MMD)と空気力学的質量中央径(AMMD) 分布を持つエアロゾルの粒径を表す方法として,質量中央径(MMD)を使用する場合と,空 気力学的質量中央径(AMMD)を使用する場合があるが,カスケードインパクターのような慣性 衝突効果を利用した粒径の測定を行う場合には AMMD で測定され, のような画像分析を 利用した粒径の測定を行う場合には MMD で測定される。Framatome 社(旧 AREVA 社)製のフィ ルタは,慣性衝突効果の他に,さえぎり効果,拡散効果を利用したエアロゾルの捕集を行って おり,フィルタ装置の除去性能の評価には MMD を使用している。	
	 (参考3)想定する事故シナリオについて 粒子状放射性物質の除去性能を確認する上で想定する事故シナリオとして、炉心損傷が発生 する「冷却材喪失(大破断LOCA)+ECCS注水機能喪失+全交流動力電源喪失」を選定 する。 1.事象の概要(格納容器ベント時) (1)大破断LOCAが発生し、原子炉格納容器内に冷却材が大量に漏えいする。 (2)更に非常用炉心冷却系(以下、ECCSという。)喪失、全交流動力電源喪失(以下、 SBOという。)を想定するため、原子炉圧力容器への注水ができず炉心損傷に至る。事 象発生から30分後に低圧原子炉代替注水系(常設)による原子炉圧力容器への注水を開 始することで、原子炉圧力容器への注水及び原子炉格納容器へのスプレイを実施するが、事象 発生から約32時間後に外部注水量制限値に到達し、格納容器フィルタベント系を用いた ベントを実施する。 	・記載方針の相違

東海第二発電所 (2018.9.18版)		島根原子力発電所 2号炉	備考
	2. 想定事故シナリオ選定		
	想定事故シナリオ選定については事故のきっかけとなる起因事象の選定を行い、起因事象		
	に基づく事故シナリオの抽出および分類を行う。その後, 重大事故等対策の有効性評価および事故シナリオの選定を行う。		
	(1) 起因事象の選定		
	プラントに影響を与える	事象について内部で発生する事象と外部で発生する事象(地震,	
	 津波,その他自然現象)をそれぞれ分析し、事故のきっかけとなる事象(起因事象)について選定する。 プラント内部で発生する事象についてはプラントの外乱となる事象として、従前より許認可解析の対象としてきた事象である運転時の異常な過渡変化(外部電源喪失等)及び設 		
計基準事故(原子炉冷却材喪失等)を選定する。また、原子炸		喪失等)を選定する。また、原子炉の運転に影響を与える事象	
	として、非常用交流電源母線の故障、原子炉補機冷却系の故障等を選定する。		
	プラント外部で発生する	事象については,地震・津波に加え,地震・津波以外の自然現	
	象の53事象から地域性等を考慮して12事象(洪水,風(台風),竜巻,凍結,降水,積雪, 落雷,地滑り,火山の影響,生物学的事象,森林火災,高潮)を選定する。また,設計基		
	準を大幅に超える規模の事象発生を想定した上で、プラントに有意な頻度で影響を与える		
	と考えられる場合は、考慮	すべき起因事象とする。	
	(2) 起因事家に基づく事故ン	アリオの抽出及い分類 	
	イベントワリー寺により,	, 争政のさつかけとなる争家(起囚争家)を田充尽に, 争家か 能に云てみた, ウム機能たちナイズをなの動作の世不た八世し」	
	とのように進展して取給状が て掛野性に展開1 東地シュ	態に主るがを、女生機能を有する未純の動作の成省を万岐とし	
	て樹形状に展開し、事故シナリオを漏れなく抽出する。		
	加山した事成シアリスを	非限進成の付換によりで、双王のとわりクルーク加に力 損する。	
	表1 運転中の炉心損傷に係る事故シナリオグループ		
	運転中の炉心損傷に係る		
	事故シナリオグループ	概要	
	崩壊熱除去機能喪失	崩壊熱の除去に失敗して炉心損傷に至るグループ	
	高圧・低圧注水機能喪失	低圧注水に失敗して炉心損傷に至るグループ	
	高圧注水・減圧機能喪失	高圧注水に失敗して炉心損傷に至るグループ	
	全交流動力電源喪失	電源を失うことにより炉心損傷に至るグループ	
	原子炉停止機能喪失	止める機能を喪失して炉心損傷に至るグループ	
	LOCA時注水機能喪失	LOCA時に注水に失敗して炉心損傷に至るグループ	
	(3) 重大事故等対策の有効性語	評価及び事故シナリオの選定	
(2)で分類した事故シナリオのうち,出力運転中の原子炉における崩壊熱除去機能喪失,			
	高圧·低圧注水機能喪失, 清	高圧注水・減圧機能喪失、全交流動力電源喪失、原子炉停止機能	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	喪失については、炉心損傷に至らないため、重大事故等対処施設が機能しても炉心損傷を避	
	けられない事故シナリオは、 LOCA時注水機能喪失のみとなる。	
	以上より、炉心損傷が発生するLOCA時注水機能喪失を想定事故シナリオとして選定し	
	た。なお、想定事故シナリオにおいてはサプレッション・チェンバの排気ラインを使用した格	
	納容器ベント(以下, W/Wベントという。)を実施した場合と, ドライウェルの排気ライ	
	ンを使用した格納容器ベント(以下, D/Wベントという。)を実施した場合の両方を想定す	
	るものとする。	
	また,発生するエアロゾルの量や粒径分布の不確かさを考慮しても格納容器フィルタベント	
	系が性能を発揮できることを確認するために、原子炉圧力容器が破損するケース(高圧・低圧	
	注水機能喪失シナリオでさらに事象が進展し, 炉心損傷及び原子炉圧力容器破損した後にD/	
	Wベントを実施した場合)(※1)についても参考として示す。	
	※1 高圧・低庄注水機能喪失シナリオを選定した理由	
	原子炉圧力容器が破損し溶融炉心がペデスタルに落下すると、溶融炉心・コンクリート相	
	互作用によりコンクリートのエアロゾル粒子が大量に生成され,格納容器ベント時に放出さ	
	れるエアロゾル量や粒径分布に影響を与える。ここでは、溶融炉心・コンクリート相互作用	
	の観点で厳しくなるシナリオを参考ケースとして選定するものとした。	
	溶融炉心・コンクリート相互作用の観点からは、ペデスタルに落下する溶融炉心の割合が	
	多くなる原子炉圧力容器が低圧で破損に至るシーケンスが厳しくなる。表8に示す各事故シ	
	ナリオグループのうち,高庄注水・減庄機能喪失,全交流動力電源喪失シナリオは,高圧の	
	状態が維持されることから、参考ケースから除外した。	
	崩壊熱除去機能喪失シナリオ及び原子炉停止機能喪失シナリオは,重大事故等対処施設の	
	機能喪失または機能の遅延を仮定した場合において,原子炉格納容器が先行して破損するシ	
	ナリオであり,格納容器フィルタベント系の性能を確認する上では適切なシナリオではない	
	と考えられるため、参考ケースから除外した。	
	LOCA時注水機能喪失は、ペデスタルへの原子炉冷却材の流入の可能性があることか	
	ら,溶融炉心・コンクリート相互作用の観点で厳しい事象ではないと考えられるため,参考	
	ケースから除外した。	
	以上のことから, 原子炉格納容器が健全な状態で原子炉圧力容器が低圧で破損に至り, ま	
	た,ペデスタルへの原子炉冷却材の流入のない高圧・低圧注水機能喪失シナリオを参考ケー	
	スとして採用した。	
	高圧・低圧注水機能喪失シナリオは,重大事故等対処施設が機能すれば炉心損傷に至らず	
	事象が収束するが、ここでは、原子炉圧力容器内の注水に失敗し、さらに溶融炉心・コンク	
	リート相互作用が発生した場合の影響も確認するため,あえて原子炉圧力容器破損前のペデ	
	スタルへの水張りも行わない状態を想定する。また、原子炉圧力容器が破損して溶融炉心が	
	ペデスタルに落下した後は、ペデスタルへの注水を行った後にD/Wベントを実施するもの	
	とする。	
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
----------------------	--	----------
	なお、本評価では、コリウムシールドがない状態を仮定し、保守的に溶融炉心からプール	
	への熱流束は800kW/m ² 相当で一定(圧力依存なし)としている。	
	(参考4)発生するエアロソルの種類について	・記載万針の相違
	格納容器ベント実施時には、核分裂生成物(安定核種を含む)やコンクリート、構造材の一	
	部が格納容器フィルタベント系に流入する。これらは格納容器フィルタベント系に流入する際	
	は、希ガスや気体状のよう素を除き、固体(エアロゾル粒子)として存在する。	
	想定するエアロゾルの種類及び想定事故シナリオ(W/W ベント)時に格納容器フィルタベン	
	ト系に流入する粒子状物質量を表1に示す。また,想定事故シナリオ (D/W ベント) 時や,原	
	子炉圧力容器が破損するケースで格納容器フィルタベント系に流入する粒子状物質量を表2	
	に示す。	

東海第二発電所 (2018.9.18版)		備考			
	表1 想定するコ	ニアロゾルの種類及び想知	をシナリオ(W/W ベント)	時に格納容器フィルタベント	
		系に流	入する粒子状物質量		
		各核種グループに対	炉内内蔵量[kg]	格納容器フィルタベント系に	
	核種グループ	応する主な化学物質	(安定核種を含む)*1	流入する粒子状物質量	
		例		[kg]	
				(安定核種を含む) ^{*2}	
	希ガス	Xe,Kr		_	
	CsI	CsI, RbI		約 1.3×10 ⁻⁴	
	TeO ₂ , Te ₂ ^{*3, *4}	TeO ₂ , Te ₂		約 1.2×10 ⁻⁴	
	SrO	SrO		約 4.7×10 ⁻⁵	
	MoO ₂	MoO_2 , RuO_2 , TcO_2 ,			
	2	RhO ₂		約 4.4×10 ⁻⁵	
	CsOH	CsOH,RbOH	1	約 1.9×10 ⁻³	
	BaO	BaO		約 6.7×10 ⁻⁵	
		La ₂ O ₃ ,Pr ₂ O ₃ ,Nd ₂ O ₃ ,S			
	La ₂ O ₃	m ₂ O ₃ ,Y ₂ O ₃ , ZrO ₂ ,		約 5.6×10 ⁻⁶	
	2 0	NbO ₂ , AmO ₂ , CmO ₂			
	CeO ₂	CeO ₂ , NpO ₂ , PuO ₂		約 1.3×10 ⁻⁵	
	Sb	Sb		約 1.6×10 ⁻⁶	
	UO ₂	UO ₂		約 1.4×10 ⁻³	
	コンクリート/構	_			
	造材			約 2.1×10 ⁻⁵	
	※1 炉内内蔵量[]	」 kg]は, ORIGEN コードを用	ー いて評価した核種ごとの(■ 亭止時炉内内蔵量に基づき,評	
	価した値				
	※2 格納容器フィ	ルタベント系に流入する粒	:子状物質量は, 炉内内蔵	量[kg]と,格納容器フィルタベ	
	ント系への放	出割合(MAAP 解析結果を	: NUREG-1465 の知見を見	用いて補正)から評価した。想定	
	シナリオ(W/\	W ベント時)では Te ₂ 及び I	UO ₂ の放出割合の MAAP	解析結果はゼロであることから、	
	後述する MA	AP 解析の保守性は顕在化	としておらず, NUREG-146	i5の知見を用いた補正は必ずし	
	も必要ないもの	のと考えられる。しかしなが	ら,ここでは,格納容器フィ	ィルタベント系に流入する粒子状	
	物質量を保守	F的に評価するために Te ₂)	及び UO2の放出割合とし	て MAAP 解析結果 (ゼロ)そのも	
	のではなく, N	1AAP 解析結果を NUREG-	-1465 の知見を用いて補〕	Eした放出割合を採用した。	
	※3 表中の Te ₂ の)炉内内蔵量[kg]は, Teの	全量が Te2の形態で存在	至する場合の値に相当する。	
	※4 ここでは TeC	02とTe2の存在比率を考慮	せず, TeO ₂ とTe ₂ の各々	が表中の炉内内蔵量[kg]をもつ	
	ものとして格絲	内容器フィルタベント系に流	記入する粒子状物質量を評	『価した(Te の停止時炉内内蔵	
	量を, ORIGE	Nコードを用いて評価した	値よりも大きい値として想知	ミすることに対応)。本評価は格	
	納容器フィル	タベント系の設備設計に係	る評価であることから,この	つような保守的な評価方法を採用	
	した。なお, 放	女出放射能量の評価に当た	っては,より現実的な想定	そとして停止時炉内内蔵量は	
	ORIGEN コー	ドを用いて評価した値その	ものを採用している。		

東海第二発電所 (2018.9.18版)		備考		
	表2 想定事故:	器フ		
		格納容器フィルタベント系に流	入する粒子状物質量	
	核種グル	ープ (安定核種を含む)*1		
		想定事故シナリオ	原子炉圧力容器が破損するケ	
		(大LOCA+SBO+全ECCS	ース(高圧・低圧注水機能喪	
		機能喪失シナリオ) (D/Wベ	失シナリオ) (D/Wベント)	
		ント)		
	希ガス		—	
	CsI	約 9.7×10 ⁻²	約 3.9×10 ⁻⁶	
	TeO2, Te	p_2^{*2} 約 2.0×10 ⁻¹	約 8.1×10 ⁻⁵	
	SrO	約 7.9×10 ⁻²	約 3.1×10 ⁻⁵	
	MoO2	約 7.3×10 ⁻²	約 2.9×10 ⁻⁵	
	CsOH	約 3.2	約 1.3×10 ⁻³	
	BaO	約 1.1×10 ⁻¹	約 4.4×10 ⁻⁵	
	La2O3	約 9.4×10 ⁻³	約 3.7×10 ⁻⁶	
	CeO2	約 2.1×10 ⁻²	約 8.3×10 ⁻⁶	
	Sb	約 2.7×10 ⁻³	約 1.1×10 ⁻⁶	
	UO2	約 2.3	約 9.1×10 ⁻⁴	
	コンクリー	ート/構造 約 1.2×10 ⁻²	約 3.9×10 ⁻⁷	
	材			
	※1 格納容器フィ	(ルタベント系に流入する粒子状物質量は、炸	ラ内内蔵量[kg]と,格納容器フィルタ	マベ
	ント系への放	出割合(MAAP 解析結果を NUREG-1465 の	知見を用いて補正)から評価した。れ	想定
	シナリオ(W/	W ベント時)では Te ₂ 及び UO ₂ の放出割合の)MAAP解析結果はゼロであることな	jub,
	後述する MA	AP 解析の保守性は顕在化しておらず, NUF	EG-1465 の知見を用いた補正は必	ずし
	も必要ないも	のと考えられる。しかしながら,ここでは,格紋	容器フィルタベント系に流入する粒	子状
	物質量を保守	F的に評価するために Te2 及び UO2の放出書	削合として MAAP 解析結果(ゼロ)そ	のも
	のではなく, N	MAAP 解析結果を NUREG-1465 の知見を用	いて補正した放出割合を採用した。	
	※2 ここでは TeC	02とTe2の存在比率を考慮せず, TeO2とT	e2の各々が表中の炉内内蔵量[kg	
	つものとして	各納容器フィルタベント系に流入する粒子状	物質量を評価した(Teの停止時炉内	
	蔵量を, ORIG	GENコードを用いて評価した値よりも大きい値	むとして想定することに対応)。本評価 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	
	格納谷器フィ	ルタベント糸の設備設計に係る評価であるこ	とから、このような保守的な評価方法	
	用した。なお、	, 放出放射能重の評価に当たっては,より現	実的な想定として停止時炉内内蔵量 マ	
	URIGEN 3-	- Pを用いく評価した他をのものを採用してい	_{ଦି}	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	a. 炉心状態の想定	
	格納容器フィルタベント系に流入するエアロゾルを評価する際は, 炉心状態として平衡炉	
	心(サイクル末期)を想定している。	
	以下の(a),(b)に示す通り,平衡炉心(サイクル末期)を想定して格納容器フィルタベ	
	ント系に流入する核分裂生成物量を評価することで,その他の炉心状態を想定した場合の流	
	入量を包絡することができる。	
	このことから,格納容器フィルタベント系に流入する核分裂生成物量の評価を行う際,炉	
	心状態として平衡炉心(サイクル末期)を想定することは適切であると考えられる。	
	(a)停止時炉内内蔵量	
	停止時炉内内蔵量は、平衡炉心の燃焼サイクル末期を想定して評価を実施している。	
	核分裂生成物(エアロゾル粒子として放出される可能性のある核分裂生成物も含む)	
	の量は,運転が進み燃焼度が大きくなるに従い多くなる。平衡炉心(サイクル末期)の	
	燃焼度はその他の炉心状態(初期装荷炉心や取替炉心)の燃焼度に比べ大きいため、平	
	衡炉心(サイクル末期)の炉内の核分裂生成物内蔵量は、その他の炉心状態の核分裂生	
	成物内蔵量を包絡する値を示す。	
	(b)崩壞熱	
	燃料デブリからの放射性物質の放出割合は崩壊熱が大きいほど多くなり, 崩壊熱は核	
	分裂生成物内蔵量が多いほど大きくなる。(a)と同様の理由により,平衡炉心(サイ	
	クル末期)の崩壊熱はその他の炉心状態の崩壊熱を包絡する値を示す。このため、平衡	
	炉心(サイクル末期)を想定した場合の,燃料デブリからの放射性物質の放出割合は,	
	他の炉心状態を想定した場合の放出割合を包絡する値を示す。	
	b. 評価に用いる放出割合	
	格納容器フィルタベント系に流入するエアロゾル量は、炉内内蔵量 [kg] と、格納容器フ	
	ィルタベント系への放出割合を用いて評価している。	
	炉内内蔵量 [kg] は, ORIGEN コードを用いて評価した核種ごとの停止時炉内内蔵量に基	
	づき評価しており,放出割合は,MAAP コードと NUREG-1465の知見を利用し評価している。	
	MAAP コードでは,原子炉格納容器内における振る舞いの違い(揮発のし易さの違い等)	
	を考慮し,放射性物質を複数の MAAP 核種グループに分類しており,格納容器フィルタベン	
	ト系への放出割合を MAAP 核種グループごとに評価している。	
	大 LOCA+SBO+全 ECCS 機能喪失シナリオ (W/W ベント) での MAAP 解析による放出割合の評	
	価結果(事故発生から168時間後時点)を表4に示す。ただし、以下に示すとおり、表4の	
	値は格納容器フィルタベント系に流入するエアロゾル量の評価に使用していない。	
	表4によると、高揮発性核種(CsIや CsOH)の放出割合(10 ⁻⁶ オーダー)と比べ、中・低	
	揮発性核種の放出割合が極めて大きい(10-5オーダー)という結果となっている。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	一方, TMI 事故や福島第一原子力発電所事故での観測事実から, 事故が起こった場合に最	
	も多く放出される粒子状の物質は、よう素やセシウム等の高揮発性の物質であり、中・低揮	
	発性の物質の放出量は高揮発性の物質と比べ少量であることが分かっている。	
	表5は,TMI 事故後に評価された放射性核種の場所ごとの存在量であるが,希ガスや高揮	
	発性核種(セシウムやよう素)が原子炉圧力容器外に全量のうち半分程度放出されている一	
	方で、中・低揮発性核種はほぼ全量が原子炉圧力容器内に保持されているという評価となっ	
	ている。	
	さらに,表6は,福島第一原子力発電所事故後に実施された発電所敷地内の土壌中放射性	
	核種のサンプリング結果であるが、最も多く検出されているのは高揮発性核種(セシウムや	
	よう素)であり、多くの中・低揮発性核種は不検出という結果となっている。	
	また、燃料からの核分裂生成物の放出及び移動挙動に関する実験結果より、各元素の放出	
	挙動は以下のように整理されており*1,希ガスが高温で燃料からほぼ全量放出されるのに対	
	し、それ以外の核種の放出挙動は雰囲気条件に依存するとしている。	
	希ガス:高温にて燃料からほぼ全量放出される。	
	I,Cs:高温にて燃料からほぼ全量放出される。放出速度は希ガスと同等。	
	Sb, Te:高温にて燃料からほぼ全量放出される。また,被覆管と反応した後,被覆管の酸化	
	に伴い放出される。	
	Sr, Mo, Ru, Rh, Ba:雰囲気条件(酸化条件 or 還元条件)に大きな影響を受ける。	
	Ce, Np, Pu, Y, Zr, Nb:高温状態でも放出速度は低い。	
	※1「化学形に着目した破損燃料からの核分裂生成物及びアクチニドの放出挙動評価のための	
	研究(JAEA-Review2013-034, 2013 年 12 月) 」	
	表4評価結果は、これらの観測事実及び実験結果と整合が取れていない。これは、大	
	LOCA+SBO+全 ECCS 機能喪失シナリオにおいては, MAAP 解析が中・低揮発性核種の放出割合	
	を過度に大きく評価しているためであると考えられる。	
	MAAP 解析の持つ保守性としては、炉心が再冠水し溶融炉心の外周部が固化した後でも、	
	燃料デブリ表面からの放射性物質の放出評価において溶融プール中心部の温度を参照し放	
	出量を評価していることや, 炉心冠水時において燃料デブリ上部の水によるスクラビング効	
	果を考慮していないことが挙げられる。MAAP コードの開発元である EPRI からも,再冠水し	
	た炉心からの低揮発性核種の放出について MAAP 解析が保守的な結果を与える場合がある旨	
	の以下の報告がなされている。	

東海第二発電所 (2018.9.18版)		備考						
	・炉心が再	・ 炉心が再冠水した場合の低揮発性核種(Ru 及び Mo)の放出について、低温の溶融燃料						
	表面付近							
	析が保守							
	・Mo の放出							
	なお、高担							
	るため、上述	るため、上述の保守性の影響は受けにくいものと考えられる。						
	以上のこと	こから、入 LUCA+SBO+ 全 EUCS 機能喪失い						
	田割合を評価							
	体寸的な術を							
	いっ ストブ な	反納容器フィルタベントズに溢入ナステ	アロゾル島を証価する際は MAAD 敏振					
	てこし、平に下ス坊中国	ロボロ ロボン インシーン 「不に加八りる」 書の 証価 結果 以外に一 海外 での 相判 笑い	ノロノル重で町回りの床は、MAAF 胜例 も注田されている NURFC-1465(平国の					
	「「「「」」「「」」「「」」「」」「「」」「」」「」」「」」「」」「」」「」」	Eの計画相未以下に、海戸この焼向寺に F目会 (NRC) で敷備されたものであり	米国でもシビアアクシデント時の曲刑					
	的た例として							
	のとしたこ							
	価が可能とな							
	なお、事故							
	用できないも							
	での MAAP 解							
	想定事故シブ							
	原子炉圧力和							
	NUREG-1465	の想定と MAAP 解析の事象進展に大きな表	Êはなく,本評価において問 REG1465 の					
	知見は使用す	可能と判断した。						
	NUREG-146	5 の知見を利用した場合の放出割合の評	価結果を表7に示す。					
		表3 MAAP 解析事象進展と NUREG-	1465の想定の比較					
		燃料被覆管の損傷が開始し、ギャッ	炉心溶融が開始し、溶融燃料が					
		ブから放射性物質が放出出される	原子炉圧力容器破損するまで					
		期間	の期間					
	MAAP							
	NUREG-1465 ~30分 30分~2時間							
	▶ ※ 2 原子炉汪水	機能か使用でさないものと仮定した場合	における原ナ炉圧刀谷器破損時間					
	冬 MAAD 核種ガル	ープの放出割合の目休的な評価チ法はい	「下に云す通り					
		、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、						

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(a)希ガスグループ, CsI グループ, CsOH グループ	
	希ガスを含めた高揮発性の核種グループ。については, MAAP 解析の結果得られた放出割	
	合を採用する。	
	なお, Cs の放出割合は, CsI グループと CsOH グループの放出割合**1*2,及び, I 元素と	
	Cs 元素の停止時炉内内蔵量より、以下の式を用いて評価する(詳細は別紙 50 参照)。	
	$F_{CS}(T) = F_{CsOH}(T) + M_{I}/M_{Cs} \times W_{Cs}/W_{I} \times (F_{CsI}(T) - F_{CsOH}(T))$	
	ここで、	
	F _{cs} (T) : 時刻 T におけるセシウムの放出割合	
	F _{CsoH} (T) :時刻 T における CsOH グループ。の放出割合	
	F _{CsI} (T):時刻 T における CsI グルーフ。の放出割合	
	M _I :I元素の停止時炉内内蔵量	
	M _{cs} :Cs 元素の停止時炉内内蔵量	
	W _I :Iの原子量 W _{Cs} :Csの原子量	
	※1 MAAP コードでは化学的・物理的性質を考慮し核種をグループ分けしており,各グループの	
	放出割合は、当該グループの停止時炉内内蔵量と放出重量の比をとることで評価している。	
	※2 各核種グループの停止時炉内内蔵量は以下の手順により評価している。	
	① ORIGEN コードにより核種ごとの初期重量を評価	
	② ①の結果をもとに、同位体の重量を足し合わせ、各元素の重量を評価する。	
	③ ②の結果を MAAP コードにインプットし, MAAP コードにて, 各元素の化合物の重量を評価 する	
	(4) 各化合物け表1に示す核種グループに属するものとして整理している 核種グループの炉	
	内内蔵量は、当該の核種グループに属する化合物の炉内内蔵量の和として評価している。	
	(b)それ以外の核種グループ。	
	中・低揮発性の核種グループについては, MAAP 解析の結果得られた放出割合は採用せず,	
	MAAP 解析の結果から得られた Cs の放出割合と,希ガスグループの放出割合,及び,	
	NUREG-1465の知見を利用し放出割合を評価する。	
	ここで,放出割合の経時的な振る舞いは希ガスと同一(※1)とし,Csの放出割合に対す	
	る当該核種グループの放出割合の比率は,168時間経過時点において,NUREG-1465で得られ	
	た比率に等しいとして,以下の評価式に基づき評価した。表8及び表9に,NUREG-1465 で	
	評価された原子炉格納容器内への放出割合を示す。	
	Fi(T) = $F_{\text{noble gass}}(T) \times \gamma i / Y_{Cs} \times F_{Cs}(168 \text{hr}) / F_{\text{noble gass}}(168 \text{hr})$	
	Fi(T) : 時刻 T における i 番目の MAAP 核種グループの放出割合	

東海第二発電所 (2018.9.18版)		備考	
	F _{noble gass} (T) :時亥		
	γ i : NUREG-1465 k		
	納容器への放け		
	γCs:NUREG-1465 (こ	おける Cs に相当する核種グループの原子炉格納容器への放出割合	
	※1 中、低輝惑歴の技	またがループけ、市地加坡の燃料が宣泪した。アルスしたいかけなど燃料	
	※1 中・低揮光性の移 めにお出されたいい	(電グルークは、事取切別の燃料が同価となうているとさ以外は知る燃料	
	年く 事故初期に同		
	だけが大気中に抜!		
	ベントに伴い低	国 これのN るこうたうれるる。 毎発性核種は原子恒格納容器気相部からベントラインに流入するが その	
	流入の仕方、すなお	っち放出割合の経時的な振る舞いは、同じく原子炉格納容器気相部に浮游	
	しており壁面等か	らの追加放出がない希ガスの放出割合の振る舞いに近いと考えられる。	
	以上のことから,	中・低揮発性の核種グループの「各時刻における放出割合」は、「各時	
	刻における希ガス	グループの放出割合」に比例するものとした。	
	表4 MAAP 解析	による放出割合の評価結果(エアロゾル量の評価に使用しない)	
	核種グループ	格納容器フィルタベント系への放出割合[-]	
		(事故発生から168時間後時点。格納容器フィルタベント系に流	
		入するエアロゾル量の評価には使用しない)	
	希ガス	約9.0×10-1	
	CsI	約4.4×10-6	
	TeO ₂	約2.5×10 ⁻⁸	
	Sr0	約2.4×10-4	
	MoO ₂	約7.1×10 ⁻⁶	
	CsOH	約7.0×10 ⁻⁶	
	BaO	約1.7×10 ⁻⁴	
	La ₂ 0 ₃	約3.3×10 ⁻⁵	
	Ce0 ₂	約3.3×10 ⁻⁵	
	Sb	約3.8×10 ⁻⁶	
	Te ₂	0	
	U02	0	
	Cs ^{** 1}	約6.8×10 ⁻⁶	
	※1 CsIグループとCs	sOH グループの放出割合から評価(評価式は別紙 50 参照)	

東海第二発電所 (2018.9.18版)					島根	原子力)発電所	2号	炉					備考
		表	5 TM	II 事故	後に評価	価され	た放射性	主核種	の場所	ごとの	存在量			
		(単位:%)												
	林	穑			低揮発性	ŧ		中揮	発性		高	新揮発性		
	12	12		144Ce	184 Eu	155 E.	a ⁹⁰ Sr	106	Ru 125	Sb	¹³⁷ C3	120I	⁸⁶ Kr	
	原子炉建	屋					_							
	原子炉	容器 冷却系		105,4	122.7	109.	5 89.1 1	79	3.2 11	0.2	40.1	42	30	ļ
	地階水,	気相タンク	類	0.0	1 —		2.	1	0.5	0.7	47	(47)†	54	
	補助建屋	#		105	192	110	0.1	1 -	 4 11	0.7	5	7		
	1 広節	用の「濃度剤	定値と多	105	144	- 册陆水河		9 h. r.r	4 11	日日日本	90	51	-* 2	
	上回	る分析結果と	たってし	まう。し	たがって,	とこに	保持された	ロクイン	ベントリ	-HCsE	同等であ	ると考える	50	
	出典: TM	II-2 号機(の調査	研究成	記果(渡台	会偵祐	i,井上康	衰,桝	田藤夫	日本原	子力学	会誌 Vo	ol.32, N	lo.
	4 (1990)													
		主の	- 后 白 勾	5 . 百	フートマショ	⇒≕車−	七次トーム	日それ	った上述	なけのナ	ともよりたち	大任		ļ
		衣 0	怕局牙	月一	于刀宠闻	シリチュ	议(友に)快	ЩСА	した工場	長中 の Д	又们任何	淡个里 (4	单位:Bq/kg•乾土)	
	試料採取場所	【定点①】*1 グランド		【】 里	定点②】*1 予鳥の森		【定点③】*1 産廃処分場近傍	(a) L	05,6号機サービス (E ル前	5)固体廃棄物貯 載庫1,2棟近傍	⑥南南西 約500m*2	⑦南南西 約750m*2	⑧南南西 約1.000m*2	
	試料採取日	(西北西約500m)*2 3/21	3/25	3/28	西約500m)*2 3/25	3/28	(南南西約500m)*2 3/25	3/28	3/25	3/22	3/22	3/2	2 3/22	,
	分析機関 測定日	JAEA 3/24	JAEA	日本分析 センター *3 3/30	JAEA 3/28	日本分析 センター *3 3/30	JAEA t 3/28	日本分析 センター *3 3/30	JAEA 3/28	JAEA 3/25	JAEA 3/25	JAEA 3/2	JAEA 4 3/25	,
	核 [-131(約8日)	5.8E+06	5.7E+06	3.8E+06	3.0E+06	3.9E+04	1.2E+07	2.6E+06	4.6E+05	3.1E+06	7.9E+05	2.2E+0	6 5.4E+06	,
	僅 I-132(利2時间) Cs-134(約2年)	*4 3.4E+05	*4 4.9E+05	5.3E+05	*4 7.7E+04	3.2E+02	*4 3.5E+06	9.7E+05	*4 6.8E+04	*4 9.5E+05	*4 8.7E+03	* 1.7E+0	+ +4 4 1.6E+05	,
	Cs-136(約13日)	7.2E+04	6.1E+04	3.3E+04	1.0E+04	2.8E+01	4.6E+05	6.9E+04	8.6E+03	1.1E+05	1.9E+03	2.2E+0	3 2.5E+04	,
	Cs-137(約30年) Te-129m(約34日)	3.4E+05 2.5E+05	4.8E+05 2.9E+05	5.1E+05 8.5E+05	7.6E+04 5.3E+04	3.2E+02 ND	3.5E+06 2.7E+06	9.3E+05 6.0E+05	6.7E+04 2.8E+04	1.0E+06 8.9E+05	2.0E+04 9.5E+03	1.6E+0	4 1.6E+05 4 1.7E+05	,
	Te-132(約3日)	6.1E+05	3.4E+05	3.0E+05	6.5E+04	1.4E+02	3.1E+06	2.0E+05	3.2E+04	1.9E+06	2.1E+04	3.9E+0	4 3.8E+05	,
	Ba-140(約13日) Nb-95(約35日)	1.3E+04 1.7E+03	1.5E+04 2.4E+03	ND ND	2.5E+03	ND ND	ND 5.3E+03	ND	ND	8.0E+04 8.1E+03	ND	NE	0 ND 0 7.9E+02	,
	Ru~106(約370日)	5.3E+04	ND	ND	6.4E+03	ND	2.7E+05	ND	ND	6.8E+04	1.9E+03	i NE	0 3.2E+04	,
	Mo-99(約66時間) Tc-99m(約6時間)	2.1E+04	ND 2.0E+04	ND	ND	ND ND	6.6E+04	ND ND	ND 1.8E+03	ND 2.3E+04	ND	NE	ND 8.3E+03	
	La-140(約2日)	3.3E+04	3.7E+04	ND	2.3E+03	ND	9.7E+04	ND	2.5E+03	2.1E+05	4.2E+02	6.2E+0	2 7.8E+03	
	Be-7(約53日)	ND	ND	ND	ND	ND	ND	ND	ND	3.2E+04	ND	N	ND ND	
			/1	/ /			/ /	/110	1.72-02	• 1 . 1				
	出典:東	R電力 HP	(http:/	//www.	tepco.	со. јр/	cc/pres	s/1104	40609-	j.html)			

東海第二発電所 (2018.9.18版)		島根原子力発電所 2号炉	備考
	表 7 NUREG-1465 の知見を序	用いた補正後の放出割合(格納容器フィルタベント系に流入する	
	核種グループ	格納容器フィルタベント系への放出割合[-]	
		(事故発生から168時間後時点)	
	希ガス	糸59. 0×10 ⁻¹	
	CsI	約4.4×10 ⁻⁶	
	TeO ₂	約1.4×10 ⁻⁶	
	Sr0	約5.4×10 ⁻⁷	
	MoO ₂	約6.8×10 ⁻⁸	
	CsOH	約7.0×10 ⁻⁶	
	Ba0	約5.4×10 ⁻⁷	
	La ₂ 0 ₃	約5.4×10 ⁻⁹	
	CeO ₂	約1.4×10 ⁻⁸	
	Sb	約1.4×10 ⁻⁶	
	Te ₂	約1.3×10 ⁻⁸	
	U02	約1.3×10 ⁻⁸	
	Cs ^{₩1}	約6.8×10 ⁻⁶	
	表 8 NU	REG-1465 での原子炉格納容器内への放出割合	
	核種グループ 原	子炉格納容器への放出割合※1	
	Cs	0. 25	
	TeO_2 , Sb, Te_2	0.05	
	Sr0, Ba0	0. 02	
	MoO ₂	0.0025	
	CeO ₂ , UO ₂	0.0005	
	La_2O_3	0.0002	
	※1 NUREG-1465 の Table3.1	2「Gap Release」の値と「Early In-Vessel」の値の和を参照	
	(NUREG-1465 では,「Gap Rele	ease」, 「Early In-Vessel」, 「Ex-Vessel」及び「Late In-Vessel」	
	の各事象進展フェーズに対して	て原子炉格納容器内への放出割合を与えている。格納容器フィルタ	
	ベント系に流入するエアロゾノ	レ量評価における想定事故シナリオでは,原子炉圧力容器が健全な	
	状態で事故収束するため、原子	子炉圧力容器損傷前までの炉心からの放出を想定する「Gap	
	Release」及び「Early In-Ves	sel」の値の和を用いる。)	

\$		島根原子力発	笔所 2号	炉		俌
The 3 State Trade State Correspondence of the second control state correspondence of the second corresp			-1465 (七七平九	•)		
Table 2.3 Merenet Redenoming to compare Group The Wein Weinstein Group 1 Noble gases Xe, Kr 2 Fallogens 1, Br 3 Allakali Menials C, Si, Si, Si 4 Tolorism group To, Si, Si 5 Noble gases Xe, Kr 6 Noble for Menials Res, Nr, Mr, Mr, Tr, Co, Ta, Si, Si, Si, Si, Si, Si, Si, Si, Si, Si		A 9 NUKEG	-1403 (1 <u>/</u> /+	·)		
Graw Title Elements in Graup 1 Abbig parts X.G. Xr. 2 Halogenic X.B. 3 Abbala Metalis K.G. Xr. 4 Telluration group Telluration group 5 Batriant, attonding mas, Sr. 6 Noble Metalis R.g. Xr., H.g. Nr., Nr., Mr., Pr., Sin, Yr., Cin, Arm. 8 Cerium group C.G., Pu., Nr., Yr., Cin, Arm. 8 Cerium group C.G., Pu., Nr., Yr., Cin, Arm. 9 Batriant, Storothane Ex-Vesal Late In-Vesal 1 Late In Article J.J. BAB Batriant, Storothane 1 Carlo Release*** Ray In Vesal Ex-Vesal Late In-Vesal 1 Late In Article J.J. J.J. J.J. J.J. 1 Late In Artin Article J.J. <td< td=""><td>_</td><td>Table 3.8 Revised</td><td>Radionuclide</td><td>Groups</td><td></td><td></td></td<>	_	Table 3.8 Revised	Radionuclide	Groups		
$ \begin{array}{ c c c c c } 1 & Noble gass & Xc, Kr & Ier \\ 2 & Halogens & Lic \\ 3 & Alkali Metals & C, Rb & Te, Sb, Se \\ 4 & Telltrain good & Ba, Sr & Fe, Sb, Se \\ 5 & Barium, frontium & Ba, Sr & Fe, Rb, Rb, MA, Tc, Co \\ 7 & Lauthanides & Re, Rb, Pd, Ma, Tc, Co \\ 7 & Lauthanides & Fe, Sm, Ye, Ch, Ma, Te, Co \\ 7 & Lauthanides & Fe, Sm, Ye, Ch, Ma, Te, Co \\ 7 & Lauthanides & Fe, Sm, Ye, Ch, Ma, Te, Co \\ 7 & Lauthanides & Rev Is Newse & Laute In Newse \\ 8 & Cerium group & C, Pa, Ny & Newse \\ 1 & Sec & 100 & 0.05 & 0.05 & 0.00 \\ 1 & Noble Gass^{*+} & 0.05 & 0.05 & 0.01 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.01 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.02 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.02 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.02 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.02 \\ 1 & Noble Gass^{*+} & 0.05 & 0.02 & 0.02 \\ 1 & Noble Sec & 0.00 & 0.02 & 0.005 \\ 1 & Noble Sec & 0.00 & 0.02 & 0.005 \\ 1 & Noble Sec & 0.00 & 0.02 & 0.005 \\ 1 & Noble Sec & 0.00 & 0.02 & 0.005 \\ 1 & Noble Sec & 0.00 & 0.02 & 0.005 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.002 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 & 0.00 \\ 1 & Noble Sec & 0.00 & 0.00 $	Gro	up Title	Elements	in Group		
2 Alkali Media 1, B ² 3 Alkali Media Ca, Rb, Ch, Sh, Se 4 Tellurining group TR, Sh, Se, Sh, Se, Sh, Se, Sh, Se, Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh	1	Noble gases	Xe, Kr			
4Tellurium group 5To. Sb, Se5Bartion, stronium 4Bartion, stronium 5Bartion, stronium 5Bartion, stronium 57Lantbanides 6Bartion, stronium 7Bartion, stronium 7Bartion, stronium 78Cerium group 7Ce. P.u. NP 7Table 3.12 BWR Heigheuse Hol ComtainanttTable 3.12 BWR Heigheuse Hol ComtainanttHale Graeet*0.050.05O 0.050.05Autom toro for Comtain the ContainanttHale Graeet*0.05O 0.050.00Autom toro for Comtain the ContainanttParticular for Comtain the ContainantParticular for Comtain the ContainantCerium GraupO 0.050.00O 0.050.00O 0.000.000O 0.00O 0.00<	2	Halogens Alkali Metals	I, Br Cs Rh			
5 Bartim, strondm Ba, St 6 Nobie Mattim, Bart, Br, PH, MA, TE, Co 7 Lanthanides Bartim, strondm 8 Cerium group Ce. Pu, N > Table 3.12 BWR Releases Into Containsenst Duration (Hours) 0.5 1.5 3.0 10.0 Nobie Cases** 0.5 0.5 0 0 Halegens 0.05 0.5 0.0 0 Halegens 0.05 0.5 0.0 0 Halegens 0.05 0.05 0.0 0 Halegens 0.05 0.05 0.0 0 Halegens 0.0 0.05 0.25 0.01 Halegens 0.0 0.005 0.025 0.00 Halegens 0 0.0002 0.005 0	4	Tellurium group	Te. Sb. Se			
6 Nobic Metals Ru, Rh, Pd, No, Ta, Co. 7 Landhanis Fa, Ry, Pd, No, Ta, Co. 8 Certum group Ce, Pu, Ro, Ta, Man Fibe 31.2 BWR Releases Into Commonweartherman Table 31.2 BWR Releases Into Commonweartherman 10 Cap Release*** Early In Vessel Ka. Vessel Late In Vessel 10 Cap Release*** 0.5 0.5 0.0 0 10 Noble Gause** 0.05 0.25 0.00 0 10 Noble Metals 0 0.025 0.01 0 10 Noble Metals 0 0.002 0.01 0 10 Noble Metals 0 0.002 0.00 0 10 Noble Metals 0 0.002 0.00 0 10 Noble Metals 0 0.000 0.005 0 10 Noble Metals 0 0.000 0.005 0 10 Noble Metals 0 0.0005 0.005 0 10 Noble Metals 0 0.0005 0.005	5	Barium, strontium	n Ba, Sr			
7Lardbankles Cerium groupE.a. Zr, Nd, Fan, ND, Pan, Prom, Y. Cn, ND, Pan, Prom, Y. Cn, ND, Pan, Prom, Y. Cn, ND, Pan, Prom, Y. CharlamantTable 3.12 BWR Releases that ConstainmentTable 3.12 BWR Releases to 2 percent Plane that the the prome 4 percent of constained the the prome 4 percent of constained to a percent of constained	6	Noble Metals	Ru, Rh, P	d, Mo, Tc, Co		
B Certum group C., Pu, Ng Table 3.12 EMPK Releases Into Containment Duration (Hours) 0.5 1.5 3.0 100 Nobie Gases* 0.05 0.25 0.01 Halogens 0.05 0.25 0.005 Relining coup 0 0.02 0.35 0.01 Nobie Gases* 0 0.0002 0.005 0.02 Ratiogens 0.05 0.025 0.005 0.02 Ratiogens 0.000 0.0025 0.005 0 Ratiogens 0.0005 0.0002 0.0005 0 Certum group 0 0.0002 0.0005 0 Carting roup 0 0.0002 0.0005 0 Carting group 0 0.0002 0.0005 0 Carting group release is 3 percent if long-term fuel cooling is maintoined. 1 1 <td>7</td> <td>Lanthanides</td> <td>La, Zr, No</td> <td>i, Eu, Nb, Pm,</td> <td></td> <td></td>	7	Lanthanides	La, Zr, No	i, Eu, Nb, Pm,		
Contra peop Contra peop Fabe 3.12 BWR Releases Into Containment* Gap Release*** Early In-Vessel Late In-Vessel Duration (Hours) 0.5 1.5 3.0 100 Noble Cases** 0.05 0.25 0.0 0 Halogens 0.05 0.23 0.01 Alkali Mentals 0.05 0.225 0.005 Barluro, Strontum 0 0.002 0.1 Noble Mentals 0 0.0025 0.0025 0 Rairuro, Strontum 0 0.0025 0.0025 0 Noble Mentals 0 0.0002 0 0 Noble Mentals 0 0.0002 0 0 Noble Mentals 0 0.0002 0 0 Certina group 0 0.0002 0.0005 0 Noble Mentals 0 0.0002 0.0005 0 Lanthanides 0 0.0002 0.0005 0 ** See Table 3.8 for a listing of the elements in each group ** Cap reliance 8 3 percent B long-term tiel cooling 5 maintained.	8	Cerium group	Pr, Sm, Y Ce Pu N	, Cm, Am		
Table 3.12 BWR Release** Early L-Vasse K-Vasse Late In-Vasse Duration (flours) 0.5 1.5 3.0 10.0 Nable Gases** 0.05 0.25 0.0 0 Halogens 0.05 0.20 0.03 0.01 Alkalia Mentais 0.05 0.20 0.05 0.005 Barium, Strontium 0 0.02 0.1 0 Certium group 0 0.0005 0.005 0 Lantandes 0 0.0005 0.005 0 ** See Table 3.8 for a lissing of the elements in each groups *** See Table 3.8 for a lissing of the clements in each groups ***	<u> </u>			ب ب		
Cap ReleaseEarly In-VesselEx-VesselEx-VesselLate In-VesselDuration (Hours)0.51.53.010.0Noble Cases**0.050.950.00.01Halogens0.050.250.300.01Alkali Meals0.050.250.0050.250.005Barlum, Strontium00.020.0100.050.25Noble Meals00.0020.00000Cerium group00.00020.00000Latthanides00.00020.00000** See: Table 3.86 rot selling of the elements in each group*** Gap release is 3 percent if long-term fuel cooling is maintained.*********		Table 3.12 BWR Rele	ases Into Cont	ainment*		
Duration (fdours) 0.5 1.5 3.0 10.0 Nobic Gases** 0.05 0.95 0 0 Halogens 0.05 0.25 0.30 0.01 Alkait Mentals 0.05 0.20 0.35 0.005 Barium, Stontium 0 0.62 0.005 0.005 Barium, Stontium 0 0.02 0.01 0 Noble Cases & 0 0.0005 0.002 0 0 Certium group 0 0.0005 0.005 0 Lanthanides 0 0.0002 0.05 0 **See Table S for a taising of the elements is each group **** Gap release is 3 percent if long-term fuel colling is maintained. ****		Gap Release*** Ear	rly In-Vessel	Ex-Vessel	Late In-Vessel	
Noble Gauss** 0.05 0.95 0 0 Halogens 0.05 0.20 0.35 0.01 Alkati Metals 0.05 0.20 0.35 0.005 Barium, Stronium 0 0.02 0.1 0 Noble Metals 0 0.025 0.005 0 Crium group 0 0.005 0.005 0 Lanthanides 0 0.0002 0.005 0 **See Table 3.8 for a listing of the elements in each group *** Gap release is 3 percent if long-term fuel cooling is maintained. ****	Duration (Hours)	0.5	1.5	3.0	10.0	
Halogens 0.05 0.23 0.00 Alkali Metals 0.05 0.25 0.005 Barium, Strontium 0 0.02 0.1 0 Noble Metals 0 0.0025 0.005 0 Lanthanides 0 0.00025 0.005 0 Values shown are fractions orce inventory. ••••••••••••••••••••••••••••••••••••	Noble Gases**	0.05	0.95	0	0	
Aikaii Metais 0.00 0.20 0.05 0.01 Tellurium group 0 0.02 0.1 0 Nobie Metais 0 0.0025 0.005 0 Cerium group 0 0.0002 0.005 0 Lanthanides 0 0.0025 0.005 0	Halogens	0.05	0.25	0.30	0.01	
Barium, Strontium00.020.10Noble Metals00.00250.00250Cerium group00.00050.0050Lanthanides00.00020.0050*** See Table 3.8 for a lising of the elements in each group*** Gap release is 3 percent if long-term fuel cooling is maintained.	Alkalı Metals	0.05	0.20	0.35	0.01	
Noble Metals 0 0.0025 0.002 0 Cerium group 0 0.00005 0.005 0 Lanthanides 0 0.0002 0.005 0 *Values shown are fractions of core inventory. **** Geap release is 3 percent if long-term fuel cooling is maintained.	Barium Strontium	0	0.05	0.25	0.005	
Cerium group 0 0.0005 0.005 0 Lanthanides 0 0.0002 0.005 0 	Noble Metals	0	0.0025	0.0025	0	
Lanthanides <u>0</u> 0.0002 <u>0.005</u> <u>0</u> • Values shown are fractions of core inventory. • * See Table 3.8 for a listing of the elements in each group • ** Gap release is 3 percent if long-term fuel cooling is maintained.	Cerium group	0	0.0005	0.005	0	
* Values shown are fractions of core inventory. ** See Table 3.8 for a listing of the elements in each group *** Gap release is 3 percent if long-term fuel cooling is maintained.	Lanthanides	0	0.0002	0.005	0	
	** See Table 3.8 for a li *** Gap release is 3 per	isting of the elements in cent if long-term fuel coo	each group oling is maintai	ned.		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 46	別紙 34	
JAVA 試験及び JAVA PLUS 試験の適用性について	JAVA 試験及び JAVA PLUS 試験の適用性について	
AREVA 征服のノイルタ 装直は、JAVA 武験及い JAVA PLUS 武験により、 夫機使用 余件を 考慮した 研究 やおかず また なー ていて - エロンズ - エロンズ	Framatome 社 (旧AREVA 社) 器のノイルタ装直は、JAVA 試験及び JAVA PLUS 試験により、 実地住田冬供た老虎」を研究検討学校など。てため、この社田に其ごを状況読またた。てい	
性能検証訊練を打つてわり、ての結果に基づき装置設計を打つている。JAVA 訊練及び JAVA PLUS	夫機使用来性を考慮した性能使証訊練を行うており、ての結果に基づき表直反計を行うてい て、実搬コールな状況については、使用を供において託完の性能が発展されてよるに、IAVA	
武映で使用したノイルタ装直は、ハンテュリノスル、金属ノイルタ、よう茶味去部及の装直内の	る。 夫機ノイルタ 装直については、使用条件において所たの性能が発揮されるように、 JAVA	
ガスの経路が表機を快援した装直となってわり、また、試験条件は依々なノブノトの運転範囲に	武 映 及 い JAVA PLUS 武 映 条 件 に 包 給 さ れ ら よ り に 設 計 さ れ し い る。	
<u>対応できる広範囲の</u> 試験を11つていることから, 谷試験で侍られた結果は, 夫機の性能快証に適 田でたてたのし来きて		
出てきるものと考える。 ナード国 FDDI (電力研究託) が中とした。 て行った ACE 計験に oL) てけ、ADEVA 批制のフィ	ACE 計験は、业団 EDDI (電力由点研究託) お由とした、アケーた ACE ンドママカンゴンし	
一方, 木国 EPRI (電力研究所) か中心となって行った ALE 試験については, AREVA 社製のノイ	ALE 試験は、木国 EPRI (電力中央研究所) か中心となって行った ALE シビブブクシテント	
ルタ装直についても性能試験を美施しているか、試験条件等の詳細が開示されていないことが		
<u> ら, 東海第一発電所のフィルタ装置の性能検証には用いていない。</u>	これらの試験について、実機フィルタ装置とのスケール適用性について以下に示す。	
	性能検証試験の概要	
 JAVA 試験の概要 	(1) JAVA 試験	
	JAVA 試験は, Framatome 社(旧 AREVA 社)により, ドイツのカールシュタインにある大規	・記載方針の相違
	JAVA 試験では,実機の想定事象における種々のパラメータ(圧力・温度・ガス流量等の	
	タ装置の使用条件において所定の性能が発揮されることを確認している。	
JAVA 試験で使用したフィルタ装置は,高さ m,直径 mの容器の中に,実機	図1に実機フィルタ装置と試験フィルタ装置の比較を示す。試験フィルタ装置は、高さ約	
と同形状のベンチュリノズルと、実機と同一仕様の金属フィルタ	m,直径約 mの容器の中に,実機と同形状のベンチュリノズル(),	
<u>を内蔵している。</u>	 及び実機と同構造の金属フィルタを内蔵している。	
また、これら試験のフィルタ装置に流入したベントガスは、ベンチュリスクラバ、気相部、	また,これら試験のフィルタ装置に流入したベントガスは,ベンチュリスクラバ,気相部,	
金属フィルタ、流量制限オリフィスの順に通過し、装置外部へ放出される経路となっており、	金属フィルタ,流量制限オリフィスの順に通過し,装置外部へ放出される経路となっており,	
実機と同じ順に各部を通過する。	実機と同じ順に各部を通過する。	
(2) JAVA PLUS 試験の概要	(2) JAVA PLUS 試験	
JAVA PLUS 試験設備は、実規模を想定した有機よう素の除去性能を確認するため、JAVA 試	JAVA PLUS 試験は, 実規模を想定した有機よう素の除去性能を確認するため, Framatome	
験で使用したフィルタ装置に,実機と同一仕様(同一材質,同一充填率)の銀セオライト(ベ	社(旧 AREVA 社)により、JAVA 試験施設を改造した施設にて実施された。	
ッド厚さ mm)を追加設置している。	JAVA PLUS 試験では、実機と同仕様の銀セオライトを充填したフィルタを設置し、有機よ	
	う素の除去性能試験を実施している。	
フィルタ装置に流入したベントガスは、ベンチュリスクラバ、気層部、金属フィルタ、流量	フィルタ装置に流入したベントガスは、ベンチュリスクラバ、気相部、金属フィルタ、流	
制限オリフィス、よう素除去部(銀ゼオライト)の順に通過し、装置外部へ放出される経路と	量制限オリフィス, <u>銀セオライトフィルタ</u> の順に通過し,装置外部へ放出される経路となっ	
なっており、実機と同じ順に各部を通過する。	ており、実機と同じ順に各部を通過する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(3) ACE試験の概要 AREVA社製のフィルタ装置は,各国のフィルタメーカ等が参加したACE試験においても試験が 行われ,エアロゾル及び無機よう素の除去性能について確認されている。 第1図に試験設備の概要を,第1表に試験条件及び結果を示す。 ACE試験で使用したフィルタ装置は,高さ m,直径 mの容器の中に,実機と同じ ベンチュリノズル ((3) ACE 試験 ACE 試験は, EPRI が中心となって行った ACE シビアアクシデント国際研究 アロゾル及び無機よう素の除去性能検証試験が実施された。 図2に実機フィルタ装置と試験フィルタ装置の比較を示す。 試験フィルタ装置は, 高さm, 直径mの容器の中に, 写 ベンチュリノズル()と, 実機と同構造(同一金属メッシュ構造,同一 属フィルタを内蔵している。 なお, ACE 試験の試験装置の詳細な仕様, 試験条件及び試験結果は, EPRI 2 社(旧 AREVA 社)の知的財産(Intellectual Property)として開示が不可能で フィルタ装置の設計及び性能検証には使用しない。
(4) スケール性の確認	(4) スケール性の確認
JAVA 試験, JAVA PLUS 試験のスケール性を確認することで,実機への適用性を確認する。 第2図に実機と JAVA 試験装置(JAVA PLUS 試験でも同一の容器を使用)及び参考に ACE 試験 装置の主要寸法の比較を示す。	JAVA 試験, JAVA PLUS 試験のスケール性を確認することで,実機への適用 図2に実機と JAVA 試験装置 (JAVA PLUS 試験でも同一の容器を使用)及び参 装置の主要寸法の比較を示す。
東海第二発電所のフィルタ装置は高さ約 10m, 直径約 5m であり, JAVA 試験及び JAVA PLUS 試験のフィルタ装置よりも大きいが,フィルタ装置の構成要素及びベントガス経路の同一性か ら JAVA 試験及び JAVA PLUS 試験にて使用したフィルタ装置は実機を模擬したものとなってい ると言える。	試験フィルタ装置へ流入したガスは,装置の下端に設置されたベンチュリ し,上部に設置された金属フィルタ,その後段に設置された銀ゼオライトつ PLUS 試験のみ)へ流れる構成であり,実機と同様の構成となる。
JAVA 試験及び JAVA PLUS 試験の条件と実機運転範囲の比較を第2表に示す。実機はベンチ ユリノズル(個数: □個)と金属フィルタ(表面積: □m ²)を内蔵しており,重大事故 等時にベントを実施した際のベンチュリノズルスロート部流速及び金属フィルタ部流速が JAVA 試験で除去性能を確認している範囲に包絡されるよう設計している。JAVA 試験において 得られたベンチュリノズルスロート部における速度に対する除去係数を第3図,金属フィルタ 部における速度に対する除去係数を第4図に示す。ベンチュリスクラバと金属フィルタを組み 合わせた試験において,ベンチュリノズルスロート部流速及び金属フィルタ部流速が変化した 場合においても除去係数は低下していない。	フィルタ装置の性能に影響を与える可能性のある主要なパラメータとして げられるが、ベンチュリノズルのガス流速を試験で確認された範囲内となる ベンチュリノズルの個数を設定していることから、ベンチュリノズルの個数 影響はない。また、実機の金属フィルタの表面積についても、金属フィルタ を試験で確認された範囲内となるように設定していることから、金属フィルタ 違いによる影響はない。JAVA 試験及び実機における物理パラメータと試験多 ンチュリノズル部及び金属フィルタにおけるガス流速に対する除去係数を図
また, JAVA PLUS 試験で用いた銀ゼオライトのベッド厚さは mm であり, 実機(mm) に対して薄いが, これは JAVA PLUS 試験結果に基づき滞留時間を確保するために実機のベ ッド厚さを厚くしていることから, JAVA PLUS 試験結果を適切に実機に適用していると言える。 JAVA 試験及び JAVA PLUS 試験の実機への適用性についてまとめたものを第3表に示す。	実機の銀ゼオライトフィルタについては、JAVA PLUS 試験で得られた試験 想定されるよう素量を捕集するためベントガスが適切な滞留時間となるよう トの充填量を設定している。 以上より、試験の実機への適用性は確保できていると考えられる。 表3に JAVA 試験及び JAVA PLUS 試験の実機への適用性について、構成要素

	備考
2計画の中でエ	
実機と <u>同形状の</u> −充填率)の金	
及び Framatome あることから、	
性を確認する。 ≷考に ACE 試験	
リノズルを経由 フィルタ(JAVA	・設備の相違
 Cガス流速が挙 5ように実機の なの違いによる 内のガス流速 レタの表面積の 条件を表2, べ 13, 4に示す。 	
結果に基づき, うに銀ゼオライ	
別にまとめる。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(5) 評価	(5) 評価	
以上より, JAVA 試験及び JAVA PLUS 試験のスケール性については性能に影響する範囲につ	以上より, JAVA 試験及び JAVA PLUS 試験のスケール性については性能に影響する範囲に	
いて実機を模擬できていると評価できる。これらの試験は実機の使用条件についても模擬でき	ついて実機を模擬できていると評価できる。これらの試験は実機の使用条件についても模擬	
ており、試験結果を用いて実機の性能を評価することが可能であると考える。	できており、試験結果を用いて実機の性能を評価することが可能であると考える。	
第1図 ACF計 1 の 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	NACE 試験の設備概要	

 備考

			東海第二	二発電所	(2018. 9. 18 版)				島根	原子力発	電所 2 号炉	備考
<u>第3表 JAVA試験, JAVA PLUS試験の実機への適用性</u>		表3 実機に対する JAVA 及び JAVA PLUS 試験装置の適用性のまとめ										
			相違点	ĩ					相違	-		
構成專	要素	有	JAVA	実機	適用性	構成	要素	有 無	JAVA (PLUS)	実機	適用性	
	高さ	<u></u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	(PL05)	約 10m	試験装置と実機で高さと直径が異なることで,空間部のの変積が異たるが、空間部はベンチュリスクラバや全						 ・試験フィルタ装置へ流入したガスは、ベンチュリノ ズルを経由し、金属フィルタ、後段に設置された銀 	
容器	直径	有		約 5m	属フィルタに比べ	全体	構成	無	_	-	セオライトフィルタ (JAVA PLUS 試験のみ) へ流れ る構成であり,実機と同様の構成である。	
	構造	無	_	_	試験装置は実機と同一形状(寸法)のベンチュリノズ ルを使用している。	(基数を	含む)				がスクラバ容器の外に設置されている。 ・実機では、同一のスクラバ容器を4基並列に設置す	
ベンチュリ ノズル					実機のベンチュリノズルスロート部の流速が, JAVA 試験で確認されている流速の範囲内となるよう, ベン			有	_	_	るが、ベントガスは均等に分配されるよう設計して いるため、分離設置による影響はない。	
	個数	有			チュリノズルの個数(詳細設計により変更の可能性あ り)を設定している。		高さ	無	約 m	約 m	 ・試験装置と実機は、同じ高さの容器を使用している。 	
	構造	無	_	_	試験装置は実機と同一使用 の金属フィルタを使用している。	スクラバ 容器	bler		約 m ²	約	・ベンチュリノズル部においてエアロゾル及び無機よ う素の大部分を捕集するため、断面積の違いによる	
金属 フィルタ	表面積 (個数)	有			実機の金属フィルタ部の流速が, JAVA 試験で確認され ている流速の範囲内となるよう, 金属フィルタの表面		断面積	有	又は 約 m ²	m ²	影響は小さい。なお、ベンチュリノスル 1 個あたり の断面積は,実機が約 m ² , JAVA 試験が約 m ² () 又は約 m ² () である。	
	薬剤	無	_	_	積を設定している。 試験装置と実機は同じ薬剤を使用している。		構造	無	_	_	・試験装置と実機は同一形状(寸法)のベンチュリノ ズルを使用している。	
スクラビン グ水	水位	有	*	*	実機の水位は試験装置の水位よりも高い。 JAVA 試験の水位を変化させた試験において,除去効率 に変化が無いことが確認されていることから,水位の 違いによる影響はない。	ベンチュリ ノズル	個数	有			 ・実機のベンチュリノズルの個数は、ベンチュリノズルのガス流速を試験で確認された範囲内となるように設定していることから、ベンチュリノズルの個数の違いによる影響はない。 	
	吸着材	無	_	_	試験装置は実機と同じ吸着材(銀ゼオライト)を使用 している。						 ・実機のガス流速は約 m/s であり, JAVA 試験のガス流速は m/s である。 	
	厚さ	有			JAVA PLUS 試験ではベッド厚さが実機に比べて薄い が,実機は試験結果を基に滞留時間を確保するために	公尾	構造	無	_	-	 ・試験装置と実機は同一仕様()の金属フィルタを使用している。 ・実機の金属フィルタの表面積は、金属フィルタ内の 	
よう素 除去部					厚くなっていることから,試験結果を適切に実機に適 用していると言える。	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	表面積	有	約 m ² ()	m ²	ガス流速を試験で確認された範囲内となるように 設定していることから,金属フィルタの表面積の違	
	配置	有	容器外側	容器内側	JAVA PLUS 試験ではノイルタ装直の外により素味去部 が配置されたが、実機では容器の中に配置される。よ う素除去部の放熱は、外部に配置される試験の方が厳		薬剤	無		_	 いによる影響はない。 ・試験装置と実機は同じ薬剤を使用している。なお, 実機の pH は,試験で確認された性能を十分発揮で 	
					 し、なるに⁽⁴⁾, JAVA PLUS 試験は株寸的な案件で美施 されていると言える。 ※適用性の欄に相違内容を記載 	スクラビング 水	*	有	*	*	きるよう,高アルカリに設定している。 ・試験では,ベンチュリノズル頂部近傍の水位におい て所定の性能が発揮できることを確認しているた	
							吸着剤	無			め、水位の違いによる影響はない。 ・試験装置と実機は、同仕様の吸着材(銀ゼオライト)	
						銀セオフイ 容器	厚さ	有	約mm	約 mm	 を使用している。 ・ベントガスが適切な滞留時間となるように銀ゼオラ イトの充てん量を設定している。 	
						※適用性の欄に	相違点を記載	戓	I	ı		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(6) ベンチュリスクラバ及び金属フィルタにおける除去係数	(6) ベンチュリスクラバ及び金属フィルタにおける除去係数	
AREVA社製のフィルタ装置は、ベンチュリスクラバ及び金属フィルタを組み合わせることに	<u>Framatome 社(旧 AREVA 社)製</u> のフィルタ装置 <u>(スクラバ容器)</u> は、ベンチュリスクラバ	
より、所定の除去性能(DF)を満足するよう設計されている。エアロゾルに対する除去効率	及び金属フィルタを組み合わせることにより,所定の除去性能(DF)を満足するよう設計さ	
は、ベンチュリスクラバと金属フィルタを組み合わせた体系で評価を行っており、JAVA試験結	れている。	
果では、試験を実施した全域にわたってDF1,000以上を満足していることを確認している。	スクラバ容器におけるエアロゾルに対する除去効率は、ベンチュリスクラバと金属フィル	
	タを組み合わせた体系で評価を行っており, JAVA 試験結果では, 試験を実施した全域にわ	
JAVA試験ではベンチュリスクラバ単独でのエアロゾル除去性能を確認している試験ケース	たって DF1,000 以上を満足していることを確認している。	
もあり,実機運転範囲のガス流速において,ベンチュリスクラバ単独でもDF 🗌 以上と評価	JAVA 試験ではベンチュリスクラバ単独でのエアロゾル除去性能を確認している試験ケー	
される。ベンチュリスクラバ単独でのエアロゾル除去性能を第4表に示す。	スもあり,実機運転範囲のガス流速において,ベンチュリスクラバ単独でも DF以上と	
ベンチュリスクラバによるエアロゾル除去の主な原理は慣性衝突効果であり, 一般的にガス	評価される。ベンチュリスクラバ単独でのエアロゾル除去性能を表4に示す。	
流速が大きい方が除去効率は高く、ガス流速が小さい方が除去効率は低くなることから、実機	ベンチュリスクラバによるエアロゾル除去の主な原理は慣性衝突効果であり, 一般的にガ	
運転範囲以下のガス流速におけるベンチュリスクラバ単独での除去性能は,実機運転範囲と比	ス流速が大きい方が除去効率は高く、ガス流速が小さい方が除去効率は低くなることから、	
較して低下することが見込まれるが、後段の金属フィルタによる除去により、スクラバ容器全	実機運転範囲以下のガス流速におけるベンチュリスクラバ単独での除去性能は,実機運転範	
体としては試験を実施した全域にわたって要求されるDF1,000以上の除去性能を満足してい	囲と比較して低下することが見込まれるが、後段の金属フィルタによる除去により、スクラ	
ると考えられる。	バ容器全体としては試験を実施した全域にわたって要求される DF1,000 以上の除去性能を	
	満足していると考えられる。	
第4表 ベンチュリスクラバ単独でのエアロゾル除去性能	表4 ベンチュリスクラバ単独でのエアロゾル除去性能	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(参考)性能検証試験に係る品質保証について	(参考1)性能検証試験に係る品質保証について	
フィルタ装置の放射性物質除去性能は,JAVA試験及びJAVA PLUS試験で用いたベンチュリノズ	フィルタ装置の放射性物質除去性能は, JAVA 試験及び JAVA PLUS 試験で用いたベンチュリ	
ル,金属フィルタ及び銀ゼオライトと同じ仕様・構造のものを,IS09001等に適合した品質保証	ノズル,金属フィルタ及び銀ゼオライトと同じ仕様・構造のものを,IS09001 等に適合した品	
体制を有するAREVA社において設計・製作することにより、JAVA試験及びJAVA PLUS試験と同じ性	質保証体制を有する Framatome 社 (旧 AREVA 社) において設計・製作することにより, JAVA	
能を保証する。	試験及び JAVA PLUS 試験と同じ性能を保証する。	
(1) 性能保証	(1) ベンチュリノズル	
フィルタ装置に設置するベンチュリノズル,金属フィルタ及び銀ゼオライトは,AREVA社試	ベンチュリノズルの性能試験は、発注単位毎に %の抜取にて行われる。試験ノズル1	
験(JAVA試験, JAVA PLUS試験)で用いた金属フィルタ, ベンチュリノズル及び銀ゼオライト	個に対して同じ試験を回実施した上で、大きな差異がないことを確認している。	
と同じ仕様・構造とする。また、ベンチュリノズル及び金属フィルタは、単体性能試験により	(2) 金属フィルタ	
性能を確認している。	金属フィルタは製品毎に性能試験を実施している。	
これに加えて、ベンチュリノズル、金属フィルタ及び銀ゼオライト(よう素除去部)の運転	<u>(3) 銀ゼオライト</u>	
範囲は、AREVA社試験で確認している範囲内で運転されるよう格納容器圧力逃がし装置を設計	銀ゼオライトの性能試験は、納入品と同一のロット番号のものによる性能試験を実施して	
I James	M.J.	
	<u>以上(1)~(3)より,個別の単体性能試験を評価しており,実機についても JAVA 試験, JAVA PLUS</u>	
	試験結果と同じ性能が出ることを確認している。	
(2)_ <u>AREVA社</u> 品質保証体制	▶ <u>Framatome社(旧AREVA社)</u> 品質保証体制	
ベンチュリノズル、金属フィルタ及び銀ゼオライトフィルタを製作するAREVA社は、フィル	ベンチュリノズル,金属フィルタ及び銀ゼオライトフィルタを製作するFramatome社(旧	
タベントシステム納入実績を多数有しており,原子力プラントメーカとして下記の品質保証体	AREVA社)は、フィルタベントシステム納入実績を多数有しており、原子力プラントメーカと	
制を有している。	して下記の品質保証体制を有している。	
・フィルタベントシステムの性能保証するAREVA社は、品質管理システムとしてISO9001を	・フィルタベントシステムの性能保証する <u>Framatome社(旧AREVA社)</u> は,品質管理システム	
2008年にSGS社から取得している。また,世界中の顧客要求品質要求に対応できるよう,	としてIS09001を2008年にSGS社から取得している。また,世界中の顧客要求品質要求に対	
ASME NPT, N.S Stamp, KTA1401, 1408, RCCM, RCC-E, EN ISO9001などの認証も取得して	応できるよう, ASME NPT, N.S Stamp, KTA1401, 1408, RCCM, RCC-E, EN ISO9001などの	
いる。	認証も取得している。	
・ <u>AREVA社</u> は、システム設計・製作に際し、品質保証含めてプロジェクトを横断的に管理す	・ <u>Framatome社(旧AREVA社)</u> は、システム設計・製作に際し、品質保証含めてプロジェクト	
る部門を設置しており、技術要求仕様、品質要求仕様を指示し製作仕様に盛り込む体制が	を横断的に管理する部門を設置しており、技術要求仕様、品質要求仕様を指示し製作仕様	
整えられている。	に盛り込む体制が整えられている。	
・ <u>AREVA社</u> は,原子力製品のエンジニアリング及びプロジェクト管理を世界レベルで展開し	・ <u>Framatome社(旧AREVA社)</u> は、原子力製品のエンジニアリング及びプロジェクト管理を世	
ている。また,各種品質管理手順に従い外注先の品質管理を実施している。	界レベルで展開している。また、各種品質管理手順に従い外注先の品質管理を実施してい	
	る。	
	<u>また,Framatome社(旧AREVA社)は海外での先行FCVS実績を多数有している。納入実績を表</u>	・資料構成の相違
	<u>1に示す。</u>	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	表 1 Framatome 社 (旧 AREVA 社)のフィルタベント納入実績	・資料構成の相違
	Country Name Type Status Since	
	Germany	
	Finland	
	Switzerland Netherlands	
	Korea, RO Canada	
	Bulgaria	
	P. R. China	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(参考2)隣接するベンチュリノズルから噴出されるガスの相互影響について	・記載方針の相違
	ベンチュリノズルは、分配管に対して直行する向きに設置されており、ノズル上部に設けた1	
	本あたり2ヶ所の噴出口から、ベントガスを水平下向きに噴き出す。その噴出口を隣接するベン	
	チュリノズルに向けないことで、隣接するベンチュリノズルに影響を与えない設計としている。	
	ベンチュリノズルの配置図を図1に示す。	
	なお、JAVA 試験において、2本の隣接するベンチュリノズルを設置した試験を実施した結果、	
	1本の場合と比較して有意な性能差は見られず、試験を実施した全域にわたって、DF1,000以上	
	の原去効率が待られている。ハンテュリノスル部にわけるカス流速に対する原去係数を図るに示	
	9 o	
	図1 ベンチュリノズルの配置図	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
東海第二発電所 (2018.9.18版) 100000 [1] 10000 100 1	島根原子力発電所 2号炉 Venturi Velocity, [m/s] 図2 ベンチュリノズル部におけるガス流速に対する除去係数 84版	備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
別紙 47	
格納容器圧力逃がし装置格納槽内における漏えい対策について	<u>第1ベントフィルタ格納槽</u> 内における漏えい対策について

格納容器圧力逃がし装置の各設備については、スクラビング水の性状(高アルカリ性)と重 大事故等時に放出される放射性物質の捕集・保持(汚染水の貯蔵)を達成するよう、構造材に は耐食性に優れた材料を選定し、重大事故等時の使用環境条件及び基準地震動Ssに対して機 能維持するような、構造設計としている。また、フィルタ装置内のスクラビング水は移送ポン プによりサプレッション・チェンバ等に移送することとなるが、これらの設備についても漏え いし難い構造としている。

第1図に排水設備の構成を,第1表に各部位の設計上の考慮事項を示す。

格納容器フィルタベント系の各設備については、スクラビング水の性状(高) 重大事故等時に放出される放射性物質の捕集・保持(汚染水の貯蔵)を達成す には耐食性に優れた材料を選定し、重大事故等時の使用環境条件及び基準地震 機能維持するような、構造設計としている。また、フィルタ装置内のスクラビン ンプによりサプレッション・チェンバ等に移送することとなるが、これらの設備 えいし難い構造としている。

図1に排水設備の構成を,表1に各部位の設計上の考慮事項を示す。

	備考
別紙 18	
マット1144) 1.	
アルカリ性)と	
るよう、構造的 動S。に対して	
ング水は移送ポ	
備についても漏	
の槽 「「「」」	
	・設備の相違

島根原子力発電所 2号炉	備考
表1 各部位の設計上の考慮事項	・設備の相違
部位設計考慮内容移送ポンプ (キャンドポン・高温,高アルカリ性,放射線を考慮し,耐食性に優 れたステンレス鋼を採用することで,健全性を確保する。プ)・シール部に使用するパッキンについては,温度・圧力・放射線の 影響を考慮して,黒鉛を採用する。 ・軸封部は密閉され,漏えいしない構造とする(図2参照)。	
 配管・弁 ・高温,高アルカリ性 ,放射線を考慮し,耐食性に優れたステンレス鋼を採用することで,健全性を確保する。 ・配管,弁の接続部は原則溶接構造とし,漏えいのリスクを低減した設計とする。また,「発電用原子力設備規格 設計・建設規格」の規定を適用して設計するとともに,基準地震動Ssに対して機能を維持するよう設計する。 ・フランジ接続部や弁のグランド部には,温度・圧力・放射線の影響を考慮して,黒鉛を採用する。 	
	出版原子功発電所 2号炉

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(1) 格納容器圧力逃がし装置格納槽の設計上の考慮	(1) <u>第1ベントフィルタ格納槽</u> の設計上の考慮	
フィルタ装置を設置する地下構造の格納容器圧力逃がし装置格納槽は,鉄筋コンクリート造	格納容器フィルタベント系を設置する地下構造の第1ベントフィルタ格納槽は,鉄筋コン	
の地中構造物で岩盤上に設置し,基準地震動Ssに対し機能維持するよう構造設計をしている。	クリート造の地中構造物で岩盤上に設置し、基準地震動S _s に対し機能維持するよう構造設	
万一 <u>,フィルタ装置</u> 外にスクラビング水が漏えいした場合 <u>を想定し,早期に検出できるよう</u>	計し,設計・製作・検査により,スクラビング水の漏えい防止を図ることとしているが,万	
格納容器圧力逃がし装置格納槽内に検知器を設置する。また、樹脂系塗装等により格納容器圧	一 <u>スクラバ容器外</u> にスクラビング水が漏えいした場合 <u>でも,漏えいの早期検出や構造的に漏</u>	
力逃がし装置格納槽内部の想定水没部を防水処理することにより、構造的に漏えいの拡大が防	えいの拡大が防止できる設計とする。具体的には,スクラバ容器を設置している第1ベント	
止できる設計とする。なお、格納容器圧力逃がし装置格納槽の貫通部は、想定水没部以上の位	フィルタ格納槽(鉄筋コンクリート造)内への漏えい水滞留箇所(溜めマス)及び漏えい検	
置にあり、貫通部からの外部への漏えいのおそれのない設計となっている。	知器の設置,格納槽のコンパートメント化(樹脂系塗装等による想定水没部の防水処理)を	
	行う。第1ベントフィルタ格納槽の貫通部は,図4に示すとおり想定水没部以上の位置にあ	
	り、貫通部から外部への漏えいの恐れのない設計となっている。	
(2) 漏えい時等の対応	(2) 漏えい時等の対応	
格納容器圧力逃がし装置の各設備については,スクラビング水の漏えいを防止する設計とす	漏えいしたスクラビング水は、第1ベントフィルタ格納槽から排水が可能な構成とする。	
るが、万一、フィルタ装置外にスクラビング水が漏えいした場合を想定し、早期に検出できる	第1ベントフィルタ格納槽は、図5に示すとおりベントフィルタ室(排水ポンプエリア),	
よう格納容器圧力逃がし装置格納槽内に検知器を設置する。	移送ポンプエリア,計器室で構成され,計器エリア及び移送ポンプエリア内で万一,漏えい	
格納容器圧力逃がし装置格納槽内における漏えい水は、格納容器圧力逃がし装置格納槽内の	が発生した場合には、側溝を介してベントフィルタ室の溜めマスへ排水できる構造となって	
排水枡へ収集され, 排水ポンプにより格納容器圧力逃がし装置格納槽から移送できる設計とす	おり,常設の排水ポンプによりサプレッション・チェンバもしくは外部へ排出できる構成と	・設計の相違
る。移送先は廃棄物処理設備である廃液中和タンク及びサプレッション・チェンバのいずれに	している。	排出先が異なる
も送れる設計とし、排水の種別に応じ送水先を選択する。		
	排水ポンプが使用できない場合は, ベントフィルタ室上部のハッチより可搬のポンプを搬入	・記載方針の相違
	して外部へ排出する。また、漏えいを早期に検知できるようベントフィルタ室に漏えい検知	
	器を設置し、その警報を中央制御室に発報するとともに、状況に応じた排水が可能な構成と	
	している。	
具体的には,放射性物質を含まない場合は <u>廃液中和タンク</u> ,放射性物質を含む場合はサプレ	具体的には,放射性物質を含まない場合は <u>外部</u> ,放射性物質を含む場合はサプレッショ	・設計の相違
ッション・チェンバにそれぞれ移送する。	ン・チェンバにそれぞれ移送する。	排出先が異なる
第2表に排水ポンプの仕様を,第3図に排水設備系統概略図を,第4図に格納容器圧力逃が	表2に排水ポンプの仕様を、図3に排水設備系統概略図を、図4に <u>第1ベントフィルタ格</u>	
し装置格納槽断面図を示す。	納槽断面図を示す。	
<u>第2表</u> 排水ポンプ仕様	表2 排水ポンプ仕様	・設備の相違
型式:水中ポンプ	型式:水中ポンプ	
容量:約10m ³ /h	容量:約2m ³ /min	
揚程:約 40m	揚程:約 50m	
台数:1	台数:1	
駆動源:電動駆動(交流)	駆動源:電動駆動(交流)	

	備老
	حر بب ار
冯	
高さ	
の関係	 ・設備の相違
側溝	
溜めマス	
設置場所	
	・設備の相違

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(<u>3</u>) 担 第 室の 容器 エン レッ る。 ベ	排水ポンプを使用した場合の移送 第1ベントフィルタ格納槽内で漏えいが発生した場合には、側溝を介してベントフィルタ の溜めマスに排水できる構造としているため、排水ポンプを用いて漏えい水を原子炉格納 器内(サプレッション・チェンバ)等に移送する。原子炉格納容器(サプレッション・チ ンバ)への移送においては、常設配管を経て移送するが、排出先が原子炉格納容器(サプ ッション・チェンバ)以外の場合には、外部接続口から移送先の間は可搬ホースを使用す ベントフィルタ室から排水ポンプを用いた移送経路の概要図を図6に示す。	・記載方針の相違
様式 Participants 構成 での 中 して して して して して して して して して して	Image: state s	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(4) 可搬型ポンプを使用した場合の移送 排水ポンプを使用した漏えい水の移送ができない場合は、可搬型ポンプ(水中ポンプ)を ベントフィルタ室上部のハッチより投入し、外部へ移送する。 発電所内に配備しているクレーン車によりハッチを開けて、可搬型のポンプを搬入する。 ベントフィルタ室から可搬型ポンプを用いた移送経路の概要図を図7に示す。ベントフィ ルタ室上部のハッチから可搬型ポンプを投入するルート図を図8に示す。	・記載方針の相違
	<complex-block></complex-block>	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	$\begin{array}{c} 24600 \\ \hline \\ 09 \\ 09$	
	<image/> <image/>	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 48	別紙4	
格納容器フィルタベント設備隔離弁の人力操作について	格納容器フィルタベント系隔離弁の人力操作について	
<u>格納容器フィルタベント設備</u> の隔離弁は、中央制御室からの操作ができない場合には、現場の	格納容器フィルタベント系の隔離弁は、中央制御室からの操作ができない場合には、現場の隔	
隔離弁操作場所から遠隔人力操作機構を介して弁操作を実施する。ベントに必要な弁の位置と操	離弁操作場所から遠隔手動弁操作機構を介して弁操作を実施する。ベントに必要な弁の位置と操	
作場所について、第1図に示す。	作場所について、図1に示す。	
ベントは,第一弁より開操作を実施し,第一弁が全開となったのちに第二弁の操作を実施し,		・設備の相違
ベントガスの大気への放出が開始されるため、第二弁操作室を設ける。第二弁操作室は、弁の人		被ばく評価結果の相違によ
力操作に必要な要員を収容可能な遮蔽に囲まれた空間とし、空気ボンベユニットにより正圧化		り、第二弁操作室が不要なた
し,外気の流入を一定時間完全に遮断することで、ベントの際のプルームの影響による操作員の		め記載不要
被ばくを低減する設計とする。		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
第Ⅰ凶 隔離开の操作場所 (1/3)	図1	
第1凶 隔離弁の操作場所 (2/3)	図2 格納容器フィルタベント系 弁の設置位置(その2)	

	東海第二発電所 (2018.9.18版)		島根原子力発電所 2号炉
			図3 格納容器フィルタベント系 弁の設置位置(その3)
l	第1図 隔離弁の操作場所 (3/3)		
		ľ	図4 格納容器フィルタベント系 弁の設置位置(その4)

備考

東海第二発電所 (2018	8.9.18版)		島根原子	力発電所 2号炉		備考
(1) 電動駆動弁の遠隔人力操作機構の概要		(1) 遠隔手動弁	操作機構			
 脇錐弁の操作軸にフレキシブルシャフトを接続し、二次格納施設外まで延長し、端部にハンドル又は遠隔操作器を取り付けて人力で操作できる構成とする。フレキシブルシャフトは直線に限らずトルクが伝達可能な構造とし、容易に操作できるよう設計する。フレキシブルシャフト トの一部は、隔離弁の付近に設置されることから、設備の使用時には高温、高放射線環境が想定されるが、機械装置であり機能が損なわれるおそれはない。 なお、フレキシブルシャフトを取り外し、ハンドルを取り付けることにより、弁設置場所での操作も可能である。 遠隔人力操作機構の模式図を第2図に、ベントに必要な隔離弁の遠隔人力操作機構の仕様について第1表に示す。 			の操作軸にフレキシブルシ 端部にハンドルを取り付け 「線に限らずトルクを伝達 は計している。また,原子炉 「バッテリーを接続するこ プリングユニット部のフ 会置場所での操作も可能 「な隔離弁の遠隔人力操作	ャフトを接続し,原子炉建 けて人力で操作できる構成 可能な構造とし,操作に必 戸建物付属棟(二次格納施調 とによる操作も可能として レキシブルシャフトを取外 である。遠隔手動弁操作機 機構の仕様について表1に	 物付属棟(二次格納施設外) としている。フレキシブル 要なトルクは,容易に回転 安外)の操作場所において, いる。 し,ハンドルを取付けるこ 構の模式図を図5に示す。 示す。 	
<image/> <complex-block></complex-block>	こ次格納施設 貫通部 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
			図5 遠隔手	動弁操作機構の模式図		
<u>第1表</u> ベントに必要な隔離弁の返	遠隔人力操作機構の仕様 施一なアンジ	, _[表1 ベントに必要な	隔離弁の遠隔人力操作機構	<u>構め仕様</u>	・設備の相違
弁名称 第一弁(S/C側) 第一弁 (口径) (600A) ((D/W側)第二弁及び(600A)(450A)	弁名称(呼び径)	第一弁(W/W側) (600A)	第一弁 (D/W側) (600A)	第二弁及び 第二弁バイパス弁 (400A)	
フレキシブル シャフト長さ 約12m 糸	約 25m 約 15m	フレキシブル シャフト長さ	約 23m	約 27m	約 22, 23m	
ハンドル 回転数約 2,940 回約 2	2,940回約1,989回	ハンドル回転数	約 4,000 回	約 4,000 回	約 700 回	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(2) 遠隔人力操作機構のモックアップ試験	<u>b. モックアップ試験</u>	
フレキシブルシャフトを介した遠隔人力操作機構の成立性及び操作時間を 500A のバタフラ	遠隔手動弁操作機構の成立性及び操作時間をモックアップ試験により確認した。モックア	
イ弁を用いたモックアップ試験により確認した。モックアップ試験の概要を第3図に示す。	ップ試験装置にはベント弁と同構造の 500A のバタフライ弁を用いており,フレキシブルシ	
モックアップ試験の結果,弁上流側に格納容器圧力2Pdに相当する圧力(620kPa [gage])	ャフトの長さは約 33m,曲げ箇所は 11 箇所としてベント弁の遠隔手動弁操作機構の条件を	
がかかった状態であっても、フレキシブルシャフトを介した遠隔手動操作が可能なことを確	可能な限り模擬した。	
認した。また,弁の操作要員は3名で約82回/分の速度にてハンドル操作が可能なことを確	モックアップ試験は,格納容器圧力2Pd (853kPa[gage])の差圧をかけて実施した。また,	
認した。モックアップ試験の結果を第2表に示す。	燃料破損後のベント操作を想定し、セルフエアーセット、タングステンベスト及びタイベッ	
	<u>ク等を着用し,操作員2名が交替しながら弁操作を実施した。</u>	
診験の仕田たに時した。いたしたび再た頃が分のないたり根が吐用た塗りまたこ よ	アルカマルデキ政制度のための「アルカマルデキ政が用たすのに二十	
試験の結果を反映したハントに必要なII 解離井のハントル操作時間を用る表に示す。	エックアップ会上の販売なが大きい第1会($W21745.6004$)は場体上ルクな同等よ大	、次約株式の担告
	<u> エックノッノ</u> ポより呼び (全か入さい 第1 升 (MV217-4, 5:000A) は 操作 $F / V / 2 $ の 寺 $2 $ 9 ス た め 問 又 け 問 場 佐 に 約 4000 同 転 じ 亜 ト か ス が エ ッ ク ア ッ プ 封 除 妹 思 に 今 欲 な 目 て 場	・ 賃料 伸成の 相连
	るため、開又は闭採作に対4000回転必要となるか、モックアック試験結末に未裕を見て傑 作連度を 80 回/分以上とした場合でも、1時間半以内で開又け閉場作可能であると評価で	
なお、東海第二ではフィルタベントを使用する際の系統構成(他系統との隔離及びベント	<u>こ >。</u> なお、島根2号炉ではフィルタベントを使用する際の系統構成(他系統との隔離及びベン	
操作)において、AO 弁の遠隔手動操作をすることはない。	ト操作)において、AO 弁の遠隔手動操作をすることはない。	

東海第二発電所 (2018.9.18版)					
	第.2	表モックアップ	試験結果		
会明应也二 · · · · · · · · · · · · · · · · · · ·				(井 士)	
开闭及拍小	ハントル操作時间	ハントル回転数	(kPa [gage])	加方	
5%	2分03秒	144	650	弁開度指示9%で	
10%	3分09秒	238	0	弁上流側圧力0kPa	
50%	11分55秒	985	0		
100%	22分59秒	1, 893	0		

島根原子力発電所 2号炉				
		表2 モックフ	<u>アップ試験結果</u>	
	提/在14月	操作速度) 世 本	
	採作时间	(平均)	佣石	
		約 100 回/分	・弁呼び径 500A	
			・弁前後の差圧2Pdで実施	
	約 29 分		・2名が交替で実施	
			・操作トルクは約 10 N・m	
			(差圧2 P d 時は約 20 N・m)	

第3表 ベントに必要な隔離弁のハンドル操作時間

弁名称	第一弁 (S/C側)	第一弁(D/W側)	第二弁
ハンドル 操作時間	約 36 分	約 36 分	約 25 分

モックアップ試験結果のハンドル操作速度約 82 回転/分より算出。

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(3) 汎用電動工具による操作性向上		
遠隔人力操作機構のハンドル操作時間には数十分を要することから、操作性を向上するた	また、原子炉建物付属棟(二次格納施設外)の操作場所において、電動モータにバッテリ	
めに、汎用電動工具(電動ドライバ)を第二弁操作室付近に準備する。汎用電動工具を用い	一を接続することによる操作も可能としている。	
たハンドル操作時間は,10分程度に短縮可能である。		
なお、過回転による遠隔人力操作機構の損傷防止のため、ハンドル付近には回転数カウン	なお、過回転による遠隔人力操作機構の損傷防止のため、ハンドル付近には回転数カウン	
タを設け、弁開度が全閉及び全開付近では必要により人力で操作することとする。	タを設け、弁開度が全閉及び全開付近では必要により人力で操作することとする。	
(4) 第二弁操作室の正圧化バウンダリの設計差圧		・設備の相違
第二弁操作室の正圧化バウンダリは,配置上,動圧の影響を直接受けない屋内に設置されて		2 号炉は,被ばく評価上人力
いるため、室内へのインリークは隣接区画との温度差によるものと考えられる。		操作場所の正圧化が不要
第二弁操作室の正圧化に必要な差圧を保守的に評価するため,重大事故等時の室内の温度を		
高めの 50℃, 隣接区画を外気の設計最低温度-12.7℃と仮定すると, 第二弁操作室の天井高		
さは最大約 4m であり,以下のとおり約 10.4Pa の圧力差があれば,温度の影響を無視できると		
考えられる。		
∠P={(-12.7℃の乾き空気の密度 [kg/m ³])-(+50℃の乾き空気の密度 [kg/m ³])}×		
天井高さ [m]		
$= (1.3555 [kg/m^3] - 1.0925 [kg/m^3]) \times 4 [m]$		
$= 1.052 \left\lfloor \text{kg/m}^2 \right\rfloor$		
≒10.4 [Pa]		
したがって,正圧化の必要差圧は裕度を考慮して隣接区画+20Pa とする。		
(5) 第二弁操作室		・設備の相違
第二弁操作室は、弁の人力操作に必要な要員を収容可能な遮蔽に囲まれた空間とし、空気ボ		島根2号炉は、被ばく評価上
ンベユニットにより正圧化し、外気の流入を一定時間完全に遮断することで、ベントの際のプ		人力操作場所の正圧化が不要
ルームの影響による操作員の被ばくを低減する設計とする。室温については、ベント開始後は、		
格納容器圧力逃がし装置の配管の一部が遮蔽を挟んで隣接したエリアに設置されるため,長期		
的には徐々に上昇することが想定されるが, 遮蔽が十分厚く操作員が第二弁操作室に滞在する		
数時間での室温の上昇はほとんどなく、居住性に与える影響は小さいと考えられる。		
また、現場の第二弁操作室には、酸素濃度計、二酸化炭素濃度計及び電離箱サーベイメータ		
を設けることで居住性が確保できていることを確認できる。		
中央制御室との通信については、携行型有線通話装置を第二弁操作室に		
第二弁の操作に必要な要員は、既述のモックアップ試験結果より3名であることから、		
第二 开操作室には3名を収容できる設計とする。		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
②設置場所	
第二弁操作室は、アクセス性と被ばく低減を考慮して原子炉建屋原子炉棟外でかつ遮蔽の	
ある部屋とする必要があることから、原子炉建屋付属棟内に設置する。	
また,第二弁は遠隔人力操作機構を用いて操作することから,弁の操作性のため,可能な	
限り第二弁に近い場所に第二弁操作室を設置する。第二弁操作室の設置位置を第1図に示	
す。	
③遮蔽設備	
第二弁操作室の壁及び床は、弁操作要員がベント中に滞在可能なように鉄筋コンクリー	
ト 40cm 以上の厚さを有し, さらに, 第二弁操作室に隣接するエリアに格納容器圧力逃がし	
装置入口配管が設置される方向の壁及び床の厚さは,鉄筋コンクリート120cmとし,放射	
性物質のガンマ線による外部被ばくを低減する設計とする。(別紙 17)	
なお、第二弁操作室の入口は、遮蔽扉及び気密扉を設置し、放射性物質のガンマ線によ	
る外部被ばくを低減し、また、放射性物質の第二弁操作室への流入を防止する設計とする。	
④第二弁操作室空気ボンベユニット	
a. 系統構成	
第二弁操作室空気ボンベユニットの概要図を第4図に示す。 空気ボンベユニットから	
減圧ユニットを介し、流量計ユニットにより一定流量の空気を第二弁操作室へ供給す	
る。第二弁操作室内は微差圧調整ダンパにより正圧を維持する。また、第二弁操作室内	
が微正圧であることを確認するため差圧計を設置する。	
第二弁操作室遮蔽	
第二弁バイパス弁	
は	
差圧調整弁	
流重計	
<u> </u>	
ስ ስስስስስስስስስ	
空気ボンベ	
カキロ カーガ沫ド王エス小ノー・アーツ 一例女囚	L

備去
開行
1

	東海	第二発電所 (2018	. 9. 18 版)		島根原子力発電所 2号炉
b. 必要2	空気量				
(a)二酸	北炭素濃度基準に	基づく必要空気量			
• 収容	容人数:n=3(名))			
• 許尔	容二酸化炭素濃度	: C=0.5% (JEA0	C4622-2009)		
· 空\$	気ボンベ中の二酸化	化炭素濃度:C ₀ =0.0	336%		
・呼り	吸により排出する	二酸化炭素量:M			
	作業 (時間)	呼吸により排出する 化炭素量:M (m ³ /h/人)	3二酸 空気調 業程度	間和・衛生工学便覧の作 度区分	
	弁操作 (1 時間) ^{※1}	0.074		重作業	
	待機 (4 時間)	0.022		極軽作業	
※ 1 ₹	弁操作時間は第3表	そのとおり1時間未満	であるが,保守	で的に1時間を見込む。	
• 必要	要換気量:Q=M×r	$(C-C_0)$			
	并操作时 $Q_1=0$	$0.074 \times 3 \neq (0.005 - 3)$	0.000336)		
	=47.6	óm ³ /h			
	待機時 Q ₂ =0	$0.022 \times 3 \neq (0.005 - 0.3)$	0.000336)		
N a	=14.2	2m ^o / h			
• 北县	要空気重: $V = Q_1 \times$	$1 + Q_2 \times 4$			
	=47.6	$5 \times 1 + 14.2 \times 4$			
	=	=104.4m [°]			
(b)酸素	濃度基準に基づく	必要空気量			
・収え	容人数:n=3 (名))			
・吸拿	気酸素濃度:a=20).95%(標準大気の暦	峻素濃度)		
• 許	容酸素濃度:b=19	9.0%(鉱山保安法施	工規則)		
• 乾ķ	彙空気換算酸素濃 <u>」</u>	度:d=16.4%(空気	調和・衛生工	学便覧)	
・成ノ	人の酸素消費量:。	e=(呼吸量)×(a-	−d) ∕100		
	作業 (時間)	酸素消費量:c (m ³ /h/人)	呼吸量 (L/min)	空気調和・衛生工学便 覧の作業区分	
	弁操作 (1 時間) ^{※2}	0.273	100	歩行(300m/min)	
	待機 (4 時間)	0.02184	8	静座	
※2 ヺ ・必望	弁操作時間は第3表 要換気量:Q=c×ı	€のとおり 1 時間未満 [−] n/(a−b)	であるが,保守	*的に1時間を見込む。	
	弁操作時 $Q_1=0$. 273×3∕ (0. 2095-	0.190)		
	=42.0	Dm³∕h			
	待機時 Q2=0	. 02184×3∕ (0. 209	5-0.190)		
	=3.36	5m³∕h			

備老
د ·· د د ا

東海第二発電所 (2018.9.18版)	島根原子力発電所	2 号炉
・必要空気量: $V=Q_1 \times 1+Q_2 \times 4$		
$=42.0 \times 1 + 3.36 \times 4$		
=55.44m ³		
(c)必要ボンベ本数		
(a),(b)の結果より,第二弁操作室内に滞在する操作員(3名)が弁操作時間を含め		
て5時間滞在するために必要な空気ボンベによる必要空気量は二酸化炭素濃度基準の		
104.4m ³ とする。		
空気ボンベの仕様は以下のとおり。		
・容量:46.7L/本		
・初期充填圧力:14.7MPa [gage]		
したがって、1気圧でのボンベの空気量は約6.8m ³ /本であるが、残圧及び使用温度補		
正を考慮し,空気供給量は5.5m ³ /本とすると,空気ボンベの必要本数は下記の計算によ		
り19本となる。		
$104.4/5.5 = 18.98 \dots \rightarrow 19 $		
<section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header>		

備去
開行
1

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
(参考)第二隔離弁の遠隔人力操作作業室の環境について		
重大事故等時に想定される放射線量及び室温が, 第二弁の操作に影響はないことを以下のとお		
り確認した。		
第二弁操作室内は、空気ボンベにより正圧化して、放射性物質の流入を防ぐ設計としており、		
第二弁操作室の壁及び床は,弁操作要員の滞在中の被ばく防護のため,40cm以上の鉄筋コンク		
リート壁厚を確保している。		
さらに、第二弁操作室に隣接するエリアに格納容器圧力逃がし装置入口配管が設置されるた		
め,配管が設置される方向に対し,120cm以上の鉄筋コンクリート壁厚を確保し,ベント時の放		
射性物質からのガンマ線による外部被ばくを低減する設計としている。		
この対策により, 第二弁操作室にベント開始から3時間滞在した場合の被ばく量は, ウェット		
ウェルベントの場合で約 28mSv, ドライウェルベントの場合で 42mSv と評価している。(別紙 17)		
また,ベント開始後の格納容器圧力逃がし装置配管の影響による室温の上昇は,ベント開始3		
時間~5 時間後で夏季 : 約 37℃ (外気温+2℃),冬季 : 約 20℃ (外気温+10℃)と評価した。(第		
6 図)		

備考	
・設備の相違	
島根2号炉は原子炉建物付属	
棟で操作するため、該当資料	
なし	

備去
開行
1

島根原子力発電所		東海第二発電所 (2018.9.18版)	-
	別紙 49		
	運用について	J御のための代替格納容器スプレイの	格納容器圧力制
		の運用について) 代替格納容器スプレイの
	のための外部水源を用いた代	寺運転手順書では,格納容器圧力制御の	東海第二発電所の非常時
	ge] (0.9Pd) —217kPa [gage]	施する場合, 炉心損傷前は 279kPa [ga	替格納容器スプレイを実施
	age] (1.3Pd) の範囲におい	465kPa [gage] (1.5Pd) $-400\mathrm{kPa}$ [g	(0.7Pd), 炉心損傷後は
	を 130m ³ /h-102m ³ /h (補	で維持するよう格納容器スプレイ流量	て、可能な限り高い圧力で
	イを実施する場合に対して,	ととしている。これは,間欠スプレ	足1)の範囲で調整するこ
	に,格納容器圧力を高い領域	スプレイ弁故障のリスク軽減し, さらい	運転員の負担の軽減及びス
	レ水位の上昇抑制による格納	イ効果を高め, サプレッション・プーパ	で維持することでスプレイ
	観点から設定している。	可能な限り外部への影響を軽減する	容器ベントの遅延を図り,
	,スプレイ流量130m ³ /hを	さいては, 上記圧力制御範囲において	一方で、有効性評価にお
	こととしている。これは, 被)開閉による間欠スプレイを実施する	一定として,スプレイ弁の
	プレイ流量範囲のうち最大流	義しく評価する観点から,実手順のスス	ばく評価に与える影響を厳
		している。	量である 130m ³ /h を設定
		こしている。	量である 130m ³ /h を設定 2) 影響評価
	軍転手順書と有効性評価解析	こしている。 イを実施することとしている非常時道	量である 130m ³ /h を設定 2) 影響評価 可能な限り連続スプレ
	重転手順書と有効性評価解析 基づいて連続スプレイとした	そしている。 イを実施することとしている非常時道 相違点があり,非常時運転手順書に基	量である 130m ³ /h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する
	重転手順書と有効性評価解析 基づいて連続スプレイとした	こしている。 イを実施することとしている非常時道 相違点があり,非常時運転手順書に基 に与える影響を確認する。	量である 130m ³ ∕h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析
	重転手順書と有効性評価解析 基づいて連続スプレイとした	そしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書に基 に与える影響を確認する。	量である 130m ³ / h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析
	■転手順書と有効性評価解析 基づいて連続スプレイとした ついて	そしている。 イを実施することとしている非常時道 相違点があり,非常時運転手順書に基 に与える影響を確認する。 有効性評価との相違点と影響評価に	量である 130m ³ / h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析 第1表
	重転手順書と有効性評価解析 書づいて連続スプレイとした ついて 評価	 そしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書にま に与える影響を確認する。 有効性評価との相違点と影響評価に 項目 	 量である 130m³ / h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析 第1表 相違点
	 車転手順書と有効性評価解析 書づいて連続スプレイとした ついて 評価 影響評価① 	 こしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書にま に与える影響を確認する。 有効性評価との相違点と影響評価に 項目 格納容器圧力低下効果の不足 	量である 130m ³ / h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析 第1表 相違点
	重転手順書と有効性評価解析 書づいて連続スプレイとした ついて 評価 影響評価①	 こしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書にま に与える影響を確認する。 有効性評価との相違点と影響評価に 項目 格納容器圧力低下効果の不足 格納容器温度低下効果の不足 	 量である 130m³ ∕ h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析 第1表 相違点 スプレイ流量の低下
	車転手順書と有効性評価解析 基づいて連続スプレイとした ついて 評価 影響評価① 影響評価②	 そしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書にま に与える影響を確認する。 有効性評価との相違点と影響評価に 項目 格納容器圧力低下効果の不足 格納容器温度低下効果の不足 エアロゾル除去効果の低下 	 量である 130m³ ∕ h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する 場合に,有効性評価解析 第1表 相違点 スプレイ流量の低下 スプレイ流量の低下
	 車転手順書と有効性評価解析 書づいて連続スプレイとした ついて 評価 影響評価① 影響評価② 影響評価① 	 そしている。 イを実施することとしている非常時道 相違点があり、非常時運転手順書にま に与える影響を確認する。 有効性評価との相違点と影響評価に 項目 格納容器圧力低下効果の不足 格納容器温度低下効果の不足 エアロゾル除去効果の低下 ベント開始時間が早くなることに よる被ばく影響の増大 	 量である 130m³ ∕ h を設定 2) 影響評価 可能な限り連続スプレ には,第1表に整理する: 場合に,有効性評価解析 第1表 宿違点

格納容器圧力制御のための代替格納容器スプレイを連続スプレイとした場合,有効性評価において実施している130m³/hから流量を低下させることとなるため,格納容器圧力及び温度に与える影響を確認する。また,有効性評価ではサプレッション・プール水位上昇を抑制するために間欠での代替格納容器スプレイを実施しているが,連続スプレイとした場合には,サプレッション・プール水位上昇が早くなるおそれがあるため,ベント開始時間に与える影響を確認する。

(a) 評価条件

備考
・運用の相違 格納容器スプレイについて
は、実手順と同様の条件で解 析を実施していることから、
該当資料なし

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
代替格納容器スプレイ流量範囲の下限である102m ³ /hで一定とした条件での感度解 析「102m ³ /h一定ケース」を実施した。また,その他の条件は有効性評価シナリオ「雰 囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用で きない場合)」(以下「ベースケース」という。)と同じとした。 ベースケースと102m ³ /h一定ケースを対比し,連続スプレイとした場合の影響につ	
いて確認する。 () 評価結果 ベースケースにおける格納容器圧力の推移を第 1 図に、格納容器温度の推移を第 3 図に示す。また、102m ³ /h ー定ケースにおける格納容器圧力の推移を第 2 図に、格納 容器温度の推移を第 4 図に示す。 102m ³ /h ー定ケースでは、約 4 時間後から約 9 時間後まで、蒸気発生量に対してス ブレイ流量を調整することで圧力を 465kPa [gage](1.5Pd)以下に抑制することが可 能である。また、102m ³ /h ー定ケースにおけるベント開始時間は約 20.5 時間であり、 ベースケースの約 19.5 時間よりも遅くなる結果となった。 以上のことから、連続スプレイを実施することによる格納容器圧力及び格納容器温度 に与える影響はなく、ベント開始時間が早まることによる被ぼく評価への影響もない。	

備考

備考

備考

		東海第二発電所	(2018.9.18版)			島根原子力発電所	2号炉
b. 景	影響評価②						
柞	各納容器スプレイ	に期待しているエアロ	コゾル除去効果について,	スプレイ流量が低下	L		
た場	湯合には, 液滴数	が減少することで除去	ミ効率が下がり, ベースケ	ースよりも格納容器	持内		
にネ	孚遊するエアロソ	ル濃度が上昇すること	とで,格納容器から原子炉	建屋へ漏えいするコ	- ア		
	ゾル量及びフィル 	タ装置へ移行するエス	アロゾル量が多くなるおそ	れがある。			
(a)	評価条件		ᅙᇃᅣᄜᄵᆎᅣᅎᅙᆥ		<u>, , , , , , , , , , , , , , , , , , , </u>		
	ベースケースに	-おいて、ペント 目前の 故如宏碧与田朝のエア	り19.5 時間後時点でのへ	ースケース及い 102	² m ³		
(h)	評価結果	稻州1谷码又们日间07-47	ロノルの最度を刈れりる	0			
(0)	前 山 加 小 小 に 末 19.5時間後にま	らけるベースケースと	102m ³ /h一定ケースにお	ける格納容器気相音	30		
ĩ	エアロゾルを第2	表に示す。					
	第2	2表 格納容器気相部の	のエアロゾル濃度の比較				
*	核種 グループ	エアロゾルの	>濃度(kg∕m ³)	ベースケースと			
1		ベースケース	102m ³ /h 一定ケース	の比較			
1	C s I 類	1.62E-07	1.26E-07	7.78E-01			
2	C s OH類	4.39E-07	3.16E-07	7.20E-01			
3	S b 類	1.13E-07	7.22E-08	6.39E-01			
4	T e O ₂ 類	8.38E-08	4. 43E-08	5.29E-01			
5	S r O類	6.63E-05	4.35E-05	6.56E-01			
6	B a O類	8.53E-05	5.55E-05	6.51E-01			
7	M o O 2類	1.09E-04	7.00E-05	6.42E-01			
8	C e O ₂類	5.74E-05	3.77E-05	6.57E-01			
9	L a 2O 3類	6.64E-05	4. 36E-05	6.57E-01			
	合計	3.85E-04	2.51E-04	6.51E-01			
(c)	評価結果						
	評価の結果, 10)2m ³ /h 一定ケースで	はベースケースと比較し	て,格納容器気相音	300		
-	エアロゾル濃度が	ぶ減少する結果となった	これは、間欠スプレイ	を実施する場合に	t,		
-	スプレイ停止期間	日中に格納容器内の温度 	度が上昇し,沈着したエア	ロゾルが再浮遊する			
ر ط	とで濃度か上昇す めに低く加えられ	ることに对して, 連続 たためと考えられる	スプレイを実施する場合	よ格納谷希温度か相			
Ħ	以上のことから	っこにのころんり4いる。 、 エアロゾル除去効里	しについてけ ベースケー	スの方が上り保守的	זלו		
交元	「「」、」、ここから 吉果であり、被は	, <u></u> ,,,,,,,,,,	はない。		1.0		
1							

 備考

		東海第二発電所	(2018. 9. 18 版)			島根原子力発電所	2 号炉
c.影	響評価③						
被	ばく評価におい~	て, MAAP解析結果は	こ基づき, 格納容器から原	原子炉建屋への漏えい			
を評	価する希ガス, コ	アロゾル及び有機よ	う素については, 格納容器	器の圧力が高く維持さ			
れる	連続スプレイのス	ちが多くなるおそれが	ある。				
(a)	評価条件						
	代替格納容器スプ	プレイによる圧力制御	範囲において、可能な限り)格納容器圧力を高い			
領	域で維持した場合	合を模擬させるため,	格納容器圧力を 465kPa	[gage] (1.5Pd) でほ			
ぼ	一定とした感度的	曜析「1.5Pd 制御ケーン	ス」を実施した。465kPa	[gage] (1.5Pd) でほ			
ぼ	一定の格納容器	E力となるよう,465kF	Pa [gage] (1.5Pd) から 46	2kPa [gage] (1.49Pd)			
の 、	圧力範囲で間欠 ²	スプレイを実施する条	件とした。また、その他の)条件はベースケース			
ع	回しとした。	1 5DJ 判御 ケニッち 対	いし 海法マプレイトし	と担人の柔ガフ テマ			
П	、 一 へ ク 一 へ と	1.5Fu 制御ク一へを刈 5 表の漏えいに上ろ故	Lし、連続ヘノレイとして 出到今の影響について確	こ場合の布力へ、エノ 認する			
(h)	ジル及び有機よう	ア系の個人でによる成	山町口の影響について推	ወር ሃ 🕗 ං			
	町 画和木 放出割合の評価約	吉果を第3表に示す。					
		第3表 原子炉建屋へ	の放出割合の比較				
		放射能量(0	.5MeV 換算値)	ベースケースと			
核	種グループ	ベースケース	1.5Pd 制御ケース	の比較			
1	希ガス類	2.423E+15	2.249E+15	9.285E-01			
2'	有機よう素	2.890E+15	2.680E+15	9.274E-01			
2	C s I 類	1.121E+15	1.139E+15	1.016E+00			
3	C s OH類	9.065E+13	9.190E+13	1.014E+00			
4	S b 類	1.693E+12	1.717E+12	1.014E+00			
5	T e O 2類	1.445E+13	1.465E+13	1.014E+00			
6	S r O類	5.607E+11	5.700E+11	1.017E+00			
7	BaO類	5.468E+12	5.544E+12	1.014E+00			
8	M o O 2類	2.267E+12	2. 298E+12	1.014E+00			
9	C e O ₂類	9.046E+11	9.175E+11	1.014E+00			
	La。O。類	7.939E+11	8.051E+11	1.014E+00			
10	2 4 2 0 3/14		1		1		
10	금 값 2 0 3,000 合計	6.550E+15	6.187E+15	9.446E-01			

備考

	東海第二発電所	(2018.9.18版)		島根原子力発	電所	2号炉
施することで急激にドライウェル圧力が低下し、サプレッション・チェンバから希ガス						
及び有機よう素	素を含む非凝縮性ガスが	ドライウェルに移行し, 湖	帚えい面積のより大きい			
ドライウェルP	内の非凝縮性ガスの割合;	が増加するのに対し, 1.	5Pd 制御ケースの場合,			
ドライウェルと	とサプレッション・チェン	バ間の急激な差圧が生	じず,ドライウェルに移			
行する非凝縮性	生ガスの割合が相対的に	氏くなったためである。				
また, ベース	スケースにおける格納容器	器から原子炉建屋への漏 ;	えいする希ガス, 有機よ			
う素及びその値	也の核種の被ばくへの寄-	与率は,第4表に示すと	おり, 希ガス及び有機よ			
う素による寄生	与が大半を占めている。1	. 5Pd 制御ケースにて増加	ロするエアロゾルの影響			
は軽微である、	ことに加え、寄与率の高	い希ガス及び有機よう素	が減少していることか			
ら,間欠スプレ	レイを実施するベースケー	ースの方がより保守的な	評価となる。			
第4表	長 核種グループごとの被	技ばく寄与率(ベースケ ・	ース)			
	外部被ばく寄与率	内部被ばく寄与率	グランドシャイン			
希ガス	約 56%					
有機よう素	約 26%	約 55%				
無機よう素	約 17%	約 35%	約 96%			
粒子状よう素	約1%	約 2%				
エアロゾル	約1%	約 9%	約 4%			
ベント開始時 衰時間が増える なお, 無機よ るよう漏えい ²⁰ 以上のことれ	間が遅くなることで被ば るため,より被ばく線量(こう素については,有効性 率を与えているため,影響 から,被ばく評価において	く評価において大半の零 は低くなる。 :評価における格納容器日 響はない。 こ, ベースケースの方がよ	ちを占める希ガスの減 E力の制御範囲を包含す こり保守的な結果となる			
ため, 被ばく言	評価に対する影響はない。					

	備考

東海第二発電所 (2018.9.18版)	島根原子力発電所	2号炉
補足1 スプレイ流量制御の下限値の設定について		
格納容器スプレイによるエアロゾル除去効果については, MAAPコードにおいて取扱ってお		
り、スプレイ液滴径と相関があるため、スプレイ流量を低下させた場合、液滴径が大きくなるこ		
とで十分なエアロゾル除去効果が確保されないおそれがある。そのため,連続スプレイ流量制御		
の下限値は、MAAP解析にて有効性を確認している粒径である 2mm が確保される流量を設定す		
る。流量制御の下限値の設定に当たっては、実験*1による知見に基づき、代替格納容器スプレ		
イ流量の下限値を設定する。		
1. 実験の知見及び考察		
実験の結果を第1図に示す。実験における記録ではスプレイ液滴径にばらつきがあるが、第		
1 図に示すノズル当たりの流量がL/min 以上の場合,最大の液滴径は2mm以下となる。		
そのため,ノズル当たりの流量が L/min 以上確保される流量を代替格納容器スプレイ		
流量制御の下限値として設定する。		
第1図 スプレイ液滴径の実験結果		
(ノズル当たりの流量 L/min)		
2. 流量制御の下限値の設定		
東海第二発電所におけるスプレイヘッダのノズル数は個であることから,下式に示すと		
おり,スプレイ流量 102m ³ /h 以上を確保することで,スプレイノズル当たりの流量はL		
/min 以上確保される。		
○系統流量=(L/min/ノズル) ×(ノズル)		
= (L/min)		
$=102 (m^3/h)$		
※1 共同研究報告書,放射能放出低減装置に関する開発研究(PHASE2)(平成5年3月)	L	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 50	別紙 11	
フィルタ装置における化学反応熱について	フィルタ装置における化学反応熱について	
重大事故等時に格納容器で発生したエアロゾル及び無機よう素がフィルタ装置に到達し, ベ	フィルタ装置に移行してくるエアロゾル及びガス状放射性よう素との化学反応による発熱及	
ンチュリスクラバにおいて無機よう素が化学反応した際の生成物は中性物質(よう化ナトリウ	び化学反応生成物の影響について評価した結果を以下に示す。	
ム (NaI), 硫酸ナトリウム (Na ₂ SO ₄)) であり, スクラビング水の p Hに与える影響はほとんど		
ない。また、ベンチュリスクラバにて無機よう素がスクラビング水と化学反応することによっ		
て発熱するが、この発熱量と、設計条件であるベントフィルタ内の放射性物質の崩壊による発 熱帯(500kw(四約5.2))した比較したな用。ベンチールスクラバにおけて化学反応の発効量は		
重大事故等時に格納容器で発生した有機よう素及びベンチュリスクラバを通過した無機よ		
う素について、よう素除去部において有機よう素及び無機よう素が化学反応した際の生成物の		
うち,硝酸メチルは爆発性のおそれがある物質とされているが,生成量は約0.003vo1%と微		
量であることから、爆発することはないと考えられる。なお、生成物のうち、よう化銀につい		
ては、光によって分解する性質があるが、よう素除去部は容器内の遮光された環境にあるため、		
光分解によるよう素の放出は発生しない。また、よう素除去部にて有機よう素及び無機よう素		
<u>か吸着剤と化子反応することによって発熱・吸熱するか,化子反応の発熱・吸熱による温度変</u> 化量を評価した結果 よう素除去率の温度変化が十分小さいことを確認した		
1. ベンチュリスクラバにおける <u>化学反応による発熱量</u>	(1) ベンチュリスクラバにおける <u>化学反応熱の影響</u>	
	ベンチュリスクラバで捕集されるエアロゾルと無機よう素について,スクラビング水との化	・記載方針の相違
	学反応に伴い発生する反応熱量と、ベンチュリスクラバにおいて捕集された放射性物質から発	
	生する崩壊熱量を比較する。	
(1) ベンチュリスクラバにおけるエアロゾルの化学反応による発熱量	a. ベンチュリスクラバにおけるエアロゾルの化学反応熱量	
ベンチュリスクラバで捕集されるエアロゾルは核分裂生成物エアロゾルと構造材エアロ	ベンチュリスクラバで捕集されるエアロゾルは,核分裂生成物エアロゾルとコンクリート	
ゾルがある。核分裂生成物エアロゾルは別紙2に記載のとおりであり,構造材エアロゾルは	から生成するエアロゾルがある。エアロゾルのうち、非水溶性及び難水溶性のものは化学反	
炉内構造物等の金属及びコンクリート含有元素 (Si, Ca, Mg, A1, K等)で構成されている。	応しないと考えられるが、ここでは、フィルタ装置に流入するエアロゾル全量(300kg)に	
それらがスクラビング水と反応したときの反応熱の中で1mol当たりの発熱量が最も大きい	ついて化学反応するものとした。さらに、最も反応熱が大きくなる	
のは <u>であることから、ここでは</u> で代表し、設計条件である 400kg	ンクリートから生成するエアロゾルの一種)で代表した場合の化学反応による発熱量を計算	
王重かし」としてヘクフロンク水で反応したとさの発熱重にて影響を評価する。 ベンチュリスクラバにおける の化学反応け以下の熱化学を思えのとおりである	した。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
それぞれの化学種の標準生成エンタルピは以下の値となる(参考図書1)。	ここで、それぞれの化学種の標準生成エンタルピーは以下の値である。(参
熱化学方程式と標準生成エンタルピより、 となる。 以上より、1molの の反応には の発熱量を伴うこととなる。 400kg は に当たることから、発熱量は となる。	 これらの値より、 となる。よって、1 mol の と約 の発熱量となる。 ベンチュリスクラバにおいて捕集されるエアロゾル の量は以下の値を ・ の量 = 300 (kg) ・ ①分子量 = ②(g/mol) よって、ベンチュリスクラバにおいて捕集されるエアロゾル の量に あるので、反応熱量は約 の発熱となる。
(2) ベンチュリスクラバにおける無機よう素の <u>化学反応による発熱量</u> ベンチュリスクラバにおける無機よう素の捕集は、スクラビング水に添加する薬剤により 行われ、その化学反応は以下の熱化学方程式のとおりである。 アルカリ性条件下(発熱反応)	b. ベンチュリスクラバにおける無機よう素の <u>化学反応熱量</u> ベンチュリスクラバにおける化学反応の熱化学方程式は以下のとおりであ ここで,それぞれの化学種の標準生成エンタルピーは以下の値となる。(参
それぞれの化学種の標準生成エンタルピは以下の値となる(参考図書1)。 熱化学方程式と標準生成エンタルピより、 熱化学方程式と標準生成エンタルピより、 となる。 以上より、1molの無機よう素の反応には の発熱量を伴うこととなる。 フィルタ装置に貯留するスクラビング水 wt%含有していることから、S203 ² の量は なる。	これらの値より,となる。よって, 1 mol の無機よう素 (I ₂) 約の発熱量となる。

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
一方、ベンチュリスクラバに流入する無機よう素の量について、以下のとおり設定する。	事故時に炉内に内蔵されるよう素元素量は約 である。NUREG-1465 (
<u>a. よう素炉内内蔵量(約 24.4kg)</u>	に基づき,格納容器内へのよう素の放出割合を 61%, Regulatory Guide 1.195
BWRプラントにおける代表炉心(ABWR)の平衡炉心末期を対象としたORI	に基づき,無機よう素生成割合を91%とすると、ベンチュリスクラバにおける無
GEN2コードの計算結果に対して、東海第二発電所の熱出力(3,293MW)を考慮し	は以下のとおりである。
て算出した結果,約24.4kgとする。	
<u>b. 格納容器へのよう素放出割合(61%)</u>	
<u>NUREG-1465に基づき、格納容器内へのよう素の放出割合を 61%とする。</u>	
<u> c. 格納容器に放出されるよう素のうち無機よう素生成割合(91%)</u>	
<u>Regulatory Guide 1.195 に基づき,よう化セシウム 5%, 無機よう素 91%, 有機</u>	
よう素4%とする。	
以上より, ベンチュリスクラバに流入する無機よう素 (分子量 253.8) 約 13.6kg (=24.4kg	・無機よう素 (I_2) の量 = (g)
×61%×91%)の量は約53.6mol (=13,600g/253.8g/mol)となる。無機よう素と	・無機よう素(I ₂)分子量 = 253.8 (g/mol)
の反応による発熱量はモル数の少ない無機よう素の量により決定される。この	よって,ベンチュリスクラバにおいて捕集される無機よう素(I ₂)の量は約
場合無機よう素との反応により生じる全発熱量は、とな	ので、反応熱量は約の発熱となる。
る。	
(3) ベンチュリスクラバにおける化学反応の発熱量の評価	c. 影響評価
	a, bで算出したエアロゾル及び無機よう素の化学反応熱量の合計は
	の発熱となり,設計上考慮しているスクラバ容器内3
	のの積算値に対して約_%であり、スクラビング水
	への影響は十分小さい。
以上より, ベンチュリスクラバにおける化学反応による発熱量が与える影響はないと言え	
る。	
2. よう素除去部における化学反応による発熱	(2) 銀ゼオライトフィルタにおける化学反応熱の影響
	銀ゼオライトフィルタにおいてガス状放射性よう素の化学吸着により発生す
	銀ゼオライトフィルタにおいて捕集されたガス状放射性よう素から発生する崩
	I.J.

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
(1) <u>よう素除去部</u> における有機よう素の <u>化学反応による発熱量</u>	a. <u>銀ゼオライトフィルタ</u> における有機よう素の <u>化学反応熱量</u>
よう素除去部における有機よう素の捕集は、銀ゼオライトへの吸着反応として行われ、そ	銀ゼオライトフィルタにおける有機よう素の吸着反応の熱化学方程式は以下
の化学反応は以下の熱化学方程式のとおりである。	<u>Zem</u>
アルカリ性条件下(発熱反応)	
それぞれの化学種の標準生成エンタルピは以下の値となる(参考図書1)。	ここで、それぞれの化学種の標準生成エンタルピーは以下の値となる。(参
熱化学方程式と標準生成エンタルピより, となる。	
以上より, 1mol の有機よう素 CH ₃ I の反応には の発熱量を伴うこととなる。	これらの値より, となる。よって, 1mol の有機よう素 (CH ₃ I)
ここで,よう素除去部に流入する有機よう素の量は,別紙 11 に記載のとおりと	約 の発熱量となる。
なる。したがって,よう素除去部における有機よう素の反応による発熱量は となる。	事故時に炉内に内蔵されるよう素元素量は約 である。NUREG-1465 (
	に基づき,格納容器内へのよう素の放出割合を 61%, Regulatory Guide 1.195
	に基づき,有機よう素生成割合を4%とする。また,よう素重量から有機重量~
	化メチルの分子量/よう素の原子量≒1.12)を設定値とすると、銀ゼオライト
	ける有機よう素の量は以下のとおりである。
	・有機よう素 (CH ₃ I) の量 = (g)
	・有機よう素 (CH ₃ I) 分子量 = 141.9 (g/mol)
有機よう素の全量が10分間(600秒)でよう素除去部へ捕集されたと考えると,発熱量は	よって銀ゼオライトフィルタに流入する有機よう素は であるので
となる。	の発熱となる。
(2) <u>よう素除去部</u> における無機よう素の <u>化学反応による吸熱量</u>	b. <u>銀ゼオライトフィルタ</u> における無機よう素の <u>化学反応熱量</u>
<u>よう素除去部のおける無機よう素 I2の銀ゼオライトへの吸着反応は,以下の熱化学方程</u>	銀ゼオライトフィルタにおける無機よう素の吸着反応の熱化学方程式は以下
式で示される。	<u>Zem</u>
それぞれの化学種の標準生成エンタルピは以下の値となる(参考図書1)。	ここで、それぞれの化学種の標準生成エンタルピーは以下の値となる。(参

	備考
下のとおりであ	
≷考図書1)	
が反応すると	
(参考図書2) (参考図書3) への補正(よう トフィルタにお	
で、反応熱量は	
Fのとおりであ	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
熱化学方程式と標準生成エンタルピより、となる。	熱化学方程式及び標準生成エンタルピーより, となる。よ
<u>以上より, 1mol の無機よう素 (I2)の反応にはの吸熱量を伴うこととなる。</u>	無機よう素(I2)が反応すると約の吸熱量となる。
ここで、無機よう素の反応は吸熱反応であることから、保守的に評価に含めないこととす	事故時に炉内に内蔵されるよう素元素量は約 である。NUREG-1465(
<u>a.</u>	基づき,格納容器内へのよう素の放出割合を 61%, Regulatory Guide 1.195
	に基づき, 無機よう素生成割合を 91%, ベンチュリスクラバにおける DF を 1
	銀ゼオライトフィルタにおける無機よう素の量は以下のとおりである。
	・無機よう素 (I_2) の量 = (g)
	・無機よう素 (I ₂) 分子量 = 253.8 (g/mol)
	よって、銀ゼオライトフィルタに流入する無機よう素は約であるの
	は の吸熱となる。
(3) よう素除去部における化学反応の発熱量の評価	c. 影響評価
	a. b. で算出したガス状放射性よう素の化学反応熱量の合計は
	の発熱となり、ガス状放射性よう素がで銀ゼオライトフィルク
	と考えると、約となり、以下の評価式にて銀ゼオライトフィルタの上述
	 た。
	最ゼオライトフィルタ内の発熱量(W)
	上昇温度(C) = $($ 比熱($J/kg^{\circ}C$)・窒素ガス流量(m^3/s)・窒素ガス密度(k_s
	ここで、銀ゼオライトフィルタに流入する窒素ガスの条件は以下のとおり記
	・窒素ガス流量 = 100 (Nm ³ /h)
	・窒素ガス比熱 = 1040 (J/kg・℃)
	・窒素ガス密度 = 1.25 (kg/Nm ³)
以上より、よう素除去部における化学反応による発熱量が与える温度変化は十分小さい	以上より、銀ゼオライトフィルタの上昇温度は約 □ ℃と評価でき、よう素の
ため、影響はないと言える。	

	備考
って, 1mol の	
参考図書2)に	・評価方針の相違
(参考図書3)	島根2号炉は、吸熱反応を考
00 とすると <u>,</u>	慮して評価
ので,反応熱量	
タに捕隼される	
見温度を評価し	
(g/m^3)	
定した。	
再揮発等への影	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	(3) ベンチュリスクラバにおける化学反応生成物の影響
	ベンチュリスクラバにおける無機よう素の化学反応は以下のとおりである。
	スクラビング水には化学薬剤として 及び
	を添加しており、無機よう素(I ₂)が流入することによって、溶解状
	レートレートレート
	スクラビング水に含まれるの量は約の量は約
	基づき 格納容器内へのよう素の放出割合を 61% Regulatory Guide 1 195 (
	示される無機上う素生成割合を 91%とすると ベンチュリスクラバにおいて捕
	ここで それぞれの化学種の分子量け以下の値である
	$D \ominus Z = - \begin{bmatrix} g \\ g \\ g \end{bmatrix} $
	「「「小里"」 $(a) y, [] ひ 很度 (a)], [] ひ 假度 (a) [] [] [] ひ 假度 (a) [] [] [] [] [] [] [] [] [] [$
	ことから、構造材への腐良の影響はないと考えられ、これらの物質は中性であ
	ビンク水の p Hにも影響しない。
	(1) 銀ゼオライトフィルタにおける化学反応生成物の影響
	(4) 妖じスノイトフィルタにおける旧子及心工成初の影響 銀ゼオライトフィルタにおける有機上う表と無機上う表の化学反応けそう
	いである
	この化学反応による化学反応生成物である
	とが知られている。ここについては、ことし、が発生するため、格納容
	「有機よう素の濃度を以下のとおり算出する。
	格納容器内で発生すろ有機よう素は であり、仮に温度を 200℃(47
	中国語 に して ここう し に し こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ
	トって 有機上う素が銀ゼオライトフィルタで反応し生成する
	とからこのようか極低濃度において爆発の恐れけない(会老図書 4)
	C_{μ} 、 D_{μ} (D_{μ}) (
	ー しったりているが、組ゼオライトファルタの泪座け 400のに対して上八近く地立フ
	和られているか, 歌ピオフィ トノイルグの温度は 400 しに対して十分低く抑える

	備考	
態の である。一 参考図書2)に 参考図書3)に 毛される I ₂ の量 となる。	・記載方針の相違	
クラビング水の し微量である るため,スクラ	・記載方針の相違	
いぞれ以下のと の恐れがあるこ 器内で発生する		
BK)で圧力を保 め,格納容器内		
の濃度は約 -ダーであるこ		
こ起こることが ことができる。		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	また, 銀ゼオライト
	内の遮光された環境にあるため、光分解によるよう素の放出は発生しない。
	銀ゼオライトフィルタにおける無機よう素との化学反応においては, の
	成物は、安定な固体である 及び極低濃度の であり、銀ゼオラ
	性能に与える影響はない。
〈参考図書〉	≪参考図書≫
1. 化学便覧基礎編改訂 5 版	1. 化学便覧基礎編改訂3, 5版
	2. NUREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plan
	<u>Feb. 1995</u>
	3. Regulatory Guide 1.195, "Methods and assumptions for evaluating
	consequences of design basis accidents at light-water nuclear power re
	4. M.G.Zabetakis, "Flammability Characteristics of Combustible Gases and
	<u>U.S.Bureau of Mines Bulletion 627.1965</u>

	備考
フィルタは容器 也の化学反応生 イトフィルタの	
<u>ts"</u>	・記載方針の相違
<u>radiological</u> <u>actors"</u> <u>Vapor. ″</u>	

	東海第二系	ě電所 (2018.9.18版)		島根原子力発電所 2号炉	備考
			別紙 51	別紙 12	
スク	ラビング水の粘性の)変化が除去性能に与える影響に~	ついて	スクラビング水の粘性の変化が除去性能に与える影響について	
ベントにより格納	容器からフィルタ装	置にエアロゾルが移行する。スク	ラビング水の粘性は.	ベント時に格納容器からスクラバ容器に可溶性及び不溶性エアロゾルが流入し、スクラビ	
エアロゾルが可溶性(の場合はそのエアロ	ゾルの水和性と溶解する量によっ		ング水中のエアロゾル濃度の増加に伴い、スクラビング水の粘性が増加することが考えられ	
クラビング水に分散		よって変化する。可溶性エアロゾ	ル又は不溶性エアロゾ	۵.	
ルの影響によるスク	ラビング水の粘性率	の変化を保守的に評価した結果,	その変化は十分小さ	可溶性及び不溶性エアロゾルによる粘性変化に関する評価を以下に示す。	
く、DFへの影響が	ないことを確認した	0			
(1) フィルタ装置内	1に移行するエアロン	バル等の影響			
重大事故等時に	格納容器内へ放出さ	れるエアロゾルがベントにより	フィルタ装置に移行す		
<u>ることから、NU</u>	<u>REG-1465</u> に記載	載されている格納容器への放出割	合を参照し、フィルタ		
装置内へ移行する	エアロゾル量を基に	スクラビング水への影響を評価す	る。なお、NUREG		
-1465 では格納容	器への放出過程(Ea	arly In-Vessel, Late In-Vessel	等)ごとに格納容器へ		
の移行割合を与え、	ており、本評価では	事故後長期にわたってスクラビン	グ水への影響を評価す		
るため, 放出過程、	ごとの放出割合の合	計値をエアロゾル移行量の算出に	使用している。(別紙		
2)					
ベント後のスク	ラビング水には,可?	容性エアロゾルと不溶性エアロゾ	ルがそれぞれ存在する		
こととなる。エア	ロゾルの種類と溶解	の可否を第1表に示す。			
	第1表 エアロゾル	、(設計条件)の種類と溶解の可容			
核種グループ	代表化学形態	FP エアロゾル移行量(kg)	溶解の可否		
Halogens	CsI		可溶性		
Alkali metal	CsOH		可溶性		
Те	TeO ₂ , Sb		不溶性		
Ba, Sr	Ba0, Sr0		可溶性		
Noble metals			<u> </u>		
Le					
	La ₂ 03 Si0。笙		大半け不溶性		
	<u>合</u> 計	400			
可溶性エアロゾ	ルと不溶性エアロゾ	ルでは、スクラビング水の粘性に	与える影響はそれぞれ		
異なることから, 同	「溶性エアロゾル,不	溶性エアロゾルに分けて粘性に与	える影響を確認する。		
なお、流体が流	動する際の抵抗を示	<u>す粘性の大きさは,粘性率 ŋ [mPa</u>	a・s]で表され,水の粘		
性率は水温10℃の	場合は約1.3[mPa・s]	, 80℃の場合は約0.3[mPa・s]であ	る(参考図書1)。		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
<u>a. 可溶性エアロゾルの影響</u>	(1) 可溶性エアロゾルによるスクラビング水の粘性変化による影響	
エアロゾルがスクラビング水に溶解すると、分解してイオンとして存在し、溶解したイオ		
ンの周囲に水分子が水和しやすい場合には、イオンと水分子が集団として振る舞うため移動		
しにくくなり、粘性率が大きくなる。一方、溶解したイオンの周囲に水分子が水和しにくい		
場合には、イオンや水分子が移動しやすくなり、粘性率が小さくなる(参考図書 2)。		
ベント実施後にフィルタ装置に含まれる主な陽イオンには, Na ⁺ , K ⁺ , CS ⁺ があり, 陰イオ		
<u>ンには OH⁻, Cl⁻, Br⁻, I⁻, CO₃²⁻, HCO₃⁻, SO₄²⁻がある。これらイオンのうち,水和しやすく粘</u>		
性率の増加に最も寄与する陽イオンはNa ⁺ ,陰イオンはOH ⁻ であり,水和しにくく粘性率の減		
少に寄与する陽イオンはCs ⁺ ,陰イオンはⅠであると考えられる(参考図書1,3)。		
このため、フィルタ装置にエアロゾルが移行した場合の粘性率は、エアロゾルの全量を水		
酸化ナトリウム (NaOH) として評価したとき最も大きく,よう化セシウム (CsI) として評		
価したときには小さくなる。		
スクラビング水として低温(粘性率が高い)の 25℃における水酸化ナトリウムとよう化	エアロゾルが可溶性の場合、スクラバ溶液中では捕集したエアロゾルが溶解し、溶液中の	
セシウムが水に溶解した場合の粘性率の変化を第1図に示す。	可溶成分濃度が上昇する。可溶性のアルカリ成分及び中性塩成分が共存した場合の粘性率の	
	変化 (25℃) を図 1,2 に示す。	
3		
(² ² ³ ⁴ ⁴ ⁴ ⁴ ⁶ ⁶ ⁶ ⁷ ⁶ ⁷ ⁶ ⁷ ⁷ ⁸ ⁷ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹	(seguing of the second	
第1図 NaOH と CsI が水に溶解した場合の粘性率の変化(25℃) (NaOH:参考図書4, CsI:参考図書5)	図1 可溶性のアルカリ成分が共存した場合の粘性率の変化(25℃) (NaOH:参考図書1,3, CsOH:参考図書3)	

東海第二発電所 (2018.9.18版)	島根原子力発電所	行 2号炉
	3 (s·edu) 殿型 2 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	NaCl Csl
	0 └────────────────────────────────────	10 10
	(NaC1:参考図書 4, Cs	I:参考図書 5)
スクラビング水に添加している化学薬剤の	スクラバ容器のスクラビング水に含まれる化	学薬剤の濃度は,通常水位
であり、このスクラビング水の粘性率		であり
は、化学薬剤を全て水酸化ナトリウムとして評価すると、第1図より mPa・s となる。	ではそれぞれ	に相当する。ベント時
また、スクラビング水の粘性率の変化を保守的に評価するため、仮にフィルタ装置に移行	スクラバ容器に移行するエアロソル重量を保守	的に 300kg とし, 仮に全量が の濃度は約
$ = 3 3 \pm 7 \pm 7 \times 7 \pm 2 \times 8 \pm 1 \times 7 \pm 9 5 \pm 10,000 \pm 01,000 \pm 01,0000\pm 00,000\pm 00,00\pm 00,00\pm$	温度を合計し、水酸化ナトリウムとして 25℃6	2歳ほは秋 には公
エアロゾルが溶解したスクラビング水の粘性率は,第1図より mPa・s となる。		
以上より,可溶性エアロゾルが溶解した場合のスクラビング水の粘性率の変化は,フィル	<u> ここで、JAVA</u> 試験でのスクラビング水に含ま	まれる化学薬剤の濃度は,
タ装置待機時のスクラビング水の粘性率に比べて、わずか (mPa・s 大きくなる) と評		
価できる。	このモル濃度を合計し,水酸化ナトリウムとし	て 25℃の水に溶解した際の
なお, JAVA 試験における初期のスクラビング水に含まれる化学薬剤の質量パーセント濃	ると、約となる。JAVA 試験における	5スクラビング水の粘性率と
度は、であり、これらの	クラバ容器のスクラビング水の粘性率は25℃に	おいて約高いと
in the second		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
b. 不溶性エアロゾルの影響	(2) 不溶性エアロゾルによるスクラビング水の粘性変化による影響	
エアロゾルが不溶性の場合, スクラビング水中ではコロイド等の懸濁粒子濃度が上昇する	エアロゾルが不溶性の場合,スクラバ溶液中ではコロイド等の懸濁粒子濃度が上昇すると	
と考えられる。このような懸濁粒子が分散した溶液の粘性率はアインシュタインの粘度式等	考えられる。このような懸濁粒子が分散した溶液の粘性率はアインシュタインの粘度式によ	
によって評価することができる(参考図書 1)。	って評価することができる(参考図書1)。	
$\eta \neq \eta_0 - 1 = 2.5 \phi$	$\eta \nearrow \eta_{\circ} = 1 + 2.5 \phi$	
ここで, η:懸濁粒子溶液の粘性, ηο:分散溶媒の粘性, φ:懸濁粒子の容積分率を示す。	<u>η:懸濁液の粘性率</u>	
	<u>n_: 分散溶媒の粘性率(25℃における水の粘性率 0.8902 mPa・s)</u>	
トオを田山て 縣澤粉子濃度が牡枇索に及ぼオ影郷を証価したは里を笠り回にデオ (アメ		
エムゼルマーク、恋園位 」 仮反かれ に 平に及ばり 影響 ど 計画 した 相未 ど 先 2 因に 小 り () イ	工式を用いて、恋園位了張及が相任平に及ばり影響を計画した相未を因うに示り(アイン シュタインの粘度式の成立限界である交積分率 9% までを記載)	
3	3	
<u>·</u> 2	-	
	<u>9</u> 2	
	번 ····································	
o t <u> </u>		
0.01 0.1 1 10 縣濁粒子の窓積分率(vol%)		
	o [
第2図 不溶性分が共存した場合の粘性率の変化 (25℃)		
	図3 懸濁粒子が共存した場合の粘性率の変化 (25°C)	
スクラビング水の粘性率の変化を保守的に評価するため、仮にノイルタ装直に移行するエ スロンドルオ ヘイズ 液性のエスロンドル(客席 □ (3) トレー 見低 オ 見の □ いた 切上 す		
f L = f	ヘント時に格納谷益からスクフハ谷益に移行するエアロクル里重を保守的に 300kg とし, ににエアロゾルの快季な 9.9 (MCCL ご登仕する可能性のたる SiO の快季, 会考図書 9)	
	$W(L_1) = 77700 L 里 2.2g/cm (Mull C 先生 930 H 能性のの3310_2の比里:参与図音 2)トレ た相合、 下明大佐 (約) つの ズ 溶歴 エズロ ジルの 安静 八束は約) つか た り$	
<u>これる。</u> 赤ないによるこ恋問性丁の谷頃刀子 2001/0任度まじ帕性半かほこんと上升してい たいため、不溶性エアロゾルに上るスクラビング水の料地索の亦化けはレムじたいし証価で		
ないことの、い住王士ノロノバによるヘジノレイン小の伯は半の変化はなとんとないと計画できる	1日は土土ははないないにの、小伯は土ノビノルによる伯は生いの見意ははとんとない	
Suite h に h の 密度 \Box g / cm^3 は コア・コンクリート 反応 で 発生 オスコンクリート 中本の	La contractionen	
x_{12} , <u>LBX/田</u> る x_{12} , <u>LBX/田</u> る x_{12} , <u>BX/</u> 田本 x_{12} , <u>CBX</u> x_{12} , <u>C</u>		
を想定するよりも懸濁粒子の容積分率を大きく算定するため、保守的な評価となっている。		

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
(2)	 (3) 温度が粘性に及ぼす影響 	
粘性率の増加量は、粘性率の変化が大きい可溶性エアロゾルの場合においても下記のとおり	液体の粘性率は温度が上昇するにつれて低下する。純水の粘性率の温度依存性を図4に示	
であり、第3回に示す純水の温度変化に伴う粘性率の変化量と同等であるため、この粘性率の	treen	
変化は十分小さい。よって、フィルタ装置を長期に使用する場合においても、スクラビング水	JAVA 試験におけるスクラビング水の粘性率と比較すると、スクラバ容器のスクラビング	
の粘性のDFへの影響はないと考えられる。	水の粘性率は25℃において約 高いと評価できるが、ベントガスの流入により	
・可溶性エアロゾル(水酸化ナトリウム 400kg)が溶解した場合のスクラビング水の粘性率	スクラビング水の温度は上昇し、粘性率は低下するため、スクラビング水の粘性がスクラバ	
の変化は、待機時のスクラビング水と比べた場合に mPa・s 大きくなる。	容器における除去性能に及ぼす影響はないと考えられる。	
\hat{F}_{3} 図 水の粘性率に及ぼす温度の影響	$\begin{array}{c} 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ 0.0 \\ 0 \\ 20 \\ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	
	図4 純水の粘性率の温度依存性(参考図書1)	
なお, エアロゾルには有機物が含まれていないため, 温度が上昇した場合にも粘性率を著し く大きくさせることはない。	なお, エアロゾルには有機物が含まれていないため, 温度が上昇した場合にも粘性率を著 しく大きくさせることはない。	
〈参考図書〉	《参考図書》	
1. 化学便覧改訂3版基礎編Ⅱ	 1. 化学便覧改訂3版基礎編Ⅱ 2. 岩波理化学辞典第3版 	
2. 上平恒, 「水の分子工学」		
3横山晴彦,田端正明「錯体の溶液化学」		
4. Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities and Densities of Highly	3. Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities and Densities of Highly	
Concentrated Aqueous MOH Solutions (M+) Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 $^\circ$ C, J.	Concentrated Aqueous MOH Solutions (M+) Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0°C, J. Chem.	
Chem. Eng. Data, 45, 613-617 (2000)	Eng. Data, 45, 613-617 (2000)	
5. Grinnell Jones and Holmes J. Fornwalt, The Viscosity of Aqueous Solutions of Electrolytes	4. Joseph Kestin, H. Ezzat Khalifa and Robert J. Correia, Tables of the Dynamic and	
as a Function of the Concentration. III. Cesium Iodide and Potassium Permanganate, J.	Kinematic Viscosity of Aqueous NaCl Solution in the Temperature Range 20-150°C and the	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
Am. Chem. Soc., 58 (4), 619-625 (1936)	Pressure Range 0.1-35MPa, J. Phys. Chem. Ref. Data, Vol.10, No.1 (1981)	
6. Joseph Kestin, H. Ezzat Khalifa and Robert J. Correia, Tables of the Dynamic and Kinematic	5. Grinnell Jones and Holmes J. Fornwalt, The Viscosity of Aqueous Solutions of	
Viscosity of Aqueous NaCl Solution in the Temperature Range 20-150 $^\circ \mathrm{C}$ and the Pressure	Electrolytes as a Function of the Concentration. III. Cesium Iodide and Potassium	
Range 0.1-35MPa, J. Phys. Chem. Ref. Data, Vol.10, No.1 (1981)	Permanganate, J. Am. Chem. Soc., 58 (4), 619-625 (1936)	
7. 日本機械学会 蒸気表 <1999>		

東海第	二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
別紙 52		別紙 32	
窒素	供給装置の容量について	窒素供給装置の容量について	
<u>可搬型窒素供給装置</u> の窒素容量は,下記①②を考慮して設定している。 ① ベント後,中長期的に <u>格納容器除熱系</u> が復旧した後に窒素供給を開始し,除熱中の格納容 器内の水素濃度を4%(水素の可燃限界温度)未満あるいは酸素濃度を5%(水素を燃焼さ せる下限濃度)未満に維持		 可搬式窒素供給装置の窒素容量は、下記①②を考慮して設定している。 ① 残留熱代替除去系による原子炉注水及び原子炉格納容器除熱を実施した場合、可搬式窒素 供給装置を用いて原子炉格納容器内へ窒素を注入し、酸素濃度を5%(水素を燃焼させる 下限濃度)未満に維持 	
② ベント停止後の格納容器圧力込	<u>いたし装置における水素滞留防止のため、窒素の供給を行</u>	② ベント停止後の格納容器フィルタベント系における水素滞留防止のため、窒素の供給を行	
)糸統内の水素濃度を4%(水素の可燃限発温度)木満ある	い, 格納谷益ノイルタベント光の糸統内の水素濃度を4%(水素の可燃限界温度)木満あ	
「は酸系偏度を3%(小系を燃約 」 可搬型突素供給装置の主要か仕様な	光させる下阪侯皮) 木個に椎村 - 第1表に示す。	るいは酸素儀度を5%(小素を燃焼させる下限儀度)木個に維持 可搬式突素供給装置の主要な仕様を表1に示す	
第1表 〒	丁搬型窒素供給装置の主要仕様	表1 可搬式窒素供給装置の主要仕様	・設備の相違
窒素容量	約200Nm ³ /h	窒素容量 約100m ³ /h[normal]	設備仕様の相違
窒素純度	99.0vo1%以上	窒素純度 約99.9vo1%	
窒素供給圧力	0.5MPa (可搬型窒素供給装置出口にて)	窒素供給圧力 約 600~900kPa[gage]	
以下に、可搬型窒素供給装置の窒素	そ供給量の設定について示す。	以下に, <u>可搬式窒素供給装置</u> の窒素供給量の設定について示す。	
(1)格納容器における可搬型窒素供		(1) 格納容器における可搬式窒素供給装置の容量	・評価万針の相違
ヘント開始後に格納谷器内で発生 たお財産物所による水のお財約八条	こする水素及び酸素は、サブレッション・フール水に移行し	可搬式窒素供給装置は、原子炉格納容器内の水の放射線分解によって発生する酸素の濃度上	
<u> た 成 射 性 物 負 に よ る 水 の 成 射 縁 プ 角 </u> 囲 気 に カ ・ 泪 度 に よ る 木 の 成 射 縁 プ 角		昇を抑制可能な設計とし、有効性評価シナリオである大LOCA+SBO+ECCS 故障(残留熱代替除去	
<u> 田</u> <u> 田</u>	(初谷谷迴江・迴温恢復) (代省循煤市의示を使用てきない)	糸を使用する場合)において、事政後7日間(168時間)は原子炉格納谷器内のドフイ条件の	
<u>物口)」におけるIMAAT</u> 時代に差 水素及び酸素の発生量質出について	つき計画した小素及い酸素の光土量を第2次に小り。なれ、 には、以下の式に上り質出した。ベント後の枚納容哭险執に	酸素濃度か可燃限界である 5.0vo1%に到達しない谷童である約 100Nm ^{-/} h/ 台を有する設計とす	
トップを認知の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	らろことを相定し、水素発生量のC値け0.25 酸素発生量の	<u>今。(因1,因2)</u>	
G値は0.125とする。			
 ① 発生水素(酸素)分子数[分子] =G值[分子/100eV]/100/ ② 水素(酸素)発生量[分子数/ =崩壊熱[MW]×10⁶×発生水 ③ 水素(酸素)発生量[m³/h] =水素(酸素)発生量[分子数 	<u>²数/J]</u> <u>(1.602×10⁻¹⁹ [J])</u> <u>(s]</u> <u>素(酸素)分子数[分子数/J]×放射線吸収割合</u> <u>(k/s] / (6.022×10²³) ×22.4×10⁻³×3600</u>		
			1

	備考
<u>+SB0+ECCS 機</u> 艮界である 4%未	・評価方針の相違
-	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
水素及び酸素の発生量より、酸素濃度を5%(水素を燃焼させる下限濃度)未満に抑えるた	必要窒素供給量=(水素発生量-水素発生量×0.04-酸素発生量×0.04)/0.04	
めに必要な窒素供給量yを求める。	$= (1.3 - 1.3 \times 0.04 - 0.65 \times 0.04) / 0.04$	
	$= 30.6 (m^3/h[norma1])$	
酸素発生量 + 窒素供給装置からの酸素供給量 水素発生量 + 酸素発生量 + 窒素供給装置の供給量 (y)		
$\frac{0.836 + y \times 0.01}{1.67 + 0.836 + y} < 0.05$		
y>17.8 (小数点第2位切上げ)		
上記より, 必要窒素供給量は 17.8Nm ³ /h となる。窒素供給装置の 1 台当たりの容量は 200Nm	可搬式窒素供給装置の容量は、上記の必要窒素供給量に余裕を見込み、100 m ³ /h[normal]と	
³ /h であることから,格納容器圧力逃がし装置用の窒素供給装置の必要台数は1台となる。	設定している。容量設定においてはベントガスの蒸気発生量を考慮していないため、十分保守	
	的な設定である。	
	<u>なお,系統内の全空間容積は約 202 m³であり,窒素供給量 100 m³/h[normal]で約7時間通</u>	・記載方針の相違
	気することで、系統内の酸素濃度を5%から1%まで低下させることが可能である。	

市海笛□双雪正 (2018 0 18 ℃)		
采证为二光电// (2010. 9. 10 版) 日均任 52	西侬床丁万先电//	
ノイルダ装直入口配官の位直について		
古海ダーズ委託のフィック壮界1日町焼け、フィック壮界の活営大佐といぼい佐界ベフィック		
果供弗→光电川のノイルタ表直八口に官は、ノイルタ表直の通吊小位より低い位直でノイルタ は異に接续されて、いてに機思いましの考えまし、このいまによる更影響の右無について検討す。		
表直に按照される。以下に機器取訂上の考え方と、この取訂による恋影響の有無について使討り 7		
東海第二発電所のワイルタ装置には、容器内部に有機よう素を除去するための銀セオフィト		
ワイルタを設置している。この銀セオフイト充填や容器内部の人槽点検には、上部マンボール 、、 キャートロングの形式になった。		
から容器内部に作業者が入り作業を行う必要がある。以下に示すように入口配管の接続位置は		
フィルタ性能に影響を及ぼすことはないことから、作業性を考慮して容器内部の作業エリアに		
大きな配管が極力配置されないように,銀ゼオライトフィルタ室より低い位置で入口配管を接		
続した設計としている。		
(2) 悪影響の有無について		
入口配管がフィルタ装置の通常水位より低い位置でフィルタ装置に接続することから,第1		
図のとおりスクラビング水を内包した入口配管が容器の外に配置されることとなる。これによ		
るフィルタ性能への影響, バウンダリへの影響及び放射性防護の観点から悪影響の有無を検討		
する。		
なお,強度や耐震性への影響は構造(入口配管の位置)を適切に反映して評価することから,		
問題はない。		
a. フィルタ性能への影響		
フィルタ装置使用時には入口配管のスクラビング水を押し出す必要がある。入口配管の位		
置が通常水位の上下に関わらず, 格納容器からのガスは待機時水位とベンチュリノズル分配		
管との差分の水位を押し込む必要がある。この押込み水位は入口配管の位置による差はほと		
んどない。		
したがって、入口配管が通常水位より下でフィルタ装置に接続されても、格納容器からの		
ガスはベンチュリノズルに導かれ、エアロゾルや無機よう素を捕集することから、入口配管		
の位置が放射性物質の捕集性能に影響を及ぼすことはない。		
なお, JAVA 試験設備においては,		
エアロゾルや無機よう素に対して、十分な除去性能を有することが確認されてい		
る。		
b. バウンダリへの影響		
系統待機時にスクラビング水はフィルタ装置外部の入口配管内にも貯留されるが, 配管の		
材質は耐アルカリ性を考慮して、フィルタ装置同様ステンレス鋼を採用することで、バウン		
ダリへの影響はない。		
c. 放射線防護への影響		
フィルタ装置使用後は、入口配管にも放射性物質を含んだスクラビング水が貯留される。		

備考
・設備の相違
島根2号炉は,スクラバ容器
入口配管は通常水位より高
い位置で接続されるため, 該
当資料なし
1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
フィルタ装置内部に入口配管が位置する場合と比べると、入口配管表面の放射線量率は高く	
なるが、格納容器圧力逃がし装置格納槽の遮蔽壁内に位置することから、作業員への影響は	
ない。	
以上より、入口配管のフィルタ装置への接続位置が、フィルタ性能等へ悪影響を及ぼすことは	
ない。	

備考

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 13	・資料構成の相違
	フィルタ装置(スクラバ容器)の基数の違いによる影響について	
	フィルタ装置のうちスクラバ容器を4基構成にすることに対して、フィルタ性能へ影響しない	
	よう設計上考慮している事項は以下のとおりである。図1にフィルタ装置廻りの系統概要を示	
	J.	
	$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
	図1 フィルタ装置廻り系統概要図	
	(1) 配管圧損	
	各スクラバ容器廻りの配管圧損の差が十分小さくなるよう、配管のルート計画を考慮してお	
	り、スクラバ容器入口側に連結管(ヘッダ)、スクラバ容器出口側に流量制限オリフィスを設置	
	している。これにより、各スクラバにおけるガス流速(体積流量)を出来るだけ均一になるよう	
	設計しており,各フィルタ装置と接続している分岐部~オリフィスまでの配管の圧損差は、最大	
	でも約 と小さく、この圧損差による蒸気流量のばらつきは 程度である。し	
	たがって,スクラバ容器が4基構成であっても各スクラバ容器のベンチュリスクラバにおけるエ	
	アロゾル除去性能に有意な影響はない。また、4つのスクラバ容器は第1ベントフィルタ格納槽	
	内に区画された一つのエリアに設置し、第1ベントフィルタ格納槽の躯体により遮蔽しているた	
	め、線量の偏りによる外部への影響はない。ルート別の配管長さ(曲げ数)を表1、ルート別の	
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	
----------------------	--	
	流速を表2,各フィルタ装置の配管圧損,流量の差を表3に示す。なお,流量制 流はオリフィス穴径に応じた流量となるため,銀ゼオライト容器入口における名	
	らのガス流速(体積流量)ははは一定となる。 表1 ルート別の配管長さ(曲げ数)	
	マンジャー パッション 日本 (山口) (山口) (山口) (山口) (山口) (山口) (山口) (山口)	
	山口 ルート 300A (曲げ) 200A (曲げ) 300A (曲げ) 200A (曲げ) 300A (曲げ)	
	A	
	В	
	С	
	D	
	注) オリフィス〜銀ゼオライト容器の配管長さは同一のため省略	
	表2 ルート別の流速 (単位:	
	配管 分岐~スクラバ容器 スクラバ容器~オリフィス	
	ルート 200A 300A 200A	
	A	
	D	
	表3 各フィルタ装置の配管圧損,流量の差	
	フィルタ装置A フィルタ装置B フィルタ装置C フ	
	配管圧損の差 (hPo[dif])*	
	貨重流重 (kg/s)	
	(18/15) (18/15	
	@ベンチュリ ノズル ⁽¹⁾	
	(m^3/s)	
	※分岐~オリフィスの区間	
	(9) スクラビンガ水位	
	Aスクラバ容器の液相部は連結管により相互に接続しており、各スクラ	
	同一となるような設計としている。なお,この連結管の配管径は 50A であ	
	器に流入するエアロゾル粒径に対して十分に大きな設計としており、スク	
	アロゾル移行量を考慮してもスクラビング水の粘性率への影響は小さいた	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	が閉塞する恐れはない。	
	(3) 気相部圧力	
	各スクラバ容器の気相部は、補給水用配管を通じて連結させることにより、1つの金属	
	フィルタに過大な圧力がかからない設計としている。なお、気相部に含まれるエアロゾル	
	は、スクラビング後の粒径の小さなエアロゾルのみとなるため、当該ラインが閉塞する恐	
	れはない。	
	(4) 薬剤濃度	
	フィルタ装置(スクラバ容器)への薬剤の補給については、図2に記載のとおり、常設	
	設備により補給が可能な設計としている。	
	各スクラバ容器への補給ラインは容器毎にそれぞれ設置している。各ラインの配管圧損	
	は小さく、各スクラバ容器の液相部は、連結管により相互に接続しているため、ほぼ均等	
	に補給でき、スクラビング水位および楽剤の濃度は均一になると考えられるが、楽剤の補	
	給後は図3に記載のとおり循環運転を実施し、スクラビング水の均一性を確保する設計と ・ ・・・・	
	している。	
	<complex-block></complex-block>	
	凶 Z ノイルダ 装直 廻り 米税 慨 安区 (佣 稻 時)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	Image: Addressed of the second seco	
	格納容器フィルタベント系は、スクラバ容器4基の構成としていることに対してフィルタ性能 へ影響しないよう設計上考慮しているが、基数による影響を網羅的に確認するため、格納容器フ ィルタベント系の設計で考慮した事項からスクラバ容器基数による影響が考えられる項目を抽 出した。スクラバ容器基数による影響及び影響評価結果を表1に示す。	

東海第二発電所 (2018.9.18版)		島根原	子力発電所 2号炉		備考
	表	長1 スクラバ容器基数に	こよる影響及び影響評価	西結果(1/2)	
	格納容器フィル 対するスクラ	ッタベント系の設計方針に ・バ容器基数による影響	スクラバ容器4基構成 における設計考慮事項	影響評価結果	
	排気容量 (ベントガ ス流量) 可	クラバ容器 1 基当たりの シトガス流量がばらつく 能性がある。	 ・各スクラバ容器廻りの 配管圧損の差を小さく する。 	 ・ベントガス流量が出来るだけ均 ーになるよう設計しており、ベントガス流量のばらつきは小さい 	
	放射性物質 ス の除去 べ が に 範 あ	クラバ容器1基当たりの ントガス流量にばらつき でることで各フィルタ部 おいて除去性能検証試験 囲から逸脱する可能性が る。	・各スクラバ容器廻りの 配管圧損の差を小さく する。	 ・ベントガス流量のばらつきは小 さいため、各スクラバ容器にお いてベントガス流量が除去性能 検証試験範囲から逸脱すること はなく、放射性物質の除去性能 への影響はない。 	
	金属フィル タの閉塞	アロゾルはベントガス流 が大きいスクラバ容器へ く流入することになり,一 の金属フィルタが閉塞す 可能性がある。	 ・各スクラバ容器廻りの 配管圧損の差を小さく する。 ・スクラバ容器の液相部 及び気相部をそれぞれ 連結管で接続する。 	・ベントガス流量のばらつきは小 さいため、各スクラバ容器ヘエ アロゾルがほぼ均等に流入する こと及び金属フィルタへ移行す るエアロゾル量は金属フィルタ の許容負荷量に対して小さいこ とを確認していることから、金 属フィルタが閉塞する可能性は ない。	
	 薬剤濃度 格: 物: さ、入・ ク 水・ あ・ 	納容器内で発生した酸性 質はベントガス流量が大 いスクラバ容器へ多く流 することになり,一部のス ラバ容器のスクラビング のpHが下がる可能性が る。	 ・各スクラバ容器廻りの 配管圧損の差を小さく する。 ・スクラバ容器の液相部 及び気相部をそれぞれ 連結管で接続する。 ・薬剤補給後は、スクラ バ容器の循環運転を行 う。 	 ・ベントガス流量のばらつきは小さいため、各スクラバ容器へ酸性物質がほぼ均等に流入すること及びスクラビング水は十分な量の薬剤を保有していることから、薬剤濃度への影響はない。 ・各スクラバ容器には薬剤を補給できる設計としており、薬剤補給後はスクラビング水を循環させることで均一性を確保することから薬剤濃度への影響はない。 	
	スクラビン 放: グ水位 量 多 集 に の る	射性物質はベントガス流 が大きいスクラバ容器へ く流入することになり,捕 した放射性物質の崩壊熱 より一部のスクラバ容器 スクラビング水位が下が 可能性がある。	 ・各スクラバ容器廻りの 配管圧損の差を小さく する。 ・スクラバ容器の液相部 及び気相部をそれぞれ 連結管で接続する。 	・ベントガス流量のばらつきは小 さいため,各スクラバ容器へ放 射性物質がほぼ均等に流入する こと及び各スクラバ容器の液相 部及び気相部をそれぞれ連結管 で接続し,スクラバ容器のスク ラビング水位が等しくなるよう 設計していることから,スクラ ビング水位への影響はない。	

東海第二発電所 (2018.9.18版)		島根原子力発	電所 2号炉	
	表1 スクラバ容器基数による影響及び影響評価結果(2/2)			
		器フィルタベント系の設計方針に るスクラバ容器基数による影響	スクラバ容器4基構成 における設計考慮事項	影響調
	系統の冗長 性	系統に冗長性を持たせている格納容 器の接続位置とベント弁は、フィルタ 装置入口配管の分岐部より上流側に あるため、スクラバ容器の基数による 影響なし。	_	
	位置的分散	全てのスクラバ容器を第1ベントフ ィルタ格納槽内に区画された一つの エリアに設置しているため、スクラバ 容器の基数による影響なし。	_	
	水素対策	可搬式窒素供給装置により窒素置換が可能なため基数による影響なし。	-	
	悪影響防止	他系統とは弁により隔離しているた め、スクラバ容器の基数による影響な し。	_	
	現場操作	ベント弁は、フィルタ装置入口配管の 分岐部より上流側にあるため、スクラ バ容器の基数による影響なし。	_	
	補給・排水 操作	各スクラバ容器に補給水配管及びド レン配管を設置することから,スクラ バ容器の基数による影響なし。	_	
	排気処理	放出口の高さは、スクラバ容器の基数 による影響なし。	_	
	外部事象, 地震,津波, 溢水,火災, 環境条件に 対する考慮	全てのスクラバ容器を第1ベントフ イルタ格納槽内に区画された一つの エリアに設置しているため、スクラバ 容器の基数による影響なし。	_	
	作業員被ばく低減	全てのスクラバ容器を第1ベントフ ィルタ格納槽内に区画された一つの エリアに設置しているため、スクラバ 容器の基数による影響なし。	_	
	圧力開放板	スクラバ容器出口配管の合流部に圧 力開放板を設置することから,スクラ バ容器の基数による影響なし。	_	
	水素及び放 射性物質濃 度の監視	スクラバ容器出口配管の合流部より 下流側に水素濃度計及び放射線モニ タを設置することから,スクラバ容器 の基数による影響なし。	_	
	スクラバ容 器周りの計 装	各スクラバ容器に水位, 圧力及び温度 を監視する計器を設置することから, スクラバ容器の基数による影響なし。 スクラビング水 p H計は, 液相部の連 結管に設置することから, スクラバ容 器の基数による影響なし。		
	試験又は検 査	各スクラバ容器に点検用のマンホー ルを設置していることから、スクラバ 容器の基数による影響なし。	_	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	(参考2)ベントガス流量のばらつきに対する影響評価の詳細について
	格納容器フィルタベント系は、スクラバ容器4基構成としており、スクライ のベントガス流量にばらつきが発生することで、スクラバ容器の性能に影響 る。このため、スクラバ容器1基当たりのベントガス流量のばらつきが発生 評価した。 1. ベントガス流量のばらつきの評価 フィルタ装置入口配管の分岐部から各スクラバ容器入口までの圧力損失 を評価した結果、フィルタ装置の入口流量比の差は格納容器内圧力1Pd , 格納容器内圧力2Pd 時において であった。フィルタ 力損失及びガス流量を表1及び表2に示す。
	表1 PCV 圧力1Pd におけるフィルタ装置入口側の圧力損失及びガ
	圧力損失 (kPa) スクラバ容器 入口ガス流量 (m ³ /s) スクラバ容器 入口ガス流量 (m/s)
	スクラバ容器A
	スクラバ容器B
	スクラバ容器C
	スクラバ容器D
	表2 PCV 圧力 2 Pd におけるフィルタ装置入口側の圧力損失及びガロン 圧力損失 スクラバ容器 スクラバ容器 (kPa) 入口ガス流量 入口ガス流速 (m³/s) (m/s)
	スクラバ容器A
	スクラバ容器B
	スクラバ容器C
	スクラバ容器D
	 2. 流量のばらつきによる影響 スクラバ容器1基当たりの流量のばらつきが発生した場合には、以下の影響 性能を発揮することができない可能性がある。

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(1) 性能検証試験範囲からの逸脱	
	格納容器フィルタベント系は,想定する運転範囲としてベントガス流量を	
	としており、このベントガス流量が各スクラバ容器に均等に分配されるように設計してい	
	る。このため、スクラバ容器1基当たりのベントガス流量にばらつきが発生し、各スクラバ	
	容器で想定している流量が増減することで,想定している運転範囲から逸脱する可能性があ	
	る。この結果、除去性能検証試験で確認された試験範囲から逸脱し、所定の除去性能が発揮	
	できない可能性がある。	
	(9) エアロゾルに上る全属フィルタの問塞	
	(2) エノロノルによる並属ノイルクの困率	
	ハクノハ谷協工 左当にりのハントガス加重にはりつさか光王りることにより, 即のハク	
	ノハ谷谷のペンドルへ加重が入さてなる。この和木、加重が入さてなうにヘクノハ谷谷に加 トナスエアロゾル県が増加し、全国ファルタの問題が発生する可能性がなる	
	八9るエノロノル里が増加し、金属ノイルグの闭塞が先生りるり能性がめる。	
	(3) 格納容器内で発生した酸性物質によるスクラビング水の p Hの異常低下	
	スクラバ容器1基当たりのベントガス流量にばらつきが発生することにより、一部のスク	
	ラバ容器のベントガス流量が大きくなる。この結果、流量が大きくなったスクラバ容器に流	
	入する酸性物質の量が増加し,スクラビング水の p H が異常に低下する可能性がある。	
	(4) 堵集」た抜射株物質の崩壊執によるスクラビング水位の異党低下	
	(4) 捕来した成別住物員の崩壊系によるハノノビンノ水位の共市低下 マクラバ宏哭1 其当たりのベントガス法員にげらつきが発生することにより 一部のマク	
	ラバ 家田のベントガス 流量が ナキく たる この 結果 流量が ナキく たった スクラバ 家田に 流	
	入する放射性物質が多くたり 放射性物質の崩壊熱が大きくたることでスクラビング水が異	
	アリる版利に物質が多くなり、版利に物質の崩壊系が入さくなることでパノノビンノホが異	
	3. ベントガス流量のばらつきによる影響評価	
	スクラバ容器1基当たりのベントガス流量のばらつきが発生した場合の影響について評価	
	を行い、所定の性能に影響がないことを確認している。確認結果の詳細は以下のとおり。	
	(1)性能検証試験範囲からの逸脱	
	格納容器圧力2Pd 時におけるベントガス流量のばらつき に対する影響評価結果は以	
	下のとおり。	
	a. ベンチュリスクラバ	
	図1にベンチュリノズルにおけるガス流速に対して整理した除去性能検証試験結果を	
	示す。図1より、流量にばらつきが発生した場合においても、除去性能検証試験で除去係	
	数 DF1,000 以上を満足していることから,ベンチュリスクラバにおける運転範囲への影響	
	はない。	

	備考
性能に影響を与	
スクラハにおけ	
検証試験結果を	
証試験で除去係	
範囲への影響は	
/	

(2) エアロゾルによる金属フィルタの間 想定するエアロゾル量(300kg)がス への移行量は であり、ベン 量は い運用が可能な負荷量 に本 能性はない。なお、有効性評価(雰囲 損)(残留熱代替除去系を使用できな 量は であり、金属繊維フ 量に対して十分小さい。 なお、金属フィルタのドレン配管の クラバ容器に流入するエアロゾルの料 排出できる十分な配管口径であること	閉塞 マクラバ容器に均等に流入した場合の金
 (3)格納容器内で発生した酸性物質によ 保守的に格納容器内で発生した酸性物質によ 場合、スクラビング水をアルカリ性に が必要となり、その濃度は 機時には、スクラビング水の濃度を としている。 ベントガス流量が 増加した はない。 (4)捕集した放射性物質の崩壊熱による ベントガス流量が 増加した くなるため、その崩壊熱により一部の 一方、他のスクラバ容器では流入する。 	・トガス流量が 増加した場合にお のため、金属繊維フィルタの閉塞のリ すして小さいため、金属繊維フィルタの 囲気圧力・温度による静的負荷(格納容 い場合))におけるエアロゾルの金属フ フィルタの閉塞のリスクが極めて低い運 の口径は の口径は であり、 粒子径は であり、ドレン配管において閉塞が発生 よるスクラビング水のpHの異常低下 性物質(約 mol)が全てスクラバ た場合のスクラバ容器1基当たりの酸 であり、待機時のスクラバ容器1 より小さいためスクラビング水 るスクラビング水位の異常低下 :場合に、一部のスクラバ容器に流入する のスクラバ容器のスクラビング水の蒸発 る放射性物質が少なくなるためスクラビ ラバ容器全体とした場合における蒸発量

	備考
属繊維フィルタ	
いてもその移行	
スクが極めて低	
閉塞が生じる可	
器過圧・過温破	
イルタへの移行	
用かり能な負何	
これに対してス	
また、ドレンが	
するおそれはな	
容器へ移行した	
に余裕をみて待	
生物質の移行量	
基当たりの □	
DpHへの影響	
放射性物質が多	
量け増加する。	
ング水の蒸発量	
はベントガス流	
た、一部のスク	
の水位は均一と	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(参考3)気相部及び液相部の連結管について	
	格納容器フィルタベント系は、スクラバ容器4基の構成としており、スクラバ容器の気相部及	
	び液相部をそれぞれ連結管により接続している。連結管の設置目的及び連結管の口径の根拠を以	
	下に示す。	
	1	
	1. 理和目の取直日的 	
	(1) 与相部の連結管	
	a. 各スクラバ容器気相部の圧力を同等にすることで1つの金属フィルタに過大な圧力がか	
	からないようにする。また、スクラバ容器の水位を同等とする。	
	b. 補給設備へ接続する。	
	(2)液相部の連結管	
	a. 各スクラバ容器の水位を同等とする。	
	b . p H測定装置へ接続する。	
	2.連結管配管径の適切性	
	配管口径については、むやみに圧力損失が増え、動力、最高使用圧力を増加させることがな	
	いように、また、浸食、配官振動を生しさせないように、配官内流速を表1に示す日安以下に	
	抑えることを考慮して速化している。	
	表1 配管内流速の目安	
	液体の種類」波動の状態」 基準流速	
	淡水	
	蒸気・ガス	
	スクラビング水はベントに伴い、蒸気凝縮、捕集された放射性物質の発熱による蒸発等によ	
	り増減するが、液相部の連結管によりスクラビング水が移動し、移動したスクラバ溶液と同等	
	量のベントガス等が気相部の連結管を流れることで、スクラビング水位は同等となる。この際、	
	スクラバ容器の気相部の圧力は同等となる。	
	よって,スクラビング水の水位差が生じた場合において,表1より液相部の配管内流速を	
	以下,気相部の配管内流速を 以下に抑えることを考慮し,液相	
	部の連結管を 50A, 気相部の連結管を 25A と設定している。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 (1) スクラビング水が均一になる場合の配管内流速 スクラビング水の水位が等しくなる場合の液相部及び気相部の配管内流速について確認 するため、何らかの要因で2基のスクラバ容器のスクラビング水の水位差が *1から 均一になった場合について評価する。評価は、2基のスクラバ容器とそれらを接続する連結 管をモデルとした。評価モデルを図1に示す。 ※1:スクラバ容器の機能を喪失しない範囲(スクラビング水の上限水位~下限水位)にお ける水位差として設定 	
	連結管(気相部D2) 25A (流速v2(m/s)) (水位差z(m)) (流速v1(m/s)) (方根部D1) 77ルタ装置 アイルタ装置 図1 評価モデル図	
	2基のスクラバ容器に水位差が生じた場合の液相部の連結管の流速は以下の式に基づき 計算する。	
	$\Delta \mathbf{h} = \lambda \frac{L}{D} \frac{v^2}{2g}$	
	 Δh : 圧力損失(初期水位差 z:) λ : 管摩擦係数() L : 連結管の長さ D : 連結管内径 V : 流速 g : 重力加速度(9.80665m/s²) 流体抵抗である L/D の算出にあたり,配管内流速が大きくなるよう,最も距離が短いスク ラバ容器C~Dの連結管の長さを選択した。 	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	
	表 2 連結管の流体抵抗	
	連結管 L/D	
	スクラバ容器A~B	
	スクラバ容器A~C	
	スクラバ容器A~D	
	スクラバ容器B~C	
	スクラバ容器B~D	
	スクラバ容器C~D	
	 部の連結管を流れる流量と同等のベントガス等が流れるため、気相部は、となる。 以上より、液相部の目安、以下かつ気相部の目安、以下 管口径 50A 及び気相部の配管口径 25A で問題ないことを確認した。 (2) スクラビング水をサプレッション・チェンバへ移送する場合の配管 ベント終了後のスクラビング水のサプレッション・チェンバへの シブの定格流量である約 10 m³/h が 50A の配管内を流れることを考え m/s となる。 以上より、液相部の目安、以下であるため、液相部の配管 とを確認した。 (参考4) スクラバ容器に水位差が発生した場合の液面振動 格納容器フィルタベント系は、ベントガス流量を同等とする設計及び4 結管で接続する設計としており、スクラビング水の水位差が生じることに 仮に、何らかの要因によりスクラバ容器に水位が発生した場合の液面振 た。評価は、2台のスクラバ容器とそれらを接続する連結管をモデルとし に示す。 	30 「「「「「「「」」」」、「「」」、「「」」、「「」」、「」」、「」」、「」、「」

	備考
重結管は、液相	
管の配管内流速	
り 液相部の配	
, IX II II II VIII	
いてけ 移送ポ	
,流速は約1.3	
Aで問題ないこ	
カラバ宏思な演	
くい。	
いて評価を行っ	
西モデルを図1	

	備考
数 f_u は以下の式	
)	
)	
/	
1	
から、(式1)は	
E)	
o)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	ここで、(式2)より m = となる。また、振幅が最大となる場合の水位差は、図2に示	
	すとおり $z < 0$ となることから(式5)内の $exp\{m(z - z_0)\} \rightarrow 0$ となるため、振幅の最大値は	
	以下の式で計算できる。	
	$m_{Z} + 1 = 0$	
	1	
	$Z = -\frac{1}{m} = -1.41(mm)$	
	Z	
	+ / 初期水位差	
	Z _D	
	- 振幅の最大値z<0	
	-	
	図2 振幅のイメージ	
	以上より、何らかの要因により水位差がとなった場合の液面振動の振幅は最大でも	
	であり、液面振動を考慮しても上限水位である に対し余裕があるため液面	
	振動による影響はない。	
	の時のスクラバ溶液の最高水位は約 であり、有効性評価における7日後の水位は下限	
	水位に対し余裕がある。	
	また、(式3)及い(式4)より (初国振動の固有振動級 Jula 木価 じめり、 剛構 這 じめる ヘ クラバ 容器の に対し十分小さいことから 液面振動がスクラバ 容器と	
	共振することはない。	
	なお,スクラバ容器4基間での液面振動を評価するため,前述の評価において,スクラバ容器	
	断面積F ₂ を2基分の断面積として評価を実施した結果,液面振動の振幅は最大でも 未満で	
	あり、固有振動数は 未満であることから液面振動の影響はないと考えられる。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	(参考5)格納容器フィルタベント系の設計経緯について	
	格納容器フィルタベント系の当初設計,設計変更内容及びフィルタ性能への影響評価について	
	は以下のとおり。	
	 ノイルタペント設備のシスノム設計としては、借外にスクノハ谷器を2番件成としに美 まがちり、自相の長端にないてす地下放知構成の配置スペースの細点で家界なコンパク 	
	頃かめり、岡依2万城においても地上招が指わりに直へ、 への戦点で存留をユンバク トに設計するため、スクラバ交哭を複粉基とする設計が可能であることをベンダーに確	
	認したことから、スクラバ容器を複数基で構成するシステムを採用した。	
	 スクラバ容器の容量として、スクラバ容器の設計崩壊熱量 370kW に対応できるスクラビ 	
	ング水量を確保するため,性能検証試験(JAVA 試験)で使用された容器と同等の高さ	
	のスクラバ容器を4基設置することとした。	
	・ スクラバ容器を4基構成としたことから、フィルタ装置出口配管についても4本構成と	
	した。	
	(2) 設計変更	
	 ノイルタペント設備の設計を進める技術で、スケノハ谷益では捕集できない有機より系 を捕集するために組ゼナライト宏架を追加することを決定し、スクラバ宏架下流に追訳 	
	と捕来りるために歌じオノイト谷都を追加りることを代定し、ハノノハ谷都一加に追放 した。銀ゼオライト容哭についてけ、必要か容量と設置スペースを考慮し、1 基構成と	
	した。	
	 ・ 銀ゼオライト容器を追設したことにより、フィルタ装置出口配管4本にそれぞれ設置す 	
	ることとしていた圧力開放板にかかる圧力が低下し,圧力開放板が全ては作動しない可	
	能性があったため,フィルタ装置出口配管について途中で1本の配管(400A)に合流さ	
	せ, 圧力開放板を1個設置する設計に変更した。	
	(3) ノイルク性能への影響評価 ・ スクラバ 宗哭を / 基構成 とした 提合でも、 タスクラバ 宗哭の 配管圧損の 美が十分小さく	
	なるよう配管のルート計画を考慮しており、ベント流量のバラつきを評価した結果、性	
	能に影響は無いことを確認している。	
	 フィルタ装置出口配管を4本構成とした場合でも、フィルタ装置出口配管の圧力損失が 	
	小さくなるよう配管口径を 300A とし,流量制限オリフィスにおける圧力差を確保する	
	ことで、ベントガス流速の運転範囲が性能検証試験範囲内であることを確認している。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 35	・資料構成の相違
	JAVA PLUS 試験結果を踏まえた銀ゼオライトフィルタの設計	
	ベントガフに今まれるガス状物財性と言志(無機と言志及び右機と言志)は、広島制限ナリ	
	フィス下流に設置する銀ゼオライトフィルタを通過する際の化学反応にて捕集する 実機の銀	
	ゼオライトフィルタの設計において、除去係数と滞留時間の関係式。 IAVA PLUS試験により得	
	られた除去係数及び滞留時間を用いることから、 JAVA PLUS試験結果の実機への適用性につい	
	て、以下にまとめた。	
	a. 銀ゼオライトフィルタにおけるガス状放射性よう素の捕集	
	ベントガスに含まれるガス状放射性よう素は,流量制限オリフィス下流に 設置する銀	
	ゼオライトフィルタを通過する際の化学反応にて捕集する。銀ゼオライトフィルタにおけ	
	るガス状放射性よう素の吸着速度は,総括物質移動係数Kを用いて以下のように表せる(参	
	考図書1,2)。	
	$r \frac{\partial q}{\partial t} = K(C - C^*)$ ・・・・ (式1)	
	r: 吸着剤充填密度 q : よう素吸着量 K : 総括物質移動係数	
	C : よう素濃度 C* : よう素平均濃度	
	ここで,化学反応による吸着(不可逆反応)であることから,C*=0とみ	
	なし,式1は以下のように表せる。	
	$r\frac{\partial \mathbf{q}}{\partial \mathbf{t}} = KC \qquad \cdot \cdot \cdot \cdot (\not \equiv 2)$	
	b. 除去係数と滞留時間	
	ガス状放射性よう素が銀ゼオライトフィルタを通過する際の物質収支は,吸着剤の微小	
	ベッド厚さΔz に対して, 単位時間あたりのよう素濃度の低下率と吸収量が等しいとする	
	式3で表すことができる(参考図書3)。	
	銀ゼオライトフィルタ通過前後における物質収支のイメージを図1に示す。	
	$-uA \Delta t \Delta C = r A \Delta z \Delta q \qquad \cdots \qquad (\exists 3)$	
	u : ガス流速 A : ガス通過断面積 Δt : 単位時間	
	ΔC : よう素濃度変化 r : 吸着剤充填密度 Δz : ベッド厚さ	
	Δq : 単位質量あたりのよう素吸着量	

$\begin{array}{c} \Delta z \\ \checkmark \end{array}$	
<u>u,C</u> 要 <u><u>u,C-</u> 型</u>	
<u>u,C</u> 標 国	
$\begin{array}{c} u, C \\ \hline \\ \blacksquare \\ \\ \blacksquare \\ \blacksquare \\ \end{array}$	
図1 組ゼオライトフィルタ通過治浴における物質収支のイメージ	
因1 或ビオノイドノイルク 地回則後における初員収入のイメーン	
ここで、左辺はガスに含まれる放射性よう素の変化量、右辺は銀ゼオライトフィルタ	
で捕集した放射性よう素量を表す。 $\Delta z = u \Delta t$ より,両辺を $A \Delta t \Delta z$ で除し,微小変化を Δ	
→∂とすると,式3は以下のように表せる。	
$-\frac{\partial C}{\partial t} = r \frac{\partial q}{\partial t} \qquad \cdot \cdot \cdot \cdot (\overrightarrow{\mathfrak{R}} 4)$	
式4に式2を代入すると、以下のように表せる。	
$\frac{\partial C}{\partial t} = -KC \qquad \cdot \cdot \cdot \cdot (\not \eqsim 5)$	
式5を積分し, CO を初期よう素濃度とすると、以下のように表せる。	
$\frac{\log(\frac{C_0}{C})}{t} = \frac{\log(DF)}{t} = K \qquad \cdot \cdot \cdot \cdot (\vec{\mathfrak{T}} \ 6)$	
式6は銀ゼオライトフィルタをベントガスが通過する時間(滞留時間)に除去係数が	
依存することを示している。また,銀ゼオライトフィルタの厚さが一定であることを考	
慮すると,除去係数が銀ゼオライトフィルタを通過するベントガスの流速に依存するこ	
とを示している。	
c. 除去係数と滞留時間	
銀ゼオライトフィルタの除去性能に影響を与え得るベントガス条件として, ベントガ	
スの流速以外に,過熱度,蒸気割合,銀ゼオライトフィルタ温度,銀ゼオライトフィル	
タ圧力が考えられることから、これらの条件が式6の総括物質移動係数へ与える影響に	
ついてJAVA PLUS試験結果により評価する。	
① 蒸気割合,銀ゼオライトフィルタ温度及び過熱度の影響	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	表1 蒸気割合,銀ゼオライトフィルタ温度及び過熱度
	総括移動係数に与える影響
	 ④ 銀ゼオライトフィルタ圧力及び過勢度の影響
	表2 銀ゼオライトフィルタ圧力及び過熱度が総括移動係数に与える
	表3 銀ゼオライトフィルタ圧力及び過熱度が総括移動係数に与え
	③ まとめ
	ベントガス条件(過熱度,蒸気割合,銀ゼオライトフィルタ温度及ひ

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	フィルタ圧力)が,総括物質移動係数へ与える影響についてJAVA PLUS試験結果に基	
	づき評価した結果、総括物質移動係数が過熱度に依存することを確認した。なお、蒸	
	気割合,銀ゼオライトフィルタ温度及び銀ゼオライトフィルタ圧力は,銀ゼオライト	
	フィルタを通過するベントガスの過熱度を決定する因子となり得るものであり、これ	
	らのベントガス条件が総括物質移動係数に与える影響は, 過熱度による影響に帰着す	
	るものと考えられる。	
	以上から,銀ゼオライトフィルタの除去性能の評価や設計においては,式6に示さ	
	れる滞留時間、ベントガスの過熱度への考慮が重要である。	
	d. JAVA PLUS試験結果の実機への適用	
	銀ゼオライトフィルタの設計(必要ベッド厚の設計)においては,式6とJAVA PLUS	
	試験で得られた除去係数及び滞留時間を用い,実機の過熱度の運転範囲について,式7	
	の関係から実機に要求する除去係数を得るために必要となる滞留時間を算出し, 銀ゼオ	
	ライトの必要ベッド厚を設定する。上記のとおり設計した島根2号炉の銀ゼオライトフ	
	ィルタの有機よう素除去係数を図2に示す。過熱度の運転範囲全域において,要求する	
	除去係数(DF50以上)を満足している。	

	備考
1070 FO	
いて,1978 年9	

 備考	力発電所 2号炉	島根原子		東海第二発電所 (2018.9.18版)
・記載方針の相違	<u>別紙 44</u> 囲についての補足事項	設備の維持管		
	設備の維持管理についての補足争項			
	こついて	外観点検の確認内容	 1.機能確認における 	
	長1に示す。	観点検の確認内容を	機能確認における外緒	
	こおける点検の確認内容	表1 開放点検		
	点検の確認内容	機能	対象機器	
	■表面に強度に影響を及ぼす恐れのあるき裂,変	フィルタ性能	ベンチュリノズル	
	形,腐食及び摩耗がないこと。			
	■性能に影響を及ぼす恐れのあるノズル穴の異			
	物による閉塞、ノズル穴の変形がないこと。			
	■表面に強度に影響を及ぼす恐れのあるき裂,変		金属フィルタ	
	形,腐食及び摩耗がないこと。			
	■性能に影響を及ぼす恐れのある金属フィルタ			
	の異物による閉塞、溶接部の割れ、腐食がない			
	こと。			
	■表面に強度に影響を及ぼす恐れのあるき裂,変	整流機能	多孔板	
	形、腐食及び摩耗がないこと。			
	■性能に影響を及ぼす恐れのある整流板穴の異			
	物による閉塞、穴の変形がないこと。			
	■表面に強度に影響を及ぼす恐れのあるき裂,変	流量調整機能	オリフィス	
	形、腐食及び摩耗がないこと。			
	■性能に影響を及ぼす恐れのあるオリフィス穴			
	の異物による閉塞,穴の変形がないこと。			
		_ / \.		
		泡方法 	2. フィルタ性能の確認	
	の項目を確認することでのフィルタ性能が維持され	以下の(1) \sim (3)	待機中、定期的に、人	
			ていることを確認する。	
		-71		
	ナスこしる 宏明内部の子延時世能が維持され べ		(1)至糸到八圧力唯語	
			至糸均八圧刀を	
	ロエモビエレトをつこことは推励する。	ョノ 1 /rク V)協良() k 位確認	(9) マカラビンガル-	
)で維持していることを確認する	いビルモジを通ヴ水ウ((4) ハクラビング水/	
			(3) スカラビンガル	
	- レで が相定のヵ日を維持して	エマベヤĔヤロン シプリング測定する	スクラビング水た井	
		~ ノ フ ~ ノ (町)に り 〇	いろ車を確認する	
	 表面に強度に影響を及ぼす恐れのあるき裂、変形、腐食及び摩耗がないこと。 性能に影響を及ぼす恐れのある金属フィルタの異物による閉塞、溶接部の割れ、腐食がないこと。 表面に強度に影響を及ぼす恐れのあるき裂、変形、腐食及び摩耗がないこと。 表面に強度に影響を及ぼす恐れのあるき裂、変形、腐食及び摩耗がないこと。 表面に強度に影響を及ぼす恐れのあるき裂、変形、腐食及び摩耗がないこと。 他能に影響を及ぼす恐れのあるオリフィス穴の異物による閉塞、穴の変形がないこと。 他能に影響を及ぼす恐れのあるオリフィス穴の異物による閉塞、穴の変形がないこと。 か筋食及び摩耗がないこと。 か規定のpHを維持していることを確認する。 	 整流機能 整流機能 流量調整機能 認方法 以下の(1)~(3) 認[gage]程度に維持 スフィルタの腐食のない 水位確認 を通常水位(生状確認 ンプリング測定する 	金属フィルタ 多孔板 多孔板 オリフィス 2. フィルタ性能の確認 待機中,定期的に,見 ていることを確認する。 (1)窒素封入圧力確認 窒素封入圧力を ンチュリノズル及び金属 (2)スクラビング水ズ スクラビング水本 スクラビング水をサいる事を確認する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	3. 点検周期の考え方	
	4.5 格納容器フィルタベント系の維持管理の表 4.5-1 に示す点検周期は、表2に示すように機	
	能や設置環境の類似した既設類似機器を踏襲して決定する。なお、この点検周期は、今後の保全	
	活動を実施する中で適切な周期の見直しを行うこととする。	
	容器及び容器内部構造物に対する,アルカリ性の薬液を注入することによる腐食の影響対策と	
	しては、本装置が通常待機状態であること、及び、耐腐食にすぐれたステンレス材等の材料を使	
	用していることから,窒素封入による不活性状態を維持することにより容器内部構造物の腐食の	
	発生を防止していることの確認を定期的に行うことで適切に維持できると考えられる。	

						リ用 クラ
	表2 点検周期の決定根拠					
対象機器	機能/設置	環境		類似機器	点検周期	
	型式/機	材料	内部流体			
	能					
スクラバ容器	フィルタ	ステンレス鋼	スクラビング	原子炉冷却材浄	65M	
	等		水/窒素ガス	化系		
				ろ過脱塩器		
内部構造物	フィルタ	ステンレス鋼	スクラビング	原子炉冷却材浄	65M	
・ベンチュリノ	等		水/窒素ガス	化系		
ズル				ろ過脱塩器 内		
・金属フィルタ				部構造物		
・多孔板						
銀ゼオライト	フィルタ	銀ゼオライト	窒素ガス	非常用ガス処理	1C(機能確	
容器	等			系活	認)	
				性炭フィルタ		
伸縮継手	変位吸収	ステンレス鋼	窒素ガス/外	_	10C	
	機構		気			
流量制限オリ		ステンレス鋼	窒素ガス	_	10C	
フィス						
上力開放板	弁類	ステンレス鋼	窒素ガス/外	窒素ガス制御糸	5C	
			気	上力開放板		
配管	配管類	炭素鋓	窒素ガス/外	窒素ガス制御糸	10C	
			気	配管		
		ステンレス鋼	スクフビンク	気体廃棄物処埋	10C	
			水/窒素カス	米		
	ム茶	山中山		肥官	10 (+64:24:24	
开 一	开類	灰素鈍	窒素カス/外	金素刀入制御糸 	IC(機能催	
			気	开想		
					78M(分解 上校)	
		コニンロス御	コカニビンガ	启伏威玄师如田		
		ハア / レ / 婀	ヘッフェンク	风仲焼栗彻処埋 ∞	10 (1泼肥唯 □====================================	
			小/ 至糸ルヘ	「「大」「一方石」	前心) 79M (人) 伝辺	
				井翔	(OM (万件) 占检)	
※占於国期の W	 	 	 シデオ		- 尽快/	
☆□□−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	は「月」,し	よ「ソイン/V」を	2 / Y 9 0			
伸縮継手 流量制限オリ フィス 圧力開放板 配管 弁 ※点検周期のMi	変位吸収 機構 配管類 弁類 配管類 介類 ごは「月」, Ci	ステンレス鋼 ステンレス鋼 ステンレス鋼 炭素鋼 ステンレス鋼 ステンレス鋼	窒素ガス/外 窒素ガス 窒素ガス/外 気 窒素ガス/外 気 窒素ガス/外 気 窒素ガス/外 気 ネクラビング 水/窒素ガス/外 気 スクラビング 水/空素ガス 窒素 スクラビング ホ/室素 気 スクラビング ホ/室素ガス	1 1 一 一 一 一 室素ガス制御系 圧力開放板 空素ガス制御系 配管 気体廃棄物処理 系 配管 窒素ガス制御系 気体廃棄物処理 系 介類 気体廃棄物処理 糸 弁類	10C 10C 5C 10C 1	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 49	・資料構成の相違
	適合性審査において確認を行う事項(第50条等, FCVS)	
	に対する記載事項について	
	適合性審査において確認を行う事項に対する各資料の回答記載箇所について次項に示す。	

東海第二発電所 (2018.9.18版)									島	根原	原子	力発	電列	f	2号	炉					
	Dサブチーム	確認ポイント	b-5-1. 対象弁	P−5−2. アクセス性及び作業環境	D-D-3. 人刀操作00炎当性 h-6-1. わ射線防護対策		b-6-2. 線量評価	b-7-1. ラプチャーディスクの設定圧の確	麗	b-8-1. ベントラインの取り出し位置及び	大没評価	b-9-1. フィルタ装置の放射線防護対策	·線量低減目標 ·線量低減対策	hw主的2013年 b-9-2. 線量評価	一般公衆被ばく低減対策 外的事象に対する耐性	ファロンヲま、ニヘシ ラ る ロロンに 事故後の周辺作業の成立性	48-1. 敷地境界での線量評価 10-1-1 == tac タル	11-1-11 後来が来る。	43-1-2. 操作性 43-1-3. 試験又は検査	43-1-4. 切り替え性 ^^-1_F 亜망總にト	43-1-0. 恋野首別ユ 43-1-6-1 体田時の操作性
		 基準規則 (解釈) 	第1項b) 、	£√ (>	第1 垣 b)	* - * * (iv で	放射線防 輩	读 第1項b)	vii) 圧力 闘秘栃	用	vii) CV と ₄₄ (*	<u>の(</u> 検続 第1項b)	i×)使用 後の故軒	段 ^{55,1} 233	審査会合	毛 毛 人 H	q)	t	2項	「「「」」で	х К
		基準規則 (本文)															4 8 条 参 c 4	+ c ¥ 一型 一	1項2号 1項3号	1 五 七 七 七 七 七 七 七 七 七 七 七 七 七 七 七 七 七 七	- 法
		醸設ポイント	b-1-4. 試験のスケール性	p-1-5. 待機中の除去性能維持 	・水117、 p H b-1-6. 使用時の除去性能維持	· 水位、 p H	・日詰まり、圧損 b-1-7 長時間体田時の性能維持	・長期使用時の検討事項	・崩壊熱の影響 b-1-8. 使用後の保持性能の維持	です。 1.2011年2011年2011年2011年2011年2011年2011年201	p-1-9. その他	b-2-1. 防爆に対する基本方針 b-2-2 系結内の可候性ガスの滞留時止	· 配管の設計	・容器の設計・監視設備	······································	b-5-3.ベント使用前 ・突素パージ	産業にし、	b-5-4. ベント使用初期 ・系統内の水蒸気凝縮	・装置下流側の対向流 h-0-t ベント体田阜祖及16体田後	p. 1 · · · · · · · · · · · · · · · · · ·	(SGIS、 耐圧強化 ベント)
		基準規則 (解釈)										I			第1項b)	ii) 陆燿	楼 5			第1項b)	Ⅲ) 患影響
		基準規則 (本文)																			
		確認ポイント	a-1. 設置目的	a-2. 位置、構造、設備 - 。 === / & //	a-3. 設計条件 a-3-1. 条件	a-3-2. 材料	a-3-3. 必要となる資機材 a-4. 隔離弁業の信頼性	。」??」 「隔離弁としての信頼性 ・ べいて弁ィートの信曲柱		a-2-1. 手順着手の判断基準 。	a-p-7、ベント実施の判断基準 a-5-3. 操作手順	a-6. 操作性	a-7. 使用後の考慮事項 a-8. 監視・計測	a-9. 保守管理	a-10. 海外の先進事例との比較 a-11. 引用文献. 品質保証の妥当性	a 11. 21/17人歌、III.其体曲で交当庄 a-12. その他	・ヨウ素対策の許認可上の位置付け ・CV減圧速度の確認	・基数の違いによる考察 ・凝縮水の排水	・間欠運転実施時の考慮事項 b-1-1.除去対象及び除去原理	b-1-2. 性能試験方法 ·試験条件 ·試験粒子 ·計測器	b-1-3. 性能試験結果
		基準規則 (解釈)									第1項a) 設置										第1項b)i)
	目次(概要	基準規則 (本文)											¢ C	∰ റ							

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 市本文1 概要 ①本文1 概要 ①本文1 概要 ①本文31 系統設計 ①本文31 系統設計 ①本文31 系統設計 ②本文31 系統設計 ②本文31 系統設計 ②本文32 2 記首及び弁類 ③本文32 2 記首次以行対針 前指注 ③本文32 2 記言次の下支援のスペック 本文32 1 フィルタ支援電総約使用時の粒子状放射性物 「新治2 フィルタ支置総約使用時の粒子状放射性な ③素法に与える影響について【な生エアロゾル量】 91紙 2 フィルタ支置総約使用時のガス状放射性が 1 フィルタベント設備の系統設計条件の考え 1 ジェルタベント設備の系統設計条件の考え 1 回紙 2 フィルタ支置総約使用時のガス状放射性が 1 回紙 2 フィルタ支置総約使用時のガス状放射性が 1 回紙 2 フィルタ支置総約使用時のガス状放射性が 1 回紙 2 フィルタ支置総約 1 回紙 2 フィルタ支援目前の新えいに対する考慮 1 回紙 2 フィルタ支援目前の新設 1 シェルタベント設備の系統設計条件の考え 1 回紙 2 フィルタ支援目前の新えいに対する考慮 1 回紙 1 フィルタ支援目前の新え水防射性が 1 回紙 1 フィルタを次といた 1 回紙 2 フィルタ支援目前の新え水防射性が 1 回紙 1 フィルタベント設備の系統設計条件の考え 1 回紙 2 フィルタ支援部総合用時のガス状放射性が 1 回紙 2 フィルタ支援部総合用時のガス状放射性が 1 回紙 1 フィルタイント設備の系統設計条件の考え 1 シェルタイント設備の系統設計条件の考え 1 シェルタイント設備の系統設計条件の考え 1 アメルタイント設備の系統設計条件の参加 	
	具体的な確認内容 具体的な確認内容 ③所子炉格納容器内の圧力及び温度を低下させるために格夠容 器圧力送がし装置を設置する方針を確認。 →具体的な低下は、有効性評価で確認。 →具体的な低下は、有効性評価で確認。 ③基本仕様(主記管、主要弁、フィルタ装置、圧力開放板、オリ ⑦認着原田が特定された上で設備構成が受当なものか。 ③基本仕様(主記管、主要弁、フィルタ装置、圧力開放板、オリ フィス、伸縮緩手のスペック)の確認。 ③基本仕様(主記管、主要弁、フィルタ装置、圧力開放板、オリ ⑦認子解告して、以下の項目が示されているか。 ③本件様(主記管、主要弁、フィルタ装置のスペック)の確認。 ①酸計条件として、以下の項目が示されているか。 ③素本仕様(主記管、主要弁、フィルタな高い時を確認、 ③素本仕様(主記管、主要介、フィルクな高のスペック) ①を認定 ①おんゆの言のスペック)の確認。 ①酸子作様(主記音、主要弁、フィルクな音の方法の)の確認。 ①教育のコンクリートの耐久性、局部的な温 第自合なの一般置区面のコンクリートの耐久性、局部的な温 第自合なの一般置の面のコンクリートの耐久性、局部的な温 第自合なの一般置区面のコンクリートの耐久性、局部的な温 第合素子でする最大原重した素品大保護 第合素子でする最大保護区の「大大物質の重 ·発生の茶仕方への種類と最大量 ·発生の学生の確如	
	福間子 福間部 a-1. 設備田的 a-1. 設備田的 a-2. 白間、構造、設備 a-2. 白間、構造、設備 a-3.1. 染存 a-3.1. 染存 a-3.1. 淡古衣の切り - マンルタッジ - マンルタッジ	
	設置幹可基準規則(棄我) 第50条(原子行格執容器の適田破 遺を防止するための設備) 1 第50条に規定する「同一 者容器内の田力及び道廣を活しては、以下 市場げる諸篇又はこれらと同常を有す 時を行う にあげるる非社会社員を行いし の設備をいう。 a)格執容器用活線」とは、以後 部部副論線」」と、下を設備 を行うたのでのでのでのでのです。 部合いう。 a)合業部合式になった。 a)合業のでは、 が、 が、 にた。	
	N La	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ③一1別紙1 フィルタベント設備の系統設計条件の 考え方について ③一2本文3.2 機器設計【耐圧対象部位】 ③一2本文3.2 機器設計【耐圧対象部位】 別紙1 フィルタベント設備の系統設計条件の 考え方について ③一2本文3.2 機器設計(前面の粒子状放射 性物質除去に与える影響について 【荷重の考慮】 別紙2 フィルタ装置総続使用時の粒子状放射 性物質除去に与える影響について 【スクラビングノズルの健全性】 ③一3別紙1 フィルタベント設備の系統設計条件の 考え方について ③一4 別紙1 フィルタベント設備の系統設計条件の 考え方について ③一4 別紙1 フィルタベント設備の系統設計条件の 考え方について ③一5本文31 系統設計 ③一5本文31 系統設計 ③一5本文31 系統設計 ③一5本文31 系統設計 ①本文32 機器設計 ③1紙1 フィルタベント設備の漏えいに対する考慮 について ③1紙1 フィルタベント設備の漏えいに対する考慮 について ③1紙1 フィルタベント設備の漏えいに対する考慮 について ③1紙2 フィルタベント設備の漏えいに対する考慮 について ③1紙31 フィルタベント設備の漏えいに対する考慮 について ③1紙1 フィルタベント設備の漏えいに対する考慮 について ③1紙21 フィルタベント設備の漏えいに対する考慮 について ③1紙21 フィルタベント設備の漏えいに対する考慮 について ③1紙21 フィルタベント設備の着流成の考え方 11本文31 系統設計 ③1紙11 フィルタベント設備の手続について ③1紙11 フィルタベント設備の升速にのがえ方 ③1紙11 フィルタベント設備の外違にのいて ③1紙11 フィルタベント設備の外違たの考え方 	
	 ②各設計条件の設定根拠を確認し、妥当なものとなっているか。 特に、以下を確認。 ②一1フォルタベントの最高使用温度の設定の考え方の妥当 性の確認。 ③一1フォルタベントの最高使用温度の設定の考え方の妥当 在の確認。 ③一2可匹設計方針において、対象部位がしイントにされ(面管、 容器、内部構造物)、動的・静的負荷が適切に考慮する 方針(部品の固定を含む)としているか。(特に、依温 のスクラビング大、低温の入口及び出口配管、ウォータ ーハンマーなどの蒸気凝縮の効果の考慮が要求) た、フィルタベントを展知使用した場合の振動を考慮し たスクラビングノズルの構造健全性を確認。 ③一3格納容器圧力が惑いし装置の排出可能で蒸気量がリホ大 きいことを確認。 ③一3格納容器圧力が惑いし装置の排出可能で蒸気量が少た また。 とこうえいりなくとなる動気の振動を考慮した。 ③一4ベント系の圧損 成等の発生時に格納容器内で発生する蒸気量が見た確 保できることを確認。 ③一4ベント系の圧損 ③の4ベントン系の圧損 ⑥の各納容器圧力があいて要求流量以上確 なすの発生時に格納容器内で発生する満気量以上確 な事の発生時に格納容器内で発生する蒸気量がした ③の名前の発生時に格納容器内で多生する素気量、した ③の4ベントンティンが使用又は存載中の高い加速によるの について検討しているか。 ③の影響の検討がなされ、適切に対応しているか。 ③の影響の検討がなされ、適切に対応しているか。 ③回認能とのとりあい部等に読柔細胞管を使用する場合は、腐食等 ③の影響の検討がなされ、適切に対応しているか。 ③回認能とのとりあい部等に読柔細胞管を使用する場合は、腐食等 ③の影響の検討がなされ、適切に対応しているか。 ③回認能をして信頼性の高い構造であるか、多重化されているで が適切に準備されるか。 ③の化しているか。 ④の化しているか。 ④の条件の言い構造を必須しているか。 ④の影響の検討がなされ、適切に対応しているか。 ④の影響の検討がなされ、適切に対応しているか。 ④の化していでるか。 ④の化したいで信頼性を確認。 ●加水に、 ●加水(●加水(●加水(●加水(●加水(●加水(●加水(●加水(●1000000000000000000000000000000000000	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ①本文5.1 フィルタベント設備の適用方法 5.1.2 ベント実施について 5.1.2 ベント実施について 5.1.2 ベント実施について ②週浜28 炉心損傷町ベント中に炉心損傷に置った場合の 、ゲント停止について 、な好心損傷の単断の吸当所 ②四浜28 ゲーの損傷の単断について ③本文5.1.3 ベント実施について ③本文5.1.3 ベント実施について ③本文5.1.2 ベント実施について ③本文5.1.2 ベント実施について ③本文5.1.2 ベント実施について ③本文5.1.2 ベント実施について ⑤本文5.1.1 ベント準備について ⑤本支5.1.1 ベント準備について 	
	 各井でバイバスラインを設ける) 各井でバイバスラインを設ける) 各井でバイバスラインを設ける) ①ベント手順着手の判断基準が適切に設定されているか。 以下の観点から確認を行う。 ・利用可能なバラメータを使用しているか。 ・京谷時間を考慮して作業可能な時間に手順着手の判断が可能 か。 ②好心損傷の判断の受当すであるか。 ③不と下実施の判断の受当性。→ (その後に巧心損傷にいた ってしまった場合: 再度隔離弁を閉められるか。) 林戸心損傷の判断の受当性。→ (その後に巧心損傷にいた ってしまった場合: 再度隔離弁を閉められるか。) 林戸の損傷の判断の受当性。 ・マレト葉肺後の判断の受当性。 ・マレト葉肺後の判断の受当性。 ・マレト葉肺後の判断の受当性。 ・マレト葉脂後の判断の受当性。 ・マレト葉脂をのも可能の受当性。 ・シー・(その後に巧心あか。) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	a-5. パン・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ③本文5.1.4 付帯設備の運用 ③本文5.1.1 ベント準備について ⑤本文5.1.1 ベント準備について 5.1.2 ベント実施について ⑤北2 ベント実施について ⑦紙 32 フィルタベント設備使用後の保管方法について ⑦紙 7 フィルタベント設備の漏えいに対する考慮について ③サブレッション・ブール水を廃棄物処理建物に送るための手順を整備している。なお、事象収束後においては、耐酸上の要求はないものと考えている。 ③サブレッション・ブール水を廃棄物処理違物に送るための手間を整備している。なお、事象収束後においては、耐酸上の多と考えている。 ③サブレッション・ブール水を廃棄物処理違物に送るための手換していた ③サブレッション・ブール水を廃棄物処理違物に送るための手換していた ③サブレッション・ブール水を廃棄物処理違物に送るための手換していた ③サブレッション・ジール水を廃棄物処理違物に送るための手換したおする影響上の考えがについて ③別紙 19 フィルタベント設備の計集設備の考え方について ③別紙 19 フィルタベント設備の計業設備の考え方について ③別紙 19 フィルタベント設備の計業設備の考え方について ③別紙 19 フィルタベント設備の計算設備の考え方について ③別紙 19 フィルタベント設備の電源構成の考え方について ③別紙 19 フィルタベント設備の指指管理についての補用事項 ⑤別紙 21 フィルタベント設備の電源構成の考え方について ⑤別紙 21 フィルタベント設備の電源構成の考え管理 ⑤別紙 21 フィルタベント設備の電源構成の考え方について ⑤別紙 21 フィルタベント設備の電源構成の考え方について ⑤別紙 21 フィルタベント設備の電源構成の考え方について ⑥別紙 21 フィルタベント設備の電源構成の考えを ⑥別紙 21 フィルタベント設備の電源構成の考えで ⑥別紙 21 フィルタベント設備の電源構成の考え方について ① ① ① ○ <l< td=""><td></td></l<>	
	 ③②の作業環境を踏まえて給水操作、pH 管理の作業性を確認。 及び多種にの確認。 及び多種にの注かる注水、補充等の作業に要する時間とペント操作 への影響評価の確認。 ④中央制御室からの操作の妥当性を確認。 ④中央制御室からの操作の妥当性を確認。 ④中央制御室からの操作のスクラバ水のS/Cへの移送方針を確認。 ③フィルタペントからの漏えい対策(排水を含めて)が適切に検討されですが確認。 ③フィルタペントからの漏えい対策(非水を含めて)が適切に検討と対策として配管接続部や弁ちどに用いられるガスケットについて 材質などの選定の考え方を確認。 ③路納容器内に水が溜まっている状態において、耐震上の考慮か に配認。 ③路納容器内に水が溜まっている状態において、耐震上の考慮か も特徴容器内に水が溜まっている状態において、耐震上の考慮か に配認項目毎の目的が挙げられ、以下の項目がリスト化されてい るか。 ④整束体診論の使用ののイミング、使用期間の確認。 ④空素供給設備の使用ののギでられ、以下の項目がリスト化されてい るか。 ④空素供給設備の使用ののギビられ、以下の項目がリスト化されてい かっているかの監視 ・シスパレの変配のための配 ・大素進度 ⑦酒店位置、計測範囲が妥当か。 ④中央制御室以外での状態監視の考え方を確認。 ④中央制御室以外での状態監視の考え方を確認。 ④中央制御室以示のの状態監視の考え方を確認。 ①活験)が受出であることを確認。 ①点験及び試験方法(弁開閉試験、ドレンボンブ作動試験、漏えい い試験)が受出であることを確認。 	
	a-7. 使用後の考慮事項 a-8. 賠償 a-8. 賠償 a-8. 賠償	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 (3本文 5.3 フィルタベント設備の維持管理 別紙 33 設備の維持管理についての補足事項 別紙 33 設備の維持管理についての補足事項 別紙 33 設備の維持管理についての補足事項 別紙 33 設備の維持管理についての補足事項 の別紙 17 フィルタベント設備の弁選定の考え方 (1)1用文献は適切なものを使用し、適宜記載している (2)1用文献は適切なものを使用し、適宜記載している (2)1用文献は適切なものを使用し、適宜記載している (2)1用文献は適切なものを使用し、適宜記載している (2)11用文献は適切なものを使用し、適宜記載している (2)11用文献は適切なものを使用し、適宜記載している (3)1111 フィルタ大シト設備の升速について (3)1111 ゴイルタ大シント設備の升速について (3)1111 (1)1111 ゴイルタベント設備の升速 (3)11111 (1)111111 (3)1111111111 (3)111111111111 (3)111111111111111111111111111111111111	
	 ②点検周期の考え方を確認。特にラブチャーディスクの交換頻度 が妥当か。 ③との程度の寿命を想定しているか。(減肉発生時の対処方針等) ③どの程度の寿命を想定しているか。(減肉発生時の対処方針等) ①第外のFCVSと比べて、通色ない設備となっているか確認。(IFA レポート (例:フィルタベント装置上流側の逆止弁、パイパス ラインのラブチャーディスク)、諸外国の規制基準との比較) ①引用している文献が適切なものか。 ③との程能検証等にかかる品質保証は確立されているか。 ②性能検証等にかかる品質保証は確立されているか。 ②目していくとしたヨウ素放出低減が策は、今回の審査範囲に 含まれているか。 ③との予約の前のなものか。 ③目用している文献が適切なものか。 ③目用している文献が適切なものか。 ③目にしている文献が適切なものか。 ③目用している文献が適切なものか。 ③目が確認。 ③こイルタケの熱風収(スクラバタイブの水への熱吸収など)や 減圧速度の評価が安当か。 ③こイルタケの熱吸収(スクラバタイブの水への熱吸収など)や 減圧速度の評価が安当か。 ③こイルタケの熱風の(スクラバタイブの水への急吸収など)や 減圧速度の評価が安当か。 ③目が理測とていたいかが、 ③目が理測していための読みでないが の ③回り推測価、解析コードでの確認。 ・メカラバ水のの日内切合 ・メロントロンベルなどに依存)して、い は 施力の確認。 ③回り地理メカニメムを考慮した除去原理となっているか。 ①除去性能試験の条件が妥当なものか。 ③こと同様にヨウ素の除去についても物理メカニズムを考慮し た除去時間をかっているか。 ③こと同様に日の素のか。 ③こと同様に日の対応方によったいるか。 ①除去性能試験の条件が妥当なものか。 ①除去性能試験の条件が妥当か。 ①除去体部とののの認。 ③こと同様に日の並んの ③こと同様に日の素のか。 ③こと同様に日の素がなものか。 ③こと同様に日の素がなものか。 ①除去体が受当か。 ③こと同様に日のあの。 ③こと同様に日の素がなものか。 ①除去が完成するのか。 ③こと同様に日の素がなものか。 ③回りが生活酸ののでしているか。 ③回りが表がなものか。 ③回りがたいるか。 ③回りたいるか。 ③回りたいるか。 ③回りたいるか。 ③回りたいるか。 ③回りたいるか。 ○たいるか。 ③回りたいるか。 ○たいるか。 ③回りがやが受けの。 ○たいるか。 ○たいるか。 ○たいるか。 ○たいるいるか。 ○たいるか。 ○たいるか。 ○たいるか。 ○たいるか。 ○たいるか。 ○たいるか。 ○たいのののののののののののののののののののののののののののののののののののの	
	a-10. 海外の光 市 高-10. 海外の光 市 高-11. 当 の の 市 市 	
	 b)上記a)の格勢容器圧力逃がし 故置とは、以下に掲げる措置又 はこわらと同等以上の効果を有す る 単の小したの設備をいう。 i)格勢容器圧力逃がし振置は、排気中に含まれる放射性物質を低減 するものであること。 	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ②別紙22 性能検証試験の適用性について ③別紙22 性能検証試験の適用性について ④別紙22 性能検証試験の適用性について ④別紙22 性能検証試験の適用性について ①利米24 4.3.2 粒子状放射性物質の除去性能検証試験 結果及び評価 ①本文 4.3.2 粒子状放射性物質の除去性能検証試験 「本文 4.3.2 粒子状放射性物質の除去性能検証試験 「ホンレマ ③別紙15 フィルタ装置の各構成要素における機能 について ③別紙15 フィルタ装置の各構成要素における機能 「こついて ③別紙15 フィルタ装置の各構成要素における機能 「こついて ③別紙15 フィルタ装置の各構成要素における機能 「こついて ③別紙15 フィルタ装置の各構成要素における機能 「こついて ③別紙22 性能検証試験の適用性について ⑤別紙9 スクラビング水の設定について ⑥別紙9 スクラビング水の設定について ⑥別紙9 スクラビング水の設定について ⑤別紙22 性能検証試験の適用性について ⑦対象外(満外における実験結果との比較を行ってい ない。) 別紙22 性能検証試験の適用性について 	
	・ pH の試験用エアロソルの安当性の確認。特に、実験に用いたエアロ ソル粒径について、不確かさを踏まえてエアロソルの粒径分布 の妥当性を確認。また、ドライウェルベントを想定した粒谷分 の妥当性を確認。にアロソルの粒径分布 ある確認。(エアロソルの粒径分布 の妥当性を確認。また、ドライウェルベントを想定した粒谷分 るの妥当性を確認。また、ドライウェルベントを についての考え力を確認。 のま数粒子の粒径測定等について確認。 のエアロソル除子が違うと慣性衝突効果がOFIに及ぼす影響 についての考え力を確認。 のエアロソル除子が違うと慣性衝突効果がOFIに及ぼす影響 についての考え力を確認。 のエアロソル除子が違うと慣性衝突効果がのFIC でのエアロソル除子が違きたっしいて確認。 のエアロソル除子が高いたいるか。 のエアロソル除子が違きないているか。 のエアロソル除子が高いたいるか。 のエアロソル除子が高いたいるか。 のエアロソル除子が高いたいるか。 のエアロソル除子が感音としているか。 のエアロソル除子が高いたいるか。 のエアロソル防子が高いたいるか。 の正常的な地衝がで適 の読録・ の活動ではたみ地衝している場合に、空いるかのたいるか。 のなれたいるか。 のないためできたいをも確認。 のたいたいるか。 のななのためでのが着についても必能認。 のないためか。 のないための能子が成立するかを を認っまた、試験規模から実規模へスケールアップした際に増 定される問題点及びその対策が必要理とれているか確認。 のか確認。 ののないとのが確認。 のないが表述の影響をもつている場合、適切な比較 となっているかを観測 になするのは使たつている場合、なの指数が示されている のない のない しているか。 のないためが となっているかを観測し、 のは他们に、 のない しているか。 のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない ためれたい のない たたるい のない ためれたい のか ためれたい のか たか たい のない ためれたい たい のない たか たたい のか たたい のか たか たたい のか たか たたい のか たたい たたるの ので のが たたい たたるの ので のが たたい たか たか たたる ので のが たたい たか たか たたい たか たか たたい たか たの たの たの たの たの たの たの たの たの たの	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ①別紙9 スクラビング水の設定について ③本文2.5 3 フィルタベント設備の維持管理 ①本文2.2 機器設計 ①本文2.2 機器設計 「本文2.2 機器設計 「小本文2.2 機器設計 「小小女装置継続使用時の粒子状放射性物 「「新たに与える影響について 「別紙24 フィルタ装置継続使用時の粒子状放射性物 「「「「「」」」 「「」」 「」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」	
	 ①スクラハネのDH、水位の管理を確認。(薬液補給によるDH 情理価を設け、適切に管理可能か確認。) ②13ヶ月の持機状態を考えたスクラバ水質の経時変化を考慮 したフィレタペント装置の性能の維持の変当性を確認。 ③13ヶ月の持機状態を考えたスクラバ水質の経時変化を考慮 したフィレタイント支配の性能の維持の変当性を確認。 ①不介在時間(例:24時間)についての考え方を確認。 ③大力時の凝結、蒸発による水位変動を考慮したDH管理に対す る考え力を確認。 ③スクラビング水の水位上昇に与える悪影響を通切に検討し、液 満セパレータ及び金属フィルタが水没しない設計となってい るか。 ③スクラビング水の水位上昇に与える悪影響を通切に検討し、液 満セパレータ及び金属フィルタが水没しない設計となってい るか。 ④フィルタの日詰まりの発生の可能性を検討し、適切な容量体を 酸定していることを確認。(スクラバノズルや金属フィルタ あか。 ④フィルタの日詰まりの発生の可能性を検討していの違いをなってい るか。 ④フィルタの日詰まりの発生の可能性を検討していたなが意味 からい、ジャユニントの除去可能性について検討していたな確認。 ⑤、フィルタペント装置の入口及び出口の閉塞がないことを確認。 ⑤、適応すバレータの液満除去性能を全運転条件範囲で示 しているか。きらに、保持されたエアロンルに埋まったメパー ジャユニントの除去可能性について検討していたきな確認。 ⑤、クイルタペントを使用する場合、「満気の凝縮/」づけにやる吸収 前位の入いし かの からい、液満したいことを確認。 ① 長期間使用し続けたしているか。(最セオウイトを使用する場合) ① 長期間使用し続けた場合の05巻を検討していことを確認。 ⑦ 急ばすのパレータの液満を発生しないことを確認。 ⑦ 急がの ① うんの必要を検討していこと者施認。) ⑦ 高温やジレータの液満除え性能を全運転条件範疇で、「 の般ですべい」を使用する場合、「満気の凝縮」」 ① 長期でないことを確認。 ⑦ 急がのを含むしているか。 ③ の部条件においても ⑦ 急(症) ⑦ 急(症) ⑦ 高(中) ⑦ 高(中) ① 長期でがいことを確認。 ⑦ 急(症) ⑦ 急(症) ① 長期でないことを確認。 ③ つイルタペントを長期でしていことを確認。 ③ つイルタペントを長期に使用する場合、通信使給すすいことを確認。 ③ ついで確認。 ③ ② フィルタペントを長期に使用する場合に検討するもの、 のの第一条 ③ ○ ○ ○ ハレタペントを長期でないるい ③ ○ ○ ハレタペントを長期に使用する場合に検討しる。 ③ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
	b-1-5. 待機中の除去性能維持 持 ····································	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	よる in への影響】 ふる in への影響】 ③本文 5.1.4 付帯設備の運用 別紙 24 フィルタ装置総続使用時の粒子状放射性物 質除去に与える影響について ④別紙 24 フィルタ装置総続使用時の粒子状放射性物 質除去に与える影響について ⑤別紙 24 フィルタ装置総続使用時の粒子状放射性物 質除去に与える影響について 111紙 24 フィルタ装置総続使用時の粒子状放射性物 質除去に与える影響について 111紙 24 フィルタ装置総続使用時のガ子状放射性物 質除去に与える影響について 111紙 24 フィルタ装置総続使用時のガ子状放射性物 111紙 24 フィルタ装置総続使用時のガ子状放射性物 111紙 24 フィルタ装置総続使用時のガ子状放射性物 111紙 24 フィルタ装置総続使用時のガイ状放射性物 111紙 24 フィルタ装置総結使用時のガイ状放射性物 111紙 24 フィルタ装置総結使用時のガイ状放射性物 111紙 24 フィルタ装置総結使用時のガイ状放射性物 111紙 24 フィルタ装置総結使用時のガイパ放射性物 111紙 24 フィルタ装置総結使用時のガイパ放射性物 111紙 24 フィルタ装置総結使用時のガイパ放射性物 111紙 26 フィルタ装置総結正がする影響について 111紙 3 水素の滞留に対する設計上の考慮について 111紙 3 水素の滞留に対する設計上の考慮について 111紙 3 水素の滞留に対する設計上の考慮について 111紙 3 水素の滞留に対する設計上の考慮について 111紙 3 水素の滞留に対する設計上の考慮について 111紙 3 水素の滞留に対する設計上の考慮について	
	 ③ベント総続最原時間を検討されているか。(フィルタベントの使用時間の想定も確認。) 使用時間の想定も確認。) ④銀ゼオライトを使用する場合、長期連続運転においても素気の 業績/値分による吸収特性への影響を検討しているか。(銀ゼオ ライトを使用する場合、高温やウェット運転での不調がないこ 上を確認。) ⑤FP 保持部での崩壊熱の温度上昇、局所的な温度上昇による影響を検討しているか。 ⑤FP 保持部での崩壊熱の温度上昇、局所的な温度上昇による影響を検討しているか。 ⑤FP 保持部での崩壊素の温度上昇、局所的な温度上昇による影響を検討しているか。 ⑥FP 保持部での崩壊素の温度しているか。(特定、 物理特性、化学特性に温影響を及ぼさないことを検討している か。本影響を検討し、それらの対応が適切になされているか。(特に、 か。本影響を検討し、それらの対応が適切になされているか。(特に、 か。本影響を検討し、それらの対応が適切になされているか。(特に、 のご本説をためいたヨウ素の小素による剥離効果、放射性 直が大幅に増加すること、状スクラバを想定し、感度解析を実 施しているか。 ①捕集市しくは吸着したFP の再揮発、再浮磁の可能性(移動結 性)を検討し、それらの対応が適切になされているか。(特に、 も理特性、化学特性に言及し、検討していることを確認。また、 認ら化学的に結びついたヨウ素の小素による剥離効果、放射性 コウ素と希力スの局所の線照射による影響も考慮しても の素と希力スの局所の線照射になされていることを確認。 ①抽集市しているか。 ①エアロゾルの非均一な沈着はないか。仮にあった場合、どのよ っ) ①エアロゾルの非均一な沈着はないか。仮にあった場合、どのよ っ) ①エアロゾルの非均一な沈着はないか。(低し、近着率など含か。) ③務約容器からの最大のエアフレン小発作(スプレイかり、 なし、沈着率など含か。) ⑤殊生成的の洗嚢の方が高額に示され、それが安当か。 ⑥殊素性能が維持されることを確認。 ④異なる自然作力とのが ⑥水素の活動の結果が活動でついて評価し、適切な対応が なし、沈雪率など含か。 ⑥水素の諸部がないことを確認。 ①水素の諸部対なとして、連続上りの配にすることや、U字音な した約3個値に示され、それが安当か。 ①水素の諸部がないにとな確認。 ②対ゆするべき可能性力スをかを を ②対ゆするべたしたを確認。 ①水素のが高留所がないにとないする ③なが可能に示され、それが安当か。 ③ないいす ②対ゆするべたしたる確認。 ③ないいう とな確認。 	
	b-18. 6用後の保持性能の b-19. その他 施持 ・ 施技 ・ 高がし装置は、可 b-19. た等の対策が満 ・ 1 - ・ 市場約、 市等の対策が消 ・ ・ 10 ・	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ③別紙3 水素の滞留に対する設計上の考慮について ③別紙1 水素の滞留に対する設計上の考慮について ⑤別紙19 フィルタベント設備の計装設備の考え方 について ⑥別紙21 フィルタベント設備の計装設備の考え方 ⑤別紙21 フィルタベント設備の計装設備の考え方 「コンいて ③別紙19 フィルタベント設備の計装設備の考え方 「コンいて ⑤別紙19 フィルタベント設備の計装設備の考え方 「コンいて ⑤別紙19 フィルタベント設備の計装設備の考え方 「コンいて ③別紙19 フィルタベント設備の計装設備の考え方 「コンいて ③別紙3 水素の滞留に対する設計上の考慮について 別紙3 水素の滞留に対する設計上の考慮について 別紙3 水素の滞留に対する設計上の考慮について 別紙3 水素の滞留に対する設計上の考慮について 別紙3 水素の滞留に対する設計上の考慮について 「本文31 系統設計 ①本文31 系統設計 	
	 ③ベントシステム内に発火源(動的機器、静電気)のないこと、 及び自己点火温度に到達するのを避けるなどンステムの点火 源をできる限り減らす対策を検討し、対応しているか。 ④水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計設置の目的を確認。 ⑤水素濃度計20原理及び誤差を確認し、水素濃度計設置の目的に あっているか。 ⑥水素濃度計20原理及び誤差を確認し、水素濃度計設置の目的に あっているか。 ⑥水素濃度剤のボンゴキンブキ)について交流 電源喪失時の考え力を確認。 ⑦フィルタベント装置の交流電源率あのボンゴ等)について交流 電源要失時の考え力を確認。 ③可燃性ガス制御のため、モニタリング装置は測定機能を果た し、信頼でき継続的に測定できるか。 ③計測の時間遅れを考慮しているか。 ③計測の時間遅れを考慮しているか。 ③計測の時間遅れを考慮しているか。 ④ごにおするすを変出性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が維持 されるかどうかの妥当性を確認。また、N2 置換が確約 の対向流におする考え力が妥当か。 ①配告内での水素気緩的に通びためか。(も んじゅにおける」FF事故後の水素が该及び一般化ギブラント を参考。)(圧力開放板が開放されたときの過渡的な状態でも問 題ないか。ベントも期の濃度の高い水素を排出する際に排気鍋 の対向流におする考え方が妥当か。) ①D配告内での水素気度のた供わるか。 ③窒素ガスによる水素濃度が設置の高い水素が認るがに さないような順番での操作をなっているいとを確認。 ④窒素ガスによるが一ジ病が強いないたとを確認。 ④窒素ガスにともの系統が分離をなっているとを確認。 4た、たいといついないたい、 ①SGIS、耐圧強化ベントラインを含めた全体系統固な示し、 いたいたころに ③SGIS、耐圧強化ベントラインを含めた全体系統固定示し、 の のないたいの多が非となっているとを確認。 ④SGIS、耐止生金の系統の分離をかったとのの適能がのかいたいたった がの のないたっいのがでするのたったののの 能力がの必ずが のの のないたいのの のたったいための のかいたいでしたる確認。 ③SGIS、耐止生他の系統が分離かの の のないたいたいるのの の のたったっの の の ③ ○ <li< td=""><td></td></li<>	
	・ ・	
	 (三) 本物物格(三) (三) 本部、各部の第二人列名、(1) (1) 本部、(1) 本部、(1) 本部、(1) たいに、(1) (1) たいに、(1) たい、(1) 	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ②別紙4 他系統との隔離について ③別紙4 他系統との隔離について ①有効性評価 3.1 雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) ②本文 5.2 フィルタベント設備の運用に係る考慮事 項 ①本文 3.2 配管及び弁類 本文 3.2 配管及び弁類 本文 3.3.5 排水設備 加紙16 ベント弁の操作性について ③別紙16 ベント弁の操作性について ③別紙16 ベント弁の操作性について ③別紙16 ベント弁の操作性について ③割紙16 ベント弁の操作性について ③割紙18 圧力開放板の信頼性について ③別紙18 圧力開放板の信頼性について ③別紙18 圧力開放板の信頼性について ③別紙18 圧力開放板の信頼性について ③別紙18 圧力開放板の信頼性について ③別紙18 圧力開放板の信頼性について 	
	2)耐圧強化ベントライン等への水素のリークの検知性やAの弁. Mの弁の開閉の考え方を確認。 〕(使用に際して原子炉格納容器が負圧に至ることはないか確認、 →者効性評価、格納容器破損防止で確認 ②何心損傷後のベントでは、ベント後大量の冷たい水が格納容器 内の圧力容器貫通後の溶融物へ注入されると格納容器内が負 圧になる可能性がある。そのような負圧破損防止のための、ス ブレイの禁止が手順に明確化されているか。 3)人力操作が必要な対象として、フィルタベントシステムの全 ての弁が対象となっているか確認。 3)人力操作にとる引続結果を確認。 3)人力操作にとる引続結果を確認。 3)人力操作におる訓練結果を確認。 3)人力操作におる訓練結果を確認。 3)人力操作におる訓練結果を確認。 3)人力操作におる訓練結果を確認。 3)人力操作におる訓練結果を確認。 3)の注意だないる場合、そのときの成立性も同様に確 を行うことを考えている場合、そのときの成立性も同様に確 確認。 3)人力操作におる訓練結果を確認。 3)不時間を考慮した作業開始時間と作業時間になっているか 確認。 3)不時間で考慮した作業開始時間と作業時間になっているか 確認。 3)余時間を考慮した作業開始時間と作業時間になっているか 確認。 3)の時齢弁夫人力操作場所の線量評価方法の妥当性を確認。 1)個離弁人力操作場所の線量評価方法の妥当性を確認。 1)個離非常化に対する遮蔽又は隔離等の放射線防護対策の詳細 を確認。 3)からにおけるのではなく、例えば、記者の容許能の 2)とかりはお前後の部品。 3)の言葉をおたうフナヤーディスク(原子炉格納容器の) 同離指表を目的としたものではなく、例えば、記者の警察容認。 3)の警を確認。 3)、とれる目的としたものの法がで、例えば、配者の窒素方成 を目的としたものの法での、例えば、配者の窒素が強 を自わたしたもののなっているか確認。 3)、とれる目的をしたものの能器、すっでいるか確認。 3)がとれたるの言葉を必要。 2)の言葉が容認。 3)からの言葉がたらうデャーディスク(原子炉格物容器)。 3)からいたるの言葉の意意。 3)からの言葉がたらうデャーディスクの言葉が近くの言いです。 1)の言葉が登録の言葉の意意。 3)からの言葉がたらうデャーディスク(原子炉格の酸素が) を目のをしたもののではなく、例えば、配者の窒素が強 を目のとしたもののではなく、例えば、配者の窒素が強 を目のとしたもののではなく、例えば、配者の窒素が強 を目的をしたもののではなく、例えば、配合の窒素が強 を目的をしたもののではなく、例えば、配合の窒素が強 を目のをしたもののではなく、例えば、配合の窒素が強 を目のとしたもののではなく、例えば、配子が必要。 3)がするの意義が意の定すのの意意。 3)のの容素が定めたるのが意思。 2)のの容素が定むたらうでいるか確認。 2)の音楽が意ので言葉のでものではなく、例えば、配合の窒素が強	
	 への悪影響がない場合を除く。 (v) また、格納容器圧力送がし装置 b・4・1. 負圧破損防止の確認 の使用に際しては、必要に応じて、 原子存格納容器の角圧破損を防止 する酸痛を整痛すること。 v) 特納容器圧力送がし装置の隔離 b・5・1. 対象年 v) 特納容器圧力送がし装置の隔離 b・5・1. 対象年 (v) 特約容器圧力送がし装置の隔離 b・5・1. 対象年 (v) 特約容器圧力送がし装置の隔離 b・5・1. 対象年 (v) 特約容器圧力送がしな高の隔離 b・5・1. 対象年 (v) 特別できること。 (v) がじの者になる (v) がじの者にい損傷時において b・5・3. 人力操作の妥当性 (v) がじの者にい損傷時において b・5・3. 人力操作の妥当性 (v) がじるおていること。 (v) がじの者にい損傷時において b・5・3. 人力操作の妥当性 (v) がじの者にい損傷時において b・5・3. 人力操作の妥当性 (v) がじの者 (v) がじの者 (v) がじの者 (v) がしの者 (v) がしの者 (v) がしの者 (v) がしるおていること。 (v) ラブチャーディスクを低用する (v) からのを出自めしし (v) デルマきるいより、+ b・5・3. 人力操作の妥当体 (v) デルマきるないよう、+ (v) デルマライント (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルの子 (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルテ (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) デルケライチ (v) たのではなく、 (v) たのではなく、 (v) たのではなく、 (v) たのではなく、 (v) たの市する場合のになく (v) たの市する場合のなられたり (v) たいたく、 (v) たいたく、 (v) たいたちのではなく、 (v) たいまする場合のになく (v) たいまする場合のがく (v) たいまする場合のになく (v) たいまする場合のになく (v) たいまする場合のになく (v) たいまする場合のになく (v) たいまする場合のになく (v) たいまする (v) たいまする (v) たいまする (v) たいまする (v) たいまする (v) たいまする (v) たいまする<td></td>	
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
----------------------	--	----
	 ①別紙2 格夠容器からの取り出し位置について ②別紙 30 ベントタイミングに係る外部水源からの 総注水量について ③別紙 31 弁の現場操作地点等における被ばく評価 について ②別紙 31 弁の現場操作地点等における被ばく評価 について ③別紙 31 弁の現場操作地点等における被ばく評価 について ③別紙 31 弁の現場操作地点等における被ばく評価 について ③別紙 31 弁の現場操作地点等における被ばく評価 について ③別紙 31 弁の現場操作地点等における被ばく評価 について ⑤利案外(フィルタ装置は地下格納檣に設置している ため) ⑤本文3.2 2 配管及び弁類 ①別紙 31 弁の現場操作地点等における被ばく評価 について ③別紙 31 弁の現場操作地点等における教ばく評価 ①別紙 31 弁の現場操作地点等における被ばく評価 ⑥加出位置、放出時間の違いによる被ばく ○別紙 31 弁の現場操作地点等における被ばく評価 ①別紙 8 フィルタベント設備の外部事象に対する考慮 項 ③別紙 31 弁の現場操作地点等における被ばく ○別紙 5 放出位置、放出時間の違いによる被ばく? ○別紙 5 放出位置、放出時間の違いたよる被ば? ○別紙 5 放出位置、放出時間の違いたよる被ばく? ○影響についい ○影響についた ○影響についた ○別紙 5 放出位置、放出時間の違いたよる被ばく? ○影響についた ○別紙 5 放出位置,放出時間の違いたよる被ばく? ○別紙 5 放出位置,放出時間の違いたよる被ば? ○別紙 5 放出位置,放出時間の違いたよる被ばく? ○別紙 5 放出位置,放出時間の違いたよる被ばく? ○別紙 5 放出位置,放出時間の違いたよる被ば? ○がた ○	
	 ①ドライウェルベントラインの取り出し位置が行いを水没させ ③ 位置よりも上に設置されているか。 ② つイットウェルベントラインの水没評価について、減圧時のブール水の体積膨張を考慮しているか。 ③ し 被ばくを低減すべき目標値が安当か。 ③ の 滅ばくを低減すべき目標値が安当か。 ③ の 滅ばくを低減すべき目標値が安当か。 ③ フィルタ英層内の下P量、配管の下P量の妥当性を確認。 ③ フィルタ英間内の下P量、配管の下P量の妥当性を確認。 ③ フィルタがといによる放射線防護対策が講じられている を確認。 ③ フィルタがとのが水の漏えいによる放射線防護対策が満じられている ⑤ フィルタがといたいたの数量評価方法の安当性を確認。 ⑤ フィルタベントの格納槽の壁の貫通口も安当な設計となっているか ことを確認。 ⑤ フィルタベントの格納槽の壁の貫通口も安当な設計となっているか ことを確認。 ⑤ フィルタベントの格納槽の壁の貫通口も安当な設計となっているか こことを確認。特に、水で除去が因難なが講じられている ○ クィルタベントの格納槽の壁の貫通口も安当な設計となって ○ のか確認。 ○ フィルタベントの格納槽の壁の貫通口も安当な設計となって ○ のか確認。 ○ フィルタベントの名がは、 ○ のか確認。 ○ フィルタベントの名が、 ○ のか確認。 ○ フィルタベントについて、 ○ のか確認。 ○ ついて検討のして、 ○ のか確認。 ○ のか確認。 ○ つんかが書をためのものではなく原子が放射性物質の低減が なきたりのがする。 ○ のか確認。 ○ のか確認。 ○ のか確認。 ○ のか確認。 ○ しのかなのものがはく ○ のかかかは ○ のかかする ○ のかかかかかは ○ のかのかかが ○ のか確認 ○ のかかかかかか ○ のか確認 ○ のかかかかかか ○ のかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかか	
	 b-8-1. ベントラインの取り b-9-1. フィルタ焼間の放射 参時載対策 ・線量商減回転 ・線量商減回 ・線量商減 ・線量商減 ・線量商減 ・ か ・ ・	
	 (11) 格勢容器圧力逃ぶし装置は、原題 80 に も溶融与 に む強調 50 の 必要 30 で 20 % % の 30 % % の 30 % % の 30 % % の 30 % % で 1 % 10 % 10 % 10 % 10 % 10 % 10	
	長、日本の一部では、10~1~~1~~1~~1~~1~~1~~1~~1~~1~~1~~1~~1~~1	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 261.5第43条 重大事故等対処設備 38 地震による損傷の防止に関する耐震設計方 処明 	
	れる重大事故等が発生した場合における温度、放射線、 の他の条件が整理されているか。 9.0.1	
	 	
	「おおいへ行うの都満した。 「おおいく行うの都満した。 「おか、置みないい。 「おか、「「なか、「「なか、「「なか、「」なか、「」なか、「」など、「ないない」、 「ないない、 「ないない、 「ないない、 「ない、 「しい、 「ない、 「しい、 「ない、 </td <td></td>	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	①a-6 の操作性及び入力操作の妥当性の項目で確認。 ①a-9 の項目で確認。 ①a-9 の項目で確認。 ①a-9 の項目で確認。 ①a-9 の項目で確認。 ①素肪内の取り合い箇所がベント使用時のラインナンブ可能な 設計となっていることを確認。(例えば、常時間及び電源表先 時にはフェイルクローズとなるなど。) ①a-5 の操作性及び人力操作の妥当性の項目で確認。 ①a-5 の操作性及び人力操作の妥当性の項目で確認。 ①a-3 の設計条件の妥当性で確認。 ①a-3 の設計条件の妥当性で確認。	
	43-1-2. 操作性 43-1-2. 操作性 43-1-2. 操作性 43-1-3. 試験又は検査 43-1-4. 切り替え性 43-1-5. 悪影響防止 43-1-5. 鹿影響防止 43-1-6-1. 使用時の操作性 43-2-1. 容量の凝当権	
	 2 第11 第11 第35 第35 第35 第35 第12条第33 第0 第12条第33 第12条第35 第12条第35 第12条第35 第11 第5 第 第 1 二 第 5 二 5 二	
	二 二 生物で、 「 本 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 ①本文 6.1.5 第 43条 重大事故等対処設備 ①本文 6.1.5 第 43条 重大事故等対処設備 ③本文 6.1.5 第 43条 重大事故等対処設備 ③指密 8 フィルタベント設備の外部事象に対する考慮 	
	①号機毎に設置されることを確認。 ①日酸痛との同時の機能喪失にいたる可能性のある共通要因が調醒的に挙げられ、それらに対して妥当な設計となっている	
	43-2-2. 共用の禁止 43-2-2. 共用の禁止 43-2-3. D B 設備 たの の 観話 た の の 記 語 た の 同 時 の 言 に の 一	
	 4 第2項第3号及び第33号及び第33号及び第33号の50号 1 とは、可能な限り多様性を考慮したものをいう。 	
	重 載 「 電 報 市 都 開 配 他 記 他 報 物 市 品 物 市 の の や ち た り る を た し し た な た し し た な た し し た な た し た た し し た た た し し た た た た た た し た た た た た た た た た た た た た	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 50	・資料構成の相違
	セシウムの放出割合の評価方法	
	1. セシウムの放出割合	
	(1) CsI の形態で存在しているセシウム	
	全よう素が CsI の形態で存在するものとして整理する。CsI の形態で存在しているセシウム	
	の重量は以下のとおりとなる。	
	CsIの初期重量[kg]	
	=よう素元素初期重量[kg]+CsI 初期重量中のセシウム重量[kg]	
	=MI+MI/WI×WCs	
	CsI 初期重量中のセシウム重量[kg]=MI/WI×WCs	
	ここで,	
	MI :よう素元素初期重量[kg]	
	WI :よう素原子量[-]	
	WCs:セシウム原子量[-]	
	(2) CsOHの形態で存在しているセシウム	
	全セシウムがCs1とCsOHの形態で存在するものとして整理する。CsOHの形態で存在してい	
	るセシウムの重量は以下のとおりとなる。	
	CsOH 初期重量中のセシウム重量 [kg]	
	=MCs-CsI 初期重量中のセシウム重量 [kg]	
	$= MCs - MI/WI \times WCs$	
	ここで,	
	MCs:セシウム元素初期重量[kg]	
	(3)セシウムの放出量	
	MAAP 解析により CsI と CsOH の原子炉格納容器外への放出割合を評価	
	ビンワムの放口里重[Kg]=M1/W1×WUS×X+(MUS-M1/W1×WUS)×Y	
	X:CsI 放出割合 (MAAP 解析により得られる)	
	Y:CsOH 放出割合 (MAAP 解析により得られる)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	(4)セシウムの放出割合
	1. (3)で得られたセシウムの放出量から,セシウムの放出割合を評価
	セシウムの放出割合=セシウムの放出量/セシウム元素初期重量
	=MI/WI × WCs/MCs × X+ (1-MI/WI × WCs/MCs) × Y
	=Y+MI/MCs×WCs/WI (X-Y)

備考

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 51	・資料構成の相違
	高温使用時におけるフランジ漏えい評価について	
	格納容器フィルタベント系の使用状態において,最高使用圧力に対するフランジ部の強度評価 については、「発電用原子力設備規格設計・建設規格 (2005 年度版)」の「PPD-3414 フランジ」 において既に評価済みである。 本資料においては、高温・高圧環境下 (200℃、0.853MPa) にて配管と配管をつなぐフランジ 間からの溺えい評価について示す。 「高圧ガス設備等耐震設計指針 (2012)」を用いて配管内圧及びフランジに接続する配管から 受ける反力を考慮してフランジボルト総付圧力が十分に必要な面圧を満足していることを評価 する。なお、フランジに接続する配管からの反力については、自重、地震荷重、配管の熱膨張が 同時に負荷されたものとし、フランジの片当たりの原因となるモーメント及び両側からの引張力 について考慮するものとする。(図1)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	「高圧ガス設備等耐震設計指針(2012) レベル2耐震性能評価 解説編)に基づき、フランジ	
	漏えい評価を実施した。以下に評価式を示す。	
	$\boldsymbol{\sigma} = mp + \boldsymbol{\alpha} \boldsymbol{P}_{e} \leq \boldsymbol{\sigma}_{a} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{(1)}$	
	σ : ガスケット開口圧力 [MPa]	
	m :ガスケット係数 [-]	
	p :内圧 [MPa]	
	α:等価内圧に対する漏えい影響度補正係数で,0.75m[-]	
	σa:ボルトの初期締付け力によるガスケット面圧 [MPa]	
	Pe:地震力等に係る軸方向引張力F及び曲げモーメントMに対する等価内圧であり,以下	
	の式で算出する。	
	$P_e = \frac{4F}{\pi G^2} + \frac{16M}{\pi G^3} \cdot \cdot (2)$	
	G:ガスケット接触面の平均直径 [mm]	
	F:軸引張力 [N]	
	M:曲げモーメント [N・mm]	
	ここで,軸引張力Fは配管応力解析における配管軸方向の引張荷重Fx であり,曲げモーメン	
	トM は同様に配管応力解析における配管軸直角2方向のモーメントMy 及びMz の二乗和平方根	
	で算出する。	
	なお,フランジの熱膨張係数がボルトよりも大きいため,フランジーボルト間の熱膨張差によ	
	りガスケットの面圧が増加するが、安全側に働くため本評価においては考慮しない。	
	今回、格納容器フィルタベント系の配管応力解析モデルにて、自重、地震荷重、最高使用温度	
	(200°C)における配管熱膨張が作用した場合の各節点における xvz 各成分の反カとモーメント	
	を算出し、各節点の反力とモーメントの中から、成分毎の最大値をそれぞれ抽出した。	
	この抽出された成分毎の反力とモーメントの最大値がフランジに作用し、さらに内圧として最	
	高使用圧力(0.853MPa)が印加されているという非常に保守的な条件にて,上記(1)式に基づき	
	フランジ漏えい評価を実施した。	
	評価の結果、(1)式の判定条件を満足することを確認した(表1参照)。よって、格納容器フィ	
	ルタベント系使用時の高温状態においても、配管フランジからの漏えいは発生しない。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	表1 フランジ漏えい評価結果	

東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉	備考
<u>別紙 43</u>	・資料構成の相違
格納容器 p H制御について	
格納容器フィルタベント系を使用する際、原子炉格納容器内が酸性化することを防止し、サプ	
レッション・プール水中に捕集されたよう素の再揮発を抑制するために、サプレッション・プー	
ル水pH制御系等により原子炉格納容器内に薬液を注入する手段を整備している。	
サプレッション・プール水 p H制御系は,図1に示すように,圧送用窒素ボンベにより薬液タ	
ンクから水酸化ナトリウムを圧送し、サプレッション・チェンバにスプレイする構成とする。	
サプレッション・プール水 p H制御系使用後に,残留熱代替除去ポンプを使用することにより,	
サプレッション・プール水を薬液として、ドライウェルスプレイ配管からドライウェルにスプレ	
イすることが可能である。また、通常運転中より予めペデスタル内にアルカリ薬剤を設置するこ	
とにより,原子炉冷却材喪失事故発生直後においても原子炉格納容器内の酸性化を防止すること	
が可能である。	
更に、次項に示す通り、原子炉格納容器内に水酸化ナトリウムを注入することにより、原子炉	
格納容器へ及ぼす悪影響はないことを確認している。	
薬液タンクに貯蔵する薬液は、原子炉格納容器内に敷設された全てのケーブルが溶融し、ケー	
ブルに含まれる酸性物質(塩素)が溶出した際でも、原子炉格納容器内のサプレッション・プー	
ル水が酸性化することを防止するために必要な容量を想定し、水酸化ナトリウム (「wt%] 水	
溶液) 「[m ³] とする。また、ペデスタル内に設置するアルカリ薬剤は、ペデスタル内に敷設さ	
れた全てのケーブルが溶融し、ケーブルに含まれる酸性物質(塩素)が溶出した際でも、ペデス	
タル内の蓄水が酸性化することを防止するために必要な容量とする。	

	備考
戶建物 昆物() 昆外	
Firem Merina (Harange) 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	 (1) 格納容器バウンダリに対する影響 薬液をサプレッション・チェンバに注入した場合、サプレッション・ブール水の水酸化ナトリウム濃度は最大で wt%、pHは約 となる。 またサプレッション・チェンバへ所定量の薬液を注入した後には、薬液を含まない低圧原子炉代替注水槽、輸谷貯水槽(西1)及び輸谷貯水槽(西2)の水を低圧原子炉代替注水ボンプ又は大量送水車により注水することで、薬液注入配管のうち材質が炭素鋼である残留熱除去系配管について、薬液が局所的に滞留・濃縮することはない。 原子炉格納容器の鋼材として使用している炭素鋼のアルカリ腐食への耐性を図2,3に示す。pH制御操作時の濃度ではアルカリ腐食割れは発生せず、また、塩化物による孔食、すきま腐食、SCCの発生を抑制することができる。 また、原子炉格納容器パウンダリで主に使用しているシール材は、耐熱性能に優れた改良EPDM材に変更しているが、この改良EPDM材について事放環境下でのシール性能を確認するため、表1の条件で蒸気暴露後の気密試験を実施し、耐アルカリ性能を確認した。 なお、サプレッション・チェンバにある電気配線貫通部は低圧用のみであり、モジュール部がサプレッション・チェンバ外にあること及びサプレッション・チェンバ内外とも接続箱に覆われていることから、pH制御による影響はない。 麦1 改良EPDM材耐アルカリ性確認試験 	
	これらから, p H制御薬液による原子炉格納容器バウンダリへの悪影響は無いことを確認 した。 なお,水酸化ナトリウムの相平衡を図4に示すが,本系統使用後の濃度である wt%で は,水温が0℃以上であれば相変化は起こらず,析出することはない。	

備老
ב, t u 1

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	*700 *700 *700 *700 *500 *700 *500 *700 *500 *700 *100 *700	
	(2) 水素の発生について 原子炉格納容器内では,配管の保温材等にアルミニウムを使用している。アルミニ	
	ウムは両性金属であり,水酸化ナトリウムに被水すると式①に示す反応により水素が 発生する。	
	また,原子炉格納容器内のグレーチングには,亜鉛によるめっきが施されている。 亜鉛も両性金属であり,式②に示すとおり,水酸化ナトリウムと反応することで水素	
	が発生する。 これらを踏まえ,事故時に想定されるサプレッション・チェンバ内の水素の発生量	
	を評価する。なお、実際に薬液と反応する金属はスプレイの飛散範囲内と考えられるが、保守的に教練家器内の会ての悪欲トアルミニウムが反応した素が発生するトレス	
	評価を行う。	
	A1 + NaOH + H ₂ O → NaA1O ₂ + 3/2H ₂ ↑ (式①) Zn + NaOH + H ₂ O → NaHZnO ₂ + H ₂ ↑ (式②)	
	a. 亜鉛による水素発生量	
	格納容器内の亜鉛の使用用途はグレーチングの亜鉛メッキである。そのためグレ ーチングの亜鉛メッキ量を調査し、これらの全てが薬液と反応した場合の水素発生	
	量を評価した。	
	【算出条件】	
	・ドライウェル グレーチング表面積:約 3,135m ²	

別添1-737

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	・サプレッション・チェンバ グレーチング表面積:約 930m ²	
	 ・亜鉛メッキ膜厚:80µm 	
	(JIS H8641-2007 溶解亜鉛メッキ厚判定基準値(最大値)76μm より)	
	・亜鉛密度:7.2g/cm3	
	 ・亜鉛原子量:65.38 	
	【計算結果】	
	上記条件より, 亜鉛量はドライウェルで約 1,806 kg, サプレッション・チェンバ	
	で約 536 kg となり、合計約 2,350 kg となる。そして、式②よりこの亜鉛が全量反	
	応すると、水素の発生量は約73 kg となる。	
	b. アルミニウムによる水素発生量	
	格納容器内のアルミニウムの使用用途は保温材の外装材やドライウェルクーラー(D	
	WC)のアルミフィンである。そのため、これらの全てが薬液と反応した場合の水素	
	発生量を評価した。	
	【算出条件】	
	・保温材に含まれるアルミニウムの体積:約0.5843m ³	
	・アルミニウム密度:2.7g/m ³	
	・DWCに含まれるアルミニウムの質量:約1,761kg	
	【計算結果】	
	上記条件より、原子力格納容器内に存在するアルミニウム量は、約3,339 kg とな	
	る。そして,式②よりこの亜鉛が全量反応すると,水素の発生量は約374kgとなる。	
	c. 水素発生による影響について	
	水ージルコニウム反応等により格納容器内で発生する水素量は、有効性評価上の	
	大LOCAシナリオで約 210 kg であり、薬液注入により亜鉛とアルミニウムが全量	
	反応したとしても、事故時の格納容器内の気相は水蒸気が多くを占めていることか	
	ら、格納容器の圧力制御には影響がない。	
	また、格納容器内は窒素ガスにより不活性化されており、本反応では酸素の発生	
	がないことから、水素の燃焼は発生しない。	
	これらのことから、pH制御に伴って格納容器内に水素が発生することを考慮して	
	も、影響はないものと考える。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	《参考文献》	
	[1] 小若正倫「金属の腐食損傷と防食技術」アグネ承風社, 2000 年	
	[2] Gmelins Handbuch der anorganischer Chemie, Natrium, 8 Auflage, Verlag	
	Chemie, Berlin 1928	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	別紙 53	・資料構成の相違
	<u>ベント実施時の影響を踏まえた接続口の優先順位について</u>	
	ベント実施後は、ベントガスに含まれる放射性物質が格納容器フィルタベント系出口配管に付	
	着するため、出口配管立ち上がり部周辺での作業及び移動に影響が出る可能性がある。	
	このため,格納容器フィルタベント系出口配管立ち上がり部周辺の線量評価を実施するととも	
	に、評価結果を踏まえた優先順位の考え方を以下に示す。	
	1. 格納容器フィルタベント系出口配管立ち上がり部周辺での作業について	
	R/B 南側に設置してある格納容器フィルタベント系出口配管立ち上がり部周辺で、ベント実	
	施後に想定される作業を考慮した可搬型設備の配置図を図1に示す。	
	図1 ベント実施後に想定される可搬型設備の配置について	
	2. 格納容器フィルタベント系出口配管立ち上がり部周辺の被ばく評価について	
	R/B 南側の格納容器フィルタベント系出口配管立ち上がり部周辺で、ベント実施直後に実施	
	する作業は無いが,出口配管立ち上がり部から10m地点(R/B南側接続口付近)において事故	
	後約43時間(ベント後10時間)及び事故後7日時点,出口配管立ち上がり部から1m地点に	
	おいて事故後7日,30日,60日後の線量率を評価した。なお、作業エリアの比較のため、R/B	
	西側接続口付近についても評価した。線源には有効性評価(格納容器過圧・過温破損)の「冷	
	却材喪矢(大破断LOCA)+ECCS汪水磯能喪矢+全交流動力電源喪矢」シナリオにおけ るW/Wベント使用時の放出員を用いている	
	るW/WY/ 「使用時の放山里を用いている。 表1に示す評価結果のとおり、短時間のアクセス等は可能な線量率であると考えられる	

東海第二発電所 (2018.9.18版)	島根原子力発行	電所 2号炉		備考
	表1 格納容器フィルタベント系出口	配管立ち上がり部周辺	ロの線量評価結果	
	評価場所	事故後時間	線量率(mSv/h) ^{※1} (うち, 配管寄与分)	
	評価点 A(格納容器フィルタベント系出口配管 立ち上がり部(雨水排水ライン))から 10m 地	約 43 時間 (ベント後 10 時間)	約 13 (約 2.5)	
	点 (R/B 南側接続口付近)	7日 (168時間)	約 5.0(約 0.8)	
	評価点A(格納容器フィルタベント系出口配管	7日 (168時間)	約 85 (約 81)	
	立ち上がり部(雨水排水ライン))から1m地	30 日	約 9.2 (約 5.1)	
	点	60 日	約 6.2 (約 2.1)	
	評価点 B (R/B 西側接続口付近)	約 43 時間 (ベント後 10 時間)	約9.0(約一)*2	
		7日 (168時間)	約 3.7 (約一)*2	
	 ※1 K/B からの直接線・×カイシャイン線、タブリドンク着用)に加えて、W/Wベントに伴い格納容器フィン質及び雨水排水ライン配管に蓄積する放射性物質着する放射性物質が全て地上近くの雨水排水ライン格納容器フィルタベント系出口配管立ち上がり部にガスを除く)が、配管長 100mあたり 10%の割合で ※2 格納容器フィルタベント系出口配管を直視できない 	マイン, クノントシマイ、 レタベント系出口配管立ち (格納容器フィルタベント 配管に移動するものと想定 付着する放射性物質量は, 付着するものとした。 い場所のため, 配管による新	2, 吸入採取(FF50 主面マス 4.上がり部に浮遊する放射性物 系出口配管立ち上がり部に付 定)を考慮して評価している。 配管を流れる放射性物質(希 線量はない。	
	3. 可搬型設備を使用した接続口の優先順位にな 表1の線量評価結果から, R/B 南側接続口 系出口配管の影響はあるが, R/B 南側のアクセ は可能である。また, R/B 西側接続口エリアで 位については作業員被ばくを考慮せず,以下に 設備の設置については,ベント実施前に完了し	ついて 付近の線量率に対して スルートの通行及び南 の作業も可能であるこ 示す考えをもとに設定 している。	格納容器フィルタベント 「側接続ロエリアでの作業 とから,接続口の優先順 Eしている。なお,可搬型	
	 ①<u>大量送水車 : 原子炉注水流量が多い配管</u> (1)南側接続口(残留熱除去系(A)注 (2)西側接続口(残留熱除去系(B)注 ②<u>原子炉補機代替冷却系(移動式代替熱交換</u>: 運転員の系統構成(屋内)における (1)南側接続口(原子炉補機冷却系(B)) (2)西側接続口(原子炉補機冷却系(A)) 	<u>管を優先して使用する。</u> 入配管) 入配管) <u>急設備)</u> る操作対象弁が少ない 系:2弁)) 系:4弁))	_ ものを優先して使用する。	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	その他, R/B 南側においては, 長期的な対応として可搬式窒素供給装置による FCVS ライン	
	への窒素ハーンのための可搬型設備の起動操作等の作業が考えられるか, R/B 南側接続日エリ	
	「ごの作業と同様, 可搬型設備の設置エリブごの作業は可能ごめる。	
	(参考1)蒸気凝縮によるドレンについて	
	格納容器フィルタベント系を使用した際には、ベント開始直後から系統内で蒸気凝縮によ	
	るドレンが発生するが、ベントガス流量が約 以上であればベントガスがドレンを	
	随伴し排出するため、ベント後はフィルタ装置ト流で発生するドレンについては出口配管の	
	放出端より排出されるか、ベントガス流量が少なくなるとドレンは排出できなくなり、出口	
	配官立ち上かり部の雨水排水フィンにトレンか溜よることとなる。	
	N小排水フインか個水となった場合, 溢れたトレンは俗納谷器ノイルタペント米配官を通 ■ て知ばすうくし容異すで豆を携止してたり(図1条照) その後、知ばすうくしていれた	
	うく歌ヒオノイト谷器よく戻る構成としてわり(図1参照),ての後,歌ヒオノイトノイルク 出口側のドレンラインからスクラバ宏哭連結管(液相部)に流入する(図2-2条照) また	
	山口岡のドレンノインからハラノハ谷福運相省(取伯印)に加八する(国乙,3多照)。よた, 銀ゼオライトフィルタのドレンラインにけ道止金を設置していることから、スクラバ突哭演	
	結管からスクラバ容器の全属フィルタ及び銀ゼオライトフィルタを通らずにベントガスが流	
	出することがない構成としている(図3参昭)。	
	なお、格納容器フィルタベント系配管は、フィルタ装置下流は放出端に向かって連続上り	
	勾配としていることからドレンが配管の途中で溜まることはない。	
	また、「2. 格納容器フィルタベント系出口配管立ち上がり部周辺の被ばく評価について」	
	表1の線量評価結果から、線量率のうち出口配管寄与分は短半減期核種が支配的であり、60	
	日後には線量率が減衰するため、基本的に雨水排水ラインのドレンについては処理する必要	
	はないが、事故収束後に雨水排水ラインのフランジに可搬ホースを接続し、ドレンをスクラ	
	バ容器等に移送することで処理可能である。	
	図1 格納容器フィルタベント糸立ち上がり部(雨水排水ライン)	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	図2 銀ゼオライト容器内のドレンの流れ	
	図3 銀ゼオライト容器からスクラバ容器間のドレンライン	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	<銀ゼオライト容器からスクラバ容器へのドレンの排出について>	
	ベント後にはスクラバ容器と銀ゼオライト容器には圧力差が生じるため、銀ゼオライトフ	
	ィルタ出口側ドレンラインにおいて、以下の水位が形成される。	
	$H = h_1 + h_2 + h_3 \cdot \cdot \cdot (\vec{x} 1)$	
	H: 銀ゼオライトフィルタ出口側ドレンラインに形成される水位	
	h ₁ : スクラバ容器のスクラビング水位	
	h ₂ : スクラバ容器と銀ゼオライト容器の圧力差に相当する水位	
	h ₃ : ドレンラインで発生する圧力損失に相当する水位	
	格納容器破損防止対策の有効性評価のうち、「雰囲気圧力・温度による静的負荷(格納容器	
	過圧・過温破損)(残留熱代替除去系を使用しない場合)」において、ベントガスによりドレ	
	ンを出口配管の放出端から排出できなくなる時点の圧力差で水位を評価した結果,図4に示	
	すとおり、ドレンラインに形成される水位は、最大でも銀ゼオライトフィルタ下端以下とな	
	る。	
	ドレン発生量は少ないため、ドレンラインで発生する圧力損失はほぼゼロであり、式1に	
	示す h_3 に相当する水位は無視できるため、 h_1 及び h_2 に相当する水位までドレンが溜まれば、	
	ドレンはスクラバ容器に排出される。	
	図4 銀ゼオライトフィルタドレンラインに形成される水位の評価結果	

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉
	(参考2)ドレン排出可能なベントガス流速について
	島根2号機の格納容器フィルタベント系出口配管で発生するドレンをベントガ 出できるかどうかは、以下の考え方に基づいて判断することができる。
	1. 出口配管からドレン排出可能なベントガス流速について 垂直管内で上向きにガスが流れる場合に,ガスに随伴してドレンが排出される は,配管口径が小さい場合には気相流速(j ₆)に依存するが,配管口径が約 域では Ku 値(Kutateladze 数[-])に依存し, となる(参考図書1)。 ここで, Ku 値は以下の式で表される。
	$Ku = \frac{\rho_G^{0.5} \cdot j_G}{\left(g \cdot \sigma(\rho_L - \rho_G)\right)^{0.25}}$
	ρ _G :気相密度 (0.598[kg/m ³]) ^{*1} ρ _L :液相密度 (958.1[kg/m ³]) ^{*1} g:重力加速度 (9.80665[m/s ²]) j _G :気相流速 [m/s]
	 σ:表面張力(0.0589[N/m])^{*1} ※1:括弧内は大気圧のときの値を表す。
	島根2号炉の格納容器フィルタベント系出口配管(立ち上がり部)は300Aの め、ベントガス流速が を満足する より大きい場合 内のドレンがベントガスに随伴されて排出されることとなる。
	2. ベントガスによって凝縮水を排出できなくなるタイミングについて ベントガス流速は以下の式で表される。 $v = W_{vent}/(\rho \times A)$
	v :ベントガス流速 [m/s] W _{vent} :ベントガス流量 [kg/s] ρ :ベントガス密度 [kg/m ³] A :配管断面積 [m ²]
	島根2号炉の格納容器フィルタベント系出口配管におけるベントガス流速と 量の関係を図1に示す。図1より、ベントガス流速 に対応するベント

東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉 格納容器破損防止対策の有効性評価のうち、「雰囲気圧力・温度による静的負荷(格納容器 過圧・過温破損)(残留熱代替除去系を使用しない場合)」のベントガス流量の水位を図2に示 す。図2より、島根2号炉のベントガス流量が となる時点は事故後約97時間とな るため、ベントガスによってドレンを排出できなくなるのは事故後約97時間後と評価できる。 図1 出口配管におけるベントガス流速および質量流量の関係 (1) 出口配管におけるベントガス流速および質量流量の関係 (2) 1 (2) 1 (2) 1 (2) 1 (3) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (6) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) (4) (7) <td< td=""><td>備考</td></td<>	備考
	^流 量 10 (ks/s)	
	《参考図書》 1. Richter H.J, Flooding in tubes and annuli, Int. J. Multiphase flow, 7, 647-658(1981)	